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Large-scale initiatives aiming to recover the complete sequence of thousands of human
genomes are currently being undertaken worldwide, concurring to the generation
of a comprehensive catalog of human genetic variation. The ultimate and most
ambitious goal of human population scale genomics is the characterization of the
so-called human “variome,” through the identification of causal mutations or haplotypes.
Several research institutions worldwide currently use genotyping assays based on
Next-Generation Sequencing (NGS) for diagnostics and clinical screenings, and the
widespread application of such technologies promises major revolutions in medical
science. Bioinformatic analysis of human resequencing data is one of the main factors
limiting the effectiveness and general applicability of NGS for clinical studies. The
requirement for multiple tools, to be combined in dedicated protocols in order to
accommodate different types of data (gene panels, exomes, or whole genomes) and
the high variability of the data makes difficult the establishment of a ultimate strategy
of general use. While there already exist several studies comparing sensitivity and
accuracy of bioinformatic pipelines for the identification of single nucleotide variants from
resequencing data, little is known about the impact of quality assessment and reads
pre-processing strategies. In this work we discuss major strengths and limitations of the
various genome resequencing protocols are currently used in molecular diagnostics and
for the discovery of novel disease-causing mutations. By taking advantage of publicly
available data we devise and suggest a series of best practices for the pre-processing
of the data that consistently improve the outcome of genotyping with minimal impacts
on computational costs.

Keywords: precision medicine, next-generation sequencing read quality, genome resequencing, whole exome
sequencing, molecular diagnostics

INTRODUCTION

The steady reduction in sequencing costs associated with the advent of the new generation of ultra-
high throughput sequencing platforms, collectively known as Next-Generation Sequencing (NGS)
technologies, is one of the major drivers of the so called “genomic revolution.” Consequent to the
development of these novel ultra efficient sequencing technologies [see (Goodwin et al., 2016) for
a comprehensive review] the number of publicly available human genome and exome sequences is
now in the hundreds of thousands, steadily increasing on a daily basis (Stephens et al., 2015). The
characterization and fine scale annotation of the human variome, that is, the ensemble of genetic
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variants in the human population, is one of the most ambitious
goals of massive human genome sequencing projects. The
possibility to link genetic variants and haplotypes with the
corresponding phenotypes and discover causal relationships or
calculate risk factors is instrumental for the development of
more informed approaches to medical science, such as precision
medicine (Lu et al., 2014) where patients can be treated based
on their genetic background, or predictive medicine (Kotze
et al., 2015) where risks factors for various diseases can be
calculated beforehand and suitable measures can be instituted in
order to prevent the disease or decrease its severity. Numerous
countries worldwide are currently undertaking or are planning
to launch large-scale projects aiming to sequence an increasing
proportion of their population: by example England (UK10K
Consortium et al., 2015) and Saudi Arabia (Alkuraya, 2014) have
both announced 100.000 individuals sequencing projects and
researchers from the United States1 and China (Cyranoski, 2016)
aim to sequence 1 million genomes in the next few years. In
the meanwhile, various “pilot” (Gurdasani et al., 2015; Nagasaki
et al., 2015; Sidore et al., 2015; The 1000 Genomes Project
Consortium et al., 2015; Lek et al., 2016) projects, sequencing
thousands of human genomes and exomes have been successfully
undertaken which demonstrate the power of big data genomics
for the identification of deleterious mutations and providing a
substantial contribution to the understanding of the evolutionary
processes that shape the genomes of modern human populations.

While the possibility to sequence an unprecedented number of
individual genomes could serve as the basis for a new revolution
in medical science and genetics, the need to handle, analyze
and store huge amounts of data is posing major challenges
to genomics and bioinformatics which at present remain
largely unresolved. A possibly incomplete catalog of all known
NGS sequencing platforms2 provide evidence for the presence
of almost 2200 instruments worldwide, distributed in 1027
sequencing facilities across 62 countries. A conservative estimate
of sequencing capacity based on the manufacturer specifications
of the various instruments suggests that, if used at full scale,
NGS platforms could generate in the excess of 35 petabases of
sequencing data per year. In a recent paper Stephens et al. (2015)
suggest that, at the current rate, worldwide sequencing capacity
could possibly reach zettabases of sequencing in the next 10 years,
corresponding a number of complete human genomic sequences
ranging from 100 million to 2 billion.

Bioinformatic analysis is currently one of the major
bottlenecks in the processing of human resequencing data
(Alyass et al., 2015). The need to integrate multiple tools into
dedicated and sometimes complex analysis procedures requires
a substantial amount of manual work and represents a major
hindrance that limits the speed and general applicability of
genotyping strategies. While best practices, procedures, and
guidelines, defining the basic principles for the analysis and
the annotation of the data have been introduced (Richards
et al., 2015) and a large collection of bioinformatic tools for
the identification of simple nucleotide variants (SNV) and/or

1http://www.whitehouse.gov/precision-medicine
2http://omicsmaps.com/

small indels from NGS resequencing data is currently available
(Pabinger et al., 2014), there exists no golden standard approach,
and comparative studies evaluating different genotyping
pipelines reached contrasting conclusions (Cornish and Guda,
2015; Hwang et al., 2015; Zhang et al., 2015). Consensus call-
set based approaches, integrating predictions from multiple
tools, can improve the accuracy and sensitivity of genotyping
strategies (Bao et al., 2014). They, however, require additional
computational costs, which might not always be justified by
improvements in accuracy. Also, notwithstanding the high
standardization of laboratory protocols and kits used in their
production, the variability of NGS sequencing data remains high,
and systematic biases resulting in the so called “batch effects”
(Taub et al., 2010) can limit the extent of any bioinformatic
approach, preventing the development of a conclusive strategy.

