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Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain
local, multi-scale quantitative information about dynamic samples, in most cases without user inter-
vention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials,
cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences
and spatial Fourier transforms to obtain information equivalent to that obtained by means of light
scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a)
simplicity of the setup; (b) possibility of removing static contributions along the optical path; (c) power
of simultaneous different microscopy contrast mechanisms; and (d) flexibility of choosing an analysis
region, analogous to a scattering volume. For many questions, DDM has also advantages compared to
segmentation/tracking approaches and to correlation techniques like particle image velocimetry. The
very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous
colloids, has lately been used to probe a variety of other complex fluids and biological systems with
many different imaging methods, including dark-field, differential interference contrast, wide-field,
light-sheet, and confocal microscopy. The number of adopting groups is rapidly increasing and so are
the applications. Here, we briefly recall the working principles of DDM, we highlight its advantages
and limitations, we outline recent experimental breakthroughs, and we provide a perspective on future
challenges and directions. DDM can become a standard primary tool in every laboratory equipped
with a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a
system. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.5001027]

I. INTRODUCTION

For about 50 years, since the development of afford-
able laboratory laser sources, it has been possible to perform
dynamic light scattering (DLS) experiments. This technique
enabled a huge swathe of discoveries: from the universal
behavior of mixtures close to criticality, to the general prop-
erties of motion of macromolecules such as polymers and
colloidal particles.1–3 DLS uses optics (selecting one scat-
tering angle and collecting light in the far field) to probe a
particular scattering wave-vector in the system: the temporal
autocorrelation of the intensity of the scattered light charac-
terizes the time scale(s) over which the sample restructures
itself on the length scale (wave-length) that corresponds to the
chosen wave-vector. By acquiring data on a range of scattering
angles (typically in a series of measurements, at the expense
of longer experimental durations), one can recover in princi-
ple a very complete picture of relaxation processes across the
different length scales.

Only more recently, in the last 20 years or so, comput-
ers and digitization of images made it feasible to capture
time-lapse sequences and, from these, to extract quantitative
parameters of the dynamics. In the context that we focus on
here, i.e., soft matter and biological systems, these movies are

a)Authors to whom correspondence should be addressed: roberto.cerbino@
unimi.it and pc245@cam.ac.uk

typically recorded through an optical microscope setup. Two
broad approaches have been either (i) segmenting the images
to extract features, and then building trajectories of these
features over time, or (ii) performing correlations across the
timecourse, to extract velocity maps. The first approach is typ-
ical both in biology experiments4–6 and in “microrheology”7

(tracer particles can be used as local probes of the mechanics
in a material). The second approach is typical in fluid dynam-
ics8 and in experiments probing displacement fields.9,10 The
progress both in computational power and even more strik-
ingly in digital image sensors has led microscopy approaches
to become the conventional experimental tool. Furthermore,
many samples of interest are available only in very small vol-
umes, or as thin quasi two-dimensional materials (e.g., cell cul-
tures), and these are not compatible with traditional dynamic
light scattering approaches. However, this move to “real space”
analysis poses serious challenges: segmentation is very often
difficult and computationally expensive, it requires case-by-
case fine tuning, it is sometimes just impossible to automate,
as in dense systems; the correlation-based approaches wash
out many types of motion (e.g., random fluctuations and dis-
placements) and can therefore intrinsically be deployed only
in very selected situations.

In 2008, a revolutionary method was proposed by Cerbino
and Trappe:11 Differential Dynamic Microscopy (DDM). The
power of this method as a modern alternative to DLS was
immediately explained, but the impact and the range of
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discovery made possible by this approach became clear in
the last decade and are still being explored by an increas-
ing number of adopters. Implementing DDM does not require
advanced high-end optics; consumer-led demand for its two
underlying technologies (computing and digital cameras) is
rapidly propelling it forwards in terms of speed and power;
with small variations, DDM has been shown to extract a whole
set of parameters typical of the traditional approaches outlined
above, and more.

This perspective aims to capture the research made pos-
sible by DDM in its first decade, including mostly very recent
developments, and to suggest untapped potential areas where
it could be fruitful. We particularly highlight the questions and
challenges posed by systems with “multiscale dynamics,” of
which there are many important examples both in complex
fluids (e.g., gel networks) and biology (e.g., cell tissues). To
make a very concrete example from living systems, one wants
to isolate intracellular motions from the motions of cells them-
selves, and even if focusing on cell motion, it is often the case
that the character of motion changes across a time or length
scale, as persistence is lost (e.g., in run and tumble bacte-
rial motility dynamics). These are typical scenarios where the
DDM approach is ideal.

II. BASIC PRINCIPLES OF DDM

We do not replicate here the detailed treatment of image
formation through the optical system; this is necessary for a
full understanding of the DDM signal output. Readers inter-
ested in details and early applications of the technique can refer
to Refs. 12 and 13, where DDM was discussed in the frame-
work of near field scattering and digital Fourier microscopy,
respectively. We take here a slightly more empirical approach,
which most adopters are likely to find sufficient for a “first
pass” to quantify dynamics in their system; readers can trust
this is rigorous by referring to several cases where there has
been in-depth analysis. The key of the DDM analysis is the dif-
ferential signal d(~r, t0, τ) obtained by subtracting two images
acquired at different time, the first one at time t0 and the second
one at time t0 + τ,

d(~r, t0, τ) = I(~r, t0 + τ) − I(~r, t0), (1)

where besides its time dependence, I encodes the image inten-
sity as a function of the position ~r = (x, y) in the microscope
image and the optical axis is along z. By calculating the
spatial 2D Fourier transform d(~q, t0, τ) of the differential sig-
nal and squaring it, we obtain the so-called image structure
function

D(~q, τ) =
〈��d(~q, t0, τ)��2

〉
t0

, (2)

where ~q = (qx, qy) is the wave-vector in the Fourier space
and where the average over t0 is made for stationary or quasi-
stationary dynamics to increase the statistical accuracy of the
image structure function (we discuss in Sec. III G an interesting
application of DDM, in which such average is not performed).
A wave-vector q corresponds in real-space to a sinusoidal mod-
ulation with wavelength Λ = 2π/q. In this article, we will refer
to Λ as the “length scale” probed by a particular q-mode.

It can be shown11,13–17 that the image structure function
takes the general form

D(~q, τ) = A(~q)[1 − f (~q, τ)] + B(~q), (3)

where the function f (~q, τ) is known as the normalized “Inter-
mediate Scattering Function,” as commonly measured in DLS
experiments.1 This function f (~q, τ) encodes the cumulative
probability that the displacement of a material element over
time τ will lie within a distance equal to the length scale Λ
encoded by q. Thus f (~q, τ) characterises how quickly struc-
ture is “lost” over a length scale ∼1/q; it will decay to zero
for samples that lose memory of their structure, over suffi-
ciently long times, for instance because of diffusion or flow.
In general, the greater the q, the faster the decay of f (~q, τ)
and the less the time to reach the saturation level in D(~q, τ).
A(~q) and B(~q) are the functions related to the static scattering
properties of the sample, to the details of the imaging pro-
cess optics and to the noise in the acquisition. In many cases,
they are assumed to be merely fitting parameters even though
with proper treatment important information can be extracted
from their study. For instance, in Refs. 18–20, quantitative
static scattering information was successfully extracted from
the DDM analysis.

