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We discuss the generalization of high-energy resummation to transverse momentum
distributions to leading-logarithmic accuracy. We check our procedure by reproducing
the high-energy limit of Feynman diagram calculations up to NLO to the Higgs produc-
tion in gluon-gluon fusion. Then we estimate finite top mass corrections to the NLO
Higgs pT distribution.
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1. Introduction

Resummation of leading high energy (or small-x) contributions has a long story.
These logs are logarithms of the ratio between the hard scale Q2 of a particular process
and the center of mass energy s. First pioneering works [1] showed how to take into
account at all orders in αs singular small-x terms into DGLAP evolution. Then, a gen-
eral high energy resummation theory in the case of inclusive cross-sections at the first
not trivial logarithmic order was proposed [2, 4]. In the following years this theory was
apply to resum leading small-x log (LLx) contributions for the most important processes
in collider physics: heavy quark photo- and lepto- production [2], Deep-Inelastic Scat-
tering [4], Standard Model [5, 6] and pseudo-scalar [7] Higgs production in gluon-gluon
fusion, Drell-Yan [8], heavy quarks production [9] and prompt-photon [10].

More recently, the resummation formalism was extended to the case of rapidity
distributions in Ref. [11], through a different, but equivalent, approach to small-x re-
summation. This opens the possibility to study also exclusive observables which are
more relevant from a phenomenological viewpoint.

Following the same desire, in Ref. [12] a general high energy resummation theory for
transverse momentum distributions was developed. Besides being of theoretical and phe-
nomenological interest, this extension represents another little step through a complete
exclusive description of the desired final state. In the following we present formulas for
a generic hadro-initiated process, since generalization to lepto-,photo-initiated processes
is very straightforward [12].

The main ingredient of small-x resummation is the so-called kT factorization, i.e.
the observation that in the high energy regime any observable can be written as a
convolution between a two-gluons irreducible hard part and two reducible ladders of
emissions, as shown in Fig. 1 (on the right).

In standard approach [2], kT factorization of the hadronic total cross section σ is
implemented as convolution
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Figure 1. On the right kT factorization for a general hadro-initiated observable into a process-
dependent hard part and two ladders of radiation; on the left decomposition of the ladder parts
into multiple insertions of an emission kernel.

between a hard coefficient function C and two transverse momentum dependent gluon
Green’s functions. Convolution in Eq. (1.1) is performed on the longitudinal momentum
fractions z, z̄ and on the transverse momenta kT, k̄T of the two incoming gluons. High
energy resummation is then achieved by taking G as a solution of the BFKL equation.
More in details, by taking a double Mellin transform w.r.t x and Q2, convolution of
Eq. (1.1) factorizes into product

σ (N,M) = h (N,M,M)G (N,M)G (N,M) , (1.2)

where the Mellin transforms are defined as
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(1.3)

and G (N,M) is the double Mellin transform of G divided by M . h (N,M1,M2) is the
double Mellin transform of the hard coefficient function C times M1 and M2
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(1.4)

and it is called impact factor. Renormalization group equation for G (N,M) gives the
pole conditionM = γs

(
αs
N

)
with γs the BFKL anomalous dimension, which resums pole

of N , i.e. logarithms of x. Small-x resummation is then performed in N space as:

σres
(
N,Q2

)
= h

(
N, γs

(
αs
N

)
, γs

(
αs
N

))
. (1.5)

In Ref. [11], instead, a different approach was proposed. Starting from kT factor-
ization, the reducible ladder part was computed through the iteration of a collinear
safe kernel γ, as depicted in Fig. 1 (on the left). In conclusion, the cross section for n
emissions from the upper leg and m emissions from the lower leg is computed by n, m
insertions of a radiation kernel γ following by a subtraction of the first n − 1, m − 1
collinear poles according to MS prescription. For inclusive cross section this brings to
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the following resummed expression:

σres
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(1.6)
where the only difference with Eq. (1.5) is the scheme dependent factor R which takes
into account that subtraction was performed in MS scheme. In this approach not-trivial
information is encoded in the kernel γ. High-energy resummation is then achieved by
choosing γ to be the dual [13] of the BFKL kernel (at first order γ = γs).