While several studies that compare the performances of
various tools and pipelines are currently available [see (Pabinger
et al., 2014), for a comprehensive review], at the time being we
are not aware of dedicated studies evaluating the effects of quality
assessment and reads pre-processing strategies in genotyping
studies. Fine scale optimization of such procedures can on one
hand improve the accuracy of the results, and on the other
reduce significantly the computational requirements. This step
is therefore essential as the starting point in the development of
highly scalable workflows for the analysis of human resequencing
data. In this article we discuss major strength and limitations of
the different types of resequencing protocols that are currently
used in molecular diagnostics and population scale genomics,
and, by taking advantage of publicly available data, we devise
guidelines and best practices for the pre-processing of the
sequences.

RESEQUENCING STRATEGIES,
APPLICATIONS AND LIMITATIONS

The ability to perform population scale studies of large genomes
is highly interlinked with the advent of modern ultra-high
throughput DNA sequencing technologies and the substantial
reduction in sequencing costs. At present, Illumina accounts for
the largest share of the sequencing market. The recent release of
the ultra-high throughput Illumina X Ten sequencing system3,
which permits the sequencing of 1000s of human genomes per
year for less than 1000 USD per genome, represents a major
breakthrough in this field, and at the time being all the most
ambitious population scale human genome resequencing projects
are based on this technology. One of the major constraints
of the second generation of ultra-high throughput sequencing
technologies is the reduced size of the reads (a few hundreds bps),
that poses limits to the possibility of reconstructing accurately
long haplotypes and resolve repetitive and complex regions,
which represent approximately 60% of the human genome (De
Koning et al., 2011). Such limitations are being superseded by the
development of a third generation of NGS sequencing platforms
such as the PacBio (Eid et al., 2009) and Oxford Nanopore

3https://www.illumina.com/systems/hiseq-x-sequencing-system.html
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(Clarke et al., 2009) sequencing systems, that can produce
sequences of stretches of DNA ranging from a few to hundreds
of kilobases in size. Such long reads can span complex or
repetitive regions with a single continuous read, thus eliminating
ambiguity in the positions or size of genomic elements. A recent
resequencing of the human GRCh37 reference genome based
on long-read sequencing technologies (Chaisson et al., 2015)
recovered more than 1 Mb of novel sequence and identified more
than 26,000 relatively long (≥50 bp) indels, providing one of
the most comprehensive genome reference sequences available.
Apart from simply improving reference genomes, long reads are
more effective than short reads in the identification of clinically
relevant structural variations and in the reconstruction of long
haplotypes (Ammar et al., 2015).

The comparatively higher error rate (15% on the average)
and the increased cost with respect to short read technologies
are considerable disadvantages that limit the application of long-
read sequencing in current large-scale genome resequencing
studies. However, the continuous improvements in sequencing
chemistries and base calling algorithms, and the development
of novel sequencing platforms with reduced operating costs
such as the PacBio Sequel or the Oxford Nanopore Promethion
might open the possibility of applying long-read sequencing
technologies to population scale resequencing projects in
the near future. In this respect, the recent development of
sequencing strategies for the generation of synthetic long reads
relying on existing Illumina platforms, with error profiles
and throughput similar to those of current Illumina devices,
might represent a valid alternative to long-read sequencing
technologies. Two different systems for generating synthetic
long-reads are currently available: the Illumina synthetic long-
read sequencing platform (McCoy et al., 2014) (formerly known
as Moleculo) and the 10X Genomics emulsion-based system4.
Both platforms rely on a similar strategy, where a specialized
library preparation method based on extreme dilution and
DNA barcoding is applied to a size selected DNA library in
order to mimic single molecule sequencing. Input DNA is first
sheared into kilobase-long fragments, which are then randomly
distributed across a small number of containers. The contents of
each container are then sheared further into shorter fragments
and are assigned a unique barcode before being pooled together
for sequencing. After sequencing, reads are demultiplexed using
the barcodes. Each container may be assembled separately
with a short-read assembler, which produces multiple kilobase-
long sequences in each well; this approach is referred to as
subassembly. Alternatively, the contents of each container may be
sequenced at a relatively low coverage and resulting reads might
be used to assist in tasks such as genome phasing and scaffolding.
The main difference between the two approaches consists in that
while the Illumina system is aimed at the precise reconstruction
of each long DNA fragment and is designed for genome assembly,
the 10X strategy does not attempt gapless, end-to-end coverage
of single DNA fragments, and is generally used for haplotyping
and scaffolding. Considerations on sequencing costs, however,

4https://community.10xgenomics.com/t5/10x-Blog/A-basic-introduction-to-
linked-reads/ba-p/95

suggest that, for the time being, complete genome assembly of
complex genomes based on synthetic long-reads technologies
remains unfeasible, even if using the most advanced sequencing
machines.

Hybrid approaches based on the combination of long or
synthetic long and short reads have proven themselves to be
highly effective in the generation of high-quality assemblies of
large and complex genomes at a relatively low cost, resulting
in the detection of complex structural rearrangements and in
the accurate reconstruction of haplotypes (Mostovoy et al., 2016;
Collins et al., 2017; Weisenfeld et al., 2017). With the ongoing
steady reduction in sequencing costs it is not unfeasible to
imagine that strategies of this kind will end up to be applied
also to large-scale sequencing studies, resulting in a more
accurate reconstruction of individual genomes and extending our
understanding of the human variome.

