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The Aubry unpinned-pinned transition in the sliding of two incommensurate lattices occurs for increasing
mutual interaction strength in one dimension and is of second order at T = 0, turning into a crossover at nonzero
temperatures. Yet, real incommensurate lattices come into contact in two dimensions, at finite temperature,
generally developing a mutual Novaco-McTague misalignment, conditions in which the existence of a sharp
transition is not clear. Using a model inspired by colloid monolayers in an optical lattice as a test two-dimensional
(2D) case, simulations show a sharp Aubry transition between an unpinned and a pinned phase as a function
of corrugation. Unlike one dimension, the 2D transition is now of first order, and, importantly, remains well
defined at T > 0. It is heavily structural, with a local rotation of moiré pattern domains from the nonzero
initial Novaco-McTague equilibrium angle to nearly zero. In the temperature (T )-corrugation strength plane, the
thermodynamical coexistence line between the unpinned and the pinned phases is strongly oblique, showing
that the former has the largest entropy. This first-order Aubry line terminates with a novel critical point T = Tc,
marked by a susceptibility peak. The expected static sliding friction upswing between the unpinned and the
pinned phase decreases and disappears upon heating from T = 0 to T = Tc. The experimental pursuit of this
novel scenario is proposed.
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I. INTRODUCTION

There is in tribology—the science of friction and
adhesion—a longstanding interest in models of periodic solid
interfaces that are incommensurate, where the crystal unit
cells facing each other are fundamentally mismatched in
either size or angle or both, so that they cannot fit in a
common unit cell of any finite size. While in the macro-
scopic world it is generally difficult to realize a perfectly
incommensurate interface because of defects, irregularities,
and temperature, in nanotribology [1,2] there are well-defined
nanoscale realizations of incommensurate crystal interfaces,
such as graphene and other two-dimensional (2D) sheets [3,4],
rare-gas monolayers [5], and colloid monolayers in an optical
lattice [6,7]. The present work is devoted to understanding
the relative state of pinning of an idealized, yet well-defined
realization of this type of 2D contact, focusing especially on
its evolution under conditions of finite temperature, a question
totally unexplored so far.

We begin with a brief review, which starts from the 1D
Frenkel-Kontorova (FK) model [8,9], consisting of a harmonic
chain of classical point particles in a static sinusoidal potential
of amplitude W0, which acts as a corrugation opposing chain
sliding. Incommensurability between the mean interparticle
spacing ac and the sinusoidal potential wavelength ap occurs
when the ratio ρ = ac/ap is irrational. With respect to the
unperturbed chain, the incommensurate potential causes a
distortion of the particle positions that can be described by
a deformation of the chain’s local phase �(x) relative to the
reference phase of the corrugation sinusoid. As the chain-
sinusoid interaction increases from the noninteracting straight
behavior �0(x) = (ρ − 1)x at W0 = 0, the phase deforms into

a smooth staircase shape with the same mean slope (ρ − 1),
but now sporting nearly commensurate and horizontal steps
where �(x) is approximately constant, separated by jumps,
called solitons or misfit dislocations, or kinks, and antisolitons
(antikinks), where most of the misfit stress associated with
∇� is concentrated. Incommensurability implies that the total
energy E of the chain is in all cases strictly independent
of its center-of-mass position, δE/δ� = 0. Because of this,
it had long been held that the translational dynamics of
an incommensurate interface should always be gapless—
causing in this case the chain state to be unpinned and
thus shiftable by an arbitrarily small force. In the 1980s
Aubry proved mathematically that this is not always so. The
1D incommensurate FK model displays at T = 0 and for
fixed harmonic spring constant a sharp phase transition [10]
between an unpinned phase where the corrugation is weak
[soliton widths larger then or comparable to that of the steps,
small overall distortion �(x) − (ρ − 1)x], and a pinned phase,
realized above a critical corrugation magnitude W0c, where the
distortion is large, solitons are narrow, and the phase distortion
is large. Above W0c, whose magnitude depends on precise
parameters and on incommensurability, the chain develops a
nonzero gap against sliding.

