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Summary 23 

Mastitis, the most common and expensive disease in dairy cows, implies significant losses in the 24 

dairy industry worldwide. Many efforts have been made to improve genetic mastitis resistance in 25 



dairy populations, but low heritability of this trait made this process not as effective as desired. The 26 

purpose of this study was to identify genomic regions explaining genetic variation of somatic cell 27 

count using copy number variations (CNVs) as markers in the Holstein population, genotyped with 28 

the Illumina BovineSNP777HD array. We found 24 and 47 copy number variation regions 29 

significantly associated with estimated breeding values for somatic cell score (SCS_EBVs) using 30 

SVS 8.3.1 and PennCNV-CNVRuler software’s, respectively. The association analysis performed 31 

with these two software allowed the identification of 18 candidate genes (TERT, NOTCH1, SLC6A3, 32 

CLPTM1L, PPARa, BCL-2, ABO, VAV2, CACNA1S, TRAF2, RELA, ELF3, DBH, CDK5, NF2, 33 

FASN, EWSR1, and MAP3K11) that result classified in the same functional cluster. These genes are 34 

also part of two gene-networks, whose genes share the ‘‘stress’’, “cell death”, ‘‘inflammation’’ and 35 

“immune response” GO terms. Combining CNVs detection/association analysis based on two 36 

different algorithms helps towards a more complete identification of genes linked to phenotypic 37 

variation of the somatic cell count.  38 

 39 

  40 



Introduction 41 

The most common and expensive disease in dairy cows affecting the mammary gland is the mastitis, 42 

an inflammation caused by pathogens. Because of the increased milk production and veterinary 43 

treatments, clinical mastitis cases can cost up to $200 per case, with a total estimated cost to the U.S. 44 

dairy industry of approximately $1.7–2 million dollars/year (Cha et al., 2011).  45 

The susceptibility of the bovine mammary gland to mastitis largely depends on the involution process 46 

of the mammary gland tissue and on the exposure to different physiological, genetic and 47 

environmental factors (Sordillo and Streicher, 2002). 48 

Many efforts have been made to improve the genetic immune resistance to mastitis in dairy cows. 49 

The results are still very limited and obtained mainly through correlated traits as somatic cells count 50 

(SCC). The milk SCC, in fact, can be used as a predictor of mastitis susceptibility, since a moderate 51 

to high genetic correlations have been reported between clinical mastitis and SCC or its log 52 

transformation in somatic cell score (SCS) (Hinrichs et al., 2005).  53 

In the recent past, a large number of studies have mapped QTL affecting mastitis SCC and SCS and 54 

are reported in the QTL database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index). 55 

The availability of dense Single Nucleotide Polymorphism (SNP) arrays facilitates the identification 56 

of genomic regions associated with economically important traits in farm animals, thus allowing to 57 

better disclose QTLs and genetic variation for mastitis resistance. Recently a class of structural 58 

variants, the copy number variants (CNVs), have been suggested as markers of genomic variation in 59 

complex disease (Redon et al., 2006). CNVs, in fact, are a genomic structural variation that, as SNP, 60 

is considered as an important marker of heritable genetic expression (Kijas et al., 2011).  61 

CNVs are distributed over the whole genome in humans, domestic animals and other species; they 62 

are defined as large-scale genome mutations ranging from 50bp to several Mb compared with a 63 

reference genome, which are presented as insertions, deletions and more complex changes (Mills et 64 

al., 2011).  Although SNPs are more frequent, CNVs involve larger genomic regions that may affect 65 

gene structure and possibly determining a change in its expression and regulation (Hou et al., 2012a).  66 



Several studies have shown that the CNVs are associated with residual feed intake variability in 67 

Holstein cows (Hou et al., 2012b) and with fertility in Israeli Holsteins (Glick et al., 2011). In 68 

addition, Xu et al., (2014) reported a genome wide CNVs association analysis with milk production 69 

traits in Holstein, identifying thirty-four CNVs significantly associated with milk production traits, 70 

most of them overlapping known QTL.  71 

Generally, QTL identifying studies are based on a very large number of individuals, as sample size 72 

is determinant to achieve reasonable power in a population wide experimental design. The selective 73 

genotyping (Darvasi, 1997) is an efficient method to identify chromosomal regions that harbor QTL 74 

by comparing marker allele frequencies from phenotypically extreme samples (samples that deviate 75 

the most from the mean of the phenotype). This approach allows maintaining the same statistical 76 

power for QTL detection, limiting the number of samples to genotype to those in the extreme high 77 

and low values, instead of genotyping the whole population as is done in population wide 78 

experimental designs. Several studies based on SNP markers, have addressed the feasibility and 79 

effectiveness of the selective genotyping method (also combined with the DNA pooling approach), 80 

to detect QTL associated with different traits (Strillacci et al., 2014; Fontanesi et al., 2007). 81 

