A preliminary nutritional assessment of six genotypes of tef (Eragrostis tef) as potential forage sources

Pier Paolo Danielli1, Roberto Ruggeri1, Riccardo Primi1, Francesco Rossini1, Emiliano Chiaretti1, Catia Stamigna2, Domenico Chiaretti3, Vincenzo Natoli4, Bruno Ronchi1
1Dipartimento di Scienze Agrarie e Forestali, University of Tuscia, Viterbo, Italy
2Divisione Biotecnologie e Agroindustrie, ENEA Centro Ricerche Casaccia, Roma, Italy
3Freelance breeder, Roma, Italy
4Genetic Service s.r.l., Deliceto, Italy
Contact: danieli@unitus.it

Global climate changes are pushing the search for valuable, alternative crops highly resistant to drought and other stress conditions. In this context, some promising forage sources can be found within plant species native to the tropical areas. Tef (Eragrostis tef [Zucc.], Poaceae) is a warm-season C4 tropical grass, traditionally grown for grain in Ethiopia and is adapted to a wide range of climatic and geographic regions. The aim of the present study was to assess and compare the chemical composition and nutritive value for ruminants of six genotypes of tef, grown as warm-season fodder crops under Central Italy climatic conditions. On the 1st of June 2016, six tef genotypes (namely tef06-08, tef11 and tef13-14) were sown at a density of about 420 plants m⁻² in a meso-Mediterranean climatic area (Viterbo, Lazio, Italy) with a total water input of about 3,500 m⁻³ ha⁻¹, over the natural rainfall regime. Each genotype was seeded on 10 × 1.5 triplicate plots to be cut at two pre-heading stages (ct1, ct2) and at heading (ct3), starting from 21st of July till the 3rd of August. Proximate analysis was carried out on a total of 72 ground (1 mm) dry sub-samples. The CP contents of tef11 and tef14 (15.5 ± 0.55 and 15.1 ± 0.48% DM, respectively) were higher (p < 0.01) than those of the tef08 and tef13 genotypes (13.7 ± 0.32 and 13.3 ± 0.43% DM, respectively). The CP content was also affected by the cutting date and was higher (p < 0.01) at ct2, but not for all the tested genotypes due to a significant (p < 0.05) genotype × cutting date interaction. The NDF content (68.4% DM, overall mean) was not clearly affected by the genotype or cutting date. On the contrary, ADF was the lowest (p < 0.01) in ct1 plants (32.3 ± 0.63% DM) especially for the tef07-08 and tef13-14 genotypes. In comparison to ct1 and ct2 plants, lignin was higher (p < 0.01) at heading (ct3, 8.8 ± 0.5% DM). Cutting date also affected the ash and fat content for which the highest values were recorded in the ct2 (ash, 10.2 ± 0.2% DM) and ct3 (fat, 1.9 ± 0.1% DM) samples. The findings of this preliminary assessment suggest that tef can be regarded as a promising forage species also in meso-Mediterranean environments. Both the genotype selection and the agronomic practices (i.e., time of harvest) may play a role in ensuring to achieve the best productive and nutritional performance of this grass species. The nutritive value for ruminants of the crude proteins of tef, deserves further investigations.
antioxidant capacity showed a similar trend to polyphenolic content after physiological extraction. The results obtained in this study indicate that AFW and by-products could be considered a promising bioaccessible source of antioxidants and phenolic compounds with industrial applications for the production of ingredients to functionalize feedstuffs for monogastric animal.

Acknowledgements
This research was supported by Fondazione Banco Popolare di Lodi.

O183
The effect of duration of storage and storage method on chemical composition and in vitro digestibility of complete calf pellet

Andriyani Astuti, Cuk Tri Noviandi, Ali Agus, Subur Priyono Sasmito Budhi, Ristianto Utomo, Evi Septiani
Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
Contact: andriyaniastuti@ugm.ac.id

An experiment was conducted to determine the effect of duration of storage and method of storage on the quality of complete calf starter pellet. Pelleting was done in order to facilitate the handling, storage, transport, and to improve the efficiency and palatability of feed. The calf starter ingredients were yellow corn (50%), soybean meal (24.5%), rice bran (25%), and premix (0.5%). The calf starter (65%) was then mixed with chopped corn straw (35%), and pelleted using expired milk powder as pellet binder to form a complete calf starter diet. Samples of the complete diet were stored in sealed polyethylene plastic bags, fibre sacks or plastic silos, and kept for either 0, 2 or 4 months before they were opened and analysed for proximate chemical composition, dry matter (DM), organic matter (OM), crude protein, ether extract, crude fibre and in vitro digestibility. The data were analyzed using a two-way ANOVA based on a 3 x 3 factorial design. Statistical analysis of the data showed significant differences only for duration of storage effect (p<.05). The DM of complete calf pellet on 0, 2, 4 months of storage were 87.94%, 89.20%, 89.36%. The DM and OM digestibilities of complete calf pellet at 0, 2, 4 months of storage were 68.50%, 66.31%, 89.20%, 89.36%. The DM and OM digestibility of complete calf pellet decreased. The methods of storage (polyethylene plastic bag, fibre sacks, and plastic silo) had no effect on the quality of the complete calf pellet for at least 4 months storage.

O111
Effects of rumen fluid pH on rumen activity and quality and technological properties of milk

Sudeb Saha¹, Giovanni Bittante¹, Stefano Schiavon¹, Giacomo Cesaro¹, Matteo Gianesella², Leonardo Armato², Enrico Fiore², Luigi Gallo¹
¹Dipartimento di Agronomia Animali Alimenti Risorse Naturali e Ambiente, University of Padova, Italy
²Dipartimento di Medicina Animale, Produzioni e Salute, University of Padova, Italy
Contact: luigi.gallo@unipd.it

Excess fermentation and accumulation of short chain fatty acids (SCFA) in the rumen is a frequent result of feeding dairy cows with high-grain diets. This allows to sustain increasing milk yield but has risen the risk of rumen acidosis. This study investigated the effects of rumen pH on milk composition traits, coagulation properties, cheese yield, and rumination activity (RA) of dairy cows. Rumen fluid samples were taken through rumenocentesis from 100 Holstein Friesian cows (5 to 75 days in milk - DIM) without clinical signs of disease kept in 2 herds, to determine pH and concentration of SCFA. Within the day of rumenocentesis individual milk samples were also taken from each cow. Further, RA was monitored using a microphone-based monitoring system (Ruminact, Milklime) fitted on cows, to record the time spent ruminating from 2 days before to 2 days after rumenocentesis. Data were analyzed using a linear mixed model including the fixed effects of parity and DIM class, the quartile of rumen fluid pH (QpH) and the random effect of herd-test date and also of cow when repeated observations per cow were analyzed. Rumen pH (5.98 ± 0.37) averaged 5.52 to 6.46 in the first to fourth quartile, respectively, with 32% of cows with rumen pH <5.8. The concentration (mmol/L) of total ruminal SCFA and the proportion (%) of propionic acid on rumen fluid linearly increased (p<.05) as rumen pH declined, whereas that of acetic acid linearly decreased. Whereas the average time spent ruminating during the day was similar in cows of different QpH (on average 26%, but with a clear circadian variation), the circadian rumination pattern was influenced by rumen fluid pH, and the RA linearly increased (p<.05) in the daily interval 06:00 to 12:00 as rumen pH declined. Cows of different QpH did not differentiate for body condition score and test day milk yield (36.6 ± 8.0 kg/d). Likewise, QpH did not affect (p<.05) milk pH, somatic cell count (SCC), fat, protein, lactose and casein milk content.