The well-known physical essence of the Aubry transition is
that the relative probability to find a particle exactly at a poten-
tial maximum—probability that is finite so long as the chain
is unpinned—drops mathematically to zero at W0 > W0c,
constituting a self-generated constraint to the chain center-
of-mass dynamics and to its sliding motion at T = 0 [11].
That is, despite δE/δ� = 0, the dynamical constraint limits
phase-space accessibility, effectively breaking ergodicity and
causing the onset of static friction, pinning of the chain against
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free sliding under an infinitesimally small external force. Even
if it is, for any finite system size and within mean field,
a regular structural and thermodynamic transition [12], the
Aubry transition does not possess a proper Landau-type order
parameter. It has instructively been characterized by a disorder
parameter measuring the extension of the forbidden phase
space, a concept which we will make use of later. Even if
the step-terrace deformation of the chain’s phase �(x) retains
a qualitatively similar nature to that in the unpinned state, the
solitons evolve from broad and overlapping to nonoverlapping
and atomically sharp, and both static and dynamic friction
change at the transition. In the unpinned phase, the chain
slides under any applied force however weak, leading to a
state of flow of the solitons. This absence of static friction is
sometimes referred to as superlubricity or structural lubricity
in the friction community. In the pinned state, chain sliding
requires a static friction threshold force to be overcome, before
sliding sets in.

The D = 1, T = 0 physics being well understood, it does
remain rather academic unless it can be brought closer to
the real, in our case nanotribological, world [13–16]. Real
incommensurate lattices come into contact at an interface,
which is D = 2 dimensional. Moreover, temperature is always
finite and often large. Although the physics of the unpinned-
pinned transition [9] is usually and reasonably assumed to
be the same in D = 2 and T > 0 as that of Aubry’s case in
D = 1 and T = 0 that assumption is neither theoretically
proven nor at least demonstrated in a specific experimentally
relevant example. Clearly, the two regimes of essential
unpinning and of strong pinning must surely exist for flat
2D incommensurate contacts. However, whether there is or
is not between them a sharp transition as a function of the
contact strength, and if so precisely what kind of transition,
must still be determined. At T = 0, moreover, the 1D Aubry
transition is continuous and critical as a function of mechanical
parameters. Although in mean-field theory the second-order
Aubry transition may extend to finite temperature [12], in
reality in one dimension the sharp phase transition is strictly
limited to T = 0, turning into a smooth crossover at any finite
temperature [9].

A recent study [17] of a 2D model colloid monolayer in
an incommensurate optical lattice provides the first interesting
example of such a transition in a real class of systems where
experiments are actively going on [6,18]. That study revealed at
T = 0 a 2D Aubry-type unpinned-pinned transition, which is,
unlike the 1D case, of first order for increasing corrugation. In
that transition the Novaco-McTague misalignment angle [19],
a specific 2D feature, plays an important role. Moreover,
the two components of the total (potential) energy, namely
the interparticle and the particle-substrate-potential terms,
undergo opposite and compensating jumps. The evolution
of this 2D unpinning-pinning transition in the real finite-
temperature situation remains as yet unknown.

Here we show, exploiting the same 2D colloid mono-
layer/optical lattice model as a relevant system, which we
can study by molecular dynamics (MD) simulations, that the
Aubry-like transition remains well defined and of first order at
nonzero temperature, where it gives rise to a clear phase line
between the unpinned and the pinned states. The large positive
slope of this line indicates via Clausius-Clapeyron’s equation

that the unpinned phase has the largest entropy, revealing some
collapse of accessible phase space in the pinned phase. A
disorder parameter, the 2D version of Coppersmith-Fisher’s
1D one [11], is correspondingly identified, and its jump is
demonstrated at the onset of pinning. From the geometric
viewpoint, the 2D Aubry transition in this model system
is heavily structural. Its main feature is a rotation of local
moiré pattern domains from the nonzero Novaco-McTague-
like misalignment angle in the weak-corrugation unpinned
phase to nearly zero in the strong-corrugation pinned phase.
The two phases appear to possess the same spatial symmetry.
Thus the first-order line is accordingly expected and actually
found to terminate at a high-temperature critical point, where
unpinned and pinned characters are lost and therefore merge.
Limitations of simulation size and time do not permit here
a characterization of this critical point, which qualitative
considerations would tentatively place in the universality class
of the gas-liquid transition. As in liquid gas, the particle-
particle energy and the entropy jumps contributing to the free
energy are equal in magnitude at the transition; however, in this
Aubry case they have the same sign rather than opposite signs,
their positive sum exactly compensating the gain of periodic
potential energy (a term absent in liquid gas).