The use of CNVs as markers, to explain the genetic variation of SCS in milk, has not been explored 82 

so far. The purpose of this study was to identify genomic regions explaining the genetic variation of 83 

SCS using CNVs in the Holstein population using a selective genotyping approach. Two different 84 

algorithms were used to call CNVs in order to provide a cross integration and validation of results 85 

and a clearer indication on the size of the CNVs identified. 86 

 87 

Materials and Methods 88 

Sampling and genotyping 89 

The SCS estimated breeding values (SCS_EBV) were obtained from the Mexican Holstein 90 

Association (http://www.holstein.com.mx/QueToro.aspx). In order to identify individuals with 91 



extreme high and low values, the entire database was ranked based on SCS_EBV values (1.38 mean 92 

± 1.14 SD). 93 

A total of 242 samples with available DNA, identified among individuals above and below 2 SD from 94 

the SCS_EBV values average, were selected and classified as following: i) high phenotypes. A total 95 

of 102 samples with SCS_EBV mean 3.37 ± 0.523; ii) low phenotype. A total of 140 samples with 96 

mean 1.67 ± 0.719. 97 

SNP chip data, obtained from the Illumina BovineSNP777HD array (Illumina Inc., San Diego, CA), 98 

were provided by the Genomic Improvement project of INIFAP and the Mexican Holstein 99 

Association. 100 

 Data editing 101 

The Log R Ratio (LRR) and the B allele frequency (BAF) values were extracted using the Illumina 102 

BeadStudio software V.2.0 (Illumina Inc.). Samples with a call rate below 98% were excluded from 103 

the subsequent analyses, which were performed for the 29 autosomes.  104 

The overall distribution of derivative log ratio spread (DLRS) values were evaluated using the SVS 105 

8.3.1 software (Golden Helix Inc.) to identify and filter outlier samples, as described by Pinto et al., 106 

(2011). To normalize the LRR values and then exclude the samples with extreme wave factors from 107 

the analysis, we used the wave correction algorithm, which corrects for the waviness contributed by 108 

GC content. In addition, batch effects in the LRR were corrected via numeric Principal Component 109 

Analysis (PCA). 110 

CNVs detection 111 

As suggested by different authors (Pinto et al., 2011) and applied in CNVs mapping studies (Bagnato 112 

et al., 2015), because of intrinsic noisiness of CNV analysis, at least two algorithms should be used 113 

for the identification of CNVs. This strategy allows the integration and comparison of the CNV 114 

detection among different algorithms and may reduce the bias in detection (i.e. false negatives) proper 115 

of each algorithm. The possibility to identify false negatives may be relevant especially when running 116 

an association analysis between identified CNVs and traits of interest. 117 



Two independent software based on different algorithms were here used to identify CNVs: i) the 118 

Copy Number Analysis Module (CNAM) provided by SVS 8.3.1 software (http://goldenhelix.com); 119 

ii) the Hidden Markov Model (HMM) by PennCNV software 120 

(http://penncnv.openbioinformatics.org/en/latest/).  121 

For CNVs calling using SVS 8.3.1 software, LRR values were employed under the univariate 122 

approach: this approach segments each sample independently.  As suggested in the software manual, 123 

the options used were the following: i) univariate outlier removal; ii) maximum number of segments: 124 

search for up to 10 per 10,000 markers; iii) a minimum of 3 markers per segment; iv) a significance 125 

level of p= 0.005 for pairwise permutations (n=2000). After segmentation analysis, all the segments 126 

were classified in three categories as losses, gains and neutral. 127 

The individual-based CNV calling, based on LRR and BAF values for every SNP, was performed by 128 

