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Introduction

In the last decades, tremendous progress has been made in the quest for quantum
technologies, both from the theoretical and experimental side. Various algorithms and
protocols have been designed that take advantage of quantum resources for computation,
communication and metrology; we are testing quantum communication through space
with satellites, we are building quantum computers with more and more qubits and
some researchers believe that we are only a few years away from showing the “quantum
supremacy”, that is, seeing a quantum device perform a particular task that’s beyond the
reach of any conventional computer.

Since the early years of quantum mechanics, physicists have studied with interest
the weird nature of quantum correlations, especially from a fundamental point of view.
Eventually, the new field of quantum information theory emerged with the goal of inves-
tigating how quantum systems can be used to store, transmit and elaborate information
and how the non-classical nature of their correlations allows to define protocols that
outperform their classical counterparts. A lot of effort has been put into classifying
quantum correlations and exploring their properties, fostered by the fact that correla-
tions often stand as key resource for secure communication [1], quantum computation
[2], and metrological problems [3]. Traditionally, entanglement was the only known
form of quantum correlations. Nowadays, the existence of more general forms of non-
classical correlations as discord or steering is accepted, limiting entanglement to capture
aspects of correlations based on non-separability [4]. For instance, quantum discord, an
information-deficit between quantum and classical correlations, has been shown to be a
resource for computation [5] and quantum information protocols [6].

However, many challenges lie ahead for practical implementations of quantum tech-
nologies. Oneof themost important of those challenges comes from the fact that quantum
systems are unavoidably affected by the interactionwith their surrounding. The coupling
to the environment is generally detrimental to the quantum information contained in the
system as it undergoes decoherence. Thus, beside the undeniable fundamental interest
in understanding the dynamics of quantum systems interacting with an environment, a
great deal of attention has been devoted to the study of open quantum systems [7]: it is
fundamental, for developing quantum technologies, to overcome the problem of deco-
herence and loss of information. An interesting result of this scrutiny of the dynamics
of open quantum systems is the recognition of another figure of merit as resource for
quantum technology: the concept of quantum non-Markovianity. While Markovianity is
well defined for a classical stochastic process, it does not generalize in a straightforward
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way to the quantum world. The effort to find a generalization for quantum system led
to many different definitions and measures to quantify its degree [8–10]. Qualitatively,
the non-Markovianity is connected to the presence of memory effects in the environ-
ment, that allow for temporary recoherence and revival of quantum correlations. Thus, a
proper description and understanding of the environment and, possibly, its engineering,
may prove extremely important in the realization of quantum devices.

When treating the interaction of a quantum systemwith its surroundings, it is natural
to describe the environment quantum-mechanically aswell. However, systems of interest
in quantum information generally interact with complex environments, with many de-
grees of freedom, and a full quantum description may be challenging or even unfeasible.
To this end, a classical model of the environment usually represents a valid alternative
and may provide good results. A random unitary evolution, that is, a unitary evolu-
tion that depends on stochastic classical fields, may describe equally well the resulting
irreversible dynamics of the open systemwithout the need to invoke a quantum environ-
ment at all. A general understanding of whether and under which conditions the two
descriptions are equivalent still lacks, with an ongoing debate in the literature [11–13].
Parametric representation has also been used to show that classical variables can emerge
in quantum Hamiltonians as environmental degrees of freedom [14–18]. Moreover, it
has recently been shown that for certain kinds of interactions a classical description can
be found that is completely equivalent to the quantum one. For instance, Crow and Joynt
proved [11] an explicit construction method for a random-classical-field description of
one-qubit dephasing maps.

Besides theoretical interest, the interaction with classical noise is extremely impor-
tant in physical implementations. There are indeed various experimental evidences of
interaction with classical forms of noise, typically Gaussian noise or colored noise with
spectrums of the form 1/ f α. This is a particularly relevant phenomenon in nanodevices
and solid-state qubits [19]. Solid-state systems can be used to represent qubits by using
quantum dots, i.e. nanostructures made of semiconductors that generate a tridimensional
potential well that spatially confines charged particles, such as electrons and holes. The
charge or spin of the trapped particle can then be used as a physical realization of a
qubit, and can be measured and manipulated, for instance by applying voltages or mag-
netic fields, to process quantum information. The main advantage of solid-state qubits
is that it is easier, compared to other physical implementations, to tune the parameters
that control the state of the system and thus to perform operations on the qubit. This
tunability, however, comes at the cost of greater sensitivity to fluctuations in the control
parameters and to local electromagnetic fields. Various experiments have observed that
those fluctuations can be described as 1/ f noise and that they have a detrimental effect
on decoherence. Also superconductive devices can be used for implementing qubits,
for instance by using the number of Cooper pairs in electrostatic box as quantum num-
bers and Josephson junctions to control the interaction between qubits. Recently, also
experiments with superconducting circuits evidenced 1/ f low-frequency fluctuations of
various physical observables.

Because of these reasons, classical system-environment interactions have attracted
considerable attention in the field of quantum information [20]. Examples include studies
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of the dynamics of quantum correlations [21–30], the simulation of motional averaging
[31], decoherence of spin systems inmagnetic fields [32, 33] or in solid state qubits [34–36].
Also continuous-variable systems have been object of extensive studies [37–39].

The very sensitivity of quantum systems to external influences is on one hand a
problem for quantum information processing tasks. However, on the other hand, it also
provides an effective tool to characterize unknown parameters of a given environment by
exploiting quantum probes, as opposed to classical ones, usually macroscopic and more
intrusive. Indeed, in many metrological tasks one aims at the highest possible precision,
but at the same time the measurement device can alter or damage the sample. Quantum
probes have the advantage of being microscopic and very sensitive, and moreover one
can exploit quantum correlations to achieve even higher precision. It is indeed known
that entanglement is a resource for various estimation problems [40–42], as it allows
to overcome the classical limit to sensitivity. Quantum metrology is now an affirmed
research field [43], with applications that extend to gravitational wave detection [44].
It is thus natural to use quantum systems as probes to determine the properties of
their complex environments [45, 46], and a study of possible enhancements given by
entanglement or other forms of quantum correlations.

Another class of systems that has attracted much interest in the last decades is that of
quantum walks. Quantum walks are the generalization of classical random walks and
describe the propagation of a particle on a discrete graph. Their quantum nature, with
quantum superposition and interference, allows for features and properties that are not
seen in their classical counterparts and that are relevant in quantum information pro-
cessing: for example, the faster propagation speed of the walker is relevant in quantum
search algorithms [47], universal quantum computation [48] or transport on complex
networks [49]. Experimental implementations of quantum walks have been realized or
proposedwith various physical systems including trapped ions [50], atoms [51] and opti-
cal waveguides [52], which inevitably suffer from noise coming from the interaction with
the environment and imperfections in the setup. The decoherence induced may limit
the propagation of the walker, restoring the classical diffusion speed, or even localize the
walker. It is thus fundamental to address the effects of noise on quantum walks, and a
description of the noise in terms of a classical stochastic field may again prove extremely
useful [53, 54].

This PhD thesis contains a detailed study of the dynamics of quantum systems inter-
actingwith classical noise. In particular, we focus on finite dimensional quantum systems
and we consider environments that are modeled by Gaussian stochastic processes and
we compare them to a prototypical non-Gaussian process, the random telegraph noise,
characterized by a bistable fluctuator. In fact, generally, the noise affecting solid-state
devices is non-Gaussian, generated by a large number of fluctuators, with a broad spec-
trum of switching rates. However, Gaussian processes are much easier to describe, being
entirely defined by their second-order statistics, and provide a good approximation of
more complex fluctuating environments, thus allowing for a reasonably self-contained
description of systems where a full analytical solution of the dynamics is not avoidable.

Our aim is to analyze the dynamics of quantum correlations, and to establish a con-
nection between the features of the evolution, in particular the presence of recoherence
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effects, and the non-Markovianity of the quantum map. We will first review the state
of the art regarding dephasing noise, which involves typical frequencies of the environ-
ment that are much smaller than the natural frequency of the quantum system. In this
case, fluctuations can cause decoherence in a superposition of states, without inducing
transitions between different energy levels. Afterwards, we will move to the analysis of
the so-called transverse noise, which induces relaxation and excitation of the quantum
systems, and has a richer phenomenology.

We will then present the first implementation of an optical quantum simulator of
single-qubit noisy dephasing channels. The simulator uses single photons generated
by parametric down-conversion as information carriers, and encodes the qubit into the
polarization degree of freedom. The optical setup permits to apply many random uni-
tary transformations in parallel, thus allowing us to sample the probability space of the
stochastic process describing the noise. We will present and discuss the results of sim-
ulations involving Gaussian and non-Gaussian noise, commenting on drawbacks and
possible extensions of the experimental apparatus.

Then, we will describe the use of qubit systems as probes for detecting properties of
the classical environment, and show that the use of entangled probes can give quantum
enhancement to the precision of the estimation under proper experimental conditions.
Finally, we will address the dynamics of a continuous-time quantum walk affected by
spatially correlated classical noise.

This thesis is structured as follows.

• In Chapter 1 we review the general properties of stochastic processes, we introduce
Gaussian processes and the prototypical Ornstein-Uhlenbeck process, and then we
introduce the random telegraph noise. We also discuss the numerical simulation
of these two stochastic processes.

• In Chapter 2 we review the basic concepts of quantum mechanics and quantum
information, focusing on the definitions andmeasures of quantum correlations. We
also discuss the general formalism for the description of open quantum systems
and introduce the concept of quantum non-Markovianity. We finally introduce the
formal tools of quantumestimation theory, needed to infer the value of an unknown
parameter from measurements on a quantum system.

• In Chapter 3 we review the description of the random unitary quantum channel,
that describes the dynamics of a quantum system under the effect of classical
noise. We then review the analytical solutions to dephasing noise and the transfer
matrixmethod, that allows for an analytical solution to transverse randomtelegraph
noise. We then discuss the numerical simulation of the dynamics in the general
case. Finally, we show some original results involving the study of the dynamics of
quantum correlations and the characterization of the quantum map in the case of
transverse Gaussian and random telegraph noise.

• In Chapter 4 we describe the experimental implementation of an optical simulator
of a single-qubit classical noise channel. We describe the apparatus and present the
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results obtained with the simulation of Ornstein-Uhlenbeck and random telegraph
noise.

• In Chapter 5we describe a probing schemewherewe use qubits to infer the spectral
width of classicalGaussian noise. After reviewing the single-qubit probing scheme,
we show that the preparation of an entangled state allows for quantum-enhanced
precision in the estimation procedure.

• In Chapter 6 we study the dynamics of continuous-time quantum walks affected
by random telegraph noise with spatial correlations and we discuss the properties
of the dynamics.





Chapter 1

Stochastic processes and classical noise

In this chapter we review the main concepts related to the theory of stochastic processes
and classical noise. The topic is very broad and, inevitably, the discussion here will be
limited to the notions that are required in the understanding of the following discus-
sion. First, we will revise the main concepts involving random variables and stochastic
processes, then we will specialize to Gaussian processes, with particular attention to the
Ornstein-Uhlenbeck process, and to the random telegraph process. We will also give the
classical definition of non-Markovianity, which we will generalize to the quantum case
in Chapter 2. Amore exhaustive discussion can be found on reference books on the topic
such as [55].

1.1 Random variables and stochastic processes

Astochastic processdescribes thedynamics of aphysical property of a system that evolves
with some indeterminacy, instead of obeying a deterministic law. Stochastic processes are
widely employed in many disciplines, including biology, chemistry, finance, computer
science, engineering, and, of course, physics.

Random variables Without the need to deal with formal mathematical definitions, we
can say that a random variable X is an object defined by a set of possible outcomes {xi},
called sample space. To each outcome is a assigned a probability p(X � xi) ≡ p(xi), which
satisfies the property

∑
i p(xi) � 1, with p(xi) ≥ 0. The sample space can be discrete or

continuous: in that case, we will have a continuous probability distribution p(x).
Assuming that X has value in a continuous sample space, we define the expected

value of X as
E [X] �

∫
dx xp(x) (1.1)

and its variance
Var [X] � E

[
(X − E [X])2

]
� E

[
X2] − E [X]2 . (1.2)

If the sample space is discrete, the integral in Eq. (1.1) is replaced by a sum over all the
elements in the space. In general, the quantity E [Xm] is called them-th moment of X. The
average is thus the first moment and the variance is the difference between the second
moment and the square of the first one.



2 1.1 Random variables and stochastic processes

A random variable is entirely specified by its sample space and the probability distri-
bution p(x), but is also described completely by the characteristic function

χ(ξ) � E
[
e iξX ]

�

∫
e iξx p(x)dx. (1.3)

χ(ξ) is the Fourier transform of the probability distribution p(x).
The moments of X can be expressed in terms of the characteristic function:

E [Xm] � (−i)m dmχ(ξ)
dξm

����
ξ�0

. (1.4)

In general, a randomvariable is characterized by an infinite number ofmoments. Ran-
dom variables characterized by a Gaussian probability distribution, or simply Gaussian
random variables, are described by only the first and second moment.

The probability distribution for a Gaussian random variable is

p(x) � 1√
2πσ2

e−
(x−µ)2

2σ2 . (1.5)

One can easily check that the expected value isE [X] � µ and the variance is Var [X] � σ2.
The characteristic function is also Gaussian:

χ(ξ) � e iξµ− 1
2 σ

2ξ2
. (1.6)

Stochastic processes A stochastic process is a collection of random variables, indexed
by a time parameter t: {X(t), t ∈ T}. Each of the X(t) is defined on the same sample
space and its value represents the observed value of the stochastic process at time t. More
formally, {X(t), t ∈ T} is a function of two arguments: {X(t , s), t ∈ T, s ∈ S}, where S is
the probability space. For a fixed value of t, X(t , ·) is a function defined on the probability
space, i.e. a random variable. If, on the other hand, we fix S, then X(·, s) is a function of
time that represents a specific observation of the stochastic process, that we call realization
of the process.

In other words, we assume that a set of joint probabilities p(x1 , t1; xn , t2; . . .) exists,
that fully characterizes the stochastic process. In terms of these joint probabilities, we
can also define conditional probability densities:

p(x1 , t1; x2 , t2; . . . |y1 , τ1; y2 , τ2; . . .) �
p(x1 , t1; x2 , t2; . . . ; y1 , τ1; y2 , τ2; . . .)

p(y1 , τ1; y2 , τ2; . . .) . (1.7)

In particular, the conditional probability p(xn , tn |x1 , t1; . . . ; xn−1 , tn−1) tells us the proba-
bility density for the value of the stochastic process at time tn , given its previous history
x1(t1), . . . , xn−1(tn−1). It is in this context that the notion of Markovianity, which we will
discuss in the quantum formalism in Subsection 2.3.1, is introduced at the classical level.

We say that a stochastic process is Markovian if the following equality holds for any
set of n successive times:

p(xn , tn |x1 , t1; . . . ; xn−1 , tn−1) � p(xn , tn |xn−1 , tn−1), (1.8)
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that is, the state of the stochastic process only depends on the last assumed value and not
on the previous history. In this sense, it is said that a Markov process is memoryless. If
the above property does not hold, we say that the process is non-Markovian.

The Markov property (1.8) implies that the conditional transition property satisfies
the Chapman-Kolmogorov equation [55]

p(x , t |y , s) �
∑

z

p(x , t |z , τ)p(z , τ |y , s). (1.9)

The Markov property is relatively easy to verify for processes that have a discrete
time domain (which are usually referred to as Markov chains), but it is a bit trickier for
continuous-time processes.

An important quantity in the characterization of stochastic processes is the autocorre-
lation function, defined as

C(t1 , t2) � E [X(t1)X(t2)] , (1.10)

where t1 and t2 are two instants of time.
A stochastic process is said to be stationary if any joint probability is invariant under

translations in time

p(x1 , t1; . . . ; xn , tn) � p(x1 , t1 + τ; . . . ; xn , tn + τ), ∀τ. (1.11)

If a process is stationary, its moments are time-independent, and its autocorrelation
function only depends on the difference |t2 − t1 |: C(t1 , t2) � C(|t2 − t1 |) ≡ C(τ). It can
thus be defined by its Fourier transform, which is the power spectral density (or simply, the
spectrum) of the process

S(ω) �
∫

dτ C(τ)e−iωτ . (1.12)

The spectrum and autocorrelation function are extremely important in the character-
ization of a stochastic process, because, together with the mean and variance, are one of
the easiest functions to measure experimentally, by directly sampling.

Finally, we introduce the noise phase, that will be employed in the following chapters:

φ(t) �
∫ t

t0

X(s)ds . (1.13)

φ(t) is itself a stochastic process. Its characteristic function, defined as

E
[
e iνφ]

� E

[
e iν

∫ t
t0

X(s)ds
]
, (1.14)

will be useful in the description of the dynamics of quantum systems interacting with
classical noise.

In the following, we are going to focus on the class ofGaussian stochastic processes, by
looking in particular at the Ornstein-Uhlenbeck process, and then to another process that
is relevant in the study of physical implementations of quantum systems: the random
telegraph noise.



4 1.2 Gaussian processes

1.2 Gaussian processes

A stochastic process is said to be Gaussian if any joint probability distribution is a
Gaussian distribution. Using the characteristic function, the Gaussian property can be
expressed with the following equation

χX(t1),...,X(tn )(ξ1 , . . . , ξn) � E
exp ©­«i

n∑
j�1

ξ jX(t j)
ª®¬


� exp
i

n∑
j�1

ξ jµ j −
1
2

n∑
j,k�1

ξ jξk K(t j , tk)
 , (1.15)

where µi � E [X(ti)] and we define the covariance kernel

K(t1 , t2) � E
[
(X(t1) − µ1)(X(t2) − µ2)

]
� E [X(t1)X(t2)] − µ1µ2. (1.16)

For a stationary process, the covariance kernel only depends on the difference between
t1 and t2 and it equals the autocorrelation function plus the mean value of the process.
Since in this thesis we deal with stationary, zero-mean processes, we will use the two
notions interchangeably.

For a continuous time Gaussian process, Eq. (1.15) becomes

E

[
e i

∫ t
t0

ds ξ(s)X(s)
]
� exp

[
i
∫ t

t0

ds ξ(s)µ(s) − 1
2

∬ t

t0

dsds′ ξ(s)ξ(s′)K(s , s′)
]
, (1.17)

Equations (1.15) and (1.17) show us that a Gaussian process is entirely characterized by
its first and second moments, i.e. the mean value and the covariance kernel.