Large-scale genome resequencing studies are nowadays
usually performed by two alternative approaches: Whole Genome
Shotgun sequencing (WGS), that is, the sequencing of complete
genomes, or targeted resequencing, where high-throughput
sequencing is applied to a predefined subset of genomic loci,
usually selected on the base of their annotation (i.e., exons)
or their association with pathological conditions. WGS clearly
offers a more comprehensive, virtually complete, catalog of
the genetic variation of an individual and is not limited by
prior knowledge of the sequence, permitting the reconstruction
of complex genomic rearrangements and large insertions. On
the other hand, targeted resequencing, by limiting the size of
the genomic material used, makes possible the sequencing of
several samples within a sequencing run, increasing both the
breadth and the depth of a genomic study on the selected
loci. Another considerable advantage of targeted resequencing
is that newly identified variants are more easy to interpret
and characterize, since target regions usually correspond to
functionally annotated genomic loci. Considering that the
majority of known disease causing mutations is found in protein
coding genes, the wealth of data produced by WGS approaches
might result excessive and sometimes even misleading for clinical
and diagnostic applications. Recent studies (Belkadi et al., 2015),
however, suggest that WGS resequencing data are in general
of better quality than the targeted resequencing counterpart,
resulting in a slightly improved power in the detection of
novel mutations even within targeted regions. Moreover, targeted
resequencing can interrogate only predefined regions of the
genome, and is therefore clearly ineffectual in the detection
of large chromosomal rearrangements and large structural
variants.

Whole Exome Sequencing
The deep sequencing of all the exons of a genome, known as
Whole Exome Sequencing (WES) (Ng et al., 2009), is probably the
most popular and widely used targeted resequencing approach.
As the name suggests, it is based on exome capture, that is, the
construction of DNA libraries enriched for the exonic fraction
of the genome. DNA samples are randomly fragmented and
oligonucleotide probes (baits) are used to capture the target
regions by DNA hybridization. The resulting DNA sample is
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then subjected to library construction and sequencing. Whole-
exome methods generally capture from 35 to 100 megabases
of DNA target regions, depending on the reference annotation
system used in the design of the probes and on the inclusion
of 3′ or 5′ untranslated regions (UTRs) in the experimental
design. Agilent, Nimblegen, Illumina are the main suppliers of
exome-enrichment kits for exome capture. The most relevant
differences between these technologies are in the choice of
target regions, in bait lengths and density, in the molecules
used for capture, and in the genome fragmentation method.
At present NimbleGen offers the largest target region set,
covering 96 Mb (64 Mb coding + 32 Mb UTR), compared to
75 Mb (50 Mb coding + 25 Mb UTR) of Agilent and 62 Mb
(42 Mb coding + 20 Mb UTR) of Illumina. However, given
the continuous improvements in sequencing throughput of NGS
sequencing technologies, the range of genomic regions targeted
by exome capture kits is constantly expanding, resulting in the
inclusion in target regions of promoter regions and intron-exon
junctions (Samuels et al., 2013).

Whole Exome Sequencing in Clinical Studies
Since the majority of known disease-causing mutations are found
in protein coding genes, WES is becoming an increasingly
attractive alternative to WGS for clinical applications. As an
additional advantage, genotyping assays performed by exome
sequencing have a narrow breadth if compared with WGS
approaches, and thus require less computational resources for
the analysis and the storage of the data. Moreover, novel
genomic variants discovered by exome sequencing are restricted
to functionally annotated genomic regions, thus enabling a rapid
inference of potential functional effects. Finally, notwithstanding
the additional costs required for the capture kits, exome
sequencing remains more economic than WGS, making possible
the sequencing of a higher number of samples with an
increased depth of coverage. For all these reasons, despite the
increasing number of completely sequenced human genomes,
WES sequencing remains today the preferential strategy for
large-scale sequencing studies and for clinical applications of
genome sequencing, and indeed the majority of available human
resequencing data is in the form of exomes (Lek et al., 2016).
This is also reflected in primary repositories of human genetic
variation data, as in the latest release of the dbSNP database
(Sherry et al., 2001), where the number of SNPs falling into
protein coding genes surpasses by far the number of those found
in intergenic regions (dbSNP build 141).

The relatively heterogeneous profile of read coverage over
target regions is one of the major bottlenecks that reduce
the sensitivity and applicability of exome capture assays.
Experimental biases resulting in the so called “batch effects”
are generally introduced both during exome capture and in the
library preparation steps (Chilamakuri et al., 2014; Shigemizu
et al., 2015). Such biases are specific and intrinsic to the
different capture kits and library preparation protocols, and
therefore limit the possibility of comparing WES experiments
performed by means of different capture kits or by different
sequencing providers. Also, in a typical exome sequencing
study, approximately 40–60% of the reads derive from genomic

regions outside of the designed targets, resulting in a substantial
reduction of the theoretical coverage. Exome capture efficiency is
highly variable and influenced by multiple factors related both
to the design of the capture kit (length of the probes, probes
density, probes design) and to experimental conditions affecting
the efficiency of DNA fragmentation and PCR amplification of
the DNA library (García-García et al., 2016).