PennCNV software using the default parameters of HMM (standard deviation (SD) of LRR <0.30 129 

and BAF drift as 0.01).  130 

 131 

CNV association with SCS_EBV 132 

Linear regression in SVS 8.3.1 software was used to identify CNVs (detected by CNAM algorithm) 133 

associated with SCS_EBV with significance level of FDR >0.05, after classifying CNV calls in three 134 

state covariates, i.e. loss, neutral, gain (-1, 0, 1). 135 

Instead, results of the CNV calling from PennCNV were utilized to perform an association analysis 136 

with SCS_EBV using the CNVRuler software (http://www.ircgp.com/CNVRuler/index.html), after 137 

the definition of CNV regions (CNVRs). In this study, the CNVRs were detected by merging 138 

overlapping CNVs by at least 1bp identified across all samples, as described by Redon et al., (2006). 139 

The association analysis was performed between CNVRs and SCS_EBV, applying a linear regression 140 

model, with a minor allele frequency threshold value set to 0.02. The parameter of recurrence, set to 141 

0.1 (default value), was applied to allow a more robust definition of regions. This option checks the 142 

density of regions of CNVs and trim the sparse area not satisfying the density threshold of 10%. 143 



Additionally, the "Gain/Loss separated regions" option, which compiles the region based on the 144 

genotype (gain or loss of copy number), was applied. 145 

Significant CNVs were detected when their false discovery rate adjusted p-values (FDR) had a value 146 

of p < 0.05. 147 

For a graphical visualization of the results, two separated Manhattan plots of associated CNVRs with 148 

SCS_EBV were created using the -log10 of the p-values resulting from the association analyses 149 

performed by SVS 8.3.1 and PennCNV-CNVRuler software. 150 

Annotation  151 

The full Ensembl v83 gene set (bovine UMD 3.1 assembly) for the autosomes was downloaded 152 

(http://www.ensembl.org/biomart/martview/76d1cab099658c68bde77f7daf55117e/ ).  153 

In order to identify the genes located within the CNVRs we created a consensus list (among CNVRs 154 

and the downloaded genes) using the BedTools software (Quinlan and Hall, 2010).  155 

Gene Ontology (GO) and pathways analyses were performed using GenCLiP2.0, an online server for 156 

functional clustering of genes (http://ci.smu.edu.cn/GenCLiP2.0/analysis.php?random=new) 157 

accounting for false discovery rate. 158 

 159 

RESULTS AND DISCUSSION 160 

CNVs calling and association analysis with SVS 8.3.1 161 

The CNVs detection was performed in 220 stringently quality filtered samples: i) 88 high phenotype 162 

samples (3.384 ± 0.511) and 132 low phenotype samples (1.670 ± 0.726). 163 

We identified a total of 5194 CNVs (covered at least by 3 SNPs) (Table 1) distributed on all 164 

autosomes, mainly on the BTA 12 (n=881). Among the detected CNVs, the number of losses and 165 

gains were 5,088 (98%) and 106 (2%) gains, respectively. The number of CNVs in all samples ranges 166 

from 11 to 42 (average of 25.12). 167 

Overlapping CNVs across samples were summarized at the population level into 252 CNVRs (11 168 

gains, 236 losses and 5 complex), with 62 singletons and 128 CNVRs that comprise at least 5 CNVs 169 



(Table S1). CNVRs cover a total of 39.29 Mb of sequence which corresponds to 1.5% of the Bovine 170 

UMD3.1 assembly.  171 

Using a linear regression, 85 CNVs resulted to be associated with SCS_EBV (p-value <0.05 after 172 

FDR correction) (Figure 1A).  173 

In order to better delineate the chromosomal regions resulting associated with the trait, the significant 174 

CNVs are grouped in 34 CNVR distributed on 17 autosomes, according to Redon et al., (2006)’s 175 

approach, using the BedTools software. Among those CNVRs, only the ones with CNVs frequencies 176 

above 2% (CNVRs with at least one CNV identified in five samples) were retained and used to 177 

perform the annotation analysis. Based on UMB3.1 sequence assembly, 51 bovine genes were 178 

annotated within the significant CNVRs (Table 2). 179 

CNVs calling and association analysis with PennCNV 180 

The use of the “Filtering CNV calls by user-specified criteria” module of PennCNV allowed to 181 

identify low-quality samples and to eliminate them from further analysis. Out of the 220 stringently 182 

quality filtered samples we than obtained a subset of samples (n=124) with a maximum number of 183 

CNVs equal to 200: i) 49 high phenotype samples (3.307 ± 0.385); ii) 74 low phenotype samples 184 