A special case of Eq. (1.17) that is relevant for us is that of ξ(s) ≡ ξ time independent.
We have

E

[
e iξ

∫ t
t0

ds X(s)
]
� exp

[
iξ

∫ t

t0

ds µ(s) − ξ
2

2
β(t)

]
, (1.18)

where we have introduced the β function

β(t) �
∫ t

t0

ds
∫ t

t0

ds′ K(s , s′). (1.19)

1.2.1 Wiener process

The Wiener process is the stochastic process that describes the Brownian motion of
a particle suspended in a fluid. It is the simplest example of Gaussian process, and a
building block for other stochastic processes. It is defined as the processwith initial value
W(t � 0) � 0 and independent Gaussian increments. That is, dW � W(t + dt) −W(t) is
a normally distributed random variable with mean µdW � 0 and variance Var [dW] � dt,
and mean and variance do not depend on t. The increments dW are often referred to as
Wiener increments.
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From the defining properties, it is easy to see that the mean value of the process is
E [W(t)] � 0, while the variance is Var [W(t)] � t. It is characterized by the autocorrela-
tion function [55]

CW (t1 , t2) � min(t1 , t2). (1.20)

1.2.2 Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (OU) process is the simplest stochastic process with non-trivial
dynamics. It was introduced by Uhlenbeck and Ornstein in 1930 [56] to describe the
velocity of a particle undergoing Brownian motion with friction, but it is widely used in
modelling general noise with a finite correlation time [57].

It is defined via the stochastic differential equation

dX � γ(µ − X)dt +
√
ΓγdW, (1.21)

where dW is a Wiener increment, µ is the stationary mean value, Γ is called damping
rate and γ is the inverse of the autocorrelation time τC , and is also called spectral width.
The first term of Eq. (1.21) is a friction term that keeps the value of X around the mean
value µ.

Since the Wiener process is Gaussian, the Ornstein-Uhlenbeck process is Gaussian as
well. It can be shown that it is stationary, with mean and variance

E [X] � µ, Var [X] �
γΓ

2
. (1.22)

The initial condition of Eq. (1.21) can be chosen to be a fixed point X0, or a random point
extracted from the stationary distribution (1.22). Assuming, aswewill do in the following
chapters, that the mean value of the process is µ � 0, the autocorrelation function of the
process becomes

KOU(τ) �
γΓ

2
e−γ |τ | . (1.23)

This in turn allows us to calculate the β function,

βOU(t) �
Γ

(
γt + e−γt − 1

)
γ

, (1.24)

and the power spectral density, which is a Lorentzian

SOU(ω) �
Γγ2

√
2π(γ2 + ω2)

. (1.25)

From Eq. (1.23) we can see that the Ornstein-Uhlenbeck process has a finite cor-
relation time τC � γ−1. Finally, it can be shown that it is a Markovian process in the
sense of Eq. (1.8). In the limit of γ → ∞ (τC → 0), the stochastic process becomes
completely uncorrelated. The autocorrelation function and the power spectral density
become respectively a Dirac delta and constant and we obtain Gaussian white noise:

KWN(t1 − t2) � Γδ(t1 − t2) (1.26)
βWN(t) � Γt . (1.27)
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1.3 Non-Gaussian processses

Gaussian processes are completely characterized by their first and second moments,
i.e. by their mean and autocorrelation function. Although they play a central role in
the theory of stochastic processes, due to their simple analytical properties, and to the
fact that they can give god approximations in most situations, in some situations it is
necessary to specify the model for the noise source in more details, thus requiring non-
Gaussian processes [58]. Non-Gaussian noise cannot be approximated by any Gaussian
model, such as a bath of harmonic oscillators, because of the central role played by the
microscopic structure of the environment in determining the quantum dynamics of the
system subject to the noise.

The key ingredient in the non-Gaussian noise models that are relevant in quantum
devices is that of two-level fluctuators (TLF), i.e. quantities that switch randomly between
two values with a certain switching rate. The effect of a single fluctuator is to produce
the random telegraph noise, while a proper collection of TLFs gives rise to colored noise.
In the following we review the random telegraph noise. More general forms of noise,
and their effect on the dynamics of quantum systems, are discussed in Ref. [20] and refs.
therein.

1.3.1 Random telegraph noise

The random telegraph noise (RTN) is a continuous time stochastic process {B(t), t ∈
[0,∞]}, where the variable B can take two possible values. Without loss of generality we
can assume B � ±1. The fluctuator jumps between the two states with a switching rate
γ, i.e. in such a way that the average number of flips in a time interval [t , t + τ] is γτ.

The probability that, after a time t, the fluctuator has switched n times follows a
Poisson distribution with parameter γt

pn(t) �
(γt)n

n!
e−γt . (1.28)

The RTN can thus be expressed as B(t) � (−1)P(t), where P(t) is the Poisson process.
To obtain themean value, the variance and the autocorrelation function of the process,

we start by solving the Chapman-Kolmogorov equation for the transition probability.
Assuming that the initial condition is B(t0) � x0, we can write

d
dt

p(+1, t |x0 , t0) � −γp(+1, t |x0 , t0) + γp(−1, t |x0 , t0) (1.29a)

d
dt

p(−1, t |x0 , t0) � γp(+1, t |x0 , t0) − γp(−1, t |x0 , t0), (1.29b)

together with the normalization condition p(+1, t |x0 , t0) + p(−1, t |x0 , t0) � 1. Eqs. (1.29)
have the solution [55]

p(+1, t |x0 , t0) �
1
2

[
1 + e−2γ(t−t0)(δ+1,x0 − δ−1,x0)

]
(1.30a)

p(−1, t |x0 , t0) �
1
2

[
1 − e−2γ(t−t0)(δ+1,x0 − δ−1,x0)

]
. (1.30b)
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The process clearly has a stationary solution, obtained by letting t →∞:

ps(±1) ≡ p(±1, t →∞) � 1
2
. (1.31)

The mean of the process and its variance can now be easily computed. The mean is

E [B(t)] �
∑
x�±1

xP(x , t |x0 , t0) � x0 exp[−2γ(t − t0)], (1.32)

while the variance has a cumbersome expression. The stationary values are, respectively:

E [B(t)]s � 0, Var [B(t)]s � 1 (1.33)

The stationary expression for the autocorrelation function is given by (assuming
t2 ≥ t1)

KRTN(t1 , t2) �
∑
x1 ,x2

x2x1P(x2 , t2 |x1 , t1)Ps(x1) (1.34)

�
1
2

∑
x1�±1

x2
1 exp[−2γ(t2 − t1)] � exp[−2γ(t2 − t1)], (1.35)

where we have used Eq. (1.32). Given the stationarity of the process, we can write

KRTN(τ) � exp[−2γ |τ |]. (1.36)

We immediately notice that the autocorrelation function of the RTN has the same time
dependence as that of the Ornstein-Uhlenbeck process. The spectrum is a Lorentzian as
well

SRTN(ω) �
4γ

(2γ)2 + ω2 . (1.37)

We thus have two processes with the same spectral properties, but with completely
different probabilities distributions, to model noise sources that are relevant in the study
of open quantum systems.

We finally write the probability distribution for the noise phase (1.13) and its char-
acteristic function (1.14). We simply report the final results. The proof, which is rather
complicated, is sketched in [20] and addressed in detail in [58, 59].

Instead of evaluating φ(t)we evaluate the quantity φν(t) � νφ(t), and find that

p(φν , t) �
1
2

e−γt[δ(φν + νt) + δ(φν − νt)] +
γ

2ν
e−γt[Θ(φν + νt) −Θ(φν − νt)]

×


I1

(
γt

√
1 − (φν/νt)2

)
√

1 − (φν/νt)2
+ I0

(
γt

√
1 − (φν/νt)2

) , (1.38)

where δ(x) is the Dirac delta function, Θ(x) is the Heaviside step function, and In(x) is
the modified Bessel function of the first kind [60, §10.25]. A plot of p(φn , t) for a few
values of γt is shown in Fig. 1.1a. The two Dirac deltas represent the probability for the
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Figure 1.1: (a) The probability distribution p(φν , t) for t � 1 (blue), 5 (green), 10 (red) for γ � ν � 1.
The arrows represent the Dirac deltas. (b) shows the function DRTN(t) defined in Eq. (1.40) as a
function of t for ν � 1 and γ � 2 (blue), γ � 1 (green), γ � 0.1 (red). When γ > ν the function is
monotonically decaying, while it is oscillating for γ > ν.

fluctuator to be in the same state during time t, while the From Eq. (1.38), one obtains
the expression for the characteristic function

DRTN(t) ≡ E
[
e iνφ(t)]

�
1
2

e−γt
[(

1 +
γ

2δ

)
eδt

+

(
1 −

γ

2δ
e−δt

)]
, (1.39)

where we defined δ �
√
γ2 − ν2. δ is real if γ2 ≥ ν2, but it is imaginary in the other case,

thus we have two qualitatively different behaviors for E
[
e iνφ(t)] . We have

DRTN(t) �


e−γt
[
cosh |δ |t + γ

|δ | sinh |δ |t
]

γ > ν

e−γt
[
cos |δ |t + γ

|δ | sin |δ |t
]

γ < ν.
(1.40)

As shown in Fig. 1.1b, when γ > ν the function is monotonically decaying, but in the
opposite regime it has an oscillating behavior.

1.4 Numerical simulation of stochastic processes

Some of the results presented in this thesis require the numerical simulation of the
classical noise affected by the quantum systems. In this sectionwe report on themethods
used for generating realizations of the OU and RTN processes. The methods are also
used in the optical quantum simulator described in Chapter 4. The result of a simulation
is a realization of the stochastic process in the time interval [0, T], sampled at n time
instants t0 � 0, t1 , t2 , . . . , tn � T, separated by a time step ∆t � T/n.

Ornstein-Uhlenbeck In general, stochastic processes definedby a stochastic differential
equation can be simulated by means of Euler-Maruyama method, i.e. the generalization
of the well-known Euler first order method for ordinary differential equations. A large
body of literature deals with the study of convergence and stability of this method, see
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for instance [55]. In the case of the Ornstein-Uhlenbeck we can avoid all this because the
stochastic differential equation (1.21) can be solved [55, 57]. The solution reads

X(t) � µ + e−γt(X(0) − µ) + γ
√
Γ

∫ t

0
e−γ(t−t′)dW(t′). (1.41)

The simulation thus amounts to generating n Wiener increments with variance ∆t,
∆W ∼ N(0,

√
∆t) and numerically evaluating the integral in Eq. (1.41). An example of

implementation with MATLAB/Octave code is the following:

function X = ornsteinUhlenbeck(t, ... % time vector

mu, ... % mean value

gamma, ... % spectral width

Gamma) % damping rate

% time step

dt = t(2) - t(1);

% Set initial condition

% For fixed initial condition: X0 = 0;

% Stationary initial condition:

X0 = mu + gamma * sqrt(Gamma)/sqrt(2*gamma) * randn();

% Vector of Wiener increments

dW = [0 sqrt(dt) * randn(1, length(t) - 1)];

% Sampling of the Ornstein-Uhlenbeck process

X = X0 * exp(-gamma * t) + mu * (1 - exp(-gamma*t)) ...

+ gamma * sqrt(Gamma) * exp(- gamma * t) ...

.* cumsum(exp(gamma * t) .* dW]);

end

Random telegraph noise Aswe have seen in Subsection 1.3.1, the RTN can be obtained
from the Poisson process. If P is the variable describing the latter, then the RTN is simply
given by X � (−1)P , i.e. it switches its state at each event of the Poisson process. If you
have a Poisson process with rate γ, then the time intervals δ between two events are
independent and exponentially distributed with mean γ−1. So the probability density
function for δ is p(δ) � γ exp(−γδ), and the cumulative distribution function is F(δ) �
1−exp(−γδ). Thus we can generate the time intervals between events by drawing δ from
the probability distribution above. By inverting the cumulative function, we obtain that
δ � − log(R)/γ, where R is drawn from a uniform distribution in [0, 1].

The following MATLAB/Octave code generates a realization of RTN sampled at the
time instants of the vector t. It first generates a vector delta of intervals δ of length
Nδ � b2 ∗ γTc, where T is the final time and b·c means the integer part. As there are on



10 1.4 Numerical simulation of stochastic processes

average γ ∗∆t events in the time interval∆t, this choice of Nδ guarantees that we generate
events until the end of the sampling time.

function X = rtn(t, gamma)

% t is the vector of time steps

% gamma is the switching rate.

% X is a vector of the length of t containing the sampled process

dt = t(2) - t(1);

% Number of time intervals to generate

% (twice the expected value gamma * T)

Ndelta = max(1, floor(2 * t(end) * gamma));

% Vector of the time intervals between events

delta = - log(rand(Ndelta, 1)) / (dt * gamma);

% The time instants of the events

ct = cumsum(floor(delta)) + 1;

% Finds the index of the first time outside the t vector

ix = sum(ct <= length(t));

% Create the signal by setting s to 1 at each event time

% and then performing a cumulative sum.

poisson = zeros(length(t),1);

poisson(ct(1:ix)) = 1;

poisson = cumsum(poisson);

% This is for setting the initial condition

% 1 and -1 with equal probability

r = randi(2);

% Here we obtain the RTN from the Poisson process

X = (-1).^(r+poisson);

Summary

• A stochastic process is a collection of random variables, indexed by a discrete or
continuous parameter t: {X(t), t ∈ T}. Stochastic processes are useful to describe
classical fluctuations and noise in physical systems.

• Stochastic processes are in general characterized by the joint probability distribu-
tions of the random variables X(t). A relevant class is that of Gaussian processes,
where these probability distributions are Gaussian and are thus entirely described
by their first and second moments. This means that a Gaussian process is entirely
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characterized by its mean value and its autocorrelation function, or equivalently by
its power spectral density.

• Aparadigmatic Gaussian process is the Ornstein-Uhlenbeck process, characterized
by an exponentially decaying autocorrelation function and thus a Lorentzian spec-
trum. The OU process can be easily simulated numerically by solving its stochastic
differential equation

• A non-Gaussian stochastic process that is relevant for our discussion is the random
telegraph noise, a process that jumps between two values at a certain switching
rate. As the OU, it is characterized by an exponentially decaying autocorrelation
function and a Lorentzian spectrum. It can be simulated by extracting the intervals
between jumps from an exponential distribution.





Chapter 2

Basic tools of quantum theory

This chapter is meant as a quick reference for the fundamental notions of quantum
mechanics, quantum information and quantum estimation theory, in order to set the
notation for the following discussion. We start by reviewing the basics of quantum
mechanics in Section 2.1. We then discuss the basic tools of quantum information theory
and the measures of quantum correlations that we will employ in the following chapters
in Section 2.2. In Section 2.3 we review the tools for describing the dynamics of open
quantum systems, i.e. quantum systems that interact with an environment. We finally
look at the tools of quantum estimation theory that are used in quantummetrology tasks,
in Section 2.4.

2.1 Review of quantum mechanics

Quantum mechanics provides a mathematical description of physical systems at a fun-
damental level. To provide such description what we need is to specify states, evolutions
and measurements. These concepts are given via postulates that we outline here.

2.1.1 Postulates

Like all physical theories, quantum mechanics is based on a few mathematical assump-
tions or postulates. Here we enumerate them, referring the reader to standard textbooks
on the topic for a more exhaustive discussion of the postulates, the mathematical sub-
tleties and their implications.

Postulate 1 (State space)

Any isolated physical system is associated to aHilbert spaceH . The system is
completely described by its state vector |ψ〉, also known as the wave function,
which is a unit vector ofH .

The Hilbert space is a complex vector space endowed with an inner product 〈ϕ |ψ〉
with values in C, that defines the norm ‖.‖ in the space, such that



|ψ〉

2
� 〈ψ |ψ〉. A unit

vector is thus a state with norm 1.
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Being a vector space,H admits the superposition principle, i.e. any linear combina-
tion of states is also a state:

|ψ〉 �
d∑
n

cn |ψn〉 (2.1)

where {ψn}dn�1 is an orthonormal basis ofH and d is its dimension. Requiring |ψ〉 to be
a unit vector amounts to imposing the condition

d∑
n

|cn | � 1, (2.2)

to the coefficients of Eq. (2.1).
If the system is composite, i.e. made of smaller subsystem, then its state space is the

tensor product of the Hilbert spaces corresponding to subsystems:

H � H1 ⊗ · · · ⊗ Hn . (2.3)

Postulate 2 (Time evolution)

The evolution of an isolated quantum system is described by a unitary trans-
formation. If the system is in the state |ψ(t0)〉 at an initial time t0 then its state
|ψ(t)〉 at the time t is given by

|ψ(t)〉 � U(t , t0) |ψ(t0)〉 , (2.4)

where U(t , t0) is a unitary operator (UU† � I) depending only on t and t0.

The time-evolution operator U(t , t0), also known as propagator, is related to the
Hamiltonian of the system. It is the formal solution to the Schrödinger equation, a linear
differential equation that describes the time evolution of the state:

i~
d
dt
|ψ(t)〉 � H(t) |ψ(t)〉 . (2.5)

By plugging Eq. (2.4) into Eq. (2.5), we obtain an operator differential equation for U

i~
d
dt

U � H(t)U, (2.6)

with the initial condition U(t0 , t0) � I.
We can write the formal solution to (2.6):

U(t , t0) � I −
i
~

∫ t

t0

H(t1)U(t1 , t0)dt1. (2.7)

By iterating, we obtain a series expansion for the evolution operator

U(t , t0) � I −
i
~

∫ t

t0

H(t1)U(t1 , t0)dt1 +

(
− i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) + . . . (2.8)

�

∞∑
n�0

1
n!

(
− i
~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn

t0

dtnH(t1) · · ·H(tn) , (2.9)
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where tn < . . . < t2 < t1. In general, being H an operator, the order in which
H(t1),H(t2), . . . appear in the integral is relevant. In the case in which H commutes
with itself at different times, the above equation can be simplified by noting that∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) �
1
2!

∫ t

t0

dt1

∫ t

t0

dt2H(t1)H(t2), (2.10)

and so on, allowing us to write

U(t , t0) �
∞∑

n�0

1
n!