The dynamics of many systems are completely captured
by f (~q, τ) and the basic principle, and power, of DDM is how
an image stack can be processed and related to f (~q, τ) as in
Eq. (3). For completeness, we should mention that systems
where f (~q, τ) fails to be a useful characterization do exist,
for example, non-stationary evolving systems must be han-
dled differently and we touch on some of these later. In a
vast number of cases, where the system has dynamics around
thermodynamic equilibrium or where there is a well-defined
stationary state, then f (~q, τ) is very meaningful. In practice,
how to proceed from Eq. (3) depends on how much is already
known about the character of dynamics in the given exper-
iment, and on the source of contrast in the images. In the
following, unless specified we will consider systems for which
the image structure function D(~q, τ) is azimuthally isotropic
in the ~q plane. We can thus make use of the azimuthal average
D(q, τ) of the image structure function and note that Eq. (3)
remains valid provided that we replace everywhere ~q with its

magnitude q =
√

q2
x + q2

y . From this process, we typically have
D calculated for N /2 Fourier modes, from an image of N × N
pixels.

The simplest scenario, and the one where DDM is being
widely adopted, also in teaching laboratories,21 is in experi-
ments where either tracer particles are added into a material
for characterizing its dynamics or through fluorescent tag-
ging, it is possible to achieve an image in which the signal
is related to a known structural element (e.g., an organelle
in a cell or the whole cell in the context of cell motility).
This is then analogous to microrheology by particle track-
ing,7,22 but DDM has several advantages (and many of the
same limitations). In this scenario, the intermediate scattering
function is determined by the motion of the tracers (or flu-
orescent species) and the image “restructures” over a given
length scale in a time related to how long it takes these tracers
to move that typical distance. The average motion of trac-
ers can be represented by their mean square displacement



110901-3 R. Cerbino and P. Cicuta J. Chem. Phys. 147, 110901 (2017)〈
r2(τ)

〉
=
〈
x2(τ) + y2(τ) + z2(τ)

〉
=
〈
x2
⊥(τ) + z2(τ)

〉
, and for

small wave-vectors and in conditions for which the distribution
of displacements is Gaussian, we have

D(q, τ) = A(q)

[
1 − e−

q2

4 〈x
2
⊥(τ)〉

]
+ B(q). (4)

The mean square displacement follows well known physics
in the case of diffusion,

〈
x2
⊥(τ)
〉
= 4DT τ (where DT is the

translational diffusion coefficient), which leads to

D(q, τ) = A(q)
[
1 − e−DT q2τ

]
+ B(q). (5)

In the simplest Newtonian fluid case (Fig. 1), f (q, τ) is just
the exponential function in Eq. (5). In general, the time depen-
dence of D(q, τ) for objects in non-Newtonian (i.e., viscoelas-
tic) or hindered motion backgrounds is more complex but can
be fitted with an appropriate function of τ (the same for all q
although with possibly q-dependent coefficients) from which
the fluid parameters can be measured. If the sample is Newto-
nian, one measures the diffusion coefficient (and thus particle
size or fluid viscosity, if the other is known); if the dynamics is
sub-diffusive or super-diffusive with a power law dependency,
one recovers the power law exponent.23

In more complex scenarios, one perhaps has much less
knowledge of the dynamics in the system and/or less con-
trol over the source of the optical contrast in the images.
DDM is extremely powerful in this scenario too: an empirical

approach to the data is possible, for example, fitting f (q, τ)
as an exponential, the underlying assumption being that one
searches for a typical time scale associated with restructuring
over a certain length scale, but without the prior knowledge
of the underlying process. This approach can provide the gen-
eral character of the dynamics in the system. As an example,
imagine a suspension of particles, which might be passive
(undergoing Brownian motion) or active (moving with ballis-
tic motion). In Brownian motion

〈
x2
⊥(τ)
〉
∼DT τ, whereas for

ballistic motion, such as bacteria swimming in a run phase with
velocity v, we have

〈
x2
⊥(τ)
〉
∼ (vτ)2. For each q, the fitting of

D(q, τ) will provide a different characteristic time scale τc(q).
Dimensional analysis of these two relations of mean square
displacement [given that

〈
x2
⊥(τ)
〉
∼ 1/q2] leads to an expecta-

tion that τc(q)∼ 1/q2 for Brownian motion, and τc(q)∼ 1/q for
ballistic motion. This is indeed observed in DDM signals, ana-
lyzed in this empirical fashion, showing that the type of motion
in the system can be extracted in the absence of a detailed
model. Note that in this particular example of bacterial motil-
ity, a detailed model for f (q, τ) was known from DLS1 and
has been applied in DDM experiments;24 with such a detailed
model, one has the correct form of f (q, τ), in this case as a
function of the velocity v, which can therefore be measured
exactly.

In common with particle tracking and DLS approaches,
one must obviously be aware of confinement effects, for

FIG. 1. DDM analysis of colloidal particles shows they undergo Brownian motion and measures the diffusion coefficient. Movies of 4670 frames are taken
with a Grasshopper CMOS camera, at 181 fps, with a 10× objective NA = 0.3, where 1 camera pixel corresponds to 0.584 µm. The particles are carboxylated
polystyrene particles, radius a = 250 nm, Bangs Laboratories Inc., Bangs Lot# 4127, Lot# L071015F, solid 0.1% (1 in 100 from 10% bottle), in water. (a) The
intermediate scattering function D(q,τ) is shown for all modes and for lag times up to a quarter of the total movie time. This information is “cut” by lag time
(b) and by scattering vector (c). In (c), the D(q,τ) data are fitted (solid lines) with exponential curves as in Eq. (5), yielding a relaxation time τc(q) = 1/Dq2.
The time scales are shown in (d) in log-log scales, highlighting the inverse square dependence on the wave-vector, characteristic of Brownian motion. The
dashed line in (d) is the theoretical prediction τc(q) = 1/DT q2, with Stokes-Einstein diffusion coefficient DT = kBT/(6πηa), T = 25 °C, η = 0.89 Pa s (giving
DT = 0.98 µm2/s; fitting that same dataset gives DT ,exp = 0.988 ± 0.002 µm2/s).
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example, the increased drag from walls. The finite focal
depth also sets a maximum time scale over which sample
dynamics can be observed (similarly to the fact that parti-
cle tracks would have a typical maximum length, also from
finite depth of focus). This has been explored systemati-
cally in confocal microscopy18 and in light-sheet25 DDM
experiments.

Similar to DLS, DDM is based on a model for the interme-
diate scattering functions. When such model is obvious, as for
monodisperse or slightly polydisperse colloidal suspensions,
quantitative extraction of model parameters is immediate and
does not require any user input. On the contrary, when more
than one model is to be evaluated for appropriateness and/or
validity, the analysis might require some additional user inter-
vention. In particular, we stress that whilst fitting and valida-
tion represent crucial steps in the DDM analysis, for these
aspects, one can benefit directly from decades of previous
experience of DLS users.