(1.830 ± 0.080). This additional filtering is specifically required according to the PennCNV detection 185 

algorithm. 186 

Overall, 12,070 CNVs distributed on all autosomes were then assessed, with an average per sample 187 

of 97.33 CNVs (ranging from 42 to 200) (Table 1).  188 

CNVs overlapping by at least one nucleotide were summarized to 1,662 CNVRs (394 gains, 1,215 189 

losses and 53 complex), with 844 singletons and 408 CNVRs that comprise at least 5 CNVs (Table 190 

S2). The defined CNVRs cover 82.67 Mb of autosomal genome sequences, corresponding to 3.3% 191 

of the Bovine UMD3.1 assembly.  192 

After PennCNV-CNVRuler analysis, a total of 47 CNVRs distributed on 18 autosomes, were 193 

associated (p-value<0.05 after FDR correction) with SCS_EBV (Figure 1B). Table 3 reports the list 194 

of the 47 significant CNVRs and the 105 annotated genes. 195 



Comparison of results obtained with SVS8.3.1 and PennCNV software 196 

In order to identify the CNVRs that fully overlapped each other among those identified within the 197 

two software, the Wain et al. (2009)’s approach was used in a BedTool software routine. The 198 

consensus CNVR set contained 265 regions.  199 

After association analysis, only six CNVRs resulted associated with SCS_EBV for both analyses. 200 

These common regions were located on BTA1 (at 93.95 Mb), on BTA5 (at 58.96 Mb), on BTA5 (at 201 

117.28 Mb), on BTA7 (at 42.73 Mb), on BTA12 (at 74.84 Mb) and on BTA23 (at 28.82 Mb).  202 

The CNVR_11SVS on BTA12 comprised two different associated regions identified by CNVRuler 203 

(CNVR_22P and CNVR_23P). In addition, the associated CNVR _9SVS on BTA11 at 103.64-104.19 204 

Mb lies in the proximity (about 100Kb) of the associated CNVR_19P.  205 

The overlapping CNVRs between PennCNV and SVS8.3.1 did not contain any functional gene, 206 

except for the CNVR located on BTA7. This may be due to incompleteness in the annotation of 207 

bovine genome compared to the human one; otherwise, as reported by Wieczorek et al., (2010) some 208 

CNVs are located in gene poor regions or in noncoding regions. 209 

Comparison with literature findings showed that 78.5% of significant CNVRs (a total of 65) here 210 

identified have been already reported in 9 studies (Table S3), providing evidence they are likely true 211 

CNVRs. Additionally many of the CNVRs reported by the 9 studies perfectly overlapped those found 212 

here and were found among different breeds suggesting that they are CNVRs conserved across 213 

populations. The remaining 21.5% (a total of 14 CNVR) of the identified CNVRs were not previously 214 

reported and may be thus population specific or not yet detected. A further evidence that significant 215 

CNVRs are true regions comes from the number of individuals defining them, spanning from 80 to 216 

140 for SVS 8.3.1 and from 7 to 103 for PennCNV-CNVRuler.  217 

We compared the identified associated CNVRs with the reported cattle QTL in the Animal QTL 218 

database (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index). Among the associated CNVRs, 219 

seven (SVS 8.3.1) and ten (CNVRuler) are regions overlapping the mapped QTL for SCS or for 220 



Mastitis, as reported for both software in Table 4 (Clinical Mastitis as CM; Somatic cell count as 221 

SCC). 222 

The Literature Mining Gene Network tool (provided by GenCLiP2.0), that searches for genes linked 223 

to keywords based on up-to-date literature profiling, revealed that 14 genes included within the 224 

significant CNVRs and two flanking genes (BCL-2, PPARa) have been associated mainly with the 225 

keywords ‘‘Stress’’, “cell death”, ‘‘inflammation’’, and “immune response”, as reported in Figure 2.  226 

The GO analysis performed for the gene included in the Figure 2, revealed that they are clustered into 227 

19 groups of genes that were involved in a variety of cellular functions such as cell death, programmed 228 

cell death, tissue and organ development, and so on (Table S4 and Figure 3). 229 

KEGG Pathway analysis showed the involvement of several signal pathways, such as immune 230 

response, apoptosis and adipocytes signalling (Table S5 and Figure 4).  231 

The annotation analyses has enabled the identification of genes encoding for proteins that may be 232 

involved in the phenotypic variation of the SCS_EBV and consequently in the mastitis resistance.  233 