(
− i
~

)n ∫ t

t0

dt1 · · ·
∫ t

t0

dtnH(t1) · · ·H(tn) (2.11)

� exp
[
− i
~

∫ t

t0

H(t′)dt′
]
. (2.12)

This is the exact solution for the evolution operator when the Hamiltonian commutes
with itself at different times. This includes the relevant case of a closed and isolated
quantum system, for which the Hamiltonian is constant in time.

The solution for a general Hamiltonian can be written formally in a compact way by
introducing the time ordering operator T , and reads

U(t , t0) �
∞∑

n�0

1
n!

(
− i
~

)n ∫ t

t0

dt1 · · ·
∫ t

t0

dtnT [H(t1) · · ·H(tn)] (2.13)

≡ T exp
[
− i
~

∫ t

t0

H(t′)dt′
]
. (2.14)

Equation (2.9) is known as Dyson series expansion of the evolution operator, and
its truncation up to some order N gives an approximate solution to the Schrödinger
equation.

Postulate 3 (Measurement) In the quantum theory, the act of measurement of the sys-
tem is a central topic. Whereas in classical mechanics it is assumed that themeasurement
of any quantity of the system can happen without perturbing it, in quantum mechanics
the measurement is an irreversible operation that affects the state of the system.

A quantum measurement is described by a collection of operators {Mm}
acting on the Hilbert space H of the system, where the index m labels the
possible outcomes of the experiment. If |ψ〉 is the state of the system, the
probability that result m occurs is

pm � 〈ψ |M†m Mm |ψ〉 (2.15)

and the state of the system immediately after the measurement is

|ψ′〉 �
Mm |ψ〉√
〈ψ |M†m Mm |ψ〉

. (2.16)
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Since the probabilities of all the outcomes must add to one, independently of the state
of the system, we require that the set of measurement operators satisfy the completeness
relation ∑

m

M†m Mm � I. (2.17)

Since most of the times one is not interested in the state of the system after the
measurement, it is customary in the literature to define the experiment with a set of
operators {Πm} that are positive-semidefinite

〈ψ |Πm |ψ〉 ∀ |ψ〉 (2.18)

and complete ∑
m

Πm � I. (2.19)

The measurement process is called positive-operator valued measurement (POVM). The
probability that the measurement yields the outcome m is then

pm � 〈ψ |Πm |ψ〉 . (2.20)

The state of the system after themeasurement depends on the specific implementation of
the experiment, as, given a positive-semidefinite operatorΠm , there is an infinite number
of operators Mm such that Πm � Mm M†m .

A relevant class of measurements is that of projective measurements, i. e. those
measurements described by a Hermitian operator M acting on H . Being Hermitian, M
admits a spectral decomposition

M �

∑
i

miPi , (2.21)

where the Pi are projectors onto the eigenvectors |i〉 of M, i.e. the solutions to the
eigenvalue equation M |i〉 � mi |i〉. The projectors Pi satisfy the orthogonality condition
PiP j � δi jPi and the completeness relation

∑
i Pi � I.

The probability of obtaining the outcome mi is pi � 〈ψ |Pi |ψ〉 and the expected value
of the observable M is then given by

〈M〉 �
∑

i

mi pi � 〈ψ |
∑

i

miPi |ψ〉 � 〈ψ |M |ψ〉 . (2.22)

2.1.2 Mixed states and density matrix

In most cases we are not able to know with certainty in which state the system is. This
happens in particular when we are considering a component of a composite system,
or when the system of interest is interacting with an environment, as we will see in
Section 2.3.

In the most general way, our knowledge of the system is represented by a statistical
distribution {pi , |ψi〉}, which means that the system has the probability pi of being in the
state |ψi〉, where obviously

∑
pi � 1. We say that the system is in a mixed state. We can
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then define the quantum counterpart of the classical density function of a probability
distribution, which is called density operator and is defined as

ρ �

∑
i

pi |ψi〉 〈ψi | . (2.23)

The density operator defined in Eq. (2.23) is Hermitian, positive definite and Tr ρ � 1.
Conversely, any operator with these three properties may be used as a density operator
for a certain system. We label the set of all possible density operators for a Hilbert space
H by S(H).

If and only if the system is in a pure state the density operator is a projector and hence
Tr ρ2 � 1. When the system is in amixture, Tr ρ2 < 1. It is then useful to define the purity
of the state as

µ � Tr ρ2 , with 1
d
≤ γ ≤ 1 (2.24)

where d is the dimensionality of the Hilbert space. The minimum value for γ is reached
when the system is in a mixture of d states with probability 1/d each: we call such a state
completely mixed and the corresponding density operator is I/d.

The system is completely described by the density operator formalism. The evolution
of the system is given by the Liouville-von Neumann equation, which is equivalent to the
Schrödinger equation,

i~
∂ρ

∂t
� [H, ρ], (2.25)

where H is the Hamiltonian of the system in the Schrödinger picture. Equivalently, we
can write

ρ(t) � U(t , t0)ρ(t0)U†(t , t0), (2.26)

where U(t , t0) is the evolution operator defined in Eq. (2.14).
The measurement process is easily described as well. We consider a measurement

{Mm} The probability of getting the outcome m is given by

p(m) � Tr(MmρM†m) � Tr(M†m Mmρ) (2.27)

and if the result is m, the system will be in the state

ρ′ �
MmρM†m

Tr(M†m Mmρ)
(2.28)

after the measurement.
The expectation value for an observable M is therefore given by

〈M〉 � Tr[Mρ], (2.29)

which reduces to Eq. (2.22) for a pure state, as can be easily checked.
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2.1.3 Composite systems and partial trace

As we briefly discussed in Subsection 2.1.1, if the system is composite of more than one
system, then its state space is the tensor product of the Hilbert spaces corresponding
to subsystems: H � H1 ⊗ · · · ⊗ Hn . Most of the times, however, we are interested in a
part (or just one) of the subsystems: this happens, for instance, when we want to study
quantum communication protocols, in which the quantum system is split between the
two parties, or whenwewant to describe a principal quantum system interactingwith an
environment. The latter, in particular, is the central topic of this thesis. In these situations,
the density matrix formalism comes in handy for the mathematical description of the
system.

For simplicity, we restrict the discussion to a bipartite system, i.e. a Hilbert space
H � HA ⊗HB , where, adopting the standard notation in (quantum) information theory,
HA andHB are held by two parties Alice and Bob. The discussion can be generalized to
system with an arbitrary number of components.

The spaceH is spanned by the set of product states constructed from the orthonormal
bases of the constituent Hilbert spaces,

|i j〉 ≡ |i〉A ⊗ | j〉B . (2.30)

The most general expression for the density matrix is then

ρ �

∑
i j

∑
hk

ρi j,hk |i j〉 〈hk | . (2.31)

What is the density matrix ρA that describes the knowledge that Alice has of her
subsystem? The mathematical tool that is needed here is the partial trace:

ρA ≡ TrB[ρ] �
∑

l
B 〈l |ρ |l〉B �

∑
l

∑
i j

∑
hk

ρi j,hk B 〈l |i j〉 〈hk |l〉B

�

∑
l

∑
ih

ρil ,hl |i〉A 〈h |A , (2.32)

where we used the orthonormality of the basis of HB , 〈i | j〉B � δi j . The density matrix
ρA is called the reduced density matrix for system A. An analogous definition can be
given for the partial trace with respect to the subsystem A, that gives the reduced density
matrix for ρB .

The partial trace is the correct operation to correctly describe the state of the system A,
because it gives the right expectation values for measurements made on this subsystem.
To understand this, let’s consider a measurement operator OA on Alice’s system. Since
the measurement does not affect Bob’s subsystem, the operator acting on the whole
Hilbert space is O � OA ⊗ IB . We then have
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〈O〉 � Tr[ρO] �
∑

i j

〈i j |ρO |i j〉

�

∑
i j

〈i j |
(∑

lm

∑
hk

ρlm ,hk |lm〉 〈hk |
)
(OA ⊗ I)|i j〉

�

∑
i j

∑
h

ρi j,h j 〈h |OA |i〉 �
∑

ih

〈i |ρA |h〉 〈h |OA |i〉

�

∑
i

〈i |ρAOA |i〉 � Tr[ρAOA], (2.33)

where we used Eqs. (2.31) and (2.32).

2.1.4 The qubit and two-qubit systems

The state space of a quantum system can have any finite or infinite dimension d but,
in the framework of quantum information theory, quantum systems with d � 2 are of
paramount importance as they generalize the classical bit. The bit is the fundamental unit
of classical information. It is an abstract object that can have two discrete states, labeled
by the binary digits 0 and 1. Information is encoded in sets of bits of arbitrary dimension.
A two-level quantum system is called qubit. There aremany possible physical realizations
of a qubit. Any two-level quantum system, such as the polarization state of a photon,
the spin 1

2 of an electron or a nucleus, is a natural candidate for the implementation of a
qubit. Systems with higher-dimensional spaces can be used as well, if a pair of energy
states can be effectively decoupled from the rest of the spectrum.

We label the two states of an orthonormal basis of the system as |0〉 and |1〉 in analogy
with the classical bit, and we refer to this basis as the computational basis. A pure qubit
state is a superposition of these two states,

|ψ〉 � α |0〉 + β |1〉 , (2.34)

where α and β are two complex numbers that satisfy the normalization relation |α |2 +

|β |2 � 1. Since the state is invariant with respect to an overall complex phase, a pure
qubit state is identified by two real components.

A natural parametrization comes from the theory of angular momentum of spin-
1
2 particles (a spin- 1

2 particle can indeed be a physical representation of a qubit). We
introduce the Pauli matrices, that are generators of SU(2),

σx �

(
0 1
1 0

)
, σy �

(
0 −i
i 0

)
, σz �

(
1 0
0 −1

)
. (2.35)

These matrices are traceless matrices that satisfy the commutation relation [σi , σ j] �
iεi jkσk , with εi jk the totally antisymmetric tensor. Moreover, they satisfy the relation
σ2

i � I.
We consider |0〉 and |1〉 as, respectively, the eigenstates |↑〉 and |↓〉 of the projection of

the spin onto the z axis, i.e. the eigenstates of σz . We now can visualize the qubit state
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y

x

z
|0〉

|1〉

|ψ〉

ϕ

θ

Figure 2.1: Bloch sphere. Thepure state |ψ〉 is identifiedby the two angles θ ∈ [0, π] andϕ ∈ [0, 2π]
and lies on the boundary of the sphere. Mixed states located in the bulk of the sphere, with the
maximally mixed state in lying at the center.

as versor in R3, n � (sin θ cosϕ, sin θ sinϕ, cos θ), parametrized by the angles θ ∈ [0, π]
and ϕ ∈ [0, 2π]. The state is thus identified by a point on a sphere with radius 1, called
the Bloch sphere, Fig. 2.1. The corresponding parametrization in the computational basis
is given by

|ψ〉 � cos θ
2
|0〉 + e iϕ sin θ

2
|1〉 . (2.36)

When a qubit system is in a mixed state, i.e. is described by a general density matrix
ρ, it is represented as a non-unit vector n in the Bloch sphere, called the Bloch vector. The
components of the vector are given by the projection onto each axis:

ni � Tr[σiρ], i � x , y , z . (2.37)

The density operator can thus be written in the form

ρ �
1
2
(I + n · σ), (2.38)

where σ � (σx , σy , σz) is the vector of Pauli matrices defined in Eq. (2.35).
Some properties of the qubit state have an interesting interpretation in the Bloch

representation. For instance, the purity of the state is proportional to the square of the
Euclidean norm of the Bloch vector:

µ �
1
2
+

1
2
‖n‖2. (2.39)

The maximally mixed state, in the Bloch representation, lies at the center of the sphere.
A system made of more than one qubit is represented as the tensor product of the

single-qubit Hilbert spaces
H � H1 ⊗ . . . ⊗ Hn . (2.40)

The computational basis for a multi-qubit system is given by the product states

|a0 a1 . . . an〉 � |a0〉 ⊗ |a1〉 . . . ⊗ |an〉 , where ai ∈ {0, 1}. (2.41)
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In this thesis, we will limit the discussion to two-qubit systems, the simplest bipartite
quantum system, where most of the results involving quantum correlations, that we will
discuss in the following section, can be obtained analytically.

A two-qubit Hilbert space has dimension 4, and is thus described by 24 − 1 � 15
real parameters. One possible parametrization of a two qubit state is based on the Pauli
matrices:

ρ �
1
4

3∑
i , j�0

ai jσ
(1)
i ⊗ σ

(2)
j , (2.42)

where σ0 ≡ I, and the coefficient a00 � Tr[ρ] � 1. The real coefficients ai j form a 4 × 4
matrix that generalizes the Bloch vector for the single qubit, and is sometimes referred
to as the Bloch matrix. A convenient representation of the Bloch matrix is

N �

(
1 a

bT R

)
, (2.43)

where a � (a10 , a20 , a30) and b � (a01 , a02 , a03) are the Bloch vectors of the reduced density
operators ρ1(2) � Tr1(2)[ρ], as can be easily checked. The 3 × 3 matrix R, on the other
hand, accounts for the correlations between the two qubits.

We introduce here the four Bell states, named after John S. Bell because they are the
states for which the inequality for local realistic theories is maximally violated [2]:

|Φ+〉 � 1√
2
(|00〉 + |11〉)

|Φ−〉 � 1√
2
(|00〉 − |11〉)

|Ψ+〉 � 1√
2
(|01〉 + |10〉)

|Ψ−〉 � 1√
2
(|01〉 − |10〉).

(2.44)

These states are relevant in the study of quantum information processing, and will be
used in the following chapters.

A relevant subset of two-qubit states is that of the X states [61, 62], characterized by
an X-shaped density operator with non-zero entries only in the two diagonals:

ρ �

©­­­«
ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗23 ρ33 0
ρ∗14 0 0 ρ44

ª®®®¬ . (2.45)

As can be immediately seen, these states are described by 7 real parameters.
In particular we will be interested in the subset of X states with maximally mixed

marginals, i.e. those where the reduced density matrices for both qubits are the maxi-
mally mixed state:

ρ �
1
4

(
I2 +

∑
i

aiσi ⊗ σi

)
, (2.46)
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Figure 2.2: The Horodecki tetrahedron. On the axes are the three parameters ai of Eq. (2.46).
The four Bell states are at the vertices of a tetrahedron. The points of the tetrahedron are the Bell
diagonal states. The blue octahedron inside the tetrahedron is the set of separable states

where the real coefficients satisfy −1 ≤ ai ≤. These states are also know as Bell diagonal
states, because they can be parametrized as follows

ρ � c1 |Φ+〉 〈Φ+ | + c2 |Φ−〉 〈Φ− | + c3 |Ψ+〉 〈Ψ+ | + c4 |Ψ−〉 〈Ψ− | , (2.47)

where the real coefficients satisfy the conditions 0 ≤ ci ≤ 1 and
∑

i ci � 1. To go from one
parametrization to the other

c1 �
1
4
(1 + a1 − a2 + a3) (2.48)

c2 �
1
4
(1 − a1 + a2 + a3) (2.49)

c3 �
1
4
(1 + a1 + a2 − a3) (2.50)

c4 �
1
4
(1 − a1 − a2 − a3) . (2.51)

Bell diagonal states can be visualized in a 3D plot, known in the literature as the
Horodecki diagram. Using the parametrization (2.46), the Bell diagonal states lie at the
vertices of a tetrahedron, with the Bell states (2.44) on the vertices. The Horodecki
diagram is depicted in Fig. 2.2.

2.2 Quantum information and quantum correlations

The ultimate goal of quantum information theory is to determine how the peculiar
features of quantum systems can be exploited to store, process and transmit information
better than how it is possible with classical systems. The quantitative tools of quantum
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information theory are thus generalizations of the classical tools developed since the
foundation of classical information theory laid by Shannon in 1948. These involve,
among the others, measures of the amount of information contained in a quantum state,
and distance measures between states. In Subsection 2.2.1, we will in particular define
twodistancemeasures that are useful in our discussion, the trace distance and the fidelity.

The key feature of quantum systems that makes them so interesting for information
theory, is the presence of form of correlations that are not possible in classical systems.
A fundamental part of research is thus devoted to the study of how correlations between
the components of a system are different in the quantum regime compared to the clas-
sical one. The typical non-classical form of correlation is entanglement. It is the crucial
resource for a number of quantum-information-processing protocols, such as quantum
key distribution, teleportation, and superdense coding [2, 63]. Though it is quite simple
to define what an entangled state is, the characterization of the set of entangled states
is not an easy task, especially for mixed states. A number of criteria and measures of
entanglement have been proposed, but a general theory still lacks. Two-qubit systems,
however, are simple enough to allow a complete characterization. In Subsection 2.2.2
we describe negativity, a measure of entanglement for bipartite systems that is easy to
compute [64] and specialize it to the two-qubit case.

Despite being the most notable, entanglement is not the only form of quantum cor-
relations. Some composite systems can be prepared in states that are separable, but are
correlated in such a way that can’t be entirely described by classical probability theory.
In Subsection 2.2.3 we describe quantum discord, a measure of the amount of non-classical
correlations [65], and how it can be evaluated for two-qubit systems.

2.2.1 Distance measures in the Hilbert space

Trace distance

One central question in quantum information theory regards the distinguishability be-
tween two quantum states. How close are two quantum states in the state space? How
easy is it to discriminate between them with a quantum measurement? These are very
important tasks in information processing, for instance in quantum communication, or
to test the quality of quantum gates or quantum channels. Quantitative answers to these
questions are given by distance measures. A fewmeasures have been developed over the
years, with different operational meanings and classical counterparts. The most com-
monly employed quantities are the fidelity and the trace distance. In this subsection we
focus on the latter, as it will be used in Subsection 2.3.1 to define a measure of quantum
non-Markovianity.

The trace distance between two quantum states ρ1 and ρ2 is defined as

D(ρ1 , ρ2) �
1
2
‖ρ1 − ρ2‖ , (2.52)

where ‖A‖ � Tr
√

A†A is the trace normof a squarematrix. Thematrix
√

A†A is defined as
the positive semidefinite matrix B such that B2 � A†A. Being A†A a positive semidefinite
matrix, its square norm is well defined. In particular, since the density operators are
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Hermitian, Eq. (2.52) can also be written

D(ρ1 , ρ2) �
1
2

Tr
√
(ρ1 − ρ2)2 �

1
2

∑
i

|λi |, (2.53)

where λi are the eigenvalues of theHermitian, but not necessarily positivematrix ρ1−ρ2.
The trace distance has the properties of a metric distance, i.e.: it is zero if and only

if ρ1 � ρ2, it is symmetric and the triangle inequality holds: D(ρ1 , ρ3) ≤ D(ρ1 , ρ2) +
D(ρ2 , ρ3). Its maximum value of one is reached for states that have orthogonal sup-
ports. Moreover, it is preserved under unitary transformations, i.e. D(Uρ1U† ,Uρ2U†) �
D(ρ1 , ρ2) for any unitary operator U.