III. RECENT ADVANCES

In this section, we will discuss a few selected applica-
tions of DDM in which it was either used to perform other-
wise difficult—if not impossible—experiments or combined
with other ideas to prove new experimental approaches with
a notable future potential. In selecting the material for pre-
sentation, we have restricted ourselves to very recent liter-
ature (last three years), where the standard DDM approach
outlined above is sometimes extended in various ways. Var-
ious earlier studies using DDM, which follow the standard
approach summarized above, are overviewed in Refs. 12
and 13.

A. Viscosity of deeply supercooled water
and its coupling to molecular diffusion

A typical application of DDM is to determine the dif-
fusion constant of colloidal particles dispersed in a liquid
medium.11,16,17,26,27 If the viscosity of the host liquid is known,
DDM behaves as a powerful particle sizing tool, in that it
enables one to determine accurately the size of the colloidal

particles. On the other hand, if the particle size is known, DDM
can be used to perform precise viscometry experiments. The
latter has been shown elegantly in an application by Caupin
and co-workers, who used DDM to probe the viscosity of
super-cooled liquid water close to the limit of homogeneous
crystallization.28 Since water is a poor glass-former, measur-
ing its viscosity in the super-cooled state is a challenging
feat that requires avoiding crystallization. DDM was used to
probe the diffusivity of tracer polystyrene spheres with radius
a = 175 ± 3 nm. Curves of the correlation time τ as a func-
tion of the wave-vector q were found to be well fitted by
τ(q) = (DT q2)−1 for all temperatures. The authors were thus
able to estimate the super-cooled water viscosity in the deeply
quenched regime (down to �34 °C).

The data obtained by Caupin and co-workers show clearly
that the only model that describes the water viscosity for all the
available temperature values is the power-law viscosity model
(it appears to be superior to other possible models such as
the Arrhenius, the parabolic, or the Vogel–Fulcher–Tammann
models), see Fig. 2. In addition, measuring the water vis-
cosity in such wide temperature range proved to be crucial
to test validity of the Stokes–Einstein and Stokes–Einstein–
Debye relations. In analogy with molecular glass-formers, the
Stokes-Einstein relation, linking viscosity to translational dif-
fusion, is violated whereas the link between viscosity and
rotational motion, expressed by the Stokes-Einstein-Debye
relation, seems to remain robust. This new insight into the
behavior of supercooled water was made possible by DDM,
which provided unprecedented access to viscosity at very low
temperatures, where previous attempts failed. In fact, the main
advantages of DDM over particle tracking in these experiments
are the following: (a) by using small tracer particles, DDM can
make the overall length of an experiment shorter than the time
over which water solidifies; and (b) by using several particles
(many more than could possibly be tracked, we estimate from
information in that article that a few thousand particles are in
the field of view), it provides a statistically significant, user-
independent determination of the dynamics. We will further
comment in Sec. V about possible future developments in this
area.

FIG. 2. Viscosity of supercooled water. Purple circles
from Ref. 28, blue squares from Ref. 29, green diamonds
from Ref. 30, and red triangles are from Ref. 31. (Left)
Arrhenius plot, showing an apparent activation energy
increasing from 1560 to 6410 K upon cooling (solid
lines). (Left center) Parabolic law, with best fit (χ2 = 14.2)
parameters T0 = 305.15 K, η0 = 2.323 × 10�6 Pa s,
J = 1112 K, and Ea = 1769 K. (Center right) Vogel–
Fulcher–Tammann (VFT) representation, with best fit (χ2

= 10.5) parameters T0 = 168.9 K, η0 = 4.442 × 10�5 Pa s,
and B = 2.288. (Right) Power law representation, with
best fit (χ2 = 0.91) parameters Ts = 225.66 ± 0.18 K, η0
= (1.3788 ± 0.0026)10�4 Pa s, and γ = 1.6438 ± 0.0052.
(Top) The normalized residuals (ηexp − ηfit)/σexp, where
ηexp and ηfit are the experimental and fitted viscosities,
respectively, and σexp is the experimental uncertainty
(1 standard deviation). Note that the vertical scale of
top right is different. Reproduced with permission from
Dehaoui et al., Proc. Natl. Acad. Sci. U. S. A. 112, 12020
(2015). Copyright 2015 National Academy of Sciences.
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B. Diffusive dynamics of nanoparticles
in ultra-confined media

Two features of DDM for which DLS is easily outper-
formed in applications are the insensitivity to static features
within the sample and the immediate access to a large number
of two-dimensional wave-vectors~q = (qx, qy). In Ref. 32, both
of these features were exploited to investigate the dynamics of
nanoparticles diffusing in dense arrays of nanoposts arranged
on a square lattice. Owing to the use of image subtractions,
DDM analysis made the nanoposts invisible and brought to
light the dynamics of the confined nanoparticles, which was
inspected for possible anisotropy. Remarkably, even for the
most severe confinement conditions, isotropic dynamics was
always observed, with intermediate scattering functions well-
described by stretched exponential relaxation. The diffusion
coefficient extracted from DDM was found to decrease with
increasing confinement (Fig. 3).

Such a decrease was tested against available models for
hindered diffusion, which incorporate steric hindrance and
hydrodynamic interactions. The experimental data were found
to be in agreement with two models, specifically the so-called
centerline approximation and cross-sectional averaging (fur-
ther details about the models can be found in Ref. 32), which
make predictions for the dependence of the diffusivity on the
ratio λ = dNP/P between the diameter dNP of the nanoparticles
and the diagonal spacing P between posts. Such agreement
suggests that both steric restrictions and hydrodynamic drag
may be the cause of the decreased diffusivity of nanoparticles
in post arrays.

C. Anomalous dynamics of intruders in a crowded
environment of mobile obstacles

Studying the dynamics of small particles of diameter σs

coexisting with larger particles of diameter σl is not an easy
task. Video particle tracking33 is difficult in a crowded envi-
ronment, especially if we are interested in tracking the small
particles. Dynamic light scattering (DLS)1 does not allow us to
distinguish the two species in an easy way. A possibility would
be to tag the particles with different fluorophores and using
Fluorescence Correlation Spectroscopy (FCS)34 to selectively
probe the dynamics of each species separately. However, FCS
probes the dynamics only on a length scale of the order of

the measurement volume (typically ranging from some µm
to a few tens of µm), which is set by the convolution of
the illumination and the detection regions. FCS cannot thus
probe in a simple way the rich, multi-scale dynamics expected
in mixtures of colloids of different sizes. For these reasons,
Sentjabrskaja et al.35 used confocal DDM (ConDDM)18 on
binary mixtures of particles that were tagged with different flu-
orophores. The selectivity of the fluorescent labelling together
with the depth selection capabilities of the confocal detec-
tion scheme enabled probing the multi-scale dynamics of these
dense colloidal suspensions by focusing on the contributions
of each species as a function of the volume fraction and of the
size ratio δ = σs/σl.