Another relevant bias introduced by the capture hybridization
step in WES sequencing consists in the preferential capture
of reference sequence alleles, which hinders the detection of
alternate alleles at heterozygous polymorphic sites by shifting
the allele distribution (Guo et al., 2013). Highly polymorphic
and heterozygous genomic regions are thus captured at lower
efficiency than highly conserved genomic intervals, resulting
again in a systematic bias in the coverage profile. Moreover,
all library preparation protocols for exome sequencing require
PCR amplification, which tends to lower coverage in GC rich
regions due to annealing during amplification (Aird et al., 2011).
Fluctuations in the coverage profile have a deep impact on
the sensitivity of WES, and in particular in the detection of
heterozygous variants (Belkadi et al., 2015). It has been estimated
that 15X mapped read depth of WGS samples would be sufficient
to detect almost all homozygous SNPs and 33X for almost all
heterozygous SNPs (Bentley et al., 2008). Depending on the
capture kit, it has been shown that WES required 80X mean
on-target depth to reach the common threshold of 10X per-
site depth in 90% or more of all targeted regions (Clark et al.,
2011), which represents the minimal requirement for clinical
applications of the WES technology.

Gene Panels
Gene panels are another popular form of targeted resequencing
which is often used in large diagnostic screenings. This approach
leverages on prior knowledge about the association of a set
of genomic loci with phenotypic traits of interest (typically a
disease) in order to perform highly focused sequencing of a very
specific portion of the genome (Katsanis and Katsanis, 2013).
Loci of interest, ranging to a few kilobases to several megabases
in size, are usually enriched either by DNA hybridization
capture or by targeted amplification (amplicon sequencing),
and then sequenced with high-throughput sequencing platforms.
Enrichment systems based on PCR amplification require a very
limited quantity of DNA for the construction of the sequencing
library, thus enabling the analysis of relatively tiny tissue samples
which are common in medical applications. The capture of target
regions is highly specific and does not suffer from off-target
DNA contamination, offering a substantially higher coverage.
Differential PCR amplification of the target regions, however,
can introduce relevant biases, resulting in a highly heterogeneous
coverage profile (Samorodnitsky et al., 2015). Depending on
PCR primers design and of DNA fragmentation accuracy, target
regions might end up to be covered only by reads obtained from
a single DNA strand, resulting in a considerably higher error
rate due to the fact that second generation NGS technologies
are affected by systematic context-specific sequencing errors
(Schirmer et al., 2015).
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Capture systems based on DNA hybridization show better
coverage uniformity, higher sensitivity and better accuracy than
amplicon-based methods. Moreover, since the size of target
regions is not strictly limited by PCR primers, capture by
hybridization can recover also relatively small (depending on
the size of the baits) structural variants, which are systematically
missed by amplicon sequencing techniques. The amount of off-
target capture is comparable to WES, accounting for about
40–50% of the reads: this proportion can, however, vary greatly
according to the design of the array, since low complexity
and micro-satellite regions, which are often found in intronic
sequences, can sensibly reduce the specificity of the capture.
Capture hybridization systems are more expensive and require
a considerably larger amount of DNA for library construction
if compared with equivalent amplicon-based strategies, making
them a less attractive option for high-throughput genotyping of
large cohorts of samples.

Gene Panels in Clinical Studies
Gene panels are particularly suited for diagnostic screenings,
since they provide a consistent reduction in costs and turnaround
times and offer the possibility to customize the design of the panel
in order to include complete genes or specific intronic sequences.

High-throughput sequencing of a limited number of carefully
selected loci enables the characterization of wide cohorts of
patients, virtually querying the presence of all known causal
mutations and therefore providing an invaluable tool for
diagnostics. Large-scale screenings based on carefully designed
gene panels show a diagnostic power comparable, or even
superior to that of WES, as the reduction in sequencing
costs permits the sequencing of larger cohorts of patients
(Saudi Mendeliome Group, 2015). This strategy, however,
requires a substantial knowledge of the molecular basis of the
condition/disease under study, and is not clearly applicable to the
discovery of novel disease-causing mutations affecting genes not
previously associated with the condition of interest.

Gene panels sequencing typically result in a very large of
coverage of the target regions, exceeding 1000X in most cases.
This coverage depth surpasses by far the minimum requirements
for genotyping applications, and enables the reliable detection
of somatic variants that might be present in a minority of the
cellular population. The possibility to detect somatic variants
in heterogeneous cellular populations is a very powerful tool
for cancer genomics. Since carcinogenesis is an evolutionary
process driven by natural selection, tumors of all types consist
of cellular populations that are highly diverse at the genetic,
epigenetic, and phenotypic levels. Tumor heterogeneity is a
major cause of therapy failure and disease resistance, and is a
subject of the utmost biological and clinical relevance. Ultra-high
coverage targeted resequencing of panels of known tumor related
genes thus enables the characterization of cancer cell populations
and the detection of somatic cancer mutations, including those
possibly linked with drug resistance (Gerlinger et al., 2012; Kim
et al., 2015; Au et al., 2016; De Leng et al., 2016), a process that
can be instrumental for the correct formulation of personalized
anti-tumoral therapies. Repeated sequencing over time permits
to monitor the evolution of the tumoral population in response

to therapies, both for the evaluation of the efficacy of the therapy,
by studying the prevalence of “founder mutations,” and for
the identification of possible new resistance inducing variants.
Therapies can be thus adapted accordingly, maximizing their
efficacy.

Whole Genome Sequencing
Whole genome shotgun sequencing (WGS) is rapidly becoming
the method of choice for the study of human genetic variation
at population scale level. Indeed, recent studies (Belkadi et al.,
2015; Meienberg et al., 2016) suggest that, beside the capacity to
interrogate a substantially larger fraction of the genome, WGS
can offer major advantages and data of superior quality with
respect to targeted resequencing approaches.

