
Chiumello et al. Critical Care  (2017) 21:240 
DOI 10.1186/s13054-017-1820-0
REVIEW Open Access
Respiratory support in patients with
acute respiratory distress syndrome:
an expert opinion

Davide Chiumello1, Laurent Brochard2,3, John J. Marini4, Arthur S. Slutsky2,3, Jordi Mancebo5, V. Marco Ranieri6,
B. Taylor Thompson7, Laurent Papazian8, Marcus J. Schultz9, Marcelo Amato10, Luciano Gattinoni11, Alain Mercat12,
Antonio Pesenti13,14, Daniel Talmor15 and Jean-Louis Vincent16*
Abstract

Acute respiratory distress syndrome (ARDS) is a
common condition in intensive care unit patients and
remains a major concern, with mortality rates of around
30–45% and considerable long-term morbidity.
Respiratory support in these patients must be optimized
to ensure adequate gas exchange while minimizing the
risks of ventilator-induced lung injury. The aim of this
expert opinion document is to review the available
clinical evidence related to ventilator support and
adjuvant therapies in order to provide evidence-based
and experience-based clinical recommendations for the
management of patients with ARDS.
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In this expert opinion document, we review the available
clinical evidence related to ventilator support and adjuvant
Background
Since its first description in 1967 [1], acute respiratory
distress syndrome (ARDS) has been redefined several
times. According to the latest consensus (Berlin Defin-
ition), ARDS is defined as the presence within 1 week of
a known clinical insult, of acute arterial hypoxemia
(PaO2/FiO2 ≤ 300 mmHg) with a minimum requirement
of 5 cmH2O positive end-expiratory pressure (PEEP),
plus the presence of bilateral radiographic opacities not
entirely explained by cardiac failure or fluid overload [2].
ARDS is classified as mild (200 < PaO2/FiO2 ≤
300 mmHg), moderate (100 < PaO2/FiO2 ≤ 200 mmHg)
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or severe (PaO2/FiO2 ≤ 100 mmHg). Approximately 25%
of mechanically ventilated intensive care unit (ICU) pa-
tients have ARDS [3] and, despite advances in supportive
care, ICU mortality rates are still 35–40% and increase
with the severity of hypoxemia. Many patients with
ARDS also have persistent morbidity after discharge [4].
To minimize the risks of ventilator-induced lung in-

jury (VILI) in these patients [5] and thus optimize out-
comes, several interventions have been proposed,
including use of low tidal volume ventilation [6], appli-
cation of sufficient PEEP [7] and, in severe cases, prone
positioning [8], neuromuscular blocking agents [9] and
extracorporeal membrane oxygenation (ECMO) [10].
However, even simple low tidal volume ventilation is not
always applied [3].
Recent ARDS guidelines have made some recommenda-

tions regarding ventilator management, without always
reaching a consensus between members of the panel [11].

therapies in order to provide evidence-based and
experience-based clinical recommendations for the
management of patients with ARDS (Fig. 1).
Statements
Noninvasive support, with close monitoring, is a reasonable
initial approach in less severely ill patients with ARDS
Rationale and literature findings
In a randomized trial of adult patients admitted to
the ICU for acute hypoxemic, nonhypercapnic respira-
tory insufficiency, continuous positive airway pressure
(CPAP) delivered by face mask was associated with an
early improvement in oxygenation; however, it was
not associated with a reduced need for intubation or
with improved outcomes [12]. Indeed, noninvasive
ventilation (NIV) can fail because of the severity of
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Fig. 1 Suggested ventilator support options and adjuvant therapies
in patients with acute respiratory distress syndrome (ARDS). ECCO2R
extracorporeal carbon dioxide removal, ECMO extracorporeal membrane
oxygenation, FiO2 inspired oxygen fraction, PEEP positive end-expiratory
pressure, MV mechancial ventilation, PaO2 arterial partial pressure of
oxygen, SaO2 arterial oxygen saturation
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the disease, patient noncompliance or technical problems,
particularly at the interface. To improve NIV success rates,
the helmet has been proposed as an alternative interface
compared to the face mask. In a multicenter, randomized
controlled trial (RCT) conducted in four Italian centers in
patients with severe hypoxemic acute respiratory failure
due to pneumonia, helmet CPAP reduced the risk of
meeting endotracheal intubation criteria compared to oxy-
gen therapy but with no difference in outcome [13]. To
explore the issue of the interface, a recent single-center
RCT studied the effect of NIV delivered by helmet or
face-mask among patients with ARDS. The authors con-
cluded that helmet NIV was associated with significant re-
ductions in intubation rates and 90-day mortality [14].
A recent trial compared high-flow nasal cannula