For qubits, the trace distance has a nice geometrical interpretation: it is half the
Euclidean distance in the Bloch representation. That is, if r1 and r2 are the Bloch vectors
of ρ1 and ρ2,

D(ρ1 , ρ2) �
‖r1 − r2‖

2
. (2.54)

The operational interpretation of the trace distance is related to the probability of
distinguishing the two states: Suppose that Alice prepares a quantum system in the state
ρ1 with probability 1/2 and in the state ρ2 with probability 1/2. She gives the states to
Bob, who performs a quantum measurement to discriminate between the two states. It
can be seen [66] that Bob can identify the state with maximum probability

Pmax �
1
2
[1 + D(ρ1 , ρ2)]. (2.55)

From Eq. (2.55) we can see that the limiting case of zero trace distance (i.e. ρ1 � ρ2) gives
a maximum probability Pmax � 1/2, meaning that any quantum measurement can’t be
better than randomly guessing between the two states. On the contrary, a trace distance
of one, gives a maximum probability of one, i.e. perfect discrimination between the
states.

Fidelity and the Bures distance

Another commonly employed distance measure is the fidelity [2], defined as

F (ρ, σ) � Tr
√√

ρσ
√
ρ, (2.56)

where ρ and σ are two quantum states. The fidelity is equal to one when ρ � σ and it is
zero for orthogonal states. For pure states, it coincides with the overlap between the two
states:

F (|ψ〉 , |ϕ〉) � Tr

√√
|ψ〉 〈ψ | |ϕ〉 〈ϕ |

√
|ψ〉 〈ψ | � | 〈ψ |ϕ〉 |. (2.57)

It is invariant under unitaries and it is monotonically decreasing under CPT maps

F (ρ, σ) � F (UρU† ,UσU†) (2.58)
F (ρ, σ) ≥ F (E(ρ), E(σ)). (2.59)
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Unlike the trace distance, the fidelity is not a metric distance, but we can introduce
the Bures distance, which is a function of the fidelity and is indeed a metric distance:

DB(ρ1 , ρ2) �
√

2(1 − F (ρ1 , ρ2)). (2.60)

The metric of the Bures distance is relevant in the field of quantum estimation theory,
as we will note ins Section 2.4.

2.2.2 Entanglement

Given the Hilbert spaceH � H1 ⊗ . . . ⊗Hn the pure state |ψ〉 ∈ H is entangled if it can’t
be written as a product state:

|ψ〉 , |ψ1〉 ⊗ . . . ⊗ |ψn〉 ∀ |ψi〉 ∈ Hi ; (2.61)

otherwise, the state is said to be separable.
We say that the mixed state ρ is separable if it can be written as a convex mixture of

product states, that is
ρ �

∑
i

piρ
i
1 ⊗ . . . ⊗ ρi

n , (2.62)

where the pis are probabilities (i.e. 0 ≤ pi ≤ 1 and
∑

pi
� 1) and ρi

m ∈ S(Hm). If this is
not possible then the state is entangled.

The physical meaning of Eq. (2.62) is that separable states may be prepared by using
only local operations and classical communications (LOCC). If the state is entangled,
this can’t be done, meaning that the correlations between the two systems are genuinely
quantum, and they have been created with a global quantum operation.

Despite the definition being quite simple, in general it is not an easy task to deter-
mine whether a state is separable or not. The set of separable states, in fact, does not
constitute a subspace of S(H) and the only mathematical characterization available is its
convexity. Many different criteria have been introduced that partially characterize the
set of entangled states for different Hilbert spaces. For two qubit systems, the charac-
terization is complete, thanks to the so-called positive partial transpose (PPT) criterion,
which provides a necessary condition for a state to be separable in a bipartite system.
This condition is also sufficient for 2 ⊗ 2 and 2 ⊗ 3 Hilbert spaces.

In the following we introduce the PPT criterion and negativity, a quantitative measure
of entanglement which we will employ in this thesis. We remark that besides negativity
there are other measures of entanglement that rely on different features of the states (a
thorough discussion of those measures and the relations between them can be found in
[63]). Nevertheless, we can concentrate on negativity because it is easy to compute and
it can be shown that in two-qubit systems all the measures are monotone functions with
respect to each other and thus equivalent in characterizing the states.

The PPT criterion The positive partial transpose criterion was introduced by Peres in
1996 as a necessary condition for a state to be separable in bipartite systems [67]. In the
same year, it was shown that the criterion was also a sufficient condition in 2⊗ 2 and 2⊗ 3



26 2.2 Quantum information and quantum correlations

Hilbert spaces [68]. If ρ is a bipartite density operator, the partial transposition map with
respect to system B is defined as

ρTB � (IA ⊗ TB)(ρ), (2.63)

where TB is the transposition map on the system B.
If we write

ρ �

∑
i jkl

p i j
kl |i〉〈 j | ⊗ |k〉〈l |, (2.64)

then, by applying the map (2.63), we get

ρTB �

∑
i jkl

p i j
kl |i〉〈 j | ⊗ |l〉〈k |. (2.65)

Obviously the partial transposition may be defined on system A too. Moreover,
ρTA � (ρTB )T . Specializing to two-qubit systems, if we write the density operator as a
block matrix

ρ �

(
ρ11 ρ12
ρ21 ρ22

)
, (2.66)

where the ρi js are 2 × 2 matrices, its partial transpose with respect to system B is

ρTB �

(
ρT

11 ρT
12

ρT
21 ρT

22

)
. (2.67)

The partial transpose of a Hermitian matrix is Hermitian, as can be easily checked.
However, the partial transpose of a density matrix is not, in general, a positive definite
matrix: some of its eigenvalues may be negative. It is on this fact that the PPT criterion
is based:

A necessary condition for the state ρ of a bipartite system H � HA ⊗ HB

to be separable is that its partial transpose has non-negative eigenvalues. If
dimHA � 2 and dimHB � 2 or 3 then the condition is also sufficient.

While the proof of the sufficiency of the PPT criterion is rather involved (see [68]), we can
easily show the necessity condition. If the state ρ ∈ H is separable, by definition it can
be written as

ρ �

∑
i

piρ
i
A ⊗ ρ

i
B . (2.68)

The partial transpose of ρ with respect to system B is thus simply

ρTB �

∑
i

piρ
i
A ⊗ (ρ

i
B)T , (2.69)

but since the transposition preserves the eigenvalues of a matrix, ρTB has the same
eigenvalues as ρ, which are non-negative by the definition of density operator.
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Figure 2.3: In green, surfaces of negativity 1
2 in the Horodecki diagram. The planes are parallel to

the faces of the octahedron of separable states.

Negativity The negativity is a quantitative version of the PPT criterion. It measures
the extent to which the partial transpose ρTB fails to be positive definite. Its advantage
compared to other measures of entanglement, is that it is easy to compute with linear
algebra and does not require any optimization procedure.

The negativity of a bipartite state ρ is defined as the quantity

N(ρ) �
‖ρTA ‖1 − 1

2
, (2.70)

where
‖A‖1 �

√
A†A (2.71)

is the trace norm of the matrix A.
When the matrix A is Hermitian, ‖A‖1 equals the sum of the absolute values of its

eigenvalues. Since ρTB is Hermitian and Tr(ρTB ) � Tr(ρ) � 1, we can rewrite (2.70) as

N(ρ) � 2

�����∑
i

λ−i

����� , (2.72)

where λ−i are the negative eigenvalues of ρTB . We thus see that N(ρ) � 0 if and only if the
eigenvalues of ρTB are all non-negative and hence ρ is separable, according to the PPT
criterion.

For entangled states, N(ρ) > 0. The maximum is achieved for maximally entangled
states, for which N(ρ) � 1. In the two-qubit case, the maximally entangled states are the
four Bell states and all the states that are obtained from them by a local change of basis.
In Fig. 2.3 we show how surfaces of equal negativity for Bell-state mixtures appear in
the Horodecki diagram. They are planes parallel to the surfaces of the octahedron of
separable states. The negativity of a point is proportional to its distance to the nearest
surface of the octahedron, with the maximum of 1 reached for pure Bell states.
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2.2.3 Quantum discord

Entanglement is certainly the most prominent example of quantum correlations, and it
had long been believed to be an essential feature for any quantum computing algorithm
to outperform its classical counterpart. This belief was also motivated by foundational
reasons: neither classical or quantum superpositions violate Bell’s inequalities and en-
tanglement is required to exceed the bound to correlations imposed by any local and
realist theory.

At the beginning of the 21st century some theoretical works started to cast doubt on
the fact that entanglement was the only form of non-classical correlations for a quantum
system. Ameasure of the difference between the total correlations and the classical corre-
lations was proposed in 2001 by Ollivier and Zurek [65] and was named quantum discord:
a system with non-zero quantum discord has correlations that cannot be accounted for
entirely classically, and this is can be seen as a signature that the subsystems are genuinely
quantum.

Remarkably, there are separable states that have a non-zero measure of quantum
discord, so this means that the quantumness of the system allows the existence of non-
classical correlations that are not related to entanglement. Whether these correlations
couldbe a resource for quantum informationprocessing is still an object of active research.
An operationalmeaning of discord has been shown for a number of quantum information
protocols [5, 6, 69].

In the following, we define quantum discord and see how it can be calculated for
two-qubit systems. Analytical formulae exist only for certain classes of two-qubit states,
while in general an optimization procedure is required.

We say that two systems are correlated if together they containmore information than
taken separately. We begin by considering a classical bipartite system, made of the two
subsystems A and B (measured by Alice and Bob).

Shannon entropy is a measure of the lack of information of a system, so we can define
the mutual information

I(A : B) ≡ H(A) + H(B) − H(AB) (2.73)

to be ameasure of the correlations of the systemAB. For classical variables, wemay apply
Bayes’s rule px |y � px y/py to obtain an equivalent definition of the mutual information

J(A : B) ≡ H(B) − H(B |A), (2.74)

which involves the conditional entropy, defined as

H(B |A) �
∑

a

paH(B |a) �
∑

a

pa

(
−

∑
b

pb |a log pb |a

)
, (2.75)

where the indices a and b denote the possible outcomes of the variables A and B,
respectively. Classically, I(A : B) and J(A : B) are thus two equivalent expressions
for the mutual information of the composite system AB.

For quantum systems, we can still define themutual information as in equation (2.73),
where the probability distributions are replaced by appropriate density matrices (ρA , ρB
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and ρAB) and Shannon entropy H is replaced by von Neumann entropy S:

I(A : B) ≡ S(A) + S(B) − S(AB). (2.76)

This captures the total correlations between the two subsystems A and B.
The same can’t be said for Eq. (2.74), because the expression S(B |A), introduced in

Eq. (2.74), is ambiguous. Unlike the classical case, there are many possible quantum
measurements that can be performed on system A to assign an actual “value” to it and
that affect its state differently. Let {Πi} be a projective measurement on A, where Πi

are projection operators such that
∑

i Πi � I and i labels the possible outcomes of the
measurement. In the following, we identify Π with Π ⊗ I when it is acting on the whole
system.

After the measurement, with unknown result, the state ρAB is transformed to

ρ′AB �

∑
i

ΠiρABΠi . (2.77)

Alice observes the outcome i with probability pi � Tr(ΠiρAB) andBob has the conditional
state ρB |i � TrA(ΠiρAB)/pi . We can then define the quantum analog of Eq. (2.75),

S(B |{Πi}) ≡
∑

i

piS(ρB |i), (2.78)

and thus introduce the classical correlations

J(A : B){Πi } ≡ S(B) − S(B |{Πi}). (2.79)

To define a measure of the total classical correlations which is independent of the chosen
measurement, wemaximize the conditional entropy over all possible projectivemeasure-
ments:

J(A : B) ≡ max
{Πi }

[
J(A : B){Πi }

]
� S(B) −min

{Πi }
S(B |{Πi}). (2.80)

These are the ingredients for the definition of quantum discord, which we state below:

We define quantum discord to be the difference between the total correlations
(2.76) of the quantum bipartite system AB and the classical correlations (2.80),
that is

D(B |A) ≡ I(A : B) − J(A : B) � min
{Πi }

S(B |{Πi}) + S(A) − S(AB), (2.81)

where S(X) is the von Neumann entropy of system X,

S(B |{Πi}) �
∑

i

piS(ρB |i) �
∑

i

Tr(ΠiρAB)S
[

TrA(ΠiρAB)
Tr(ΠiρAB)

]
, (2.82)

and the minimization is carried over all possible projective measurements on
the system A.

With this definition, quantum discord has the following properties:
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1. It is not symmetric in general: D(B |A) , D(A|B). This is a direct consequence of
the fact that conditional entropy is not symmetric.

2. It is non-negative,D ≥ 0, as a consequence of the convexity of conditional entropy.

3. It is invariant under local unitary operations. This means that it is the same
for the state ρAB and the state (UA ⊗ UB)ρAB(UA ⊗ UB)† where UA and UB are
unitary operators acting locally on A and B, respectively. Indeed, von Neumann
entropy is invariant under unitary transformations and the result obtained from
the measurement {Πi} on the state ρAB can be obtained from the measurement
{UAΠiU†A} on its transformed state.

4. It is upper bounded by the entropy of the measured subsystem: D(B |A) ≤ S(A).
For a two-qubit system, this impliesD(B |A) ≤ 1.

In order to better understand the kind of correlations described by quantum discord
we report the form of the states with vanishing discord for both the parties A and B,
which are also called classical states:

ρ �

∑
i j

pi j |θi〉 〈θj | ⊗ |η j〉 〈η j | , (2.83)

where |θi〉 and |η j〉 are orthonormal bases of system A and B, respectively, and pi j is a
joint probability distribution for the indices i , j.

2.2.4 Quantum discord for a two-qubit system

As can be seen from Eq. (2.81), an optimization procedure is required to calculate quan-
tum discord. This is a hard task in general, and only in a few specific cases the optimal
measurement can be found analytically. An explicit formula cannot be found even for a
general two-qubit state (which is characterized by 15 real parameters). However, there
are analytical results for specific classes of states. In particular we are interested in the
formula for states with maximally mixed marginals, proved by Luo [70]. We will use this
result in the following chapters, so a brief review is in order.

We defined the Bell diagonal states in Eq. (2.46), with the parameters ai . The total
correlations (2.73) can be evaluated easily: since S(ρA) � S(ρB) � 1,we have

I(A : B) � S(ρA) + S(ρB) − S(ρAB) � 2 +

4∑
i�1

λi log λi , (2.84)

where λi are the eigenvalues of ρ and are equal to the coefficients ci of Eq. (2.47).
The classical correlations (2.80) can be maximized analytically and one finds [70] that

J(A : B) � 1 + a
2

log(1 + a) + 1 − a
2

log(1 − a), (2.85)
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(a)D � 0 (b)D � 0.01 (c)D � 0.1

Figure 2.4: (a) Zero-discord states and (b-c) Surfaces of equal discord in the Bell diagonal state
tetrahedron.

where a � max(|a1 |, |a2 |, |a3 |). Thus we can write the analytical expression for the
quantum discord

D(B |A) � I(A : B) − J(A : B) �

� 2 +

∑
i

ci log ci −
1 + a

2
log(1 + a) − 1 − a

2
log(1 − a). (2.86)

Finally, we note that for Bell diagonal states quantum discord is symmetric, i.e.
D(B |A) � D(A|B) ≡ D(AB).

States with zero quantum discord It can be shown [71] that most of the states in the
Hilbert space have non-zero quantum discord, that is, the set of states with only classical
correlations hasmeasure zero and is nowhere dense in theHilbert space. Thismeans that
most of the separable states have non-classical correlations, even if they aren’t entangled.

Even though it is difficult to calculate quantumdiscord, some criteria have been found
for identifying zero-discord states, also known as classical states [72]. Using any of these
criteriawe can easily find the classical states for two-qubit systemswithmaximallymixed
marginals. In the Bloch diagonal form, Eq. (2.46), they have two of the three coefficients
ai equal to zero, hence in the Horodecki diagram they lie on the cartesian axes inside the
tetrahedron (see Fig. 2.4a). The classical states are of course separable states.

In Figure 2.4 we also show the surfaces of equal discord in the Horodecki diagram
for two values of discord. The surfaces appear as intersecting tubes that enclose the axes
a1 � 0, a2 � 0 and a3 � 0: for increasing values of the discord they get closer to the Bell
states, while for vanishing discord they collapse to the three axes.

2.3 Open quantum systems

We have seen in Subsection 2.1.1 that one of the postulates of quantum mechanics states
that the evolution of closed, isolated quantum systems is described by unitary opera-
tions. As discussed in the Introduction, however, most systems of interest in quantum
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ρS(0)⊗ρE

ℰ(ρS(0))

U(ρS(0)⊗ρE)U

ρS(0)

Unitary map

TrE

CPT map

TrE

Figure 2.5: A commutative diagram showing the dynamics of a open quantum system. The initial
state is a tensor product between the initial state of the system ρS(0) and the initial state of the
environment ρE (top left corner). By following the solid arrows, we first apply a unitary evolution
to both the system and environment. To obtain the state ρS(t)we apply a partial trace with respect
to the environment. By following the dashed arrows, we trace out the environment from the
beginning, then we apply a completely positive and trace preserving map E to ρS(0).

technologies can not be considered isolated or closed, because they interact with the
surrounding environment. This interaction is often too relevant to be neglected, and
hence the theory above fails at giving a proper description of the quantum dynamics.

The theory of open quantum systemswas developed to address the problem of describ-
ing the dynamics of a system interacting with its environment. The starting point is
to consider the system, which we label S, and its environment E, as two subparts of a
global quantum system, S+E that can be considered closed and isolated. We thus have a
state spaceH � HS ⊗HE. The global system undergoes unitary evolution, as prescribed
by the postulates of quantum mechanics, but it can be seen that the state of the system
S undergoes a different dynamics, that is described by a more general quantum map
E : S(HS) → S(HS) so that, if ρS is the initial state of the system,

ρ′S � E(ρS) (2.87)

is the final state. The map E is also called quantum channel or quantum operation and must
have a few properties that ensure that the final state ρ′S is still a valid density operator. E
must be

• Convex-linear on the set of density operators: E(∑i piρi) �
∑

i piE(ρi), where ρi ∈
S(H) and ∑

i pi � 1.