After this characterization of equilibrium properties, we
address tribological and dynamical questions by carrying out
further simulations and extracting static friction under an
external force. The change from zero to finite static friction
characterizes the unpinned and pinned nature, respectively,
confirming a change from lubricity of the unpinned phase to
sticking of the pinned phase, which persists at T > 0, and only
vanishes at the terminal critical temperature.

II. MODEL AND SIMULATIONS

Following our previous T = 0 work [7,17] we describe the
colloidal particles as classical point objects interacting via a
screened repulsive Coulomb potential

V (r) = Q

r
exp(−r/λD), (1)

where r is the interparticle distance, Q is the coupling
strength, and λD is a Debye screening length. Particle motion
is restricted to two dimensions, where unperturbed colloids
form a triangular lattice of spacing ac in the (x,y) plane. The
externally added 2D periodic triangular corrugation potential

W (r) = −W0
2

9

[
3

2
+ 2 cos

2πx

al

cos
2πy√

3al

+ cos
4πy√

3al

]
= W0w(r) (2)

has strength W0 and periodicity al , representing the experi-
mental optical lattice. Here we restrict particle motion to two
dimensions, even if real colloids can move in three dimensions,
because we are interested in the 2D problem in the first place.
Moreover, the experimental setup [6] implements an additional
strong confining laser force in the z direction, which suppresses
drastically all vertical fluctuations to less than 5% of the
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particle diameter. The total potential energy of Np particles is

H =
Np∑
i=1

⎡
⎣W (ri) + 1

2

∑
i

∑
j �=i

V (rij )

⎤
⎦. (3)

The j th particle displacement rj obeys the Langevin equation

mr̈j + ηṙj = −∇rj

⎡
⎣∑

i �=j

V (rij ) + W (rj )

⎤
⎦ + ξR(t), (4)

where η is the viscosity of the solvent, and R(t) is a
δ-correlated stationary Gaussian process, satisfying

〈R(t)〉 = 0 (5)

〈R(t)R(t ′)〉 = δ(t − t ′). (6)

The fluctuation-dissipation theorem is satisfied by setting
ξ = √

2ηkBT , where kB is Boltzmann’s constant and T is
the temperature. An overdamped dynamics of these particles
is generated by integrating the equations of motion with a
large viscous coefficient η = 28 and Q = 1013, λD = 0.03.
In our simulations we further assume 2D periodic boundary
conditions (PBCs). Results are expressed in terms of the same
system of units defined in Table I of Ref. [17]. In these units,
very roughly inspired by experimental systems [6], T ∼ 0.04
corresponds to room temperature.

Incommensurability between the particle monolayer and
the 2D periodic potential generally arises both from their
different lattice spacing and from their relative misalignment
(rotation) angle. Any chosen misalignment angle between the
corrugation W (r) and the colloidal lattice can be implemented
by means of a suitably chosen supercell, as follows [20].
The two lattices are defined by the pairs of primitive vec-
tors a1 = al(1,0), a2 = al(0.5,

√
3), and b1 = ac(cos θ, sin θ ),

b2 = ac[cos(θ + π/3), sin(θ + π/3)]. An arbitrary supercell-
periodic structure, meant to approximate the real incommensu-
rate system, is realized when four integers are found that satisfy
the matching condition n1a1 + n2a2 = m1b1 + m2b2. The su-
percell is a larger triangular lattice of size L = |m1b1 + m2b2|,
containing a total number of particles Np = m2

1 + m1m2 +
m2

2. We fix ac = 1 and vary n1,2, m1,2 in search of structures
with a mismatch ρ = al/ac ≈ 3/(1 + √

5) 	 0.927—close to
the experimental values of Ref. [6]—and θ near the desired
value, with the obvious additional constraint that the number
of particles Np should not be too large. We consider in
practice the aligned configuration θ = 0, plus misaligned
configurations: θ 	 5◦, θ 	 10◦, and θopt 	 2.54◦. The latter
is close to the (Novaco-McTague) equilibrium misalignment
angle θNM 	 2.58◦ predicted by weak-coupling elastic theory
for the present parameters and ρ = 0.927 [19,21]. We could
have equally chosen to study an overdense case, ρ > 1.
However, the underdense regime ρ < 1, which we have chosen
is better suited because overdense local compressions may
favor large bucklings of particles out of the plane, and because
the energetics (not symmetrical with respect to ρ > 1) is less
convenient in that case. The supercell parameters adopted here
are the same as in Ref. [17].