Whole genome shotgun-based strategies are not based
on prior knowledge of the reference genome and can (in
principle) address any type of complex genomic structural
variant, including inversions, large insertions and deletions. The
relevance of structural events of this type has been largely
underestimated, since it is now clear that they contribute more
than SNVs to the variability of individual genomes (Huddleston
et al., 2016), where they can constitute up to 75% of the individual
specific genomic material.

Whole genome shotgun sequencing libraries require a simpler
and more streamlined preparation, where the most recent
protocols do not require PCR amplification resulting in a
substantially more homogeneous coverage profile (Meienberg
et al., 2016). Target regions capture, that as previously discussed
can introduce significant amounts of technical variability, is in
turn not required by WGS. As a consequence, WGS data show
consistently superior coverage uniformity with respect to WES,
and a substantially lower average read depth is required to
achieve the same breadth of coverage (Belkadi et al., 2015). These
facts permit a more consistent identification of heterozygous
mutations, and a more reliable discovery of copy number variants
(Belkadi et al., 2015; Meienberg et al., 2016). More importantly,
WGS does not suffer from reference bias capture, resulting in
a more accurate calling of heterozygous variants. Finally, while
all the commercially available exome capture kits are prone
to systematic biases that are in large part platform specific
(Chilamakuri et al., 2014; Shigemizu et al., 2015; García-García
et al., 2016) and limit the possibility to compare data across
different systems and kits, WGS data are to some extent more
reproducible and comparable, facilitating the comparison of data
produced by different sequencing facilities at different times.

Whole Genome Sequencing in Clinical Studies
The major factors limiting the adoption of WGS technologies
in clinical practice are not only related to the increase in
costs with respect to targeted resequencing, but also to the
computational resources required for the bioinformatic analysis
and interpretation of the data. A typical human genome contains
approximately 4 million SNV or small indels (Eberle et al., 2016),
the vast majority of which is confined within intergenic or un-
annotated genomic regions. This poses a limit to the systematic
functional classification of variants and a prompt identification
of putative disease-causing mutations. The equivalent figure for
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an exome is in the order of about 80,000 variants per individual.
Importantly, all these variants fall by definition within or close
to functional genomic regions, and their effects can be predicted
on the base of existing genomic annotations. The significance
of a large number of intergenic variants detected by WGS
remains unclear in large-scale clinical set-ups, as more than
80% of currently known disease-causing mutations are found
within protein coding genes. This figure could be, however,
an over-estimate due to ascertainment bias, since the majority
of large-scale human genome resequencing projects aimed at
the detection of disease-causing mutations have been carried
out by means of WES sequencing, and a significant proportion
of the studies was focused on rare monogenic Mendelian
diseases. In this respect data, produced by WGS offer a more
granular representation of the genomic variability, facilitating a
more accurate reconstruction of the haplotypes which can be
instrumental for the detection of genomic loci associated with
complex phenotypic traits, including diseases like atherosclerosis,
diabetes, and hypertension. Population genetics studies can
benefit greatly from the wealth of genetic markers recovered from
WGS sequencing, resulting in a more precise reconstruction of
the evolutionary history of closely related populations.

Finally, another important advantage of WGS strategies is that
they are not limited by any particular genomic annotation, and as
such will probably form a better legacy for future investigations
including newly discovered functional genomic elements. Indeed,
although the current annotation of the human genome can be
considered to be of high-quality, such a possibility can not be
excluded as demonstrated by the recent explosion of the number
of long non-coding RNA genes (Chen et al., 2016).

COMPARATIVE EVALUATION OF READ
PRE-PROCESSING STRATEGIES

Since the application of high-throughput sequencing
technologies for the study of human genome variability at
population scale level is becoming more and more commonplace,
the development of standardized bioinformatics pipelines for

an effective analysis the data is becoming crucial. Ideally, these
pipelines should be fast, in order to cope with the increasing
volumes of data, yet at the same time highly accurate as required
by clinical applications. While implications of the usage of
different combinations of tools for the alignment of short reads
to the genome and for variant calling have been debated in
depth (Pabinger et al., 2014), the evaluation of how quality
assessment procedures can concur to the improvement of
bioinformatic strategies for genotyping has been so far a little
bit neglected. Indeed, good practices for quality assessment
and pre-processing of the reads can contribute significantly to
the optimization of downstream genotyping strategies, both by
reducing computational requirements and by possibly lowering
false positive rates. Three major approaches are commonly
used for the pre-processing of reads obtained from large-scale
resequencing studies: quality trimming, that is the polishing
of the reads based on descriptive statistics calculated on their
quality scores; PCR de-duplication, consisting in the elimination
of identical reads or read pairs that might derive from PCR
amplification of the same DNA fragment; merging of overlapping
pairs, that consolidates pairs of reads originating from DNA
fragments shorter than the combined length of the mates, into a
longer, non-redundant sequence.

Materials and Methods
In order to explore the impact of reads pre-processing strategies
on genotyping workflows and devise guidelines and suggestions
for its optimization, we took advantage of a collection of publicly
available genome and exome (Nextera kit) sequencing data
derived form the platinum genome NA12878 (Eberle et al., 2016).
Reference call-sets along with genome and exome sequencing
data were retrieved from the Illumina BaseSpace Sequence
Hub5. Reads were preprocessed by using nine different pipelines
(summarized in Table 1), based on the combination of three
progressive quality trimming stringency levels, and by adopting
or discarding PCR de-duplication and read merging steps.
Computations were performed on a Centos linux server with

5https://blog.basespace.illumina.com/category/datasets/

TABLE 1 | Read pre-processing strategies used in this study.