(HFNC) oxygen, standard oxygen via a face mask and
face-mask NIV in 310 patients with acute hypoxemic
respiratory failure. The intubation rate was significantly
lower with HFNC oxygen than with standard oxygen or
NIV among patients with PaO2/FiO2 ≤ 200 mmHg at
enrollment and, for the whole group (patients with
PaO2/FiO2 ≤ 300 mmHg), patients managed with
HFNC had improved survival. There were no differences
in outcomes between NIV and standard oxygen [15].
HFNC can generate low levels of PEEP in the upper

airways, decrease work of breathing and reduce dead
space [16, 17]. It is an attractive technique as a first-line
therapy to avoid intubation but the results need con-
firmation. In moderate ARDS, noninvasive support may
be considered in selected cases; for example, in
cognizant younger patients, in patients with a Simplified
Acute Physiology Score (SAPS II) < 34 and in patients
with ARDS not caused by pneumonia [18].
In all cases in which noninvasive support is used,

patients should be monitored closely, as deterioration
can occur abruptly [18]. Positive responses are usually
evident soon after initiation. If there is no substantial
improvement in gas exchange and respiratory rate
within a few hours, invasive mechanical ventilation
should be started without delay. Failure to recognize a
lack of improvement during noninvasive support may
result in further respiratory deterioration and/or cardiac
arrest, often with devastating consequences. Moreover,
noninvasive support in patients with a high respiratory
drive may encourage excessive transpulmonary pressure
swings, increasing the risk of patient-self-inflicted lung
injury. A rapid shallow breathing index (RSBI) > 105
breaths/min/L may be associated with need for intub-
ation in patients receiving NIV [19]. Monitored tidal
volumes persistently > 9.5 ml/kg predicted body weight
(PBW) suggest the need for intubation [20]. Delayed
intubation is associated with increased mortality in
patients with acute respiratory failure [21], but prema-
ture intubation in patients in whom noninvasive respira-
tory support is adequate exposes the patient to
potentially unnecessary risks associated with invasive
mechanical ventilation.

PaO2 should be maintained within a normal range (e.g.,
between 70 and 90 mmHg) or SaO2 between 92 and 97%
Rationale and literature findings
Hypoxemia and hyperoxia can both be deleterious but
clinicians tend to be more tolerant of hyperoxia. Hypox-
emia represents a cardiovascular and hemodynamic
stress and may limit oxygen delivery to the tissues,
except in patients who are accustomed to hypoxemia as
a result of chronic disease or residence at high altitude
[22]. Long-term deleterious effects of hypoxemia, such
as neuropsychological impairment, have also been sug-
gested [23], but confirmatory research is needed. Hyper-
oxia may increase lung inflammation, can adversely
affect the microcirculation and is associated with in-
creased mortality rates in certain categories of patients
[24, 25]. One certainty is that there is no known benefit
to be achieved from hyperoxia and clinicians should tar-
get saturation values in the normal range.
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Low tidal volume ventilation, about 6 ml/kg based on
predicted body weight, along with an airway plateau
pressure ≤ 30 cmH2O should be targeted in most patients
with ARDS
Rationale and literature findings
Although high tidal volumes (>10 ml/kg) and elevated
airway plateau pressures (Pplat) may increase the
amount of recruited volume at end expiration [26, 27],
large tidal volume ventilation can result in overdisten-
sion and excessive lung stress, especially in ARDS pa-
tients [28]. In a seminal prospective RCT by the ARDS
Network, a ventilatory strategy targeting a tidal volume
of 6 ml/kg PBW and Pplat ≤ 30 cmH2O was associated
with reduced mortality in patients with ARDS compared
with a strategy targeting a tidal volume of 12 ml/kg
PBW and Pplat ≤ 50 cmH2O [6]. Mechanical ventilation
with excessive tidal volumes can induce a systemic and
pulmonary inflammatory cytokine response that may be
attenuated by a lung-protective strategy [29]. However,
although setting the tidal volume according to PBW is
an easy way to initiate protective ventilation, this
strategy can result in different levels of lung stress and
strain according to the amount and distribution of
aerated lung tissue [30].
Some studies have suggested that tidal volumes even

less than 6 ml/kg may be preferable [31], but higher
PEEP levels may then be necessary to maintain oxygen-
ation [32]. In one study, the combination of lower tidal
volume and higher PEEP significantly reduced hospital
mortality compared to higher tidal volume and lower
PEEP [33]. The coexistence of severe acidosis may pre-
vent strict adherence to these objectives unless ad-
dressed by other measures, such as the concurrent use
of extracorporeal life support. Large increases in chest
wall stiffness may cause Pplat to exceed the recom-
mended upper limit of 30 cmH2O, even when lung
stretch is not excessive.
Unfortunately, the evidence supporting lower tidal