The mismatch between the 2D particle lattice and the
periodic potential produces a moiré pattern corresponding

FIG. 1. Examples of the moiré patterns obtained at ρ 	 0.927
for misfit angles (a) θ = 0, (b) θopt 	 2.54◦, (c) θ 	 5◦, and
(d) θ 	 10◦. Each dot represents a particle, whose color reflects the
local corrugation potential W (x,y): dark for potential minima, bright
for maxima. A small portion of the simulation supercells is displayed,
containing an undistorted monolayer, at W0 = 0. According to
Eq. (7), at θopt 	 2.54◦, (b), the moiré orientation is α 	 30◦. As θ

increases beyond θopt, the superstructure periodicity L shrinks rapidly
and rotates all the way to α 	 60◦ (d).

to a superlattice of hexagonal domains where particles and
potential are mutually nearly commensurate, separated by a
honeycomb network of (anti)soliton lines whose thickness
decreases with increasing corrugation strength. Examples of
the moiré superstructures are shown in Fig. 1. We recall here
for clarity the relation [22] between the misalignment angle θ

and the moiré orientation α

cos θ = ρ−1 sin2 α + cos α
√

1 − ρ−2 sin2 α . (7)

The moiré pattern visually underlines the difference between
particles whose position is near the energetically favorable
potential minima, and others near the unfavorable potential
maxima. In the 1D case studied in the 1980s, the presence
or absence of pinning was described by a disorder parameter
�, roughly measuring the radius of the neighborhood of each
potential maximum, which, at T = 0, turned from (partly)
occupied in the unpinned state to exactly empty in the pinned
state [11]. The (tribological) essence of the Aubry transition is
that when all states are accessible and the disorder parameter
is zero, the incommensurate system is unpinned and can slide
under an arbitrarily small force, whereas when the occupancy
of potential maxima and their neighborhood drops to zero
and therefore the disorder parameter is nonzero, the system is
pinned and free sliding is impeded. Looking for a 2D analog
of the disorder parameter we measure [17] the fraction � =
Ns/Np of particles that populate the geometrically defined,
bow-tie-shaped area where the periodic potential W (x,y) is
repulsive, exceeding its saddle-point value (see Fig. 2). The
value of �(T ,W0) and especially its jump will be used to char-
acterize phase boundaries in the (W0,T ) plane phase diagram.

The phase transition is studied as follows. At each fixed and
nonzero value of T we carry out two series of simulations, the
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FIG. 2. Color map of the 2D periodic triangular substrate poten-
tial W (x,y). A primitive cell is highlighted at the center. Isolines are
drawn corresponding to the saddle-point value separating adjacent
minima.

first starting from an unpinned configuration at an adequately
small value of W0, which is then increased in small steps
�W0, the second starting from a pinned configuration at an
adequately large value of W0, which is then decreased in
a similar fashion. We generally adopt �W0 = 0.005–0.01,
reducing it to �W0 = 0.001 in the parameter region straddling
the transition. For each value of W0 the MD simulation time
is chosen so as to ensure thermal equilibrium. Each run at
W0 ± �W0 is started from a configuration equilibrated at the
previous step in the sequence. Thermal equilibration is checked
by monitoring the disorder parameter �, which generally in-
creases or decreases with simulation time, eventually reaching
a plateau. We could in principle have used the convergence of
another mechanically defined variable, such as the internal
energy, to monitor equilibration. However, internal energy
fluctuations, related to specific heat, are harder to handle
than those of the disorder parameter, which turns out to be a
better choice in practice. All relevant observables are computed
from time averages along the trajectories, discarding the initial
transient time.