Pre-processing strategy∗ Quality trimming∗∗ Merging of overlapped pairs∗∗∗ PCR de-duplication∗∗∗∗

Lax Lead:Q20, Trail:Q15, Wlen:10,Q15 No No

Medium Lead:Q25, Trail:Q20, Wlen:15,Q20 No No

Hard Lead:Q25, Trail:Q25, Wlen:20,Q25 No No

Lax + Ovl Lead:Q20, Trail:Q15, Wlen:10,Q15 Min Ovl 15 bp No

Medium + Ovl Lead:Q25, Trail:Q20, Wlen:15,Q20 Min Ovl 15 bp No

Hard + Ovl Lead:Q25, Trail:Q25, Wlen:20,Q25 Min Ovl 15 bp No

Lax + PCR Lead:Q20, Trail:Q15, Wlen:10,Q15 No MDR = 0.03

Medium + PCR Lead:Q25, Trail:Q20, Wlen:15,Q20 No MDR = 0.03

Hard + PCR Lead:Q25, Trail:Q25, Wlen:20,Q25 No MDR = 0.03

From left to right, columns contain:
∗Description of the strategy, as described in main text and figures.
∗∗Trimmomatic parameters for quality trimming. Q, quality score cut-off; Wlen, length of the window for sliding window operations.
∗∗∗Pear parameters for read merging. Min Ovl, minimum overlap required for merging of read pairs.
∗∗∗∗MarkDuplicates parameters for PCR de-duplication. MDR (MAX DIFF RATE), overall mismatch rate for non-duplicated reads.
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64 Gb of RAM and 24 CPU cores, using a limit of 12 CPU cores
and 32 Gb of RAM for each step of the pipelines.

Quality trimming was carried out using the Trimmomatic
software (Bolger et al., 2014). Three different quality trimming
procedures, with increasing levels of stringency, were used for the
quality trimming of the raw reads. All the procedures were based
on the same combination of Trimmomatic operations: “Leading”
which removes nucleotides from the 5′ end of the reads if their
quality score falls below a predefined cutoff, “Trailing” which
performs the equivalent operations on the 3′ end of the reads,
and “Slidingwindows,” which evaluates the average quality score
of the reads along sliding windows of fixed length, cutting the
read if the average quality score within a window falls below a
given threshold. Reads resulting in less than 50 bps after quality
trimming were not incorporated in the subsequent stages of the
analyses. Different levels of stringency were implemented with
the following parameters:

• Lax: Leading Qs >= 20; Trailing Qs > 15; Slidingwindows,
windows length 10, Qs > 15.
• Medium: Leading Qs >= 25; Trailing Qs > 20;

Slidingwindows, windows length 15, Qs > 20.
• Hard: Leading Qs >= 25; Trailing Qs > 25; Slidingwindows,

windows length 20, Qs > 25.

Merging of overlapping paired end reads was performed
with the PEAR (Zhang et al., 2014) program, using default
parameters. Removal of potential PCR duplicates from exome
sequencing data was performed with the MarkDuplicate module
of the Picard software (Wysoker et al., 2013) with default
parameters. Genotyping was performed by using the GATK
workflow (DePristo et al., 2011), Varscan2 (Koboldt et al.,
2012), and Freebayes (Garrison and Marth, 2012). Only variants
supported by at least two methods were included in the
final call-sets. Intersections and comparisons of call-sets were
performed by means of the vcf-tools merge utility (Danecek
et al., 2011) and bedtools intersect program (Quinlan and
Hall, 2010). Reads were mapped to the reference hg38 human
assembly using Bowtie2 (Langmead et al., 2009), and resulting
bam files were preprocessed following the GATK best practices
recommendations. Different levels of coverage (20–90x) were
simulated by sub-sampling the reads. Pipelines were evaluated
both in terms of computational requirements, accuracy and
specificity of the results, by comparing the respective call-sets
with the golden standard sets of variants provided by Illumina.
For exome data, only variants falling within the target regions
were considered.

Impact of Reads Pre-processing
Strategies on Variant Calling
The results are summarized in Figure 1 (whole genome
sequencing), Figure 2 (WES) and detailed in Supplementary
Tables S1–S5. Sensitivity and specificity of the call-sets obtained
starting from the quality trimming strategies used in this
study and described in the previous section are represented in
Figures 1A,B for WGS and Figures 2A,B for WES datasets.
Consistently with previous observations (Belkadi et al., 2015),

WGS call-sets show a substantially higher sensitivity than WES,
regardless of the (simulated) coverage level. This fact is probably
due to a more uniform coverage profile (Figures 1D, 2D), where
we can observe a considerable reduction in coverage of GC
rich regions in the WES data. Interestingly, regions with a high
GC content are affected by a systematic reduction in coverage
across all the simulated depths of sequencing, and even at 90x
we observe that only about half (45%) of the regions with a
GC composition greater than 60% reach the minimal coverage
of 20x required for the confident identification of heterozygous
variants. Notably, quality trimming seems to cause a substantial
reduction of GC rich regions, and in particular hard filters cause
a pronounced decrease in coverage in the most GC rich genomic
regions, on both WES and WGS data sets.