Their results, complemented with numerical simulations,
show that a critical size asymmetry exists at which the onset
of anomalous collective transport of the small particles is
observed, as mirrored by a logarithmic decay of the interme-
diate scattering function at the length scales of the order of
the size of the large particles (Fig. 4). Interestingly, the matrix
mobility is crucial for the observed anomalous behavior. The
larger and slower particles, when present at sufficiently large
concentration, act as a slowly rearranging, glassy matrix. The
continuous evolution of the channels in the mobile matrix alters
in a profound way the dynamics of the small particles due to
the thermal motion of large particles, a situation that can be
found for a wide range of phenomena ranging from glassy
systems to cell biology.35

D. Active diffusion and advection in the Drosophila
ooplasm result from the interplay of the actin
and microtubule cytoskeletons

The previous example made clear how using different
fluorophores for selected objects enables a selective probing
of the dynamics in crowded environments. More in general,
the use of different contrast mechanisms can be beneficial in
probing the multi-scale dynamics in a complex environment,
such as the cell interior.36 A significant step in this direction
was taken by Drechsler et al.,37 who combined ConDDM
and Differential Interference Contrast DDM (DIC-DDM) to
probe selectively inside a Drosophila oocyte, the dynamics
of cytoskeletal filamentous actin (F-actin) and endogenous
vesicles, respectively. During oogenesis, the oocyte is char-
acterized by a combination of different transport mechanisms,

FIG. 3. Confinement affects colloidal dynamics. Relative diffusivity DT/D0 as a function of (a) void fraction θ and confinement parameters (b) ζ = dNP/S and
(c) λ = dNP/P for aqueous dispersions of nanoparticles of varying diameter, where S is the minimum spacing between posts and P is the diagonal spacing between
posts. Data obtained with DDM are plotted for particles with diameter dNP = 400 nm (black circles), 300 nm (red triangles), and 200 nm (blue diamonds). The
solid and dashed black lines in (c) indicate the centerline approximation and the cross-sectional averaging expressions for diffusion in slit pores [see Eqs. (3)
and (4) in Ref. 32]. Adapted with permission from Jacob et al., Soft Matter 11, 7515 (2015). Copyright 2015 The Royal Society of Chemistry.
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FIG. 4. Dynamics of small spheres (intruders) moving in a matrix of larger spheres. Intermediate scattering functions f(q,∆t) extracted by ConDDM for the
small spheres as a function of the delay time ∆t. The size ratio δ is below [(a) and (c)] and around [(b) and (d)] the onset of anomalous dynamics. Data are shown
for different magnitudes of the scattering wave vector q and total volume fraction φ (as indicated). Arrows indicate increasing φ and increasing q accordingly.
For δ = 0.18 and all φ and q, an initial decay is observed that can be associated with the Brownian motion of small particles within the voids of the large particles
matrix. This decay becomes increasingly slower for increasing φ [Fig. 4(a)] and decreasing q, which corresponds to an increasing length scale [Fig. 4(c)]. A
φ-dependent intermediate plateau and a final decay to zero at longer times can be also appreciated [Fig. 4(a)]. The intermediate plateau, which mirrors the
temporary trapping of particles at the length scale 1/q, has a height that increases progressively with increasing φ, suggesting a percolation-like scenario with
voids becoming smaller and particle localization stronger. The observed final decay to zero is a consequence of the long-time diffusive escape of the particles.
The picture changes dramatically for larger size ratios [(b) and (d)]. When the total volume fraction φ is larger than 0.60, a logarithmic decay of f(q,∆t) over
three decades in time is observed, in particular for qσl = 3.5, which corresponds to a probed length scale of about 2σl [Fig. 4(b)]. Reproduced with permission
from Sentjabrskaja et al., Nat. Commun. 7, 11133 (2016). Copyright 2016 Author(s), licensed under a Creative Commons Attribution 4.0 License.

including directed transport by cytoplasmic flows38 and active
diffusion.39

While Particle Image Velocimetry (PIV) can be used to
assess the directed transport of both vesicles and actin by
the flow, quantifying diffusion is more difficult, especially
for small (below the diffraction limits) actin filaments in a
crowded environment. By contrast, DDM experiments were
able to show that two cytoskeletal structures, microtubules and
actin, are responsible for the cytoplasmic flow and for active
diffusion, respectively. In particular, the ConDDM analysis
of the cytoskeletal F-actin revealed that the motility of cyto-
plasmic actin filaments directly correlates with vesicle motion
both in the presence and in the absence of the cytoplasmic flow
(Fig. 5). While this result is somehow obvious for the directed
transport, in that both vesicles and actin are transported by
the cytoplasmic streaming [Fig. 5, panel (f)], way less obvi-
ous is the fact that the diffusion coefficient of actin is always
twice the diffusion coefficient of the vesicles [Fig. 5, panel
(g)]. This last result is compatible with the hypothesis that
cytoplasmic f-actin is the source of active diffusion of the vesi-
cles in the Drosophila oocyte. However, it is also found that
active diffusion is reduced in oocytes lacking microtubules,
which suggests that behind their well-recognized role in intra-
cellular transport and cytoplasmic streaming, microtubules
substantially contribute to active diffusion.

E. Multi-scale DDM to characterize synchronization
of motile cilia

Another example of biomedical application of DDM is the
recent study of collective dynamics in motile cilia. These cilia
have a periodic (frequencies between a few Hz and 50 Hz)

and well-defined beating pattern, and a key open question
in many systems is how multiple cilia coordinate their beat-
ing for an efficient macroscopic fluid transport, particularly
across many cells. Feriani et al.40 have investigated airway
tissues, where in healthy physiological conditions, the neigh-
boring cilia act as phase-locked oscillators, forming a so-called
“metachronal wave” that allows a continuous clearance of
mucus from the lungs. The dynamics of cilia, the metachronal
wave, and the resulting directed flow that allows mucus clear-
ance can all be observed and measured in animal sections.
However, those experiments do not allow for the type of con-
trol (cell-cell position, distance, and orientation) that would
enable tuning of interactions and thus to highlight the dominant
mechanisms underpinning synchronization. These complica-
tions were tackled by Feriani et al.40 with the use of “air-liquid
interface” cultures where the cells grow on a solid permeable
membrane support and are exposed to air on their apical side. A
typical image taken across such a culture is shown in Fig. 6(a).
Due to the supporting membrane, the cell bodies and the
heterogeneities in the mucus layer, it is obvious that segment-
ing cilia in images like this would be incredibly challenging.
For the questions of temporal and spatial coherence scales
of cilia dynamics, the segmentation of cilia is not required.
DDM is hence an ideal technique here: it intrinsically removes
the static signal in the image, and it returns space-resolved
dynamics.