volumes is not always applied, with a recent large
international survey showing that tidal volume was kept
at < 7 ml/kg PBW in only about 50% of patients with
ARDS [3]. It has been suggested that tidal volume
should be titrated according to the PBW and not to the
ideal body weight (IBW) because of a better relationship,
in healthy subjects, of PBW with lung size [34]. How-
ever, in patients with ARDS, the proportion of the lung
available for ventilation is markedly decreased, which is
reflected by low respiratory-system compliance [35].
Therefore, it was recently suggested that tidal volume
should be scaled to compliance using the driving pres-
sure (ΔP = Pplat – PEEP). Indeed driving pressure is the
ratio of tidal volume to compliance, the latter indicating
the “functional” size of the lung. Driving pressure
predicts outcomes better than any other ventilatory
parameters in patients with ARDS, with values exceeding
15 cmH2O of particular concern [36]. Thus, observation
of a low driving pressure may reinforce the relaxation of
strict tidal volume or Pplat targets in patients with
conflicting clinical priorities (e.g., a patient with severe
acidosis and high PEEP requirements).

Recruitment maneuvers can be applied before PEEP
selection or in case of abrupt derecruitment
Rationale and literature findings
Alveolar collapse is mainly generated by inflammatory
lung edema, impairment of chest wall movement and sur-
factant deficiency. To recruit lung alveoli, one can apply a
transient increase in inspiratory airway pressure to 40–45
cmH2O. Such recruitment maneuvers are an integral part
of decremental selection of PEEP. Different types of re-
cruitment maneuver, such as sustained inflation, intermit-
tent sighs and stepwise increase in inspiratory pressure,
have been suggested [37]; however, the optimal procedure
and precise role of recruitment maneuvers has not yet
been defined. In the majority of patients, a recruitment
maneuver can improve oxygenation for a brief period of
time without major side effects; however, routine applica-
tion of recruitment maneuvers is not associated with a re-
duction in hospital mortality [38]. Some reports have
shown limited effects of recruitment maneuvers when
baseline PEEP levels exceed 10–12 cmH2O [39], but
others have shown consistent effects even for baseline
PEEP levels of around 17 cmH2O [40, 41]. For severely
hypoxemic patients with evidence of recruitability follow-
ing a recruitment maneuver, higher PEEP levels are prob-
ably required to maintain the benefit.

PEEP selection should be based on various factors,
including gas exchange, hemodynamics, lung
recruitability, end-expiratory transpulmonary pressure
and driving pressure
Rationale and literature findings
Use of PEEP usually improves gas exchange and helps re-
duce the need for high FiO2. In addition, appropriate
levels may limit VILI, by maintaining lung recruitment,
improving lung homogeneity [42] and reducing so-called
atelectrauma attributed to repeated opening and closing
of alveoli [43]. When applied with a constant tidal volume,
PEEP simultaneously reduces the number of lung units
exposed to stress but increases the stresses on those
already open and on those which lie at the interface of
closed and open tissue [44]. When applied with a constant
Pplat, PEEP reduces the driving pressure and keeps the
lung recruited. A meta-analysis showed that mortality was
reduced when higher PEEP levels were applied in moder-
ate and severe ARDS (PaO2/FiO2 ≤ 200 mmHg) [7].
PEEP selection criteria may include lung recruitability

[45], end-expiratory transpulmonary pressure [46],
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respiratory system compliance and driving pressure [36].
Because the individual response to PEEP is highly vari-
able [47], a test of two or three PEEP levels 15 min
apart, without concomitant changes in oxygenation frac-
tion or hemodynamic treatment, can help select optimal
PEEP levels for individual patients; these tests should
only be performed once the patient is stabilized. Physio-
logical and clinical studies have suggested that decre-
mental PEEP trials, preceded or not by recruitment
maneuvers, commonly improve the physiological effects
of PEEP (if compared to equivalent levels tested incre-
mentally), thus also helping to disclose its effects on col-
lapse prevention [45, 48]. Based on the available data, all
PEEP values represent a compromise between the extent
of recruitment and overdistension. Ongoing studies will
help delineate the role of esophageal manometry and
computations of end-expiratory transpulmonary
pressure in guiding PEEP settings.
Measurement of esophageal pressure should be
considered during both controlled and assisted
mechanical ventilation
Rationale and literature findings
The measurement of esophageal pressure, as a surrogate
for pleural pressure, enables estimation of transpulmonary
pressure (i.e., the distending pressure across the lung)
[49]. This technique may be of value when setting PEEP
and could help clinicians assess lung stresses during active
breathing efforts and under conditions of high chest elas-
tance [46, 50]. A study testing this hypothesis is currently
underway (ClinicalTrials.gov NCT01681225).
Esophageal pressure measurement also enables calcu-