Per base quality score distributions did not indicate any
significant differences between the overall quality profile of the
calls corresponding to each nucleotide (not shown). However,
we can notice a considerable reduction in the average quality
scores of GC rich reads (content in GC >= 60%), suggesting that
the drop in sequencing quality is restricted to specific sequence
contexts. This is again consistent with previous observations,
as the accuracy of Illumina sequencing technology is known to
deteriorate slightly in the presence of GC rich sequences (Ross
et al., 2013).

The specificity of the call-sets is between 99 and 99.5%
and nearly identical across all coverage levels (Figures 2A,B),
suggesting that the genotyping strategy used in this study is
robust and can produce consistent results.

On the other hand, higher coverage levels are associated with
a steady increase in sensitivity both for the WES and WGS
data, suggesting that an adequate coverage is a key factor for
the correct identification of genetic variants. Consistently with
this observation, call-sets based on lax quality trimming, which
resulted in a moderated reduction of the nominal coverage
(Figures 1A, 2A and Supplementary Tables S4, S5), show a
better sensitivity than equivalent sets where a more stringent
quality trimming procedure was applied, and recover a higher
proportion of “true” small indels and SNVs. More aggressive
quality trimming can result in drastic reduction in coverage, with
a systematic loss of accuracy in the most GC rich portions of the
genome. This is particularly evident on the exome dataset, where
the coverage is more skewed and influenced by GC composition.
Interestingly, quality trimming resulted in a higher proportion
of uniquely mapped reads, compared with the untrimmed data
(Supplementary Tables S4, S5), suggesting that the removal of
sequencing errors can improve the mappability of short reads.

Merging of overlapping reads pairs resulted in a small
but general improvement of the sensitivity, leading to the
identification of thousands of additional true variants (average
0.34% corresponding to 14,086 variants). In our experimental
setup the application of this procedure yielded also a small (from
0.3 to 0.6%) but consistent increase in the number of reads
mapping to the reference genome. Importantly, the majority
(72.81%) of such reads were mapped to scarcely covered regions
(average coverage 7.8x), which explains the increased sensitivity
observed. Also, a significant proportion of the additional variants
(52%) recovered by pipelines with overlapping read merging
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FIGURE 1 | Comparison of quality assessment pipelines on Whole Genome Sequencing data. (A) Sensitivity of quality assessment pipelines at different levels of
coverage. (B) Specificity of quality assessment pipelines at different levels of coverage. (C) Computation time required by the pipelines. Times reported have been
scaled with unity-based normalization. (D) Normalized coverage levels with respect to GC composition. Coverage levels and GC composition were calculated on
genomic windows of 200 bp, overlapping by 100 bp. Coverage levels were normalized using the upper-quartile normalization and scaled to 100 (where 100
represents the expected coverage).

is represented by small indels, and occurs in highly variable
genomic regions containing a complex combination of relatively
short variants (28%). This suggests that the increased length
of the merged reads can improve the alignment of such reads
over highly polymorphic regions and facilitate the detection of
complex events.

The usage of PCR de-duplication procedures seems to have,
if any, only negative effects in all datasets analyzed in the present
study: call-sets derived from pipelines where this step was applied
show a marginal reduction in sensitivity at the cost of a general
increase in computational times. Notably, we observe that even

if all WGS resequencing data used in this study were produced
by the means of a PCR free protocol, potential PCR duplicate
reads are still identified even on these datasets, suggesting that
the PCR de-duplication algorithm used in this study might be too
stringent in the detection of potentially duplicated reads.

All the pipelines required comparable computational times
(Figures 1C, 2C and Supplementary Tables S1, S2), and the
additional computational overheads needed to perform the
various pre-processing steps did not result in any relevant
increase in computational resources. PCR de-duplication and
merging of overlapping reads were the most demanding steps in
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FIGURE 2 | Comparison of quality assessment pipelines on Whole Exome Sequencing data. (A) Sensitivity of quality assessment pipelines at different levels of
coverage. (B) Specificity of quality assessment pipelines at different levels of coverage. (C) Computation time required by the pipelines. Times reported have been
scaled with unity-based normalization. (D) Normalized coverage levels with respect to GC composition. Coverage levels and GC composition were calculated on
genomic windows of 200 bp, overlapping by 100 bp. Coverage levels were normalized using the upper-quartile normalization and scaled to 100 (where 100
represents the expected coverage).

this respect, yielding an average increase of the computational
time by 28 and 31%, respectively. On the other hand, very
stringent quality trimming resulted in a consistent reduction
of computational requirements, however, at the price of a
considerable drop in sensitivity.

Although we do not observe marked differences between
the nine pipelines tested in this study, the pipeline based on
permissive quality trimming of the reads coupled with merging
of overlapping read pairs achieved a slightly improved sensitivity
over the others, resulting in the identification of about 8,000
unique true variants that were otherwise missed. The pipeline
based on medium stringency quality trimming and on merging

of overlapping reads came as a close second, consistent with the
idea that merging of overlapping reads can contribute to increase
systematically the sensitivity of genotyping procedures, yet by a
small margin.

CONCLUSION

While population scale genome sequencing projects promise
major revolutions in medical science, the need to efficiently
analyze, handle and store such an unprecedented stream of data
poses some major challenges which are still mostly unresolved.
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Indeed, bioinformatic analysis of NGS resequencing data is
currently one of the major bottlenecks, limiting the development
of swift and effective diagnostic tools based on of large-scale
sequencing.