The generalized ladder approach of Ref. [11] permits to move from inclusive observ-
able to more exclusive one since the complete kinematic of radiation is calculable and
under control. In the context of high energy resummation of transverse momentum
distribution, it can be proved that Eq. (1.6) still holds, as long as the hard coefficient
function C is substituted with a transverse momentum dependent hard function CpT .

This proceeding will be structured as following: in the next section, the general
framework of high energy resummation of transverse momentum distribution will be
briefly summarize. Then, using the EFT Higgs boson production as test process, we are
going to check the conclusion of the theory against fixed order calculation. Then in the
last section, we will discuss high energy phenomenology for the Higgs pT distribution
both in EFT case both with complete dependence from the quark masses.

2. Transverse Momentum Distribution at High Energy

Now we are going to briefly sketch the important points in the derivation of the
high energy resummation theory for transverse momentum distributions. Our desire in
this section is to highlight the key steps which permits such a resummation rather than
clarify all the mathematical subtleties. For the complete prove we refer the reader to
the original paper, Ref. [12].

The starting point, as said before in the introduction, is kT factorization. Fig. 2
represent a general factorize observable. Black point in each emission stands for an
insertion of the radiation kernel γ (N,αs) while the red circle represents the transverse
momentum dependent two-gluon irreducible observable. Moreover we decide to call
S the desired final state which we want to study with complete dependence from its
transverse momentum.

The main feature of this approach is the possibility to study the complete kinematic
of the process. However, it is important to stress you that if we are interested to resum
at LLx a particular observable of a tagged final state S, we need to integrate over all
the phase space of the other radiation. Therefore it is not possible to be differential also
in the rapidity or in the transverse momentum of some gluon emitted in the ladders
(momenta qi, . . . , qL and rj , . . . , rL of Fig. 2).

If all the transverse momenta of the gluons in the ladders are integrated out, we are
not considering angular correlation between them, and transverse momentum pT of the
desired final state S is going to depend only from the momenta of the gluons exiting
the ladders (pL and nL of Fig. 2). Therefore, multiple insertions of the collinear kernel
γ (N,αs) and next MS subtractions go as in the inclusive total cross section case.

In conclusion, the LLx resummed transverse momentum distribution of a particular
process is evaluated by the following formula in N space:
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Figure 2. Kinematics of the ladders. The blob at each emission vertex denotes inclusion of LLx
s- and t-channel gluon radiation to all orders.

where kT and k̄T are the modulus of the transverse momenta of the gluons pL and nL
and CpT is the LO transverse momentum distribution of the off-shell process

g∗ + g∗ → S. (2.2)

Another important point we want to focus on is the following: CpT represent the process
dependent part of this resummation and it is a LO observable of an off-shell process.
It is not important if the on-shell limit of such observable exists; if it is zero or does
not exist, the resummed observable Eq. (2.1), expanded in power of αs, will start one
order more than the order of CpT , implicitly requiring that at least one gluon must be
emitted in the ladders. This property of high energy resummation is very useful since
very often the LO observable for the off-shell process is simpler than putting off-shell
the LO on-shell diagrams.

We are going to clarify all these concepts by presenting the resummation for a par-
ticular process: the Higgs boson production in gluon-gluon fusion in the effective field
theory.

In the case of Higgs boson production in the limit when the top mass tends to infinity,
we consider the Higgs coupled directly to gluons through an effective vertex. However,
being a 2 to 1 process, if we require a not vanishing transverse momentum we need to
require the radiation of at least one additional gluon. Hence the LO on-shell process is
the 2→ 2 process

g + g → H + g(q). (2.3)
Nevertheless, as said before, to perform the high energy resummation of this observable
we need to compute the transverse momentum distribution of

g∗ + g∗ → H, (2.4)

rather than the off-shell version of Eq. (2.3)

g∗ + g∗ → H + g(q), (2.5)
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since transverse dependence of process Eq. (2.4) is not trivial also without any further
emission.