All equilibrium simulations described here are carried out
with 2D PBCs, corresponding to NVT canonical ensemble (as
opposed to a NPT ensemble, here inaccessible). On account of
the constant volume (in this case, constant area), a first-order
phase transition in general implies an intermediate two-phase
coexistence region, since the unpinned and pinned phases
generally differ in pressure as well as in disorder parameter.
The existence of two separate phase boundaries in the
(W0,T ) plane is indeed signaled by two different possible
stable values of the disorder parameter �—in practice by two
noncoincident upward and downward jumps of � for increas-
ing or decreasing potential strength W0. As it turns out for
our working parameters the width W2 − W1 of the two-phase
region is narrow. Its midpoint line W ∗

0 = (W1 + W2)/2 (where
W1 and W2 are the border values) is therefore adequately
representative of an underlying effective constant-pressure
first-order phase line. In this way we avoid the complex
questions that would otherwise arise in order to extract a
constant-pressure result, a volume change being difficult to
combine with the (rigid) periodic potential and the requirement
of fixed incommensurability.

The global angular orientation of the monolayer relative to
the lattice potential is held fixed by the PBCs, independently
of temperature. While that is an assumption reflecting a
computational necessity, it does represent those experimental

realizations where very large, practically infinite colloid
islands are not expected to execute global rotations. Actu-
ally, temperature, besides smearing somewhat the periodic
potential, would nudge the overall equilibrium orientation
angle in the direction where the total-energy growth is softer.
However, calculations at T = 0 showed [17,21] that the angle
of minimum energy (2.54◦ in our case) is rather independent on
the potential magnitude, as also suggested by weak-coupling
theory [19], making the optimal orientation angle insensitive to
thermal smearing. Moreover, the T = 0 total energy is rather
symmetric around the minimum, equally soft on both sides, so
that no orientational nudging is expected. It is therefore very
reasonable to adopt the same optimal T = 0 global orientation
angle independent of temperature.

The Helmholtz free-energy of the monolayer is F = U +
W − T S, where U = 1

2 〈∑i

∑
j �=i V (rij )〉, W = 〈∑i W (ri)〉,

and S is the entropy. By crossing the first-order transition upon
variable W0 and constant T ,

�U + �W − T �S = �F = 0 . (8)

Simulations yield directly �U and �W , both of them
mechanical quantities, across the transition. Through Eq. (8)
we obtain the entropy jump �S at the unpinning-pinning
transition. Of course, since no thermodynamic results such as
�S are correctly represented at low temperatures by a totally
classical simulation, it must be understood that all results are
valid only from some (small) finite temperature upward. In
future comparisons with experimental data this will not be a
problem, because colloidal experiments are carried out at room
temperature.

Finally, the static friction force Fs of the monolayer, which
actually determines the presence or absence of pinning, is
obtained by applying a driving force Fd to each colloid,
generally along a high-symmetry direction of the laser sub-
strate potential. Briefly, the external force is increased in
steps �F , and for each value of the force a simulation is
carried out where the duration is fixed in such a way that a
single free particle would move by a distance of �x = 5.5al .
The monolayer is considered to be sliding (i.e., depinned) if
the total displacement of its center-of-mass at the end of the
simulation is �xcom > 2.0al .

III. RESULTS: FINITE TEMPERATURE 2D AUBRY
TRANSITION AND PHASE DIAGRAM

The simulation protocol just outlined yields direct evidence
that the first-order phase transition between an unpinned phase
at small corrugation magnitude W0 and a pinned phase at large
W0 persists at finite temperature. All thermodynamic quantities
(except, at constant pressure, the total Gibbs free energy)
jump at the transition, as shown in Fig. 3. Figure 4 shows
the phase diagram, where the two-phase coexistence region
(at constant volume) is very narrow, indicating that constant
volume and constant pressure are very similar. Thus Gibbs
and Helmholtz free energies only differ by a constant, and
the jumps �U , �W approximately coincide. While at T = 0
�U = −�W are opposite and compensate exactly, at finite
temperature entropy kicks in, and near Tc the approximate
equality −T �S + �U = �W holds. The large negative jump
�W at pinning indicates that in the pinned state particles
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FIG. 3. The temperature dependence of the three contributions
to the free energy per particle evaluated across the coexistence line.
�W , −T �S, �U correspond, respectively, to the change in substrate
potential energy, entropy, and interparticle energy between the pinned
and the unpinned phase.

benefit much more from the external potential minima. That
gain is compensated by a corresponding worsening of particle-
particle interactions and of entropy, both much better in
the unpinned phase. Besides these reasonable outcomes, we
observe in addition that at least close to Tc, −T �S ∼ �U , an
unexpected approximate equality for which we found no good
explanation.