• Completely positive. E(ρS)must be a positive operator for any operator ρS of the sys-
tem S and, moreover, if we introduce a second system R, with arbitrary dimension,
then state (I ⊗ E)(ρ) is positive for any density operator ρ of the composite system
S + R, where I is the identity operation on the system R.

• Trace-preserving: Tr[E(ρS)] � 1, i.e. the final state must be a proper, normalized
density matrix.1

1 This property can be relaxed if we consider quantum maps that involve measurements, but we are not
interested in this scenario, and we refer the reader to [2] for further details.
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Aquantummapwith the above properties naturally arises by considering the unitary
dynamics of the global system S+E, described by the unitary operatorU, and then tracing
out the environment E:

E(ρS) � TrE[UρSEU†]. (2.88)
Usually the initial state of the global system is assumed to be factorized, i.e. ρSE � ρS⊗ρE.

Awayof representingquantummaps that ismuch relevant to the followingdiscussion
is the Kraus representation, or operator-sum representation. According to Kraus theorem,
a map E has the above properties if and only if it can be written as

E(ρ) �
∑

i

EiρE†i , (2.89)

where the Kraus operators Ei satisfy the completeness relation∑
i

E†i Ei � I, (2.90)

which ensures that the output state has unit trace: Tr[E(ρ)] � 1.
Notice that Eq. (2.89) is equivalent to (2.88). Indeed, assume that the initial state is

ρSE � ρS ⊗ |e0〉 〈e0 |, where |e0〉 is a state belonging to some orthonormal basis {ek} of the
environment. Then we can write the partial trace in Eq. (2.88) explicitly to obtain

E(ρS) �
∑

k

〈ek |U(ρS ⊗ |e0〉 〈e0 |)U† |ek〉 (2.91)

�

∑
k

EkρSE†k , (2.92)

where we define the operators Ek ≡ 〈ek |U |e0〉, acting on the principal system S. It is evi-
dent that the Eks satisfy the completeness relation:

∑
k E†kEk �

∑
k 〈e0 |U† |ek〉 〈ek |U |e0〉 �

〈e0 |U†U |e0〉 � 〈e0 |ISE |e0〉 � IS, where we used the unitarity of U and the completeness
of the basis {ek}. The assumption of a pure initial state for the environment does not
involve a loss of generality, since, if ρE were mixed, we would be allowed to consider a
bigger environment where, by purification, the initial state was pure, without affecting
the dynamics of the principal system.

We have introduced above a quantum map E that does not depend on time, i.e. it
describes the output of an operation. If we are interested in the time evolution of the
principal system, we need a family of quantummaps parametrized by the time t ≥ 0: Et ,
where Et�0 is obviously the identity.

Adescription of the time evolution of an open quantum system that is complementary
to that of quantum operations involves a differential equation for the density operator,
that generalizes the Liouville-vonNeumann equation (2.25), and that is generally referred
to as the master equation:

dρS

dt
� − i

~
[HS(t), ρS] +D[ρS]. (2.93)

The termD[ρS], called dissipator, is a superoperator added to the equation that accounts
for the non-unitary evolution of the system. The form of the dissipator depends on the
specific physical model that one intends to describe. Awide body of literature is devoted
to the microscopic derivation of master equations for a variety of quantum systems.
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2.3.1 Quantum non-Markovianity

An important class of master equations is the Gorini-Kossakowski-Sudarshan-Lindblad [73–
75] form2

dρS

dt
� −i[HS(t), ρS(t)] +

∑
k

γk(t)
[
Vk(t)ρS(t)V†k (t) −

1
2

{
V†k (t)Vk(t), ρS(t)

}]
, (2.94)

where γk(t) ≥ 0 and the Vk(t) are called Lindblad operators. The curly brackets denote
the anti-commutator: {A, B} � AB + BA.

Eq. (2.94) describes the most general quantum dynamics that allows the definition of
a divisible quantum map. Divisibility is the property of a completely positive quantum
map to satisfy the composition law

E(t3 , t1) � E(t3 , t2)E(t2 , t1), (2.95)

with E(t3 , t2) and E(t2 , t1) completely positive for any t3 ≥ t2 ≥ t1. Here E(t′, t) denotes
the map that describes the dynamics of the system from time t to time t′.

The main feature of a divisible map is the absence of memory effects. Eq. (2.95)
tells us that the evolution of the system depends only on its current state, and not on
its previous evolution. We have seen in Chapter 1) that this concept, in the theory of
classical stochastic processes, is known as Markovianity.

Although in classical probability theory the notion of a Markovian process is well
defined, its quantum generalization is not straightforward, as it is based on concepts
of classical probability that can’t be applied in quantum mechanics, essentially because
of the disturbance caused by the measurement process. The Lindblad master equation
(2.94) is one of the possible approaches that are followed in the literature, but there are
other non-equivalentways of definingMarkovianity (e.g. algebraic definition, semigroup
property) for quantum processes and it is object of active research and debate, as can be
seen in recent reviews on the topic [8, 10].

Proving the divisibility of a quantummap is a very difficult task in general, especially
when the full analytic form of the map is missing. A large body of research work in this
field is thus devoted to detecting and quantifying the “degree” of non-Markovianity of
a quantum process, by providing witnesses and measures that are non-zero when the
quantum process is non-Markovian. Most of these measures are reviewed in [10]. In this
thesis, we focus on the BLP measure [76], one of the most used in the literature, based
on the exchange of information between the open system and its environment, and on
the divisibility of the dynamical map describing the open system’s time evolution, and
the RHP measure [77], based on the entanglement between the quantum system and an
ancillary system.

2.3.2 The BLP measure

The BLP measure, introduced in 2009 by Breuer, Laine and Piilo [76], is based on the
idea that memory effects in the dynamics of open systems are linked to the exchange of

2Equation (2.94) is actually a generalization of theGorini-Kossakowski-Sudarshan-Lindblad equation,which
originally features time independent Hamiltonian HS , decay rates γk and Lindblad operators Vk .
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information between the open system and its environment: while in aMarkovian process
the open system continuously loses information to the environment, a non-Markovian
process is characterized by a flow of information from the environment back into the
open system.

Formally, the BLP measure looks at how the distinguishability between states of
the open quantum system is affected by its interaction with the environment. If the
distinguishability between two different initial states of the system decays in time, it
means that information is lost to the environment and vice versa.

To quantify the distinguishability between states, the BLPmeasure considers the trace
distance, that we defined in Subsection 2.2.1. We already stated that the trace distance
has an operational interpretation related to the probability of error in the discrimination
between two different quantum states. Moreover it has another property that is relevant
to our discussion: it is contractive under the action of completely positive maps, i. e.

D(ρ1 , ρ2) ≥ D
(
E(ρ1), E(ρ2)

)
(2.96)

for any map E and for any pair of states ρ1 and ρ2. The proof is quite easy and can
be found on [2]. Equation (2.96) means that no quantum operation can increase the
distinguishability between a pair of quantum states.

If a quantum evolution is Markovian, its divisibility property, Eq. (2.95), implies that
at any intermediate time between the initial and final time, the map can be split into two
completely positive maps, for which the trace distance is contractive. It follows that the
trace distance between two states of the systems must be less or equal than the initial
one, i.e. it must be monotonically decreasing in time.

But if a quantum map is non-Markovian, Eq. (2.95) does not hold, meaning that the
intermediate evolution steps are not completely positive: thus, the trace distance between
two different states is allowed to have a non-monotonic behavior.

To be quantitative, let us consider two initial states of the system ρ1 and ρ2 and let
us write ρi(t) � Et ,0(ρi). In view of the above discussion, the rate of change of the trace
distance

σρ1 ,ρ2(t) �
d
dt

D(ρ1(t), ρ2(t)) (2.97)

is zero or negative for a Markovian quantum map, while it can be temporarily positive
for a non-Markovian one. When σρ1 ,ρ2(t) > 0, the distinguishability between ρ1(t) and
ρ2(t) is increasing, meaning that there is a temporary backflow of information from the
environment to the principal system.

The BLP measure is then defined as

NBLP � max
(ρ1 ,ρ2)

∫
σ>0

dtσρ1 ,ρ2(t). (2.98)

The time integral is over all the intervals in which σρ1 ,ρ2(t) > 0. The maximum is taken
over all pairs of states, because we wantNBLP to be a property of the quantum map.

Whenever NBLP > 0, the quantum map E is non-Markovian. On the other hand,
NBLP � 0 is a necessary, but not sufficient condition for E to be Markovian [78].

Besides the fact that it is not sufficient to prove theMarkovianity of a quantumprocess,
the BLP measure has another drawback: it is, in general, not easy to evaluate. To obtain
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NBLP, an optimization over the whole state space S(HS) is required. It has been shown
[79] that the states of the optimal pair must lie on the boundary of S(HS) (but need not
be pure) and that they must be orthogonal. Although this result greatly reduces the
number of free parameters to optimize over, it remains a challenging task for any system
of more than a few qubits.

2.3.3 The RHP measure

Rivas, Huelga and Plenio introduced thismeasure of non-Markovianity in [77]. Consider
the quantum system of interest S, and an identical ancillary system A. We prepare the
two system in the maximally entangled state

|ψ〉 � 1√
N

N∑
n�1
|n〉S |n〉A , (2.99)

where |n〉 are the vectors of a basis of the Hilbert space of the system. We now let
the system S interact with the environment, while the ancilla A is left untouched, and
evaluate the entanglement of the state |ψ(t)〉. Since any entanglement measure is a
monotone under local CP maps, any increase of an entanglement measure with time
denotes that the dynamical map fails to be divisible, i.e. that it is non-Markovian. The
RHP is defined quantitatively as

NRHP �

∫ t f

t0

����dN(t)
dt

���� , (2.100)

where N(t) is any entanglement measure (in our case, the negativity).
The advantage of NRHP over NBLP is that no optimization over the initial pair of states

is required, at the cost of increasing the size of the system. The RHP measure, however,
maintains the same drawback as the BLP in thatNRHP � 0 is a necessary, but not sufficient
condition for the Markovianity of the quantummap. In fact, Ref. [77] introduces another
measure that is a necessary and sufficient condition for the non-Markovianity of the
quantum map, based on the Choi-Jamiolkowski isomorphism [80, 81]. However, to
compute this measure one needs to know the structural form of the dynamical map
between any two time instants, which is not the case for our processes.

2.4 Quantum estimation theory

In Subsection 2.1.1 we have discussed measurements in quantummechanics. If we want
to determine the value of a physical observable, we have to implement the corresponding
projective measurement and then collect data from repeated experiments in order to
evaluate the expected value.

Several quantities of interest in quantum information theory, however, do not corre-
spond to quantum observables and thus can not bemeasured directly. In these situations
one has to infer their value indirectly, by inspecting a set of data coming from the mea-
surement of a different observable, or a set of observables. The analytical tools to find the
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optimal measurement strategies and the bound to the achievable precision are provided
by the framework of quantum estimation theory (QET).

Broadly speaking, one can think of two estimation strategies: a global strategy, where
one seeks the best performance in the estimation of the parameter, averaged over all
its possible values, and a local strategy, where one wants the best performance at a
fixed value of the parameter. Intuitively, one expects local QET to give better results,
as the optimization of the estimation procedure is made around a specific value of the
parameter, but the POVM will depend on that specific value. A local estimation scheme
must thus be based on some prior knowledge of the parameter. Typically, this knowledge
comes from a theoretical prediction, a previous global estimation of the parameter, or an
adaptive feedback mechanism where the result of a round of estimation is used as local
value for the next round [82].

In this section we quickly review local QET [83–85], which looks for the POVM that
minimizes the variance of the estimator as a function of the value of the parameter.
The theory applies in general to the simultaneous estimation of an arbitrary number of
parameters. Here we restrict for simplicity to the estimation of a single parameter.

Classical estimation theory First, let us start with a classical setting. Let us assume
that we are interested in the estimation of a single parameter, having a true value λ. We
make repeated experiments on the system and collect a set of data {x1 , . . . , xM). We now
define an estimator, i.e. a function from the set ξ of measurement outcomes to the space
of parameters:

λ̂ � λ(x1 , . . . , xn). (2.101)

We denote by V(λ̂) the mean square error of the estimator, i.e.

V(λ̂) � E
[
(λ̂ − λ)2

]
, (2.102)

where E [X] is the expected value, or mean, of the random variable X.
We say that λ̂ is an unbiased estimator if its expected value is equal to the true value

of the parameter: E
[
λ̂
]
� λ. Hence, for an unbiased estimator, the MSE is equal to the

variance σ2(λ̂) � E
[ (
λ̂ − E

[
λ̂
] )2

]
. The lower the variance, the better the precision of the

estimation process, since it will tend to have values concentrated around the true value
of the parameter.

The variance, however, has a lower bound given by theCramér-Rao theorem [86], which
states that, for any unbiased estimator λ̂,

V(λ̂) ≥ 1
MF(λ) , (2.103)

where M is the number of values in the data sample. F(λ) is the Fisher information (FI):

F(λ) �
∫

dxp(x |λ)
[
∂λ log p(x |λ)

]2
�

∫
dx

[
∂λp(x |λ)

]2

p(x |λ) , (2.104)

where ∂λ is the derivative with respect to λ. In Equation (2.104), known as the Cramér-
Rao (CR) bound, p(x |λ) is the conditional probability of having the outcome x from an
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experiment, given the value of λ, and the integration is over all the possible outcomes.
The proof of the CR bound can be found, for instance, in [87].

An estimator for which the equality in Eq. (2.103) holds is said to be efficient. The
existence of an efficient estimator is guaranteed only for particular statistical models and
particular choices of parametrization. However it is known that maximum-likelihood
and Bayesian estimators are efficient asymptotically, i.e., when M → ∞ [87]. At the
end of this section we will briefly discuss the Bayesian estimator, that we will employ in
Chapter 5.

Quantum Fisher information The above discussion regards a general estimation prob-
lem with a set of classical data. In the quantum scenario, the data is collected through a
quantum measurement on the state of the system, which depends on the parameter. We
thus have a family of quantum states ρλ, i.e. a manifold in the set of states S(H).

If {Ex} is a POVM, the conditional probability reads p(x |λ) � Tr[ρλEx]. Thus the FI
(2.104) reads

F(λ) �
∫

dx

(
∂λ Tr[ρλEx]

)2

Tr[ρλEx]
. (2.105)

Upon introducing the symmetric logarithmic derivative (SLD) Lλ as the self-adjoint
operator satisfying the differential equation

∂λρλ �
Lλρλ + ρλLλ

2
, (2.106)

we have
∂λp(x |λ) � Tr[∂λρλEx] � Re(Tr[ρλExLλ]), (2.107)

where we have used the cyclic property of the trace and the Hermiticity of the operators.
Equation (2.105) now reads

F(λ) �
∫

dx

(
Re Tr[ρλExLλ]

)2

Tr[ρλEx]
. (2.108)

Thus, for a given quantum measurement {Ex}, Eqs. (2.103) and (2.108) give the
classical bound to the precision achieved by proper data processing.

The FI can be optimized over all possible POVMs to obtain the quantum bound to
the precision achievable in the estimation of the parameter λ. This maximization can be
carried out analytically3 [90] (see also [85]) and one finds that the F is bounded by the
so-called quantum Fisher information (QFI)

Q(λ) ≡ Tr[ρλL2
λ] ≥ F(λ). (2.109)

The ultimate bound to the precision achievable in the estimation of the parameter λ
in a quantum system is thus given by the quantum Cramér-Rao bound

V(λ) ≥ 1
MQ(λ) . (2.110)

3We have recently shown, however, that the maximization does not hold if the POVM does intrinsically
depend on the parameter λ, or if the measure of the sample space depends on the parameter [88, 89]. This is
however not relevant for the estimation problems discussed in this thesis.
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The bound above does not depend on the measurement, but only on the geometric
structure of the manifold ρλ. Moreover it is saturable: there exists a quantum measure-
ment for which the FI (2.105) equals the QFI (2.109). The optimal measurement is made
by the set of projectors onto the eigenstates of the SLD Lλ [85].

To obtain the value of Q(λ) we need to find the SLD operator. Equation (2.106) is a
Lyapunov matrix equation, which admits the solution

Lλ � 2
∫ ∞

0
dte−ρλ t∂λρλe−ρλ t . (2.111)

In the basis of eigenstates of the density matrix, ρλ �
∑

n ρn |ψn〉 〈ψn |, we have

Lλ � 2
∑
nm

〈ψm |∂λρλ |ψn〉
ρn + ρm

|ψm〉 〈ψn | , (2.112)

where the sum includes only terms where ρn + ρm , 0. It follows that the quantum
Fisher information is

Q(λ) � 2
∑
nm

| 〈ψm |∂λρλ |ψn〉 |2
ρn + ρm

. (2.113)

An alternative expression for the QFI, which will be useful later, can be obtained by
writing ∂λρλ explicitly:

∂λρλ �

∑
n

[
∂λρn |ψn〉 〈ψn | + ρn

(
|∂λψn〉 〈ψn | + |ψn〉 〈∂λψn |

) ]
. (2.114)

Here |∂λψn〉 �
∑

i ∂λψni(λ) |i〉, where ψni(λ) are the coefficients of ψn with respect to
an orthonormal basis {|i〉} that is independent of λ. From the orthonormality relation
〈ψn |ψm〉 � δnm it follows that

∂λ 〈ψn |ψm〉 � 〈∂λψn |ψm〉 + 〈ψn |∂λψm〉 � 0 (2.115)

and therefore Re 〈∂λψn |ψn〉 � 0 and 〈∂λψn |ψm〉 � − 〈ψn |∂λψm〉. By plugging Eq. (2.114)
into Eq. (2.113) and using the above identities, we obtain

Q(λ) �
∑

n

∂λρ2
n

ρn
+ 2

∑
nm

(ρn − ρm)2
ρn + ρm

| 〈ψm |∂λψn〉 |2. (2.116)

Equation (2.116) shows explicitly that the QFI consists of two contributions. The first
contribution comes from the classical probability distribution, i.e. from the eigenvalues
of the density operator ρλ. The second contribution is genuinely quantum, as it comes
from the dependence of the eigenvectors on the parameters λ. If the latter contribution
vanishes, we recover the classical FI, Eq. (2.104).