The transverse momentum dependent hard function CpT

(
N, k2

T, k̄
2
T, p

2
T

)
turns out to

be:
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T − 2kTk̄T cos θ
)
,

(2.6)
where kT, k̄T and pT are the transverse momenta of the incoming gluons and of the
Higgs respectively, N is the Mellin variable associated to x,

σ0 = GFm
2
Hα

2
s

√
2

576π (2.7)

and θ is the angle between the direction of k and k̄.
Now by inserting the expression of CpT , Eq. (2.6) into Eq. (2.1) and solving the

integrals [12], we come to the resummed expression for the transverse momentum dis-
tribution of the Higgs in the framework of the effective theory:

dσres

dξp

(
N, p2

T

)
=R (γ (N,αs))2 σ0

ξ
2γ(N,αs)−1
p

(1 + ξp)N[
Γ (1 + γ (N,αs))2 Γ (2− 2γ (N,αs))

Γ (2− γ (N,αs))2 Γ (2γ (N,αs))

(
1 + 2γ (N,αs)2

1− 2γ (N,αs)

)]
, (2.8)

where we introduce ξp = p2
T

m2
H
.

Through the identification in Eq. (2.8) of γ (N,αs) with the dual of the BFKL kernel
γ (N,αs) = γs

(αs
N

)
we are finally able to resum at LLx this observable.

However, to provide tests of the following construction, before turning to phe-
nomenology, we want to check the expansion in power of αs of Eq. (2.8) against fixed
order evaluation. This will be the subject of the following subsection. We are going to
present a fixed order evaluation directly in the high energy limit: this will permits us to
compute completely analytical expressions up to O

(
α4
s

)1.
2.1. Fixed Order Calculation at High Energy

We start by computing the αs-expansion of Eq. (2.8) up to O
(
α4
s

)
. The BFKL

anomalous dimension admits the following expansion:

γs

(
αs
N

)
= Ncαs

π

1
N

+O
(
α4
s

)
(2.9)

while the R factor which takes into account the MS scheme selection begin to be different
from 1 at O

(
α3
s

)
R (γs (αs, N)) = 1 +O

(
α3
s

)
. (2.10)

Using this information the expansion of Eq. (2.8) at not zero value of ξp turn out to be,
in the limit when N → 0:

dσ

dξp
(N, ξp) = σ0

[
2ᾱs
N

1
ξp

+ 4ᾱs2

N2
ln ξp
ξp

+O
(
α3
s

)]
+O

(
α4
s

)
(2.11)

1 In the original paper Ref. [12] comparison at O
(
α4
s

)
was presented only through a numerical inte-

gration over rapidity of the full double differential fixed order evaluation of Ref. [14].
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Figure 3. Feynman Diagrams contributing at O
(
α3

s

)
. A useful light-cone decomposition for the

momenta is also reported.

with
ᾱs = αsNc

π
. (2.12)

It is interesting to note that expansion start at O
(
α3
s

)
while CpT is of O

(
α2
s

)
(see

Eq. (2.6), (2.7)). This is due to the fact that the on-shell limit of the off-shell process,
Eq. (2.4) is zero at finite pT, as noted before.

We now want to reproduce this expansion by computing directly Feynman Diagrams
at small-x. At O

(
α3
s

)
we have to compute only the following subprocess

g + g → H + g (2.13)

since radiation of quarks is a subleading effect [12]. Diagrams which we have to evaluate
are collected in Fig. 3, with a useful light-cone decomposition for the momenta of the
various particle. When x → 0 the LLx behaviour is dominated by the region when
z̄, z � 1 and k2

T
s ,

k̄2
T
s � 1. In this region the contribution of the first diagram of Fig. 3

turn out to be in d = 4− 2ε dimension:

dσ0−a
dξp

(x, ξp) = σ0
z̄

x
δ

(
1− z̄

x
+ ξ̄

)[
ᾱs
dz̄

z̄

dξ̄

ξ̄1+ε
4π

Γ (1− ε)

]
δ
(
ξp − ξ̄

)
(2.14)

with ξ̄ = k̄2
T

m2
H
and ᾱs, σ0 defined as in Eqs. (2.12) and (2.7). By solving integrations over

z̄ and ξ̄ using the two delta constraints and by taking the limit ε→ 0 we find the result
for the single emission from the upper leg

dσ0−a
dξp

(x, ξp) = σ0ᾱs
1
ξp
. (2.15)

Since the contribution from the other leg is the same by symmetry and due to the fact
that interferences between emissions are subleading in the high energy regime, we can
easily come to our final result for the O

(
α3
s

)
(in Mellin space):

dσ0
dξp

(N, ξp) = 2σ0ᾱs
1
ξp

∫ 1

0
dxxN−1 = σ0

2ᾱs
N

1
ξp

(2.16)

as predicted by Eq. (2.11).
Now we move to O

(
α4
s

)
. In this case we have to evaluate three contributions (see

Fig. 4): when the two emissions of gluons come from the upper leg or from the lower leg
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Figure 4. Feynman Diagrams contributing at O
(
α4

s

)
, with light-cone decomposition for the

momenta in the high energy regime. It can be proved that in the small-x limit at this order in
αs kT

2
1 � kT

2
2. [11, 12]

or when they are one from the upper leg and one from the lower leg. Clearly, as before,
due to symmetry the first two contributions are exactly equal.