The phase diagram of Fig. 4 also shows that the unpinned-
pinned transition is heavily right leaning with tempera-
ture, ending at W0c 	 0.44, Tc 	 0.11, the latter to be
compared with T = 0.04, the model room temperature).
The unpinned phase therefore possesses a much larger en-

FIG. 4. Phase diagram in the (W0,T ) plane defined by the
substrate corrugation strength and temperature. At each T the region
of phase coexistence is confined to a very narrow interval (W1, W2) of
corrugations, as shown by the continuous lines in the plot. The dashed
curve shows the average value W ∗

0 = (W1 + W2)/2, which has been
used to define the coexistence line adopted in our thermodynamic
analysis of the transition. The steady slope of the coexistence line
indicates that the unpinned phase retains consistently a higher entropy
than the pinned phase.

FIG. 5. The jump �� of the 2D disorder parameter across the
first-order phase transition is reported as a function of temperature.
For a few values of T , the insets illustrate the corresponding change in
the population of the regions above the saddle-point value. There the
positions of all particles are reported folded inside one primitive cell
of the substrate potential (at finite T several snapshots along the
trajectory have been considered). Table I reports the two corrugation
amplitudes W1,2 used for the insets and for the definition of ��. At
the critical temperature Tc 	 0.11 the transition becomes of second
order and � varies smoothly across it: here we just set ��(Tc) = 0
for simplicity.

tropy than the pinned phase. Moreover, the inverse slope
d(W ∗

0 /W0c)/d(T/Tc) = 0.50 ± 0.05 is quite small, in contrast
with liquid-gas slopes d(P/Pc)/d(T/Tc) 	 3, 4, 6.5 for H2O,
a van der Waals fluid [23], and Ar [24], respectively.

Finally, Fig. 5 summarizes our resulting disorder parameter
for the Aubry-type transition of the 2D colloid model at
ρ = 0.927 as a function of temperature. Similar to the 1D
case [11], the transition is characterized by a sudden drop of
the number of particles lying near the maxima of W (x,y). This
is demonstrated by the jump �� of the 2D disorder parameter,
which is finite up to T = Tc 	 0.11, where it disappears.

IV. STRUCTURAL: LOCAL COMMENSURATE ROTATION

The drastic energy changes taking place across the transi-
tion have a clear structural origin. As was the case at T = 0,
the moiré pattern conserves its shape and symmetry across the
unpinned-pinned transition, but the central domains enclosed

TABLE I. The values of the substrate potential strength W0 used
to define the jump �� of the disorder parameter at the transition, for
the temperatures T shown in Fig. 5. Values of W1 (W2) have been
taken in the unpinned (pinned) phase immediately before (after) the
coexistence region in the (W0,T ) plane.

T W1 W2

0 0.216 0.230
0.02 0.247 0.270
0.04 0.288 0.306
0.06 0.331 0.229
0.08 0.371 0.382
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 [d
eg

]
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FIG. 6. The local angular orientation of the colloidal monolayer
defined in Eq. (9) as a function of temperature. The black continuous
curve shows the orientation measured at W0 = W1 in the unpinned
phase, while the red dashed curve is the corresponding local alignment
in the pinned phase at W0 = W2. Temperatures T and corrugations
W1,2 considered here are the same as those of Fig. 5, also reported
in Table I. At T = Tc 	 0.11 there is no discrete jump in the local
orientation: the point reported in the plot has been measured at a
single value W0 = 0.439, at the middle of the continuous crossover.

by the honeycomb-shaped network of domain walls undergo
a sharp structural transformation [17]. At pinning, the portion
of 2D lattice inside each hexagon rotates transforming from
misaligned and incommensurate to approximately aligned and
commensurate with the underlying periodic potential. This
transformation can be followed by calculating the average local
lattice orientation of the colloidal monolayer defined as