In particular, the association analysis performed with the SVS 8.3.1 allowed the identification of 7 234 

candidate genes (TERT, NOTCH1, SLC6A3, CLPTM1L, CACNA1S, PPARa  and BCL-2), while 11 235 

candidate genes were found associated with CNV identified with PennCNV-CNVRuler analysis  236 

(ABO, TRAF2, RELA, ELF3, DBH, CDK5, NF2, FASN, EWSR1, VAV2 and MAP3K11). Details on 237 

genes included in the networks and their function are included in Supporting Information 1 file. 238 

 239 

Conclusions 240 

The selective genotyping approach here used revealed to be efficient in identifying CNVs in the 241 

population and in associating them to the SCS_EBVs. The strategy here adopted to report CNVs 242 

mapped through the use of two different algorithms (CNAM and HMM) successfully reduced the 243 

false negative (and positives) that may be identified by only one approach.  244 

Finally, this study is the first GWAS for SCS based on CNVs in Holstein cattle breed. Combining the 245 

CNVs detection/association analysis using two software allows a more complete identification of 246 



genes linked to phenotypic variation of the SCS trait, compared to those revealed using only one 247 

software. 248 
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Table 1 Descriptive statistics for CNVs identified with PennCNV and SVS 8.3.1 software 346 

 347 
Copy number* Number of CNVs Mean Lenght Min Lenght Max Lenght 

SVS 8.3.1 
Loss 5088 318,123 1,245 2,760,295 
Gain 106 718,633 9,245 2,805,791 

Totale 5194 518,378 1,245 2,805,791 
PennCNV 

0 2354 64,47 1,229 602,303 
1 8121 54,39 1,112 1,248,573 
3 1566 94,328.5 998 1,185,515 
4 29 147,364 4,044 724,916 

Total 12070 90,138 998 1,248,573 
*0 = homozygous deletion, 1 heterozygous deletion, 3 heterozygous duplication, and 4 homozygous duplication 348 

 349 
 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 



Table 2  CNVRs significantly associated with SCS_EBV identified by SVS 8.3.1 367 

      

CNVR_ID CHR START  END  LENGHT  STATE  FREQ SNP Predictor p-value Genes within the 
significant CNVRs 

CNVR_9_SVS 1 93957123 94357120 399997 loss 8 
BovineHD0100026648 8,81E-03 

  BovineHD0100026649 7,11E-03 
BovineHD0100026754 1,25E-02 

CNVR_23_SVS 2 46477034 46485436 8402 loss 30 BovineHD0200013459 1,44E-03   
          

CNVR_39_SVS 3 7957960 7964523 6563 loss 18 BTA-66943-no-rs 4,69E-02   BovineHD0300002600 1,27E-02 
CNVR_58_SVS 5 22514133 22563988 49855 loss 25 BovineHD0500006525 3,94E-02  

CNVR_60_SVS 5 58966295 59255853 289558 complex 51 BovineHD0500035991 4,94E-02  
BovineHD0500036000 5,32E-02 

CNVR_63_SVS 5 117246007 117651752 405745 complex 179 

BovineHD0500034077 4,79E-02 

 

BovineHD0500034078 2,59E-02 
BovineHD0500034128 2,50E-02 
BovineHD0500034132 3,69E-02 
BovineHD0500036296 3,63E-02 
BovineHD0500034144 5,86E-04 
BovineHD0500034145 8,88E-04 
BovineHD0500034148 9,09E-04 
BovineHD0500034150 8,98E-04 
BovineHD0500034151 1,74E-03 
BovineHD0500034152 1,80E-03 
BovineHD0500034153 1,59E-03 

CNVR_83_SVS 7 42745346 42788788 43442 loss 31 

BovineHD0700012438 1,28E-03 

OR2AK2 
BovineHD0700012440 2,65E-03 
BovineHD0700012441 2,10E-03 
BovineHD0700012444 2,65E-03 