A DDM analysis of the full-field returns D(q, τ) signals
that have a clear frequency and a damping, Fig. 6(b). In air-
way cells, this cilia beating frequency (CBF) is approximately
15 Hz and is a property that could be easily probed by many
different analysis approaches. The damping in the D(q, τ) data
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FIG. 5. In the Drosophila oocyte, the motion of cytoplasmic F-actin directly correlates with the motion of endogenous vesicles. (a) Image of a cell, expressing
the F-actin fluorescent binding protein UTRN.GFP (left panel). DIC image of the same oocyte (right panel) n = nucleus. (b) Distribution of F-actin (stained
with TRITC-phalloidin) in a fixed egg chamber. (b′) High magnification of cytoplasmic actin filaments [white box in (b)]. (c) UTRN.GFP expressing living egg
chamber. UTRN.GFP labels the same structures as phalloidin in fixed samples [compare with (b)]. (c′) High magnification of cytoplasmic actin filaments in a
UTRN.GFP expressing living oocyte [white box in (c)]. (d) Intermediate scattering functions f(q,∆t) obtained from the Con-DMM analysis for different wave
vectors q in the range 2 µm�1 < q < 8 µm�1. Continuous lines are best fit to the prediction of a simple advection-diffusion model. (e) Decorrelation rates Γ1(q)
(solid triangles) and Γ2(q) (open triangles) obtained from the fit of f(q,∆t) in (d) with a function describing a double decay with rates Γ1(q) and Γ2(q). Dashed
line constitutes the best fit of Γ1(q) to a linear function Γ1(q) = vactq, whereas the continuous line is obtained from the fit of Γ2(q) to a quadratic function Γ2(q)
= Dactq2. (f) Mean speeds of F-actin (vact), plotted against vesicle mean speeds (vves) for different cells. The continuous line represents vact = vves. (g) Diffusion
coefficients of F-actin (Dact) plotted against diffusion coefficients of vesicles (Dves) for different cells. The continuous line corresponds to Dact = 2 Dves. (h) Dact
(green triangles) and Dves (black boxes) as a function of the respective mean speeds vact and vves. Horizontal solid lines represent Dact,nf and Dves,nf, obtained
from colchicine treated cells, showing no persistent motion (green <-> F-actin and black <–> vesicles). Dashed areas correspond to mean value ±sd. These
values agree remarkably well with the extrapolated behavior for v→ 0 of the experimental data obtained from control cells (dashed lines). The horizontal dotted
line corresponds to the estimated value of the thermal diffusion coefficient DTH of the vesicles, characterizing their spontaneous fluctuation in the absence of
any active process. Scale bars represent 10 µm. Reproduced with permission from Drechsler et al., preprint bioRxiv 098590 (2017). Copyright 2017 Author(s),
licensed under a Creative Commons Attribution 4.0 License.

can be caused by two effects: the loss of temporal coherence
in each cilium (i.e., each cilium is not a perfect oscillator, and
we can imagine a stochastic drift in its phase) or the averaging
over regions that are poorly phase locked and have slightly
different CBFs. We can think of these, respectively, as the
synchronization scales in time and space. An extension of
the standard DDM approach, which was named “multiscale
DDM” was proposed to pick up separately the temporal and
spatial scales of synchronization. Multiscale DDM consists of
performing DDM over a whole series of different windows
(tilings of the image). The authors typically choose tiles of
log-spaced size, ranging from the close to full frame down to
a small tile, the choice of which limits the minimum wave-
vector that can be compared across tiles [in Fig. 6(c), from
480 × 480 down to 8 × 8 pixels]. Then, separate D(q, τ)tile

signals are obtained and can be compared. In the particular
case of cilia, see Fig. 5(c), the spatial scale of phase locking
reflects itself in a strong dependence of the decay times as a
function of the tile size. What the analysis is picking up is the
fact that locally (within 20 µm, i.e., inside the smallest tiles)
cilia are strongly coupled and thus completely phase-locked,
whereas at larger distances, this locking is progressively lost,

so large tiles are averaging over multiple poorly phase-locked
dynamics. The resulting decay time has a sigmoidal transition
as a function of tile size, highlighting a spatial scale, which in
the conditions of Fig. 6(c) corresponds to a few cell diameters.
This is consistent with what is known from coupling medi-
ated by fluid flow.41 Generally, in a system that has a spatial
scale for collective or coherent motion, one expects that scale
to emerge as a feature when comparing the dynamics across
tile sizes. We note that again, like the basic DDM approach,
multiscale DDM remains a user-free automated analysis (once
a general choice is made for a family of dynamics to be
searched/fitted for). We expect multiscale DDM to be useful in
other dynamically heterogeneous systems, well beyond motile
cilia.

F. Simultaneous characterization of rotational
and translational diffusion of optically
anisotropic particles

Like DLS, which studies the fluctuations in the scat-
tered light intensity, DDM analyses the fluctuating intensity of
microscopy images. Generally, these fluctuations arise from
refractive index fluctuations within the sample. In typical

https://doi.org/10.1101/098590
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FIG. 6. Multiscale DDM can highlight the scale of dynamical spatial coherence. This approach was developed to study phase locking in carpets of motile
cilia but has broader applicability. Images in these experiments (a) would be very difficult to segment. Instead, the DDM algorithm efficiently extracts D(q,τ)
(b), shown here as a heatmap for the first hundred or so modes in the image, from each of which the frequency and damping of the motile cilia can be fitted.
In multiscale-DDM, the DDM analysis is performed systematically on square boxes of different sizes, from the whole image down to a few pixels (the small
window limits the range of wave-vectors that can be followed across the multiscale). (c) shows the decay time in the oscillations typically seen in (b) for full-field
DDM, but now fixing a wave-vector and plotting as a function of the DDM window size. The inflection point of these data (corresponding to a few 10 µm in
this sample) identifies a spatial scale in the system where dynamics is coherent.40

applications, these fluctuations are caused by the variation
of the scatterer positions because of translational Brownian
motion or other motility processes accounting for the move-
ment of the particle centers of masses. However, rotational
motion of optically or shape anisotropic particles also produces
fluctuations in the image intensity. These fluctuations contain
quantitative information about the particles rotational motion
and DDM has been recently proven to be able to extract such
information and to probe simultaneously the translational and
rotational diffusivities of optically anisotropic spherical parti-
cles.42 The experimental setup is similar to the one used for
the characterization of the viscoelastic constants in nematic
liquid crystals19 and coincides with a normal DDM setup (i.e.,
a microscope) equipped with two polarizing elements (i.e., a
polarizing microscope). This variant of DDM has been thus
named polarized DDM (p-DDM) and can be thought of as
the extension to microscopy experiments of the well-known
depolarized DLS (DDLS) technique, widely used for the
assessment of the roto-translational diffusivity of anisotropic
particles.43 In general, the intermediate scattering function
of a suspension of anisotropic particles exhibits a double-
exponential relaxation: the two characteristic times of this
relaxation are τ1(q) = (DT q2 + 6DR)−1 and τ2(q) = (DT q2)−1,
where DT and DR are the translational and rotational diffu-
sivities of the particles, respectively. For large wave-vectors q
(the regime typically probed by DDLS), these two modes are
difficult to separate and polarizers are used to suppress the
transmitted beam and to isolate the depolarized component
of the scattered light, i.e., the one decaying with charac-
teristic time τ1(q). By contrast, in p-DDM experiments, the
transmitted beam is used as a local oscillator and, in these
conditions, both decay modes are probed and well sepa-
rated (Fig. 7). p-DDM for the simultaneous determination
of translational and rotational diffusion coefficients of opti-
cally anisotropic colloidal particles was demonstrated in
Ref. 42, where particles with radius 185 nm were studied
successfully at various volume fractions suggesting that

p-DDM can be a valid complement to DDLS and particle track-
ing in determining the roto-translational motility of particles.
It is worth noting that the determination of the rotational dif-
fusion coefficient with particle tracking cannot be performed
in an automated fashion and, in general, constitutes quite a
challenging feat. By contrast, p-DDM does not require any
arbitrary input from users and is thus less subjected to bias.
Compared with DDLS, p-DDM may more easily probe rota-
tional motion of seed particles in laminar or turbulent flows and
provide in turn space-resolved maps of the local fluid vorticity.