θloc =
〈

1

M

∑
〈i,j〉

mod

(
θij ,

π

3

)〉
, (9)

where the sum is over all M pairs 〈i,j 〉 of nearest-neighbor
particles with coordination six (excluding therefore the soliton
regions), and θij is the angle between the relative position
vector ri–rj and the x axis. Figure 6 reports θloc as a function of
temperature for both the pinned and unpinned phases. It is clear
that below T = Tc 	 0.11, and as the corrugation increases
across the transition, all local hexagonal domains between
solitons locally rotate away from the initial Novaco-McTague
orientation and back in approximate registry with the substrate.
The sharp drop of particle-potential energy W that was seen
to take place at pinning corresponds precisely to the falling
of most particles inside each hexagonal cell into potential
minima, an event that occurs at local commensurability.

V. UNPINNED-PINNED CRITICAL POINT

Results of Figs. 5 and 6 show that first-order discontinuities
connected with the unpinned-pinned transition diminish with
increasing temperature, until they vanish near T = Tc 	 0.11,
at W0 = W0c 	 0.44. These parameters appear to identify a
novel 2D critical point. In order to ascertain criticality we

 0

 4
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 12

0.40 0.45 0.50 0.55

Tc≈ 0.11

χ W
/N

p

U0

T=0.10
T=0.11
T=0.12
T=0.13
T=0.14
T=0.15

FIG. 7. The susceptibility χW defined in Eq. (10) as a function
of the substrate corrugation for different temperatures. A sharp peak
appears when approaching Tc 	 0.11, confirming the presence of a
critical point.

study the susceptibility

χW = −∂
〈∑

i w(ri)
〉

∂W0
=

〈
[
∑

i w(ri)]2
〉 − 〈 ∑

i w(ri)
〉2

kBT
, (10)

which is obtained from the thermal fluctuations of the dimen-
sionless triangular substrate potential W/W0 = 〈∑i w(ri)〉.

FIG. 8. Snapshot of a simulation performed at T = 0.04 and
W1 < W0 = 0.294 < W2, within the coexistence region. Each par-
ticle is colored according to the value of the underlying corrugation
potential W (x,y): dark for positions close to the minima, and light
colors for positions close to the maxima of W (x,y). The dashed
line highlights a large portion of the simulation supercell where the
colloidal lattice is in the unpinned phase. This can be seen by the
presence of particles (bright yellow dots) residing in energetically
unfavorable positions very close to the maxima of the substrate
potential. The rest of the system is instead in the pinned phase,
characterized by a nearly complete absence of particles residing close
to the maxima.
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FIG. 9. The static friction force Fs , normalized with respect to
the single-particle value Fs1 = 8πW0/9al as a function of W0 for
three different temperatures T = 0,0.04 (∼Troom), 0.11 (∼Tc). Shaded
areas indicate the two-phase coexistence region extracted from the
phase diagram of Fig. 4. The two curves at T = Troom are obtained
upon increasing (decreasing) W0, and are not meaningful inside the
two-phase region, where the monolayer is inhomogeneous. The black,
blue, and red arrows indicate the potential magnitudes W ∗

0 	 0.22,
0.30, and W0c 	 0.44, respectively, of the first-order transitions at
T = 0 and T = 0.04, and of the T = 0.11 critical point. Note that
the static friction jump, visible at T = 0, is still present at T = 0.04
(even if artificially smeared out by two-phase coexistence), while it
disappears at Tc ∼ 0.11, a temperature where static friction becomes
continuous versus W0. Error bars represent the �F step adopted in
the protocol with increasing external homogeneous force Fd .

The result in Fig. 7 shows a sharp susceptibility peak at Tc,
confirming the presence of a critical point. A finite-temperature
critical Aubry transition is a major novelty predicted for this
system. The nature of this critical point is quite interesting,
and can be rationalized by analogy with the gas-liquid critical
point. Just below the gas-liquid critical point, droplets of liquid
coexist with large gas bubbles in the two-phase region. As the
critical point is approached, the boundaries between gas and
liquid get fuzzier and increasingly fluctuating, with length
scales that eventually diverge. Here the situation is similar.
Portions of the moiré honeycomb remain unpinned and even
locally misaligned, others turn toward zero local angle and
become pinned, as Fig. 8 shows. Eventually, their fluctuating
and fuzzy boundaries of increasing width make the separation
less and less clear until it disappears at the critical point.