The analysis usually requires elaborate pipelines, where
multiple tools need to be properly combined with the
right parameters in order to obtain reliable results. Human
genome resequencing data can be highly heterogeneous due
to inherent biases introduced by different library preparation
protocols, sequencing platforms and experimental strategies. As a
consequence, the optimization of bioinformatic pipelines for the
analysis of NGS resequencing data is highly desirable, as it can
contribute to the reduction of the impact of systematic biases,
and simultaneously maximize the outcome of the experiments.
While several studies evaluated the performances of different
variant calling pipelines, as of today we are not aware of dedicated
studies performing a systematic evaluation of read quality pre-
processing procedures. Good practices for quality assessment
and pre-processing of the reads can contribute significantly
to the optimization of genotyping strategies, both by reducing
computational requirements and by lowering false positive rates.
In this article we discussed advantages and limitations of state of
the art genome resequencing techniques, and by taking advantage
of publicly available data we devised a series of suggestions and
good practices for the pre-processing of sequencing reads that can
improve systematically the efficacy of bioinformatic genotyping
strategies. These suggestions are of general applicability, have a
minimal impact on computational resources, and therefore they
can be instrumental for the future design of highly scalable and
efficient genotyping systems.

By comparing the results achieved by nine different pre-
processing pipelines on a golden standard reference genome
for which more than 4 millions highly accurate SNVs are
available (Eberle et al., 2016), we evaluated the effects of common
quality assessment procedures on genotyping, both in terms of
accuracy of the resulting variant call-sets and in terms of the
required computational resources. Pipelines were evaluated by
simulating various levels of coverage depth, from shallow to deep.
Unsurprisingly, we observed that the sensitivity of the genotyping
assays increased with the depth of sequencing levels, suggesting
that an adequate coverage is the key for the identification of
genetic variants.

The genotyping workflows tested in this study, which are
based on a combination of three popular variant calling
algorithms, achieved a steady level of accuracy under all the
scenarios herein tested, allowing an unbiased comparison of
their sensitivity. Notably, quality trimming procedures that were
applied using different level of stringency did not have any
major impact on the accuracy of the call-sets, suggesting that
variant calling algorithms are generally robust to sequencing
errors. However, we also observed that after quality trimming a
higher proportion of reads could be mapped unambiguously on
the reference genome, supporting the idea that the removal of
sequencing errors can facilitate reads mapping. Highly stringent
quality trimming filters, discarding a significant proportion of
the reads (average 36% of the reads, 41% of the total amount
of sequence), resulted in a substantial reduction in coverage and

as a consequence in a permanent deterioration in sensitivity.
GC rich regions, where the composition in GC exceeded
55–60%, were more affected by stringent quality trimming,
resulting in a systematic loss of coverage. This trend was
particularly evident in WES data, where compositional biases in
the coverage profile with a reduced coverage of GC rich regions
are commonly introduced by PCR amplification (Ross et al.,
2013).

Removal of reads potentially deriving from PCR duplication
artifacts did not have any significant impact on the results
for the datasets analyzed in this study, yielding only a modest
reduction in sensitivity (due to loss of coverage) at the cost
of a consistent increase in computational resources. This is in
accordance to previous reports showing that PCR-deduplication
has little impact on the overall accuracy of genotyping assays
(Ebbert et al., 2016). This is, however, also probably due to the
high-quality of the sequencing libraries used in the course of
studies of this kind (including the current), and to the presence
of a limited number of duplicated reads. PCR de-duplication is
an important quality assessment step, which can be used to assess
systematically the overall quality of a sequencing experiment. For
this reason we do not advise to remove PCR de-duplication from
bioinformatic workflows for quality assessment of NGS reads.
On the other hand, we noticed that for DNA libraries with low
PCR duplication levels such process can be detrimental to variant
identification. In such cases is probably better to avoid PCR
de-duplication at all, and perform variant calling directly from
non-de-duplicated bam files.

Datasets where merging of overlapping reads pairs was
performed resulted in small but steady increased sensitivity level,
facilitating the identification of genetic variants falling in highly
polymorphic genomic regions. Longer reads produced by this
process were preferentially mapped to genomic regions that
were scarcely covered by shorter un-merged reads, resulting
in an increase of coverage in highly heterogeneous regions of
the genome. The increase in computational resources required
by this procedure is on the other hand moderate, and is fully
justified in the light of the improvements in sensitivity, yielding
the discovery of thousands of otherwise missed “true” genetic
variants. Interestingly, we noticed that stringent quality trimming
filters, by shortening the reads, can lead to a considerable
reduction in the number of pairs of overlapping reads that can
be merged with confidence (lax trimming 10.2%; hard trimming
5.8%). This indicates that merging of overlapping reads should be
preferentially performed before the application of quality filters.
In such a scenario, a Smith-Waterman alignment between the 3′
ends (where sequencing errors are more frequent) and the 5′ ends
of the R2 reads (which are generally of higher quality) can be used
as an effective error correction procedure.

In conclusion, our experiments suggest that quality assessment
procedures can have a considerable impact on the accuracy
and sensitivity of human genome genotyping based on NGS
sequencing. Variant calling algorithms are generally robust to
sequencing error and a high level of accuracy can be achieved
when the prediction of multiple tools are combined. Coverage
levels seem to be the most important factor affecting the
sensitivity of this type of genotyping assays. In the light of
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these considerations, quality assessment procedures based on
relaxed quality trimming of the reads combined with merging
of overlapping reads pairs seems ideal, as it can contribute a
systematic improvement of the coverage of specific genomic
regions, resulting in the identification of an increased number of
true variants in highly polymorphic genomic contexts.
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