lation of the respiratory muscle workload and can help
to detect strenuous inspiratory effort during spontan-
eous and assisted breathing modes. This function may
be particularly important to prevent high transpulmon-
ary pressures in the presence of high respiratory drive.
In severe ARDS, there is no outcome advantage of using
volume-controlled compared to pressure-controlled forms
of ventilation
Rationale and literature findings
For the same tidal volume, there is no outcome advantage
of using pressure-controlled versus volume-controlled
ventilation in terms of the amount of stress and strain
generated in the lung [51]. However, use of volume-
controlled ventilation during passive inflation facilitates
the measurement of respiratory mechanics and driving
pressure and is recommended in the early stage. Pressure-
controlled ventilation does not guarantee a fixed tidal
volume, but may result in better respiratory comfort at a
later stage during assisted breathing because it does not
limit inspiratory flow.
Use of high-frequency oscillatory ventilation is not
recommended
Rationale and literature findings
Although high-frequency oscillatory ventilation (HFOV) is
theoretically an attractive technique that could ensure ad-
equate gas exchange and avoid excessive tidal stretching
and atelectrauma, prospective RCTs have not shown bene-
fit over “lung-protective” strategies implemented at con-
ventional respiratory rates [52], and have even suggested
harm [53] when used from a high pressure baseline early
in the course of ARDS. Whether this technique could be
used as a “rescue therapy” in very severe ARDS is un-
known, but a recent meta-analysis suggests some potential
advantage in these patients (P/F < ~ 70 mmHg) [54].

Prone positioning should be used in ARDS patients with
PaO2/FiO2 < 150 mmHg unless contraindicated
Rationale and literature findings
Prone positioning—because of its beneficial effects on oxy-
genation, lung recruitment and stress distribution—should
be considered in the early phase of ARDS in patients with
PaO2/FiO2 < 150 mmHg, and when used should be ap-
plied for 16–20 hours per day.
The physiological effects of prone positioning include

redistribution of lung densities, often with recruitment of
well-perfused dorsal regions. Although prone positioning
increases chest wall elastance, this change is usually ac-
companied by improved lung recruitment, a reduction in
alveolar shunt and better ventilation/perfusion ratio, with
a consequent improvement in oxygenation and CO2 clear-
ance, a more homogeneous distribution of ventilation and
a reduction in VILI risk [55]. Not all patients with ARDS
benefit from prone positioning, and lung recruitment may
be central to its value. An important recent study by
Guerin et al. [8] showed that prone positioning applied for
at least 16 hours per day in patients with ARDS and
PaO2/FiO2 < 150 mmHg significantly reduced 28-day
mortality (16% vs 32%). From currently available evidence,
prone positioning may be of value even if there is no
improvement in gas exchange [56].
Contraindications to prone positioning include the pres-

ence of an open abdominal wound, unstable pelvic frac-
ture, spinal lesions and instability, and brain injury
without monitoring of intracranial pressure. In addition,
well-trained staff are required for its safe implementation.

In moderate/severe ARDS, neuromuscular blocking
agents may be useful in the acute phase
Rationale and literature findings
Deep sedation alone cannot totally exclude generation
of a high transpulmonary pressure and, paradoxically,
can also favor certain forms of asynchrony, such as re-
verse triggering [50]. Neuromuscular blocking agents
may be required to avoid possible dyssynchrony and
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the generation of excessive transpulmonary pressure
by the inspiratory muscles in moderate to severe ARDS
[9]. Although the benefit of this strategy may relate in
part to decreased VILI as a result of lower transpul-
monary pressures and reduced dyssynchrony and
breath stacking [57], this speculation remains un-
proven. By maintaining expiratory transpulmonary
pressure, neuromuscular blocking agents can prevent
expiratory efforts causing derecruitment [58]. Cisatra-
curium can also have anti-inflammatory properties by
blocking the nicotinic acetylcholine receptor [59].
However, use of neuromuscular blocking agents should
be reserved for patients with the most severe ARDS,
mainly in the acute phase and during the first 48 hours
of mechanical ventilation. Neuromuscular blockade
requires sustained deep sedation. Adverse effects of
prolonged use of these drugs include myopathy, dele-
terious effects on the diaphragm and ICU-acquired
weakness, especially in patients receiving concomitant
corticosteroids [60].