We start by considering the case of a double emissions from the same leg. Since
angular correlations can be shown to be subleading at small x, from now on we will
neglect all them. Consequently, we will omit all angular terms like (4π)ε

Γ(1−ε) as they are
always subtracted in the MS scheme [11]. At small-x the result for the differential
cross-section is:

dσ1−a
dξp

(x, ξp) = σ0
z̄1z̄2
x
δ

(
1− z̄1z̄2

x
+ ξ̄1

)[
ᾱs
dz̄2
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dξ̄2
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2

] [
ᾱs
dz̄1
z̄1

dξ̄1

ξ̄1+ε
1

]
δ
(
ξp − ξ̄1

)
.

(2.17)
Now using the two delta constraints we solve the integration over z̄1 and ξ̄1 obtaining
at LLx:

dσ1−a
dξp

(x, ξp) = σ0ᾱs
2
[∫ 1

x

dz̄1
z̄1

∫ ξp

0

dξ̄2

ξ̄2

]
1

ξ1+ε
p

+O (1)

= σ0ᾱs
2 ln 1

x

[
−1
ε

1
ξ1+2ε
p

]
+O (1) . (2.18)

Last step is to take the small-ε limit and perform the MS subtraction. At finite pT we
obtain

dσ1−a
dξp

(x, ξp) = σ0ᾱs
2 ln 1

x

ln ξp
ξp

. (2.19)

Eq. (2.19) is also the result for the double radiation from the lower leg. To conclude our
check we need to add the term coming from the diagram in which the two emissions are
one for each leg. In this case, the differential cross-section, in the high energy regime is:

dσ1−c
dξp

(x, ξp) = σ0
2
z̄z

x
δ

(
1− z̄z

x
+ ξp

)[
ᾱs
dz

z

dξ

ξ1+ε

] [
ᾱs
dz̄

z̄

dξ̄

ξ̄1+ε

]
dθ

2π

δ

(
ξp − ξ − ξ̄ − 2

√
ξ̄ξ cos θ

)
(2.20)

where θ, as in Eq. (2.6), is the angle between the direction of the momenta k and k̄. To
solve the various integrations we first note that Eq. (2.20) is symmetric by exchanging
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ξ with ξ̄. Hence we can halve the integration region by requiring ξ > ξ̄ and recover
the other part by exploting the symmetry. Then we perform the following change of
variables

ξ̄ = ξpw ξ1 ξ = ξp ξ1 cos θ = t. (2.21)

We thus write Eq. (2.20) as, by ignoring terms beyond LLx:

dσ1−c
dξp

(N, ξp) = σ0ᾱs
2
∫ 1

x

dz

z

1
ξ1+2ε
p

∫ 1

−1

dt√
1− t2

∫ 1

0
dw

(1 + w + 2
√
wt)2ε

w1+ε +O (1) .

(2.22)

Finally we perform the expansion ε→ 0 and the MS subtraction to obtain

dσ1−c
dξp

(x, ξp) = 2σ0ᾱs
2 ln 1

x

ln ξp
ξp

(2.23)

Putting together Eq. (2.19) with Eq. (2.23), we then arrive to the complete O
(
α4
s

)
prediction in the small-x limit (in Mellin space):

dσ1
dξp

(N, ξp) = 4σ0ᾱs
2 ln ξp
ξp

∫ 1

0
dxxN−1 ln 1

x
= σ0

4ᾱs2

N2
ln ξp
ξp

(2.24)

in agreement with the expansion of the high energy resummed formula (2.11).
Hence, we have reproduced the first orders of the expansion through an explicit

computation of the Feynman Diagrams in the high energy limit, providing another
check on the resummed construction. Being our theory on solid ground, we are now
able to discuss some phenomenological application of the technique. Next section will
be devoted to the study of mass quark effects on the pT distribution of the Higgs.