FIG. 7. Relaxation time as a function of the scattering wave-vector q obtained
by using p-DDM (blue squares and orange circles) and bright-field DDM
(yellow triangles) with a colloidal suspension (volume fraction 10�5) of
optically anisotropic spherical particles of radius 185 nm. Continuous and
dashed lines are the best fitting curves to the theoretical expressions τ1(q)
= (DT q2 + 6DR)−1 and τ2(q)= (DT q2)−1, respectively, where DT (DR) is
the translational (rotational) diffusivity of the particles. The best estimates
for the diffusivities obtained with p-DDM are DT = 1.14± 0.02 µm2 s�1

and DR = 25.1± 1.0 s�1, whereas the bright-field DDM provides DT = 1.18
± 0.02 µm2 s�1 (dotted line).42
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G. Microdynamics and arrest of coarsening during
spinodal decomposition in thermoreversible
colloidal gels

A relevant step forward in showing how DDM can be
adapted to the “complex scenarios” envisioned near the end
of Sec. II is represented by the work of Gao et al.23 This
work was the first to perform DDM measurements on col-
loidal gels, obtained by temperature quenching thermosensi-
tive oil-in-water nanoemulsions prepared at volume fractions
larger than the critical one. In this case, DDM was particu-
larly useful to probe the multi-scale nature of dynamics during
phase-separation, in particular the kinetic arrest of the bicon-
tinuous structure formed by spinodal decomposition after the
quench. Even though most of the DDM analysis performed
was “standard,” this work exemplifies many of the advantages
of DDM compared to DLS and video particle tracking (VPT):
the samples are turbid, prohibiting both DLS and confocal
microscopy; no probe particles were present, preventing tra-
ditional VPT analysis; the experiments offer both a real-space
and Fourier space representations that provide a clearer pic-
ture of the physics associated with heterogeneous dynamics.
Complex dynamics was observed that was found to be

FIG. 8. Intermittent dynamics of a gelling nanoemulsion probed by time-
resolved DDM. (a) |d(~q, t0,τ) |2 is plotted at τ = 0.09 (red), 0.18 (green),
0.36 (blue), and 0.72 s (magenta) as a function of aging time t0. (b) Normal-
ized distribution of |d |2 for gelling nanoemulsions (closed symbols) and a
dilute nanoparticle suspension (open symbols), the latter exhibiting Gaussian
behaviour (solid line), whereas the former being non-Gaussian. The inset rep-
resents the skewness of the distributions in (b). Adapted with permission from
Gao et al., Soft Matter 11, 6360 (2015). Copyright 2015 The Royal Society
of Chemistry.

described by a combination of a short-time exponential decay
and long-time super-diffusive ballistic dynamics. A very inter-
esting result presented by Gao et al. is a time-resolved44

version of DDM, in which the instantaneous value |d(~q, t0, τ)|2

of the intermediate scattering function before performing the
ensemble average in Eq. (2), is used to probe the intermittent
dynamics during gelation (Fig. 8).

To this aim, the fluctuations of |d(~q, t0, τ)|2 at q = qmax(t0)
are studied at several different lag times τ [Fig. 8(a)], where
qmax is the wave-vector for which A(q) exhibits a maximum,
which corresponds to the characteristic wavelength of the
phase separating domains. Occasional excursions to high val-
ues are observed in Fig. 8(a), which are linked to intermittent
rearrangements in the gel. Further insight into the intermittent
dynamics was then obtained by examining the distributions of
|d |2 about its mean value

〈
|d |2
〉
, which is reported in Fig. 8(b)

together with results obtained with a dilute nanoparticle sus-
pension [polystyrene beads, a = (95 ± 6) nm, 2.6 wt. % in
water]. It can be appreciated that while the colloidal suspen-
sion exhibits a Gaussian distribution mirroring ergodicity, the
distributions observed for the phase separating nanoemulsion
deviate strongly from a Gaussian, as expected for intermit-
tent dynamics that temporarily decrease correlations at short
times.

IV. ESTABLISHED POINTS OF STRENGTHS
AND LIMITING FACTORS

After almost ten years from its introduction, DDM has
revealed many points of strength compared to other techniques,
as well as some limiting factors. At a more general level, DDM
represents a readily implemented technique that is extremely
versatile and adaptable to almost any imaging system: bright-
field,11,16,21,45 wide-field and confocal18,35 fluorescence,26,37

dark-field,17 phase-contrast,24 DIC,37 light-sheet,25 reflec-
tion37 and polarized19,42 microscopy have been already used
successfully on a variety of samples that include colloidal
particles11,16,21,26,27,32,46 and aggregates,47 liquid crystals,19

proteins,45 bacteria,18,24,48 algae,24 vesicles,37 actin,37 and
cilia.40 It offers an immediate approach to the characteriza-
tion of the type of motion from a study of the characteristic
time τ(q) vs q, which in the most frequent cases can be used
for particle sizing or for the determination of the swimming
velocity for bacteria, algae, and micro-organisms.

In the context of microscopic dynamics probed by opti-
cal tools, compared to DLS, DDM offers a high-throughput,
multi-q characterization of the dynamics of moving entities in
a wave-vector range that extends typically down to 0.1 µm�1.
It can be set up (in bright-field) to sample a larger sample vol-
ume (plus, often, at higher concentrations because the depth of
focus is exploited rather than the transmitted light path length)
leading to much better statistics on sample dynamics for a
given experimental sampling time. This value of the wave-
vector, corresponds in aqueous samples to a scattering angle
of 0.43° with a He–Ne laser source (wavelength 633 nm). This
angle is one order of magnitude below the smallest scattering
angle accessible with commercial scattering instruments (typ-
ically of the order of 10°-15°), which hardly can access smaller
angles due to the presence of stray light scattered for instance
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from imperfections (e.g., dust, scratches, and dirt) along the
optical trains or in the sample cell. DDM is rather insensitive
to this stray light that represents a static contribution in the
microscope images and is thus subtracted off with the differ-
ential analysis. In fact, this partial insensitivity means that both
the optical quality of the surfaces of which the sample cell is
made and to some extent their cleaning do not need to be at
the same level as in DLS experiments. It remains however true
that the sample cell should preferably contain only the sam-
ple of interest since moving contaminants will likely produce
a non-negligible signal in DDM experiments, like DLS. In
spatially inhomogeneous samples, DDM can probe different
fields of view (the equivalent of scattering volumes in DLS
experiments), which gives another important advantage over
DLS, where selecting different scattering volumes is challeng-
ing and time consuming, when it is even possible. As far as
limitations are concerned, DDM camera detectors do not yet
compare with the performances of photomultiplier tubes and
avalanche photodiodes used in DLS, neither in terms of speed
nor of sensitivity to small signals. In this respect, it must be
stressed that at least in its homodyne configuration, DLS mea-
sures the intensity of the scattered light on an ideally dark
background, whereas DDM analyzes the small fluctuations
caused by the scattered light on top of the bright transmitted
beam, a configuration which is more similar to the heterodyne
DLS configuration. A positive consequence of this detection
scheme is that in DDM, as well as in heterodyne DLS, the
fluctuating signal of which the temporal correlation properties
are calculated is proportional to the scattering field rather than
to the scattering intensity. In principle, this offers an advantage
for particle sizing applications where the size-dependence of
the scattering intensity is challenging (as the particle radius to
the sixth power in the Rayleigh regime) and is mitigated by
working with the electric field.