Sedation should be reduced and partial ventilator
support can be used to promote respiratory muscle
activity whenever gas exchange, respiratory mechanics
and hemodynamic status have improved
Rationale and literature findings
Sedation should be titrated according to local protocols,
including regular drug interruption [61]. As soon as a
patient’s oxygenation improves so that the FiO2 and
PEEP can be reduced, efforts should be taken to stop or
reduce sedation and assess for weaning readiness [62]. If
the patient's ventilatory drive causes high tidal volumes,
an excessive respiratory rate, a profound decrease in
inspiratory intrathoracic pressure or breathing discoordi-
nation, then it may be necessary to resume sedation.
Partial ventilatory support requires less sedation than

fully controlled mechanical ventilation, can reduce ventila-
tion − perfusion mismatch and can decrease the duration
of ventilator support and ICU stay [63]. However, patient
− ventilator synchrony is of paramount importance, and
even assisted ventilation can induce VILI because of the
generation of high tidal volumes and transpulmonary
pressures, which if unrecognized can negatively impact
patient outcome [64].

ECMO should be considered in addition to mechanical
ventilation in selected very severe cases of ARDS
Rationale and literature findings
ECMO can provide different degrees of CO2 removal
and oxygenation, enabling reduction of mechanical sup-
port and VILI risk. Despite a strong physiological ration-
ale, there is a paucity of clinical data showing that
ECMO improves outcomes. Given the potentially dele-
terious adverse effects of ECMO, it should be reserved
for the most severe cases [65] and carried out in experi-
enced ECMO centers [10].
Some preliminary reports and a strong pathophysio-

logical rationale suggest that ventilation with very low
tidal volume (3–4 ml/kg PBW) associated with extracor-
poreal carbon dioxide removal (ECCO2R) may limit the
development of VILI [66, 67]. More studies are needed
before integrating this technique into a lung-protective
strategy. A recent analysis suggested that it may be
possible to identify those patients most likely to benefit
from ECCO2R using physiological parameters
(compliance and dead space) [68].

Use and timing of tracheostomy should be individualized
Rationale and literature findings
A recent meta-analysis indicated that early tracheotomy
may be associated with higher survival rates but that this
may be due primarily to earlier discharge from the ICU
[69]. Tracheotomy should not be used in every patient
with ARDS, but should be considered when prolonged
mechanical ventilation is anticipated.

Weaning should typically be considered whenever PaO2/
FiO2 > 200 mmHg with PEEP < 10 cmH2O, but there are
exceptions
Rationale and literature findings
As a patient’s condition improves, the weaning process
should be started based on a local protocol. The main
goal of weaning is to achieve liberation from mechanical
ventilation as soon as possible while limiting the risks of
extubation failure.
One can consider three groups of patients with dis-

tinct characteristics and outcomes in terms of weaning
[70, 71]: short, for patients in whom weaning is termi-
nated within 24 hours after the first weaning test (up to
70% of the general ICU population); difficult, when up
to 6 days are required (15% of patients); and prolonged,
when 7 days or more are required (about 15% of
patients). Weaning in this latter category is time-
consuming and resource-consuming, associated with
worse outcomes [72].
A daily SBT should be the central component of the

weaning protocol, as it has consistently been shown that
the duration of mechanical ventilation is significantly re-
duced in patients who have been assessed once daily
with a period of unassisted breathing [73]. Use of a T-
piece, CPAP or low levels of pressure support ventilation
have been proposed for the SBT; however, clinical data
are inconsistent.
For patients at high risk for extubation failure, NIV is

recommended after extubation as this may significantly
reduce the ICU length of stay and mortality [73]. In some
specific scenarios, for patients with high risk of lung col-
lapse (e.g., morbid obesity or in patients after cardiac



Chiumello et al. Critical Care  (2017) 21:240 Page 6 of 8
surgery), direct extubation from CPAP levels ≥ 10 cmH2O
(or PEEP ≥ 10 cmH2O plus low levels of pressure support)
has been used with success, resulting in reduced postoper-
ative pulmonary complications [74].

Conclusion
Several decades of intensive research, collecting a huge
amount of animal and human data, have helped modify
the clinical management of patients with ARDS with a
probable decrease in the overall mortality. The main
goal of management should be to reduce as much as
possible any potentially harmful effects of mechanical
ventilation while ensuring adequate gas exchange. Tar-
gets of oxygenation, PEEP levels and use of adjuvant
therapies, such as prone positioning or neuromuscular
blockers, should be individualized in each patient. Use of
ECMO should be considered in selected patients with
reversible disease.
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