3. Higgs pT distribution: Phenomenology

We now turn to study the phenomenological implication of our high energy resum-
mation on the pT distribution of Higgs boson production.

In the previous section, Higgs boson production in gluon fusion at high energy was
evaluated in the effective field theory limit. This general formalism can be applied to
the same observable, but now retaining full heavy quark mass dependence. Such a
calculation was performed in Ref. [15]. We want now to review these results and use
them to qualitatively estimate mass corrections beyond leading order.

It is well known that the impact of high energy resummation is quite small at the
current work energies of LHC Run II. However, in cases when fixed order evaluation is
not available, αs-expansion of the resummed result can be used to extract qualitatively
information about the behaviour of the unknown coefficient.

Hence, in this section, first we are going to validate this high-energy approximation
at LO and NLO at the hadronic level and then to provide a prediction for the transverse
momentum distribution at NLO with complete mass quark dependence based on the
high-energy approximation.

High-energy resummation predicts a very different behaviour at large-pT between
the pointlike case (as in the effective field theory limit) and the resolved case (as with
full heavy quark mass dependence) [12]. While when the interaction is pointlike, the
coefficients grow logarithmically with pT (ξp), in the resolved case the coefficients dk (ξp)
as ξp →∞ will vanish at least as an extra power of ξ−1

p in such a way that the integral
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Figure 5. Several comparisons for high-energy approximation validation. In the upper panels,
comparisons between LO full coefficient and LO high energy approximation both in the EFT
both with full masses dependence are shown. In the lower panels, we validate at NLO high
energy approximation by comparing EFT full result with its high energy expansion, at 13 TeV
(on the right) and in a wide range of both pT and

√
s (on the left).

over all transverse momenta is finite. In formulas:

dσ

dξp
∼
x→0

σLO
ξp
×



∞∑
k=1

αks lnk−1 1
x

k−1∑
n=0

ckn lnn ξp, pointlike (3.1a)

∞∑
k=1

dk (ξp)αks lnk−1 1
x
, resolved, (3.1b)

For this reason, the high-energy approximation is the right approximation to study mass
quark effects in the large-pT region, when the EFT approximation badly fails.

All plots are produced with µ2
R = µ2

F = Q2 and with the PDF4LHC15 NNLO set of
parton distributions PDF4LHC15_nnlo_100 [16]. Q2 is a pT dependent hard scale

Q2 =
(√

m2
H + p2

T + pT

)2
; (3.2)

with this choice of hard scale, hadronic transverse momentum distribution is returned
by a standard convolution between the partonic distribution and a pT-independent PDF
luminosity [15].

We start from the validation of the high energy expansion, by comparing with the
known fixed order full result. We define a high energy approximation by taking the
expansion of our resummed prediction as:

dσres

dξp
(τ, ξp) = dσh.e

0
dξp

(τ, ξp)α3
s + dσh.e

1
dξp

(τ, ξp)α4
s +O

(
α5
s

)
= dσh.e

0
dξp

(τ, ξp)α3
s

(
1 + αsK

(1),h.e (τ, ξp)
)

(3.3)
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Figure 6. Various approximations to the NLO Higgs transverse momentum distribution K factor:
using NLO and LO pointlike full coefficients (red-dashed), the NLO and LO pointlike high
energy approximation (green-dotdashed) or the NLO and LO full mass dependent high energy
approximation (blue, solid)

where in the second line we have also defined the NLO K factor. In Fig. 5, we show
several comparisons two for dσh.e

0
dξp

and two for dσh.e
1

dξp
. In the upper left panel we show the

ratio between the LO EFT and the LO EFT high-energy approximation, in the upper
right panel the ratio between the full mass dependent LO result and its high energy
approximation. The ratio with the full LO pointlike is also shown. Both these plots are
computed at LHC 13 TeV. In the lower panels we show the validation at NLO at LHC
13 TeV(on the left) and for a wide range in pT and

√
s (on the right)2.