ARS-BFGL-NGS-23938 7,27E-03 

CNVR_122_SVS 10 87873996 87878635 4639 loss 11 
BovineHD1000024990 1,25E-02 

  ARS-BFGL-NGS-
112168 1,13E-02 

CNVR_125_SVS 11 103644879 104195124 550245 loss 140 

BovineHD1100031771 5,78E-02 C9orf69, LHX3, 
QSOX2, GPSM1, 
DNLZ, CARD9, 

SNAPC4, 
SDCCAG3, 

PMPCA, INPP5E, 
SEC16A, NOTCH1, 

EGFL7, bta-mir-
126, AGPAT2, 

FAM69B 

BovineHD4100009284 5,39E-02 
BovineHD1100030807 4,21E-02 

BovineHD1100030845 5,43E-02 

CNVR_134_SVS 12 70363408 72077746 1714338 complex 159 
BovineHD1200019362 9,96E-03  
BovineHD1200028177 2,22E-02  
BovineHD1200019797 4,63E-02  

CNVR_137_SVS 12 72411533 75238779 2827246 complex 481 

BovineHD1200019975 5,20E-02 

 

BovineHD1200019998 3,56E-02 
BovineHD1200020000 2,35E-02 
BovineHD1200020001 5,65E-03 
BovineHD1200020003 4,06E-03 
BovineHD1200020163 2,48E-02 
BovineHD1200020442 3,88E-02 
BovineHD1200020450 4,19E-02 
BovineHD1200020457 3,05E-02 
BovineHD1200020475 2,44E-02 
BovineHD1200020488 2,20E-02 
BovineHD1200020490 5,15E-02 
BovineHD1200020495 5,15E-02 
BovineHD1200020612 5,58E-02 
BovineHD1200028386 5,14E-02 
BovineHD1200020699 1,76E-02 
BovineHD1200020725 1,04E-02 
BovineHD1200020840 5,98E-02 

CNVR_138_SVS 12 75509770 76488279 978509 loss 39 BovineHD1200021096 1,91E-02 
CNVR_140_SVS 13 53858853 53862891 4038 loss 5 BovineHD1300015258 1,82E-03   
CNVR_175_SVS 16 81343003 81720984 377981 loss 80 BovineHD1600023844 3,95E-02 



BovineHD1600023853 5,59E-02 C1orf106, KIF21B, 
CACNA1S, 

TMEM9, IGFN1, 
PKP1 

BovineHD1600023856 5,99E-02 

CNVR_186_SVS 18 65766249 65771834 5585 loss 10 BovineHD1800019186 2,81E-03   

CNVR_191_SVS 20 70913332 71571246 657914 loss 139 

BovineHD2000020825 1,46E-02  IRX4, NDUFS6, 
MRPL36, LPCAT1, 
SLC6A3,CLPTM1L, 

TERT, SLC6A18, 
SLC6A19, 

SLC12A7, NKD2, 
TRIP13, BRD9, 

TPPP 

BTA-51318-no-rs 2,71E-02 
BovineHD2000020835 1,17E-02 
BovineHD2000020840 1,34E-02 
BovineHD2000020849 1,62E-02 

BovineHD2000020852 2,10E-02 

CNVR_198_SVS 21 66704964 66750757 45793 loss 5 BovineHD2100019578 4,06E-02 bta-mir-342, DEGS2 

CNVR_208_SVS 22 60911345 60981720 70375 loss 17 BovineHD2200017757 8,88E-03 

CHCHD6, 
TXNRD3, C3orf22, 
CHST13, UROC1, 
ZXDC, SLC41A3, 
ALDH1L1, KLF15, 

CCDC37 
CNVR_213_SVS 23 25869447 26337243 467796 loss 9 BovineHD2300007174 2,28E-03  
CNVR_214_SVS 23 28448873 28469826 20953 loss 14 BovineHD2300008005 5,23E-05  

CNVR_217_SVS 23 28828468 28849820 21352 loss 47 
BovineHD2300008182 4,41E-03 

 BovineHD2300008186 2,86E-03 
BovineHD2300008188 6,64E-03 

CNVR_222_SVS 24 37553499 37581537 28038 loss 5 BovineHD2400010262 1,04E-02 LPIN2 
CNVR_227_SVS 24 62411069 62431830 20761 complex 49 BTB-01625084 3,01E-02   
CNVR_240_SVS 28 10760635 10774825 14190 loss 5 BovineHD2800003298 3,65E-03   

 368 
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Table 3 CNVRs significantly associated with SCS_EBV identified by PennCNV-CNVRuler 384 