A figure of merit that is often used in place of the QFI is the quantum signal-to-noise
ratio (QSNR)

R(λ) � λ2Q(λ). (2.117)

R(λ) is a dimensionless quantity and thus gives an indication of the estimability of the
parameter that is independent of its magnitude.
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In Subsection 2.2.1we introduced the Bures distance. We can know show its link to the
quantum Fisher information, and create an interesting link to the information-theoretical
content of the latter to the geometrical meaning of the former. Indeed, the family of states
ρλ parametrized by λ (or a vector λ of parameters) is a differentiable manifold in the set
of quantum states. The Bures distance is Riemannian, and thus we can define its metric
on the manifold ρλ:

ds2
B � D2

B(ρλ , ρλ+dλ) � gB dλ2. (2.118)

By explicit evaluation of the Bures distance, one finds that the QFI is proportional to the
metric tensor (in the single parameter case just a number) of the Bures metric [85]

Q(λ) � 4gB . (2.119)

Equation (2.119) gives a geometric interpretation of the QFI: the bigger Q(λ), the
farther apart (in the Bures distance sense) the quantum state is sent by a small variation
of the parameter λ, and thus the easier it will be to statistically distinguish between the
values λ and λ + dλ.

Bayesian estimator We finally describe an estimator that is commonly used in actual
inference tasks, the Bayesian estimator. We have said that, with maximum-likelihood
estimators, Bayesian estimators are known to be asymptotically efficient, i.e. they allow
to saturate the Cramér-Rao bound for a sufficiently high dimension of the data set. In the
Bayesian approach, the unknown parameter λ is treated like a random variable, with an
associated probability distribution that is conditioned by experimental data.

Bayes’s rule states that

p(x |y) �
p(y |x)p(x)

p(y) . (2.120)

This comes from the fact that the joint probability p(x , y) for two random variables is
related to the conditional probability by p(x , y) � p(x |y)p(y), but the joint probability is
symmetric under the exchange of variables: p(x , y) � p(y , x).

Now, consider a set ofdataΩ � {xi}Mi�1, obtained fromM measurements of the random
variable X, depending on the parameter λ. If we label with p(Ω|λ) the probability of
obtaining the set of data Ωwhen the true value of the parameter is λ, Bayes’s rule states
that

p(λ |Ω) �
p(Ω|λ)p(λ)∫

Λ
p(Ω|λ′)p(λ′)dλ′

, (2.121)

where Λ is the set of possible value of λ. p(λ) is called the a priori distribution of
the parameter, and expresses our initial guess about λ, and p(λ |Ω) is the a posteriori
distribution, that represents our knowledge of the parameter once we observed the data
Ω.

We define the Bayesian estimator as the mean of the posterior distribution p(λ |Ω):

λ̂B �

∫
Λ

λp(λ |Ω)dλ. (2.122)
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The variance of the Bayesian estimator quantifies its precision:

σ2(λ̂B) �
∫
Λ

[λ − λ̂B]2p(λ |Ω)dλ. (2.123)

Summary

• The formalism of density matrices allows a complete description of state of a quan-
tum system, its evolution and the effects of quantum measurements. Moreover,
it allows us to describe a quantum system that is interacting with the surround-
ing environment, by means of completely positive and trace preserving maps or
quantum master equations

• Quantum correlations are a resource for quantum information processing. Entan-
glement is the most important form of quantum correlations. Entangled states
cannot be generated using a LOCC scheme and are mathematically defined as
non-separable states. However, quantum discord describes a more general kind of
quantum correlations, that can be found also in separable states.

• While a definition of Markovianity for classical stochastic processes is well known,
its generalization to the quantum case is not straightforward, and is subject of de-
bate and research. A number of different measures have been introduced, based
on different concepts. The BLP measure, links the non-Markovianity to a regrowth
in the distinguishability between two different states of the quantum system, inter-
preting it as a backflow of information from the environment. The RHP measure
uses a similar idea, but is based on the entanglement between the system and an
ancillary system that does not evolve in time.

• Quantum estimation theory provides the tools to determine the precision of the
estimation of a non-observable parameter of the system through quantummeasure-
ment. Themost important quantity in QET is the quantum Fisher information, that
is themaximumof the Fisher informationwith respect to all possible quantummea-
surements, giving, through the quantum Cramér-Rao bound, the ultimate limit to
precision. The Bayesian estimator saturates the Cramér-Rao bound asymptotically.





Chapter 3

Dynamics of qubit systems affected by classical noise

In this chapter we address the dynamics of qubit systems interacting with a classical
environment. We start in Section 3.1 with a general discussion of the formal description
of such dynamics. Then, we describe known analytical results for the interaction of
qubits with longitudinal noise in Section 3.2, and with transverse noise in Section 3.3. In
both cases, we discuss the dynamics of quantum correlations, by analyzing in particular
negativity and quantum discord, introduced in Section 2.2. Finally, in Section 3.4 we
address the non-Markovianity of the quantum dynamics by evaluating the BLP and RHP
measures defined in Subsection 2.3.1.

3.1 Interaction with a classical environment

In quantum mechanics, the interaction of a system with the environment is described
by means of quantum operations, as we discussed in Section 2.3. The system H and
the environment Henv are considered as one closed system H ⊗ Henv which undergoes
unitary evolution, then, to obtain the state ρ of the system after the interaction, we take
the partial trace with respect to the environment:

E(ρ) � Trenv[U(ρ ⊗ ρenv)U†] (3.1)

where ρenv is the initial state of the environment and U is a unitary operator.
If we want to treat the environment classically, then the partial trace must be replaced

by its classical counterpart, the marginal distribution. The coupling to the environment
is described by an interaction Hamiltonian which is a functional of a stochastic process
B(t). The total Hamiltonian reads

H[B(t)] � H0(t) + HI[B(t)], (3.2)

where H0(t) is the Hamiltonian of the system and HI[B(t)] describes the interaction
between the system and the environment.

For a given realization of the stochastic process B(t), the unitary operator describing
the evolution in the time interval [0, t] is the general solution to the Schrödinger equation
(2.6)

U[B(t)] � T exp
[
−i

∫ t

0
dt′ H[B(t′)]

]
, (3.3)
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where T is the time ordering operator. To obtain the actual evolution of the system, we
must average over all the possible histories of the stochastic field. The map describing
the evolution of the density operator is thus

E(ρ) �
∫
D[B(t)]P[B(t)]U[B(t)]ρU†[B(t)]. (3.4)

Here, the functional integral is over all the possible histories of the stochastic process
B(t), weighted by the probability functional P[B(t)], which of course must satisfy the
relation ∫

D[B(t)]P[B(t)] � 1. (3.5)

In the following, we will use the more compact notation

E
[

f [B(t)]
]
≡

∫
D[B(t)]P[B(t)] f [B(t)] (3.6)

to indicate that a certain quantity must be calculated by averaging over all possible
histories of the field.

In this way, we have defined a quantum map E that acts on the states of the systems
according to the equation

E(ρ) � E
[
UρU†

]
(3.7)

and is a CPT map. Indeed Eq. (3.7) is a Kraus decomposition where the sum is replaced
by the functional integral over the histories of the field and the Kraus operators satisfy
Eq. (2.90) because of the unitarity of U and the normalization condition (3.5).

We now consider a qubit interacting with a classical environment, described with the
method above. We consider the following stochastic Hamiltonian

H(t) � H0 + HI[B(t)] � ω0σz + νB(t) · σ , (3.8)

where we set ~ � 1, as we will do hereafter. The choice of the z axis is completely
arbitrary. By giving the appropriate meaning to the energy ω0 and coupling term ν, H
can describe many different physical systems, like a half-spin particle in a magnetic field
directed along the z axis, a Josephson qubit [59] or a semiconducting qubit [91].

The interaction Hamiltonian HI � νB(t) · σ depends on the stochastic variable B(t),
and the resulting map is to be obtained with Eqs. (3.3) and (3.7). In general, an analytical
solution for the quantum map EB(t) can not be obtained, because H[B(t)] does not
commute with itself at different times, because of the algebra of the Pauli matrices and
the time dependence of HI . Analytical solutions are possible only in special cases.

We will also consider two-qubit systems, to study the effects of classical noise on
quantum correlations. The prototype Hamiltonian is that of two non-interacting qubits,
each of them under the effect of a classical noise:

H � H1(t) ⊗ I2 + I1 ⊗ H2(t), (3.9)

where I1 and I2 are the identity operators for the first and second qubit, and

Hi(t) � ω0σ
(i)
z + νB i(t) · σ(i). (3.10)
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The stochastic processes B1(t) and B2(t) can be completely uncorrelated or they can have
some sort of correlations. The former case presents itself when the two qubits interact
with independent environments, i.e. they are sent through different noisy channels, or
they are separated enough that they interact with different degrees of freedom of the
environment. In the opposite scenario, the two qubits interactwith a common environment,
that is, with a single stochastic field B(t) � B1(t) � B2(t).

3.2 Analytical results for longitudinal noise

One case where the analytical solution is always available, at least when the probability
distribution of the noise phase (1.13) is known, is the longitudinal noise, that is, when B(t)
is directed along the z axis. Longitudinal noise has been addressed by many authors.
Here we review the solutions for the dynamics and the features of the quantum map
resulting from the interaction (see [20] and refs. therein), and present some original
contributions [92, 93].

In the case of longitudinal noise the Hamiltonian reads

H � (ω0 + νB(t))σz . (3.11)

We assume that E [B(t)] � 0: the action of the noise term is thus that of perturbing the
energy of the qubit from its value ω0. Obviously, H in (3.11) does commute with itself at
different times, so we can write the evolution operator explicitly

U[B(t)] � exp
[
−i

∫ t

0
H[B(t)]dt

]
� exp

[
−i(ω0t + νφ(t))σz

]
, (3.12)

where φ(t) �
∫ t

0 B(t′)dt′ is the noise phase, defined in Eq. (1.13). Thus the evolution
map for the qubit system, reads

E(ρ) � E
[
U[B(t)]ρU†[B(t)]

]
�

�

(
ρ11 e−2iω0tE

[
e−2νiφ(t)] ρ12

e2iω0tE
[
e2νiφ(t)] ρ∗12 ρ22

)
. (3.13)

We can move to a frame rotating at the frequency ω0 around the z axis (i.e. apply the
unitary Uω0 � exp[−iω0σz t]) to get rid of the terms e±2iω0t . The quantities E

[
e±2νiφ(t)]

are the characteristic function of the noise phase φ evaluated in ±2ν and hence we can
obtain the analytical expression for Gaussian processes and for the RTN. We have

E(ρ) �
(

ρ11 G(2ν, t)ρ12
G(2ν, t)ρ∗12 ρ22

)
, (3.14)

where G(α, t), sometimes called the decoherence function, is given by

GGN(α, t) � exp[−α
2

2
β(t)] (3.15)
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for Gaussian noise, where β(t)was introduced in Eqs. (1.18) and (1.19) and, for RTN, by

GRTN(α, t) �


e−γt
[
cosh |δ |t + γ

|δ | sinh |δ |t
]

γ > α

e−γt
[
cos |δ |t + γ

|δ | sin |δ |t
]

γ < α
, δ �

√
γ2 − α2 , (3.16)

that is the function reported in Eq. (1.40). Notice that in both cases G(α, t) is a real
function. This is a consequence of B(t) being a zero-mean process.

Themap inEq. 3.14 is called dephasingmap: the populations ρ11 and ρ22 of the qubit are
left untouched; only the coherences are affected by the interaction with the environment,
which conserves the energy of the system. The effect is thus that of altering the quantum
information content of the qubit without any exchange of energy. This happens in those
physical systemswhere the typical frequencies of the environment aremuch smaller than
the frequency ω0 of the qubit and thus does not induce transitions between the energy
levels. Dephasing maps are described by the following master equation

dρ
dt

� −i[H, ρ] +
γ

2
[σzρσz − ρ]. (3.17)

The two-qubit dynamics can be solved as well. The Hamiltonian in Eq. (3.9), with
dephasing noise, gives rise to the evolution operator

U(2)(t) � U[B1(t)] ⊗ U[B2(t)]
� exp

[
−i(ω0t + νφ1(t))σz

]
⊗ exp

[
−i(ω0t + νφ2(t))σz

]
. (3.18)

To simplify the discussion, we assume that the initial state of the system is a Bell-
diagonal state, Eq. (2.47). Upon considering the reference frame rotating with frequency
ω0 (i.e., by applying the local unitary transformation e iω0tσz ⊗ e iω0tσz , we have

ρ(t) � 1
2
©­­«

c1 + c2 0 0 (c1 − c2)e−2iν(φ1+φ2)

0 c3 + c4 (c3 − c4)e−2iν(φ1−φ2) 0
0 (c3 − c4)e2iν(φ1−φ2) c3 + c4 0

(c1 − c2)e2iν(φ1+φ2) 0 0 c1 + c2

ª®®¬. (3.19)
In the case of a common environment, obviously we have φ1 � φ2. Upon evaluating
the average over all the possible realizations of the noise, Eq. (3.7), we obtain the CPT
maps describing the interaction with the classical environment. In the case of indepen-
dent environments, we have to evaluate the expectation value over two uncorrelated
stochastic processes, i.e. we have to evaluate quantities like E

[
e±2iνφ1 e±2iνφ2

]
B1(t),B2(t) �

E
[
e±2iνφ1

]
B1(t) E

[
e±2iνφ1

]
B2(t).

As a result, we have, for independent environments,

E IE
t (ρ) �

1
2
©­­«

c1 + c2 0 0 (c1 − c2)G2(2ν, t)
0 c3 + c4 (c3 − c4)G2(2ν, t) 0
0 (c3 − c4)G2(2ν, t)2 c3 + c4 0

(c1 − c2)G2(2ν, t)2 0 0 c1 + c2

ª®®¬, (3.20)

while for common environments

ECE
t (ρ) �

1
2
©­­«

c1 + c2 0 0 (c1 − c2)G(4ν, t)
0 c3 + c4 (c3 − c4) 0
0 (c3 − c4) c3 + c4 0

(c1 − c2)G(4ν, t) 0 0 c1 + c2

ª®®¬. (3.21)
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Figure 3.1: Trajectories of the system in the Horodecki tetrahedron for two independent environ-
ments (a) and for a common environment (b). The initial states are Bell-state mixtures that lie
on the surface of the tetrahedron. For independent environments, the trajectories converge to the
green line at a1 � a2 � 0. For a common environment, the trajectories are directed orthogonally to
the plane a1 � a2, shown in green. In both cases, a3 remains constant.

In the Bloch form, Eq. (2.46), we have respectively

ρIE(t) �
1
4

(
I + G2(2ν, t)a1σx ⊗ σx + G2(2ν, t)a1σy ⊗ σy + a3σz ⊗ σz

)
(3.22)

ρCE(t) �
1
4

(
I +

1
2
[G(4ν, t)(a1 − a2) + a1 + a2]σx ⊗ σx

+
1
2
[G(4ν, t)(a2 − a1) + a1 + a2]σy ⊗ σy + a3σz ⊗ σz

)
(3.23)

The dynamics of the two-qubit system can be visualized by looking at its trajectory
in the Horodecki diagram. This is done in Fig. 3.1 for various initial state preparations
lying on the surfaces of the tetrahedron. We can see that the trajectories are straight lines
converging towards the set of stationary states, which is a line with a1 � a2 � 0 for the
independent-environment case and the plane a1 � a2 for the common-enviornment case.

3.3 Qubits interacting with transverse noise

The Hamiltonian (3.11), that describes longitudinal noise, allows for a simple analytical
solution of the dynamics, if we know the analytical expression of the characteristic
function of the stochastic process. But the Hamiltonian in Eq. (3.8) in general does
not allow for an explicit solution, due to the fact that it does not commute with itself
at different times. In this case, one has to resort to approximations, such as the Dyson
series or the Magnus expansion [94], or to numerical simulation, which we address in
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Subsection 3.3.3. An exact solution is available, however, for the special case of RTN,
which we will cover in the next subsection.

In the following, we specialize to the case of transverse noise, i.e. when B(t) in the
Hamiltonian in Eq. (3.8) is orthogonal to the z axis. Without loss of generality, we can
assume that B(t) is directed along the x axis, and thus we have the Hamiltonian

H � ω0σz + νB(t)σx . (3.24)

The transfer matrix solution and the numerical simulation, however, can be carried
out with the general Hamiltonian.

3.3.1 Transfer matrix method

Here we review a method developed by Joynt and collaborators [95, 96], that allows
for an analytical solution of the general Hamiltonian (3.8), when the stochastic process
describes a RTN. Other analytical solutions for a qubit interacting with RTN with an
arbitrary direction are known [97, 98], but this method has the advantage of being
generalizable to higher dimensional systems. We also discuss the analytical solution of
the two-qubit dynamics, both with common and separate environments.

The key for the success of this method, that allows us to find an analytical solution
despite the fact that the Hamiltonian does not commute with itself at different times, is
the finite number of states of the environmental noise (two, in the case of RTN).

We consider the time evolution of the Bloch vector n(t), defined in Eq. (2.37), which
can be written by means of a transfer matrix T applied to the initial Bloch vector n(0) as

n(t) � T(t) n(0). (3.25)

Let us discretize the time interval [0, t] in steps of length ∆t. We assume that ∆t is
much smaller than the correlation time τC � γ−1 of the noise, so that we can consider the
fluctuator to be in the same state si � ±1 in the i-th time interval.

We then have
T(t) � E [Tsn · · ·Ts1] , (3.26)

where Tsi is the 3 × 3 transfer matrix from the time instant ti to time ti+1, when the
fluctuator is in the state si � ±1. Tsi has the following expression

Tsi � exp[−2i∆t(ω0Lz + siνB · L)], (3.27)

where L � (Lx , Ly , Lz) and the Li are the generators of SO(3), (Li) jk � −iεi jk , satisfying
the commutation relations [Li , L j] � i

∑
k εi jk Lk .