Compared to video particle tracking (VPT), there are three
main advantages of DDM when it comes to image analysis.
The first two relate to sample conditions and open up new types
of experiment: (i) that there is no need for segmentation of the
images, which makes it possible to study samples where the
particles are very small and (ii) no need for tracking features
across frames, which means much denser systems can be mea-
sured. The other key advantage (iii) is that DDM requires no
user-defined parameters once a family of fitting functions is
assigned (a modest restriction on the dynamics that is searched
for) and may be thus entirely automatic and unbiased. In par-
ticular, related to (iii), we stress the fact that VPT requires
user choices at almost every step of the image analysis: for an
object to be tagged as a particle or feature of interest, the user
must choose, for example, its minimum and maximum lat-
eral size, its minimum brightness, the maximum displacement
allowed between two successive frames, and the particle tra-
jectory length value below which a trajectory is discarded from
the final analysis (these are only some of the choices that the
user needs to operate). This might partially explain why VPT
is mostly used in academic research laboratories and has not
been adopted in industrial environments where automation and
standardization are strong requirements. In this respect, DDM
might represent an interesting option with the caveat that for
“unsupervised” analysis, one needs to be sure that the sample

dynamics are purely from the phenomenon of interest (e.g.,
no “dirt”) because there is not a chance later to clean up the
results. Also, VPT used properly is a very powerful technique
that enables a complete sorting (e.g., in size or velocity) of the
moving entities within a sample (e.g., a cell), whereas DDM is
in this respect more similar to DLS in its need to invert the inter-
mediate scattering function to obtain a probability function
distribution (e.g., of size or velocity). For moderately polydis-
perse samples, a cumulant analysis such as the one used in
DLS has been proven to be applicable,42,45 and there are no
barriers to employing more complex inversion procedures, as
we will discuss further below. It is also worth mentioning that
VPT may pose also some constraints on the imaging methods
and/or on the samples. For instance, a typical ideal configu-
ration for VPT experiments makes use of epifluorescence (or
confocal) microscopy in order to increase the signal-to-noise
ratio and make the suspending fluid invisible to better track the
colloidal particles. By contrast, since DDM effectively probes
signals that are way smaller than the noise, the user has more
freedom in the choice of the experimental parameters.

PIV is, in our opinion, the technique that shares with DDM
the largest number of similarities. It is typically performed with
images acquired at a fixed frame rate with the same type of
pixelated detectors. It also calculates some sort of cross corre-
lation between successive images to evaluate the displacement
and the velocity either on the whole image or, more frequently,
on some regions of interest in which the original image is
divided. For both DDM and PIV, there is a trade-off of spa-
tial resolution vs. the range of scales that one measures. The
typical output of the PIV analysis is thus a velocity (or dis-
placement) map with the resolution of a few pixels. PIV is
a well-established method that has been fine-tuned during the
years and nowadays can even operate in real-time. By contrast,
DDM is still in its young age and real-time analysis has not yet
been achieved, even though GPU accelerated versions of the
differential dynamic algorithm have been successfully imple-
mented,18,49 as well as efficient schemes for data sampling
that can probe fast dynamics at a low average data acquisi-
tion rate.50 A big limitation of PIV compared to DDM is that
being inherently conceived for assessing velocity, it is not the
right tool for mapping disordered forms of motility such as
Brownian motion, even though in principle this is possible.

V. PERSPECTIVE AND FUTURE CHALLENGES

We can expect in just a few years to be able to run DDM
in real time on video feeds of over 100 fps (this could be on
a CPU or GPU, requiring ideally 32 GB of RAM); this would
be the ultimate application of DDM avoiding even the need
for the storage of large quantities of data, reducing the image
flow to its intrinsic dynamical information content, providing
real-time physical measurement, and allowing experimental
design based on advanced imaging-driven triggers.

Given the very challenging diversity in biological sys-
tems like real tissue surfaces or cell monolayers, observed in
optical microscopy, the automation, robustness, and standard-
ization of DDM are extremely appealing. DDM represents a
very powerful and informative video analysis approach, which
in our hands has become the first routine analysis carried out
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systematically on most experiments involving dynamics of liv-
ing matter. Clearly, DDM cannot be thought of as the only
image analysis tool: information that is typically related to
heterogeneity or correlated to other detailed spatial features
then does require cell segmentation or some other form of
image feature analysis. In the context of monitoring motility of
microorganisms, the groundwork for using DDM is in the lit-
erature, and we can imagine that the technique can be deployed
in health-related applications (sperm motility testing for fer-
tility and bacteria motility for screening in various infections),
in on-line monitoring of bioreactors or waste management
systems.

In non-biological soft materials, such as complex fluids,
DDM has again clear areas of application that exploit automa-
tion and standardization. Particle sizing, in the range from few
tens of nanometers to a micrometer, can very effectively be
carried out with DDM, with the many advantages described in
this review over DLS. In the presence of polydispersity ulti-
mately, the same challenges well known in DLS will show
up, and users will have to face inversion of data, for example,
through CONTIN algorithm:51 we have described many DDM
advantages, from the decreased intensity-size dependence, to
the cost of apparatus and typically stronger statistics from
larger sample volumes probed. The application of DDM as a
microrheology tool, using tracer particles but avoiding the lim-
itations associated to tracking them, is one of the avenues being
pursued by ourselves and others. The information extracted
of DDM cuts across from what can be achieved in particle
tracking or DLS, with much simpler apparatus and analysis
pipelines.