 385 

 386 

 387 

 388 

CNVR ID CHR START END LENGHT STATE FREQ p-value Genes within the significant CNVRs 
CVNR_36_P 1 93954887 94357120 402234 loss 8 7,20E-03  
CVNR_66_P 1 146975308 147110229 134922 loss 86 5,50E-04  
CVNR_112_P 2 98480344 98490521 10178 gain 6 3,46E-04  
CVNR_171_P 3 50167465 50191213 23749 loss 10 3,70E-02  
CVNR_186_P 3 93310320 93315045 4726 loss 7 5,71E-03  
CNVR_232_P 4 28744454 28751390 6937 loss 7 1,14E-02  

CNVR_281_P 4 114419925 114514111 94187 loss 7 1,43E-02 ABCB8, ASIC3, CDK5, SLC4A2, FASTK, 
TMUB1, AGAP3 

CNVR_324_P 5 58966295 59168921 202627 gain 6 3,68E-02  
CNVR_347_P 5 107628624 107660101 31478 loss 12 4,52E-02 IQSEC3, SLC6A12 
CNVR_375_P 5 117281795 117639815 358021 loss 74 4,11E-02  
CNVR_379_P 5 118109413 118174364 64952 loss 8 3,66E-02 TBC1D22A 
CNVR_395_P 5 121149647 121183174 33528 loss 9 3,60E-02 MOV10L1, bta-mir-2894, PANX2, TRABD 
CNVR_471_P 7 15083922 15102276 18355 loss 10 4,05E-02  
CNVR_502_P 7 42736530 42788788 52259 loss 29 1,42E-02 OR2AK2 
CNVR_503_P 7 42945525 43087430 141906 loss 13 6,71E-03 OR2AJ1 
CNVR_508_P 7 45487894 45538477 50584 loss 21 1,57E-02 APC2, C19orf25, PCSK4, REEP6 
CNVR_653_P 10 16816476 16844526 28051 loss 3 4,27E-02  
CNVR_658_P 10 23540925 23635452 94528 loss 3 3,94E-02  

CNVR_765_P 11 104295522 104764859 469338 loss 76 7,07E-03 

ABO, SURF6, MED22, RPL7A, SURF1, SURF2, 
STKLD1, REXO4, ADAMTS13, CACFD1, 

SLC2A6, TMEM8C, ADAMTSL2, FAM163B, 
DBH, SARDH, VAV2 

CNVR_770_P 11 106158972 106415916 256945 loss 103 3,21E-02 

UAP1L1, SAPCD2, ENTPD2, NPDC1, FUT7, 
ABCA2, CLIC3, C9orf142, LCNL1, PTGDS, 

LCN12, C8G, FBXW5, TRAF2, EDF1, 
MAMDC4, PHPT1, C9orf172, RABL6, 

CCDC183, TMEM141, LCN8, LCN15, LCN10 
CNVR_777_P 12 717729 731185 13457 gain 4 3,19E-04  
CNVR_824_P 12 72432362 73015638 583277 loss 57 3,69E-02  
CNVR_825_P 12 74840021 75238779 398759 loss 75 4,59E-02  

CNVR_1048_P 16 70814352 71165517 351166 loss 82 3,86E-02 SMYD2, RNPEP, ELF3, GPR37L1, ARL8A, 
PTPN7, LGR6, UBE2T, PPP1R12B, SYT2 

CNVR_1062_P 17 15677009 15720425 43417 loss 4 2,54E-02 INPP4B 
CNVR_1090_P 17 70714297 70748407 34111 loss 12 4,48E-02 EWSR1, GAS2L1, RASL10A, AP1B1 
CNVR_1091_P 17 70794775 70817022 22248 loss 7 3,25E-02  
CNVR_1092_P 17 70963787 71024477 60691 loss 7 2,26E-02 NF2, CABP7, ZMAT5 
CNVR_1134_P 18 27914135 28375996 461862 gain 12 1,86E-02  
CNVR_1192_P 19 24548362 24571149 22788 gain 4 1,75E-02  
CNVR_1210_P 19 37277118 37328651 51534 loss 8 1,15E-02 DLX3, DLX4 
CNVR_1124_P 19 51028723 51073939 45217 loss 11 8,13E-03  