We label W the matrix describing the transition probability between the states of the
fluctuator after the time ∆t. In the case of RTN it is a 2 × 2 matrix. Its matrix element
between the states s′ and s reads Ws′s � (1 − γ∆t)δs′ ,s + γ∆tδs′ ,−s . Thus,

W �

(
1 − γ∆t γ∆t
γ∆t 1 − γ∆t

)
� (1 − γ∆t)I2 + γ∆tσ1. (3.28)
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Now let us define the 6 × 6 tensor Γwith element

Γsi si−1 � Wsi si−1 ⊗ Tsi . (3.29)

The transfer matrix T(t) after the average over all the possible histories of the noise,
Eq. 3.26, is given by

T(t) �
∑

s1 ,...,sn

ps1Γsn sn−1 · · · Γs2s1 , (3.30)

where ps1(0) is the initial probability distribution of the state of the fluctuator. By
employing the tensor nature of Γ, Eq. 3.30 can be written equivalently as

T � 〈x f |Γn |i f 〉 , (3.31)

where |i f 〉 and |x f 〉 are vectors in the bidimensional space describing the state of the
fluctuator, and describe respectively the initial and final distribution probabilities for the
states, i.e. ps1 and psn . In our case, where we assume that the noise is in its stationary
regime, the two states are equiprobable both in the initial and final distributions, and
hence |i f 〉 � |x f 〉 � 1√

2
(1, 1). The tensor contraction expressed in Eqs. (3.30) and (3.31)

effectively amounts to averaging over the 2 × 2 blocks of ΓN , each of which describes the
family of evolutions induced by all the noise sequences starting from s1 and ending with
sn .

In our case, the tensor Γ can be written as

Γ �
[
(1 − γ∆t)I2 + γ∆tσ1

]
⊗ I3 × exp[−2i∆t(ω0I2 ⊗ Lz + σ3 ⊗ νB · L)], (3.32)

where σi are the Pauli matrices in the space of the fluctuator states and × denotes a
product between 6×6 matrices. The partial inner product in Eq. (3.31) is done on the two
degrees of freedom of the fluctuator and the result is a 3 × 3 matrix. In the continuous
limit, i.e. by letting ∆t → 0, Eq. (3.32) becomes

Γ ' 1 + i∆t(ω0I2 ⊗ Lz + σ3 ⊗ νB · L) + (γ∆tσ1 − γ∆tI2) ⊗ I3∆t ' exp(−∆tP), (3.33)

where
P � (γ − γσ1) ⊗ I3 − 2iω0I2 ⊗ Lz − 2iσ3 ⊗ νB · L. (3.34)

Noting that P does not depend on time, we can write ΓN � exp(−∆tP)N � exp(−tP), and
hence

T � 〈x f | exp(−tP)|i f 〉 , (3.35)

and the problem is now cast to the diagonalization of the 6 × 6 matrix P.

Longitudinal case First, we check that the method gives the correct result for the case
of longitudinal noise, B � (0, 0, B), for which we already know the solution. In this case
the P matrix is

P � (γ − γσ1) ⊗ I3 − 2iω0I2 ⊗ Lz − 2iσ3 ⊗ BLz . (3.36)

By noticing that [P, I2 ⊗ Lz] � 0, we can diagonalize the 2 × 2 matrices in the subspaces
of Lz with eigenvalues m � 0,±1. We obtain the following eigenvalues:

0, 2γ, γ − δ ± 2iω0 , γ + δ ± 2iω0 (3.37)
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Figure 3.2: Shaded region: values of the parameters ω0 and γ for which the eigenvalues of the
operator P, i.e. the solutions of Eqs. (3.40) and (3.41), are all real, that is there are no oscillating
terms in the transfer matrix. The region is bounded by the solutions of Eq. (3.44), which meet at
the threshold value ω0 � (2

√
2)−1, highlighted by the vertical dashed line. For ω0 → 0 we recover

the dephasing case, with a transition between the two regimes at γ � 2.

where δ �
√
γ2 − 4ν was defined in (3.16). The resulting transfer matrix, after exponen-

tiating P and evaluating the partial product, is

T(t) � ©­«
e−γt (

cosh δt + γ
δ sinh δt

)
0 0

0 e−γt (
cosh δt + γ

δ sinh δt
)

0
0 0 1

ª®¬ . (3.38)

It is immediate to check that the transfer matrix T(t) in Eq. (3.38) describes the same
map of Eq. (3.14) with the decoherence function of (3.16).

Transverse noise We now consider the case where the noise is fully transverse, as in
Eq. (3.24). The P matrix reads

P � (γ − γσ1) ⊗ I3 − 2iω0I2 ⊗ Lz − 2iσ3 ⊗ BLx . (3.39)

The eigenvalues µi , ηi , i � 1, 2, 3, of P satisfy the two equations

µ3
+ 2γµ2

+ 4(1 + ω2
0)µ + 8ω2

0γ � 0 (3.40)
η3

+ 4γη2
+ 4(1 + γ2

+ ω2
0)η + 8γ � 0. (3.41)

We notice that we can linearly transform one equation into the other by substituting
ν � −µ − 2γ. The inverse of the real parts of these eigenvalues give the decay rate of the
Bloch vector components, while the inverse of the imaginary parts give the periods of
oscillations.

After exponentiating thematrix P and evaluating the partial inner product, we obtain
the transfer matrix. The expression is more cumbersome than in the longitudinal case
and we report the matrix elements of T(t) in Appendix A for reference.

In the limiting cases of γ much greater or smaller than the other two parameters, we
are able to obtain analytic expressions for the eigenvalues. When γ � ω0, i.e. we are in



Dynamics of qubit systems affected by classical noise 51

Figure 3.3: Dynamical trajectories in the Bloch sphere for a single qubit affected by RTN with
γ � 1/2 and ω0 � 1 and for different initial preparations. The initial state is represented by the
Bloch vector 1√

3
(−1, 1, 1) for the blue trajectory, and by 1√

2
(1, 0,−1) for the orange trajectory. The

asymptotic state is the maximally mixed state, that lies at the center of the Bloch sphere.

the fast-noise regime, we find that the greatest decay time is

T � γ, (3.42)

while the oscillation frequency is ω0, independently of γ. In the opposite limiting case,
γ � ω0, we find that the longest decay time is

T �

{
γ−1(1 + ω2

0) if ω0 > 1/
√

2
1
2γ
−1(1 + 1/ω2

0) if ω0 < 1/
√

2
, (3.43)

while the oscillation frequency is instead
√

1 + ω2
0. In the intermediate region, by study-

ing the discriminant of Eq. (3.40), we find that for ω0 < (2
√

2)−1 there is a region of values
of γ for which the eigenvalues are all real, i.e. there are no oscillations. This region,
shown in Fig. 3.2, is bounded from below and above, respectively, by the two positive
solutions γ1,2 of

4ω2
0γ

4
+

(
8ω4

0 − 20ω2
0 − 1

)
γ2

+ 4
(
ω2

0 + 1
)3

� 0. (3.44)

For ω0 → 0 we have γ1 → 2 and γ2 → ∞, so we recover the transition between fast
and slow RTN that is visible in the dephasing case [25, 99]. In fact, by letting ω0 → 0
we are implying that the energy gap between the levels of the qubit is far away from
the typical frequencies of the noise. A sharp transition between the two regimes is not
visible by looking at the time evolution of the Bloch components because the imaginary
components tend to zero as the parameters get close to the region, and thus the period
of oscillation becomes much larger than the characteristic decay time.

In Fig. 3.3 we show the dynamical trajectories in the Bloch sphere for two different
initial preparations. The asymptotic state is the maximally mixed state, with Bloch vector
(0, 0, 0).
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3.3.2 Transfer matrix for the two-qubit case

We now write the transfer matrix for the two-qubit dynamics for both the relevant, and
opposed, scenarios of independent environments and of a common environment. The
generalization of the Bloch vector to the two-qubit case is the Bloch matrix (2.43), which
we write as a 15-component vector as follows

n2 � (a, b, R11 , R12 , R13 , R21 , R22 , R23 , R31 , R32 , R33). (3.45)

The action of a unitary transformation on ρ corresponds to the action of a real orthogonal
transfermatrixT2 onn2. We nowderive the transfermatrix for common and independent
environments, assuming that the noise is transverse and acting along the x axis.

In the case of independent environments, the transfer matrix is simply

T IE
2 �

©­«
T 0 0
0 T 0
0 0 T ⊗ T

ª®¬ , (3.46)

where T is defined in Eq. (3.35).
In the case of a common environment, one can easily see that, when the common

fluctuator is in the state si � ±1, the two-qubit transfer matrix has the following block-
diagonal form:

T2(si) �
©­«
Tsi 0 0
0 Tsi 0
0 0 Tsi ⊗ Tsi

ª®¬ , (3.47)

where Tsi was defined in Eq. (3.27). If we extend the derivation done in the previous
subsection for a single qubit, we obtain the following 30 × 30 matrix:

PCE
2 � (γI2 − γσ1) ⊗ I15 − 2i(ω0I2 ⊗ Qz + νσ3 ⊗ Qx), (3.48)

where the Qis, with i � x , y , z, are 15 × 15 block-diagonal matrices

Qi �
©­«
Li 0 0
0 Li 0
0 0 Li ⊗ I3 + I3 ⊗ Li

ª®¬ . (3.49)

The ensemble-averaged transfer matrix for n2 is then

TCE
2 � 〈x f | exp(−tP2)|i f 〉 , (3.50)

where |i f 〉 � |x f 〉 � 1√
2
(|+〉 + |−〉) and the partial inner product is again done on the

two degrees of freedom of the fluctuator. An analytic expression for TCE
2 cannot be

obtained explicitly becausewefirst need to calculate the exponential ofP2, i.e. diagonalize
it. However, the exponentiation can be done easily with arbitrary precision once we
substitute numerical values.

The transfer matrix method is a very neat solution of the dynamics, but it is effective
only when the noise can jump between NC discrete values. Indeed, the matrix P defined
has size NC(d2 − 1) × NC(d2 − 1), where NC is the number of levels of the classical noise
and d is the dimension of the Hilbert space of the quantum system.
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3.3.3 Numerical simulation of the dynamics

We have seen the analytical solutions for the longitudinal noise (both Gaussian and
RTN), and we have seen that there is an analytical solution for transverse RTN noise.
The latter is possible because the RTN is stepwise constant and has a finite number of
values (just two in our case). In general, there is no analytical solution for transverse
noise and a numerical algorithm for simulating the dynamics described in Eq. (3.7) is
in order. There are two obstacles on our path: the first one is the expectation value
over all possible histories of the stochastic process. Numerically, we have to sample this
probability space with a large number of realizations of the process, using the simulation
algorithms presented in Section 1.4. We thus have

ENB
t (ρ) �

NB∑
n

1
N

U[Bn(t)]ρU†[Bn(t)] →
NB→∞

Et(ρ) (3.51)

The second obstacle is the time-ordering operator in the evolution operator (3.3). To
solve the problem, we consider the infinitesimal evolution operator between time t and
t + dt. In the time dt, we can assume that the Hamiltonian remains constant, and thus
commutes with itself. Hence, we can write

dU(t) ' exp[−iH[B(t)]dt]. (3.52)

We can then apply the operator dU(t) recursively in order to obtain the density
operator at time t.

To wrap up, the algorithm for simulating the dynamics of a quantum system inter-
acting with classical stochastic noise

1. Define a discrete set of Nt time instants: t0 � 0, t1 , . . . , tNt , with a time step ∆t.

2. Sample NB realizations of the stochastic process on the time instants ti , using the
recipes of Section 1.4.

3. For each realization Bn of the stochastic process, evaluate the infinitesimal evolution
operator at time ti and apply it to the density operator at time ti−1:

ρ(n)(ti) � dU[Bn(ti)]ρ(n)(ti−1)dU†[Bn(ti)] (3.53)

4. Evaluate the average over the realizations of the stochastic process, as in Eq. (3.51).

In the followingwe report the code for the evolution of a single qubit under RTNwith
an arbitrary direction, specified by the unit vector g . The code can be easily extended to
the two-qubit case.

function [rhom, t] = rtn_dynamics(rho0, ... % Initial state

tf, ... % Final time

nsteps, ... % N. of timesteps t_i

nsamples, ... % N. of noise realizations
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gamma, ... % Switching rate

g, ... % Noise direction vector

coupling, ... % Coupling nu

omega) % Qubit frequency

% Time vector and time step

t = linspace(0, tf, nsteps);

dt = t(2) - t(1);

% Average density matrix: a 2 x 2 x nsteps array

rhom = zeros(2, 2, nsteps);

for n = 1 : nsamples

% We generate a realization of the stochastic process.

% B is a nsteps array

B = rtn(t, gamma);

% Density matrix: a 2 x 2 x nsteps array

rhoi = zeros(2, 2, nsteps);

rhoi(:, :, 1) = rho0;

% The function evol_operator() calculates the evolution operator

% for each timestep t_i. We omit its syntax which is quite trivial

% U is a 2 x 2 x nsteps array

U = evol_operator(B, coupling*g, omega, dt);

% We evaluate the density matrix

for k = 1 : nsteps - 1

rhoi(:,:, k+1) = U(:,:, k) * rhoi(:,:, k) * U(:,:, k)’;

end

% Sum the matrix elements for each realization

rhom = rhom + rhoi ./ nsamples;

end

The analytic solution for the one- and two-qubit dynamic under RTN noise has been
compared to the numerical simulations, showing excellent agreement.

3.3.4 Properties of the dynamical map

Equation (3.46) shows that the two-qubit transfer matrix in the case of independent
environments is block diagonal. The same can be seen for the matrix TCE

2 . This means
that if the initial block vector has a � b � 0, i.e. the state has maximally mixedmarginals,
then they will be left untouched by the dynamics. Hence, we can apply Eq. (2.86) for
quantum discord to the evolved state. Although we don’t have an analytic expression for
the dynamics in case of other kinds of noise, such as Gaussian noise, we can see that the
transfer matrix for an infinitesimal time step is block diagonal as well. Thus, in general,
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(a) Plots of RTN (above) and OU noise (below) with γ � 0.1 (left) and γ � 1 (right). The trajectories
converge to the maximally mixed state I/4. They get more convoluted for smaller values of γ,
and, for the RTN noise, one can see that they get in and out of the set of separable states, and this
corresponds to the sudden death and rebirth of entanglement.
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(b) Plots of RTNwith γ � 1/2 (left) and γ � 5 (right). The solid green line denotes the set ofWerner
states, which are the only stable states. The trajectories lie on planes that are orthogonal to the
green line.

Figure 3.4: Trajectories of a two-qubit system in the Bell-state tetrahedron, starting from different
initial states, for (a) independent environments and for (b) common environments, withω0 � ν � 1.
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Figure 3.5: Negativity E and quantum discord D as functions of time for a two-qubit system
initially prepared in the Bell state |Ψ+〉 � 1/

√
2(|00〉 + |11〉) subject to (a) RTN and (b) OU noise,

with independent (left) and common (right) environment (ω0 � 1, ν � 1). Blue: γ � 10−2; green:
γ � 10−1; red: γ � 1; yellow: γ � 100. For both noises, for smaller values of γ, quantum
correlations oscillate heavily, with sudden deaths and rebirths of entanglement. The effect is more
evident for the RTN. The frequency of oscillations doubles in the common-environment case. For
higher values of γ, the correlations decay, possibly with small oscillations, and entanglement dies
suddenly.
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we can restrict to the set of states with maximally mixed marginals and use Eq. (2.86) for
the evaluation of quantum discord.

Upon restricting our choice of the initial state to Bell-state mixtures we are also able to
picture the trajectory of the system. In view of the spectral decomposition theorem, the
matrix R of Eq. (2.43), if symmetrical, can be diagonalized by means of an orthogonal
matrix, to which correspond two local unitary operations on the two qubits [70]. It
is straightforward to check that Bell-state mixtures have a symmetric R matrix. One
can also see analytically that the transfer matrix for the RTN noise with independent
environments, Eq. (3.46), preserves the symmetric nature of the matrix. The same can
be seen numerically for TCE

2 and also for Gaussian noise. Since all measures of quantum
correlations are invariant under local unitary operations, we can always cast R into its
diagonal form, and represent the two-qubit stateswithmixedmarginals in theHorodecki
tetrahedron introduced in Subsection 2.1.4.

Stationary states For the single-qubit RTN map the only fixed point is the maximally
mixed state (with the Bloch vector ®0). This can be seen from the fact that none of the
eigenvalues of P is zero and thus the transfer matrix doesn’t have one as eigenvalue.
Figure 3.3 shows two trajectories, both converging to the center of the Bloch sphere. The
same generalizes immediately to the two-qubit case with independent environments.
The stable state is the maximally mixed state ρ � I/4. In the CE case the P2 matrix has
the eigenvalue zero. The corresponding eigenvector is the generalized Bloch vector with
a � b � 0 and (ci j) � I3. This means that all the states of the form

ρW
p � p |Φ−〉 〈Φ− | + (1 − p)I/4 p ∈ [0, 1], (3.54)

known asWerner states [100], are stationary states of the dynamics. This can also be seen
because they satisfy the relation ρW

p � (U ⊗U)ρW
p (U† ⊗U†) for every local unitary U and

the CPT map induced by a common reservoir is a convex combination of unitary maps
of the form U ⊗ U. Being the zero eigenvalue of P2 non-degenerate, these are the only
stable states of the map. The same results are seen numerically for the Gaussian noise,
although in this case we don’t have an analytic expression for the transfer matrix.

3.3.5 Comparison of the dynamics with Gaussian and non-Gaussian noise

In this Section we compare the dynamics induced by Gaussian and non-Gaussian RTN
noise and discuss their effects on the decoherence of quantum correlations of a two-
qubit system. We start by noticing that the spectrum of the noise (or equivalently, its
autocorrelation function) is in general not enough to describe the effect of the noise on
the qubit, i.e. the dynamics of the qubit under the influence of OU noise and RTN with
the same spectral width and with the same coupling may be, in general, rather different.