Finally and particularly with multiscale DDM analysis,
a very complete picture of dynamics decomposed by length
scale can be obtained: this will be very powerful in the context
of glassy materials and heterogeneous dynamics,52 for which
distinguishing features such as collective rearrangements,
giant fluctuations, intermittency, dynamical heterogeneity are
observed, also for biological systems. In this context, and in
particular for biological systems that are typically studied with
microscopes,53–55 it is desirable to obtain simple and quanti-
tative indicators of the proximity to this transition. It is now
accepted that high-order spatio-temporal dynamic correlation
functions are needed, such as the four-point dynamic corre-
lation function G4(r; t) or the dynamic susceptibility χ4(t),
which is the space integral of G4.56 In this respect, comparing
real-space and Fourier-space techniques teaches an interest-
ing lesson: while visualizing intermittent, collective motility
events is easier in real-space, the calculation of the dynamic
susceptibility is more immediate in the reciprocal space, where
however no visual information is available. DDM may offer
the needed intermediate perspective, and an important step in
this direction has been recently made by Pastore et al. with the
introduction of Difference Variance Analysis (DVA).57 As in
DDM, the key idea is that taking differences between images
separated by a variable delay τ is a direct way of isolating
only the contribution of moving entities in the sample. A first
quantification of the sample dynamics can be thus obtained by
simply calculating the variance of these difference images as
a function of τ,11 which is equivalent to averaging the DDM
dynamics of all the probed wave-vectors with a weight function

that is given by the amplitude A(q) in Eq. (3). In the pres-
ence of dynamic heterogeneity and for a fixed τ, this variance
exhibits an intrinsic, ensemble variability that depends on τ
and exhibits a maximum for τ of the order of the character-
istic time τc of the cooperative relaxation of density. Pastore
et al. showed that the difference images are the ideal tool to
single out this variability and, more generally, the existence
of dynamical heterogeneity. In addition, they suggest a recipe
for calculating in a straightforward way the dynamic suscepti-
bility χ4(∆t) from these difference images. It is worth noting
that the applicability of this simple approach might be limited
to systems for which the amplitude A(q) exhibits a maximum
around a wave-vector q corresponding to a length scale in real
space of the order of the typical inter-particle distance. Nev-
ertheless, it is likely that a full extension to a wave-resolved
analysis will be more generally applicable to arbitrary systems.

We have focused this perspective review on DDM in the
context of microscopic dynamics, considering biological and
soft materials where the typical length scales are of the order
of micrometers and typical time scales from milliseconds to
hours. This is where the technique has been applied so far.
However, nothing in the DDM approach ties it down to the
realm of microscopy; rather, DDM works in the more gen-
eral world of video imaging. Future applications of DDM will
surely extend well beyond the biological/colloidal systems.
The robustness and automation will be very appealing to the
analysis of digital video feeds in crowd monitoring, analysis
of ocean waves, ice flows, or terrestrial strain patterns from
satellite feeds where the length scales and time scales could
be completely different from the physical systems described
here.
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9J. P. Butler, I. M. Tolić-Nørrelykke, B. Fabry, and J. J. Fredberg, Am. J.
Physiol.: Cell Physiol. 282, C595 (2002).

http://dx.doi.org/10.1109/msp.2012.2204190
http://dx.doi.org/10.1093/bioinformatics/btu302
http://dx.doi.org/10.1088/0034-4885/79/7/074601
http://dx.doi.org/10.1146/annurev-fluid-120710-101204
http://dx.doi.org/10.1152/ajpcell.00270.2001
http://dx.doi.org/10.1152/ajpcell.00270.2001


110901-12 R. Cerbino and P. Cicuta J. Chem. Phys. 147, 110901 (2017)

10B. Sabass, M. L. Gardel, C. M. Waterman, and U. S. Schwarz, Biophys. J.
94, 207 (2008).

11R. Cerbino and V. Trappe, Phys. Rev. Lett. 100, 188102 (2008).
12R. Cerbino and A. Vailati, Curr. Opin. Colloid Interface Sci. 14, 416

(2009).
13F. Giavazzi and R. Cerbino, J. Opt. 16, 083001 (2014).
14F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, Appl.

Opt. 45, 2166 (2006).
15F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, and D. S. Cannell, Phys.

Rev. E 76, 041112 (2007).
16F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, Phys. Rev.

E 80, 031403 (2009).
17A. V. Bayles, T. M. Squires, and M. E. Helgeson, Soft Matter 12, 2440

(2016).
18P. J. Lu, F. Giavazzi, T. E. Angelini, E. Zaccarelli, F. Jargstorff,

A. B. Schofield, J. N. Wilking, M. B. Romanowsky, D. A. Weitz, and
R. Cerbino, Phys. Rev. Lett. 108, 218103 (2012).

19F. Giavazzi, S. Crotti, A. Speciale, F. Serra, G. Zanchetta, V. Trappe,
M. Buscaglia, T. Bellini, and R. Cerbino, Soft Matter 10, 3938 (2014).

20F. Giavazzi, G. Savorana, A. Vailati, and R. Cerbino, Soft Matter 12, 6588
(2016).

21D. Germain, M. Leocmach, and T. Gibaud, Am. J. Phys. 84, 202 (2016).
22P. Cicuta and A. M. Donald, Soft Matter 3, 1449 (2007).
23Y. Gao, J. Kim, and M. E. Helgeson, Soft Matter 11, 6360 (2015).
24V. A. Martinez, R. Besseling, O. A. Croze, J. Tailleur, M. Reufer,

J. Schwarz-Linek, L. G. Wilson, M. A. Bees, and W. C. K. Poon, Biophys. J.
103, 1637 (2012).

25D. M. Wulstein, K. E. Regan, R. M. Robertson-Anderson, and R. Mcgorty,
Opt. Express 24, 20881 (2016).

26K. He, M. Spannuth, J. C. Conrad, and R. Krishnamoorti, Soft Matter 8,
11933 (2012).

27K. He, F. Babaye Khorasani, S. T. Retterer, D. K. Thomas, J. C. Conrad,
and R. Krishnamoorti, ACS Nano 7, 5122 (2013).

28A. Dehaoui, B. Issenmann, and F. Caupin, Proc. Natl. Acad. Sci. U. S. A.
112, 12020 (2015).

29J. Hallett, Proc. Phys. Soc. 82, 1046 (1963).
30A. F. Collings and N. Bajenov, Metrologia 19, 61 (1983).
31J. Kestin, N. Imaishi, S. H. Nott, J. C. Nieuwoudt, and J. V. Sengers, Phys.

A 134, 38 (1985).
32J. D. C. Jacob, K. He, S. T. Retterer, R. Krishnamoorti, and J. C. Conrad,

Soft Matter 11, 7515 (2015).
33J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179, 298 (1996).
34N. L. Thompson, Topics in Fluorescence Spectroscopy (Kluwer Academic

Publishers, Boston, 2002), pp. 337–378.
35T. Sentjabrskaja, E. Zaccarelli, C. De Michele, F. Sciortino, P. Tartaglia,

T. Voigtmann, S. U. Egelhaaf, and M. Laurati, Nat. Commun. 7, 11133
(2016).

36D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).
37M. Drechsler, F. Giavazzi, R. Cerbino, and I. M. Palacios, e-print bioRxiv

098590 (2017).
38M. E. Quinlan, Annu. Rev. Cell Dev. Biol. 32, 173 (2016).
39M. Almonacid, W. W. Ahmed, M. Bussonnier, P. Mailly, T. Betz,

R. Voituriez, N. S. Gov, and M.-H. Verlhac, Nat. Cell Biol. 17, 470 (2015).
40L. Feriani, M. Juenet, C. J. Fowler, and N. Bruot, Biophys. J. 113, 109

(2017).
41N. Bruot and P. Cicuta, Annu. Rev. Condens. Matter Phys. 7, 323 (2015).
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