CNVR_1126_P 19 51365385 51514295 148911 loss 10 4,98E-02 FASN, DUS1L, GPS1, RFNG, DCXR, RAC3, 
LRRC45, STRA13 

CNVR_1231_P 19 52776058 52903129 127072 gain 7 2,65E-02  
CNVR_1236_P 19 54639709 54687169 47461 loss 15 3,52E-02 TMC8, TMC6 
CNVR_1321_P 21 54162719 54196002 33284 loss 9 1,44E-02  
CNVR_1345_P 22 20291128 20331448 40321 loss 7 5,32E-03  
CNVR_1398_P 23 21694996 21702537 7542 loss 5 3,40E-02  
CNVR_1399_P 23 25335659 25361041 25383 loss 12 1,01E-03  
CNVR_1408_P 23 28828468 28849820 21353 loss 22 4,64E-02  
CNVR_1417_P 23 34779270 34866601 87332 gain 3 1,76E-02  
CNVR_1519_P 26 23347145 23380565 33421 loss 7 1,00E-02  

CNVR_1549_P 26 51434163 51680135 245973 loss 38 3,30E-02 JAKMIP3, DPYSL4, STK32C, LRRC27, 
PWWP2B 

CNVR_1584_P 28 2263677 2271424 7748 loss 4 1,21E-02  
CNVR_1617_P 29 27363231 27409510 46280 loss 14 3,78E-02  

CNVR_1640_P 29 44416282 44502548 86267 loss 14 4,69E-02 SSSCA1, FAM89B, EHBP1L1, KCNK7, 
MAP3K11, PCNXL3, SIPA1, RELA 

CNVR_1648_P 29 47039694 47054342 14649 loss 3 3,66E-02 TPCN2 



Table 4 QTL mapped within significant CNVRs  389 

CNVR_ID Chr Start  End  Lenght Start_QTL End_QTL QTL trait_id 

Signifiacnt CNVR_SVS 8.3.1 

CNVR_23_SVS 2 46477034 46485436 8402 45424584 52384967 
CM (DYD) QTL #19007, QTL 

#19004, QTL #19005, QTL 
#19006 

CNVR_83_SVS 7 42745346 42788788 43442 27358606 42831622 SCS QTL #2667 

CNVR_140_SVS 13 53858853 53862891 4038 51062875 56847265 SCS QTL #2775 

CNVR_213_SVS 23 25869447 26337243 467796 23274081 31653997 SCS QTL #2688 

CNVR_214_SVS 23 28448873 28469826 20953 23274081 31653997 SCS QTL #2688 
     27452360 31104253 SCS QTL #4989 

CNVR_217_SVS 23 28828468 28849820 21352 23274081 31653997 SCS QTL #2688 
     27452360 31104253 SCS QTL #4989 

CNVR_240_SVS 28 10760635 10774825 14190 10665897 11438802 SCS QTL #16056 

Signifiacnt CNVR_PennCNV 

CVNR_502_P 7 42736530 42788788 52259 27358606 42831622 SCS QTL #2667 

CNVR_503_P 7 42945525 43087430 141906 42834942 50547685 SCC QTL #2698 

CNVR_508_P 7 45487894 45538477 50584 42834942 50547685 SCC QTL #2698 

CNVR_658_P 10 23540925 23635452 94528 22939631 40797089 SCC QTL #2701 

CVNR_1134_P 18 27914135 28375996 461862 27863715 33011652 SCC QTL #4638 

CVNR_1226_P 19 51365385 51514295 148911 51395368 51495967 SCS (DYD) QTL #32265 

CVNR_1398_P 23 21694996 21702537 7542 21554613 22522198 SCS QTL #19986, #19991 

CVNR_1399_P 23 25329895 25417035 87140 23274081 31653997 SCS QTL #2688 
     27452360 31104253 SCS QTL #4989 

CVNR_1408_P 23 28828468 28849820 21353 23274081 31653997 SCS QTL #2688 
     27452360 31104253 SCS QTL #4989 

CVNR_1648_P 29 47039694 47054342 14649 46178647 52998234 CM (DYD) QTL #19031 
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Figure legends 403 

Figure 1. Manhattan plots of associated CNVs for SCS_EBV using SVS 8.3.1. (A) and PennCNV-404 

CNVRuler (B). 405 

Figure 2. Candidate Genes Network  406 

Figure 3. Cluster results of Go analysis for all genes included in significant CNVR (both software). 407 

Figure 4. Cluster results for pathway analysis (both software). 408 
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