These plots show that high energy approximation, even if it is accurate only at very
high center of mass energy, much higher than the current work energies at LHC Run II,
it is quite stable in a large range of pT. At LHC 13 TeV, at LO, it is about 60% of the
full theory, and only slightly worse at NLO. On the contrary, the effective field theory
result is driven by the fact at parton level it has the wrong large-pT power behaviour,
and it is off by an increasingly large factor: already for

√
s = 13 TeV at pT ∼ 1 TeV it

is in fact too large by about one order of magnitude.
By comparing results at LO at LHC 13 TeV obtained in EFT or in full theory (left

panels of Fig. 5), it is clear that the quality of the high-energy approximation is similar
in both cases. Due to this observation, where only EFT exact result is available, we
expect the accuracy we extract by the pointlike comparison may be used as a good
estimator of the uncertainty also in the massive case.

Moreover, the contour plot of Fig. 5 shows that high-energy approximation becomes
better as the center-of-mass energy is increased at fixed pT but also, if pT is varied at
fixed energy, that the quality of the approximation remains constant in a wide range
of transverse momenta. It only starts deteriorating when the transverse momentum
becomes of the same order of its upper kinematic limit

√
s

2 . This is expected because the
high-energy limit holds when

√
s is much larger than all other scales: remember that in

the derivation of the high energy regime in the previous section we have considered the
limit

p2
T

s
� 1. (3.4)

Logs of this ratio, which are subleading at small-x, might be important at very large
2 Comparing with the original Ref. [15], in the contour plot we double the grid of points near the kine-
matic boundary to obtain more accurate results. However, at the moment, this region is inaccessible
for present colliders.
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Figure 7. Various approximation to the NLO Higgs transverse momentum distribution. Colours
and line styles follow the same definition of Fig. 6.

pT and should be resummed to all orders [17]. However, in this region the transverse
momentum distribution is tiny, so in practice the high-energy approximation is uniformly
accurate throughout the physically relevant region.

We now finally turn to the pT spectrum of the Higgs boson with finite quark masses
effects beyond leading order at LHC 13 TeV. In Fig. 6, three different determination of
the K-factor, Eq. (3.3) are plotted in the high-pT region we are interested in: using the
full pointlike NLO result or the high-energy approximation both in EFT and with full
mass dependence. In each case, both the LO and NLO contributions are computed using
the same approximation. This plot suggests two main conclusions. First, by comparing
red-dashed line vs green-dotdashed line, namely EFT full result against high-energy
approximation of it, we see our expansion at small-x is quite good, with an accuracy of
about 20% or better for all pT & 200 GeV, in agreement with the general validation just
exposed. Second, even though the shape of the distribution (see Eqs. (3.1a), (3.1b) at
high pT differs between the pointlike and massive case (a different power of pT) the K
factors are similar and approximately pT independent, at least, in the only case in which
we can compare the pointlike and massive results, namely the high-energy limit (green,
dot-dashed vs blue, solid curves).

From Fig. 6 we can also extract one of the conclusion of this proceeding. If one
wishes to use the NLO pointlike result to approximate the real Higgs pT distribution,
a better approximation can be obtained by using the pointlike NLO to compute the K
factor and using it to rescale the full massive leading order rather than to add to it.

Indeed, the quality of this approximation is possibly comparable to that obtained
by summing the LO full massive coefficient with the high-energy approximation of the
NLO, as you can appreciate from Fig. 7.

4. Conclusions and Outlook

We have reported on an extension of high-energy factorisation to transverse momen-
tum distributions. It represents a further step in a more exclusive description of the
final state in the high energy regime. Moreover, we reproduce order by order in αs the
high-energy limit through a direct evaluation of Feynman diagrams in the small-x limit.
As a first application, we have performed the resummation of the pT distribution for
Higgs production in gluon-gluon fusion, both with finite quark masses and in the infinite
mass limit. Using this information, we estimate the impact of quark masses corrections
on the Higgs NLO pT distribution at LHC 13 TeV. We found that even if the full NLO
pointlike result is off by an increasingly large factor for pT & 200GeV , the pointlike K
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factor is of the same order of the prediction computed using full massive high energy
expansion. Hence, full massive LO result rescaled by pointlike NLO K factor can be
used to obtain a reasonable approximation for the unknown massive NLO correction of
the Higgs pT distribution.

A better understanding of such effects can be obtained by matching the high energy
resummation with other known resummations. Matching procedures with threshold
resummation or transverse momentum resummation are under studies [18, 19]. Even
a more exclusive extension of the high energy resummation technique (such as high
energy resummation double differential in rapidity and transverse momentum) is highly
desirable.
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