What critical indices should this new critical point have?
We try to anticipate the outcome by means of universality,
which is based on symmetry. In a misaligned monolayer, the
unpinned and the pinned states appear to share the same space
group symmetry. In addition, once the global misalignment
angle is fixed, thus taking care of all 60◦ rotations, there is no
further symmetry left in either phase. This makes the analogy
with gas liquid quite strong, suggesting that the unpinned-
pinned critical point should be Ising-like. Present size and
time limitations do not permit the extraction of critical indices
from our simulations, and that task will remain for further
work.

VI. STATIC FRICTION

The two monolayer phases below Tc are the finite-
temperature continuations of the unpinned and pinned phases
already studied at T = 0 [17]. As in that case, they are expected
to exhibit, respectively, zero and finite static friction, defined
as the minimal applied force that can cause sliding.

Figure 9 shows the static friction results at T = 0, 0.04
(∼Troom), and 0.11 (∼Tc), obtained as explained in Sec. II.
The lubricity of the small W0 phase and the more frictional
nature of the large W0 phase are confirmed. However, the
large static friction jump at T = 0 between the two phases
is generally smeared with temperature, until at T ∼ Tc static
friction appears already somewhat below the transition.

It can be expected that this overall behavior of the phases,
probably with a sharp transition from viscous friction to stick
slip should carry over to dynamic friction. This aspect will
form the object of a future study.

VII. DISCUSSION AND CONCLUSIONS

The model study presented in this work establishes that
a sharp unpinned-pinned transition for increasing periodic
potential acting on an incommensurate lattice of particles, first
established by Aubry in one dimension where it is of second
order and strictly at T = 0, should carry over in two dimen-
sions at T > 0. For the particular case of an incommensurate
colloid system, which we model here, the transition can be
even sharper, first order instead of second order, and extending
to realistically finite temperatures. The transition is structural,
with portions of the moiré turning from locally misaligned to
aligned. The pinned phase correspondingly gains energy at the
transition, while at the same time both interparticle energy and
entropy suffer a corresponding loss, as shown by the large slope
of the coexistence phase line. The phase line ends in a critical
point, where the unpinned-pinned distinction disappears and
fluctuations appear to diverge.

While obtained for a specific model and incommensu-
rability, these results should qualitatively persist for more
general parameter values. The magnitude of first-order jumps
is connected with that of the Novaco angle, in turn related to
the value of incommensurability ρ. By choosing ρ < 0.927,
the first-order character, and with that the width of the
two-phase coexistence region and the value of Tc, will increase.
The frictional behavior changes from lubricity to pinning at
the transition. The dynamical friction in the coexistence region
constitutes an interesting question for further work.

The novel predicted critical point can and should be acces-
sible experimentally. In fact, different incommensurabilities
will imply different critical temperatures. Therefore, even if
experimental temperature is by necessity fixed at its room
value, a choice of ρ closer and closer to one can always
be found, where Tc ∼ Troom, making the critical point fully
accessible.

It will also be interesting in the future to study the nature
and properties of the unpinned-pinned Aubry transition in,
e.g., 2D systems different from colloid monolayers, such as
could be realized by compressing two sheet materials together,
or by modifying the adhesive interaction of 2D adsorbates
layers by charging. The nature of these systems is sufficiently
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different from colloid monolayers to suggest that there might
be substantial differences, as well as analogies. In cases where
the Novaco-McTague misalignment does not occur, all first-
order characters of the transition might be weaker; but its
existence at finite temperature should at least persist. We also
expect that the precise nature of interparticle interactions will
make a quantitative, but probably not a total difference. The
2D Aubry transition should persist, for example, in systems
where interparticle interactions have an attractive part, so long
as these do not lead to a 2D lattice collapse. The 2D Frenkel-

Kontorova model in particular [9], still to be studied in this
respect, should show an Aubry-type transition as well.
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