In Fig. 3.5 we show how the negativity and quantum discord evolve in time for the
two models of noise for different values of the spectral width γ. The initial state is a
pure Bell state. For both noises, we can identify two working regimes. In the first one,
for small γ (slow noise), quantum correlations oscillate heavily and there are sudden
deaths and rebirths of entanglement. This can be seen in the top left diagram of Fig. 3.4a:
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Figure 3.6: (a) Logarithm of the fidelity complement F̃ (t) between the state of a qubit (ω0 � ν � 1)
affected by OU noise (with spectral width γOU � 1) and RTN as a function of (rescaled) time, for
different values of γRTN. The qubit is initially prepared in the state n � (1, 0, 0). We notice that for
γRTN � 1, i.e. when the two noises have the same spectrum, the dynamics is different. By tuning
γRTN, the fidelity between the evolved states in the two scenarios may be increased by two orders
of magnitude. (b) the maximum of the fidelity complement ˜F (t) as a function of γRTN for γOU � 1
, initial state set to n � (1, 0, 0) (blue), n � (0, 1, 0) (green), n � (0, 0, 1) (red) and n � (1, 0, 1)/

√
2

(yellow). We can see that the quality of the simulation depends heavily on the initial state, but that
by a suitable choice of γRTN we can obtain a fidelity which is above 0.999 throughout the evolution
of the qubit.

the trajectory of the system repeatedly goes in and out the octahedron of separable
states. The frequency of oscillations depends on ω0 and is doubled if the two qubits
are affected by a common environment. In the second regime (large γ, i.e. fast noise),
the correlations decay to zero, with sudden death of entanglement and with oscillations.
The time constant of the decay is roughly inversely proportional to γ, i.e. the decay is
slower for very fast noise. In the common-environment case, we notice that the discord
does not vanish in time. The reason is that the stable state of the dynamics does not lie
in the set of states with zero discord (cf. Fig. 3.4b).

In order to compare quantitatively the dynamics of the system in the presence of the
two kind of noise we introduce the fidelity complement

F̃ (t) � 1 − F (ρOU(t), ρRTN(t)), (3.55)

where F (ρOU(t), ρRTN(t)) is the quantum fidelity, Eq. (2.56), between the state of a single
qubit affected by RTN and the state of a qubit affected by OU, assuming that the two
kinds of noise have the same coupling and spectral width. When this quantity is zero,
the two states are identical. In Fig. 3.6a we show the fidelity complement as a function
of of time. We can see that F̃ (t) is not vanishing when the two noises have the same
autocorrelation time. However, upon changing γ, we can reduce its value of three orders
of magnitude.

Notice that there is an initial regime in which the fidelity complement increases and
a second regime in which it vanishes, as the system tends to its asymptotic maximally
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mixed state, and hence there is a globalmaximumof the fidelity complement, max[F̃ (t)],
which depends on γRTN. This maximum can be used as a figure of merit of how good
the simulation of Gaussian noise is. In the right panel, we show that max[F̃ (t)] can be
driven very close to zero by a suitable choice of the parameter γ. It should be noticed,
however, that the optimal value of the parameter does depend on the frequency of the
qubit, on the parameters of the OU noise and also on the initial state of the qubit, as it is
apparent upon looking at Fig. 3.6b.

We thus conclude that the effects of non-Gaussian noise on qubits cannot be trivially
mapped to that of Gaussian noise and vice versa, as that would require that the optimal
value of the parameter be independent of the initial state of the qubit(s). This means
that the spectrum alone is not enough to characterize the effect of the noise on the qubit
systems. On the other hand, the effect of the two noises is qualitatively similar and the
dynamics under the effect of one kind of noise may be quantitatively simulatedwith high
(quantum) fidelity with the other kind of noise by suitably tuning the parameters.

3.4 Non-Markovianity of the dynamical map

In this section we discuss the quantum non-Markovianity of the dynamics of qubit
systems interacting with classical noise. We start by reviewing the results for the longi-
tudinal noise case, then we evaluate numerically the BLP and RHPmeasures introduced
in Subsection 2.3.1 in the transverse noise case [93].

Longitudinal noise The quantummap originating from the interaction with a classical
noise is reported in Eq. (3.14). From Subsection 2.3.1, we recall that the BLP measure of
non-Markovianity involves an optimization over all possible pairs of initial states (cf. Eq.
(2.98)), and that for single qubits, it is known that the states of the optimal pair are pure
and orthogonal. For a pure dephasing map, the optimal pair is easily found [8, 101]. The
trace distance between an arbitrary pair of states affected by the map of Eq. (3.14) is

D(t) �
√

a2 + |b |2G(t)2 , (3.56)

where a � ρ(1)11 − ρ
(2)
11 and b � ρ(1)12 − ρ

(2)
12 . The time derivative of Eq. (3.56) is

D′(t) � |b |2G(t)√
a2 + |b |2G(t)2

G′(t). (3.57)

In order to obtain the BLP measure, we have to maximize Eq. (3.57). It is easy to find
that a � 0 and |b | � 1, i.e. the optimal pair is made by antipodal states on the equator of
the Bloch sphere. For these states the trace distance becomes D(t) � |G(t)|.

It is then immediate to see that Gaussian noise will always induce a Markovian dy-
namics of the qubit: the function GGN(t) is a monotonically decreasing function, because
β(t) is a monotonically increasing function of time (cf. Eq. (1.19). On the other hand,
with RTN it can be seen immediately by looking at the definition of GRTN(t) in Eq. (3.16)
that the map is Markovian in the regime of fast noise, i.e. when γ > 2ν and GRTN(t)
features hyperbolic functions, while it is non-Markovian in the other regime (slow noise),
where the function contains oscillating functions [102].
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Figure 3.7: (a) Trace distance D between the pairs of states that maximize NBLP as a function of
time for ω0 � 1 and ν � 1, with γ � 0.1 (dotted green), γ � 1 (dashed orange), γ � 10 (solid
blue). We see that the trace distance oscillates in time: in the intervals in which it increases the
map is not divisible. The oscillations get smaller for higher γ: they are barely noticeable in the
plot for γ � 10. (b) Log-log plot of the non-Markovianity measuresNBLP (solid) andNRHP (dashed)
as functions of the spectral width γ for a qubit subjected to RTN noise, for ν � 1 and ω0 � 1
(blue), ω0 � (2

√
2)−1 (green), ω0 � 0.1 (red) and ω0 � 0.01 (yellow). The two measures decrease

monotonically for increasing γ. There is a threshold value for γ (that depends on ω0) above which
the RHP measure is zero. The BLP measure, instead, is always non-zero and vanishes for γ→∞,
i.e. when K(t − t′) ∼ δ(t − t′). For small γ, both measures are proportional to 1/γ. For small ω0
(yellow line), we recover the results obtained for the dephasing, with both measures vanishing at
γ � 2 (vertical dashed line).

Transverse noise In the case of transverse noise, the situation is more complicated be-
cause the optimal pair of states can’t be determined analytically. Even if with RTN the
solution of the dynamics is analytical, the mathematical expressions are more compli-
cated than in the dephasing case. In the following, we evaluate the trace-distance-based
BLP measure and the entanglement-based RHP measure for the single-qubit map with
RTN noise. A study of the non-Markovianity functions with Gaussian noise is compli-
cated by the fact that the dynamics must be simulated numerically.

For the BLP measure, our numerical results show that the pair of optimal states lies
on the equator of the Bloch sphere (i.e. nz � 0), independently on the parameters of the
noise. A numerical optimization over the azimuth angle is still in order for computing the
measure. Theoptimal angledependson the twoparameters γ andω0 and thedependence
is sometimes not smooth. We found that the two measures are in disagreement, i.e. the
BLP measure is always non-zero and is vanishing for γ→∞, whereas the RHP measure
is vanishing for γ greater than a certain threshold. This is shown in Fig. 3.7b, where the
twomeasures are calculated for a range of values of the switching rate γ and for different
values of ω0. From Fig. 3.7bwe can see that bothmeasures depend approximately on 1/γ
at small γ. While the RHPmeasure suddenly goes to zero for γ above a certain threshold
value, which depends on ω0, the BLP measure only vanishes asymptotically. The BLP
measure appears to be independent of ω0 at small values of γ.

We recall that the two measures only pose a sufficient condition for the dynamical
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Stochastic process Longitudinal noise Transverse noise

OU Markovian Non-Markovian

RTN Markovian (fast) Non-MarkovianNon-Markovian (slow)

Table 3.1: (Non-)Markovianity of the quantummap for the longitudinal and transverse noise case,
with OU noise and RTN.

map to be non-divisible, i.e. non-Markovian. The RHP measure fails to capture the non-
Markovian behavior of the map because the trajectory quickly enters the set of separable
states, as one can see from Fig. 3.4a. On the other hand, the BLP measure is always
non-zero, meaning that the map is non-Markovian, unless we let ω0 → 0. In this case
we approach the dephasing limit, and the BLP and RHP measures coincide and vanish
at γ � 2 [102]. This is shown in Fig. 3.7b for ω0 � 0.01 (green line). For non-vanishing
ω0, the non-Markovianity measure vanishes for high values of γ, as one can expect, since
the stochastic process that models the noise tends to the Markovian limit, i.e. when
K(t − t′) ∼ δ(t − t′).

In Fig. 3.7a we show, for different values of γ, the behavior of the trace distance D(t)
between the pair of states that maximize the integral in the definition of NBLP, see Eq.
(2.98). For smaller values of γ, the oscillations are very pronounced. When γ increases,
the oscillations become less appreciable (D(t) seems to decay monotonically in the plot
for γ � 10, solid blue line), but derivative of the trace distance is always positive in the
first oscillation.

Given the need to optimize over an angle, and the need to reach very long evolution
times in order to capture all the oscillations in the trace distance, evaluating the BLP
measure for the Gaussian noise is practically unfeasible. However, initial pairs of states
can be found for which the trace distance does not decay monotonically for a very wide
range of values of γ, and this allows us to conclude that also Gaussian transverse noise
with a Lorentzian spectrum induces non-Markovian quantum dynamics on qubits.

Summary

• We described in detail the dynamics of one- and two-qubit systems affected by
classical noise, either Gaussian or non-Gaussian (random telegraph noise).

• We discussed the analytical solution for the longitudinal noise, that induces pure
dephasing, and revised some results involving the dynamics of quantum correla-
tions.

• We discussed the transfer matrix method, that allows for an analytical solution also
for transverse noise in the case of RTN.

• We analyzed in detail the effects of the transverse noise on a two-qubit system:
we showed the trajectories in the Bell state tetrahedron, the dynamics of quantum
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correlations and we discussed the non-Markovianity of the map.

• We compared the RTN with numerical simulations of Ornstein-Uhlenbeck Gaus-
sian noise, showing that the power spectral density is not enough to characterize
the effect of the noise when it has a non-Gaussian statistics. At the same time, we
showed that the effects of RTN can be simulated by OU noise and viceversa by
suitably tuning their correlation time.

• We studied the non-Markovianity of the map, with analytical results for the lon-
gitudinal case and numerical results for the transverse case for both Gaussian and
non-Gaussian noise. The results are summarized in Table 3.1.



Chapter 4

Optical simulation of a classical single-qubit noise channel

In this chapter we discuss an experimental implementation of an optical quantum simu-
lator of the evolution of a qubit interacting with a classical environment. The experiment
has been carried out at the Quantum Technology Lab of the Università degli Studi di
Milano. Quantum simulators are among the most intriguing and sought implementa-
tions of quantum technologies, as they may be exploited to mimic the dynamics of other
quantum systems that are less accessible or less controllable [103] and thus study their
properties. The inherent parallel structure of quantum simulators make them suitable to
solve problems that are intractable on conventional supercomputers, like the simulation
of the dynamics of a many-particle system. In particular, optical quantum simulators
have attracted much interest as they may be used at room temperature, thanks to the
fact that photons do not interact with each other [104–107]. Moreover, photons may
propagate in free space or in waveguides, and thus may be used to simulate complex
structures with long range interaction.

The quantumsimulator thatwe are going to describe exploits the spectral components
of a single-photon state to perform the parallel sum of about one hundred complex
numbers. In order to demonstrate the operation of our QS, we run the simulation of two
different single-qubit dephasing channels, arising from the interaction of the quantum
systemwith an external classical noise, as described in Section 3.2. We already presented
analytical solutions for thismodelwhen the noise is Gaussian or RTN, andwewill test the
experimental setup by comparing it to these known results. The simulator can however
implement other kinds of noise for which an analytical solution does not exist even for
longitudinal noise, such as 1/ f noise, that is relevant for solid-state and superconducting
quantum systems [19, 20, and refs. therein].

We rewrite the Hamiltonian (3.11) here for convenience:

H(t) � H0 + Hint � ω0σz + B(t)σz . (4.1)

HereB(t) is the stochastic processdescribing the classical noise. The environment induces
decoherence, but does not exchange energy with the system.

As we said above, the qubit is encoded in the polarization of the photon. We take
the horizontal and vertical polarization as the computational basis of the qubit, i.e.
|0〉 ≡ |H〉 and |1〉 ≡ |V〉. We recall that, if the system is initially prepared in the state
ρ0, the state at time t is given by the CPT map ρ(t) � Et(ρ0) � E

[
U(t)ρ0U†(t)

]
, where
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U(t) � exp[−i
∫ t

0 H(τ)dτ] is the evolution operator and as usual we take the expectation
value over the realizations of the stochastic process B(t).

4.1 Description of the experimental setup

Asdiscussed in Subsection 3.3.3, in order to obtain the state of the system at any time t, we
should compute the average of a sufficiently large collection of independent realizations
(sample paths) of the stochastic process B(t). Each sample path is a real scalar function
φr(t) �

∫ t
0 Br(τ)dτ, that corresponds to the phase shift induced by a particular realization

Br(τ), with r running on the sample index. In particular, the qubit state at time t̄ will be
given by

ρ(t̄) � 1
n

n∑
r�1
|ψr(t̄)〉 〈ψr(t̄)| , (4.2)

where |ψr(t̄)〉 � (1/
√

2)
(
e−2iφr (t̄) |H〉 + |V〉

)
.

In Fig. 4.1we showaschematicdiagramof the experimental apparatus. The frequency-
entangled two-photon state is generated by parametric down-conversion (PDC) with a
diode pump laser at 405.5 nm by using a BBO crystal (1 mm thick). The two photons
are then collected by two fiber couplers and sent respectively into a single-spatial-mode
and polarization-preserving fiber (SMF) and a multimode fiber (MMF). When the idler
photon enters the coupler, it travels entirely through the fiber towards the single photon
detector (D2). Conversely, the signal photon, after the short single-mode fiber, enters a
4F system [108], i.e. it propagates in the air, through few optical devices: the gratings G1
and G2 (1714 lines/mm) and the lenses L1 and L2 ( f � 500 mm).

Between the two lenses are a half-wave plate (H1), that we use for the input state
preparation, a spatial light modulator (SLM) that is used simulate the dynamics, and
a tomographic apparatus (T) [109, 110] to reconstruct the output state. At the end of
the 4F system the signal photon is coupled to a multimode fiber and reaches the single
photon detector (D1). Finally an electronic device measures the coincidence counts (CC)
and sends them to the computer (PC). The tomographic apparatus (T) is composed of a
quarter-wave plate, an half-wave plate and a polarizer. The SLM is a 1D liquid crystal
mask (640 pixels, 100 µm/pixel) and is placed on the Fourier plane between the two lenses
L1 and L2 of the 4F system (see Fig. 4.1).

In the Fourier plane the spectral components of the signal photon are linearly dis-
persed (1.82 nm/mm), so that the photon hits as many pixels as possible. The SLM is
controlled by the computer (PC) and is used to introduce a different phase φr(t̄) for each
pixel. When the photon hits the second grating, the various spectral components are
recombined, thus effectively averaging over the various realizations, as in Eq. (4.2).

In order to obtain the correct value for the average, the spectrum of the PDC must be
as flat as possible, so that the intensity at each pixel is balanced. In order to measure the
PDC spectrum we used a 2 mm slit on the Fourier plane of the 4F system. We calibrated
the slit using a graduated reference on the Fourier plane and for each slit position (and
therefore for each wavelength) we recorded coincidence counts from the detectors. In
Fig. 4.2a we show the measured PDC spectrum. We observe that it is selected by the
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Figure 4.1: Schematic diagram the experimental setup. Two entangled photons are generated via
PDC with a pump laser diode at 405.5 nm and a beta barium borate (BBO) nonlinear crystal. The
idler photon is collected by a multi-mode fiber (MMF, orange) coupled to a single-photon detector
(D2). The signal photon is collected by a single-spatial-mode and polarization preserving fiber
(SMF, blue) and enters the 4F system, composed of the two gratings G1 and G2, two lenses L1
and L2, the half-wave plate H1, the spatial light modulator (SLM) and a tomographic apparatus
T, composed of a quarter-wave plate, a half-wave plate and a polarizer. The photon then hits the
single-photon detector D1. The coincidence counts (CC) are then sent to a PC for data processing.

limited width of the H1 plate mount, in such a way that the intensity of the spectral
components impinging on the SLM is almost constant. For this reason we are limited to
use n � 100 out of the 640 pixel available on the SLM.

Let us give a more formal description of the quantum dynamics in the experimental
setup. When leaving the BBO, the signal (s) and idler (i) photon are in the pure state
[111] ∫

dω f (ω) |H〉s ⊗ |ω〉s ⊗ |H〉 i ⊗ |−ω〉 i , (4.3)

ω is the spectral shift with respect to the PDC central component ω0 � ωp/2, ωp being the
pump laser frequency. Notice that the polarization and frequency degrees of freedom of
the two photons are independent of each other and thus, upon the detection of an idler
photon, the conditional state of the signal photon, i.e.

the partial trace over the idler degrees of freedom, is given by the mixed state

ρSE � ρS ⊗ ρE � |H〉 〈H | ⊗
∫

dω | f (ω)|2 |ω〉 〈ω | . (4.4)

The initial system-environment state is therefore factorized, and this warrants the exis-
tence of the reduceddynamics [112]. The polarization of the idler photon encodes a qubit,
while the spectral/spatial degrees of freedom may be considered as the environment.
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Figure 4.2: (a) The measured spectrum of the PDC. We can see that it is almost flat in the region
802 ÷ 817 nm. (b) Coincidence counts Ncc(t̄) in the case of RTN with γ � 0, the blue line is the fit
with the function Ncc � N(1 + p cos(2t̄)).

The grating G1 (see Fig. 4.1) disperses linearly the photon spectral components ω,
and the lens L1 focuses them on the Fourier plane of the 4F system where the SLM is
placed. Each spectral component ω is characterized by a Gaussian spatial profile (60 µm
FWHM) centered in the spatial coordinate x. We have a linear relation ω � αx, where
α � 1.82 nm/mm. In order to emphasize that the spectral components are spatially
dispersed we use the notation |x〉 � |ω(x)〉.

The half-wave plate H1 rotates the initially horizontal polarization of the signal pho-
ton, turning the state of the system to

|ψS(0)〉 � (1/
√

2) (|H〉 + |V〉) . (4.5)

We consider |ψS(0)〉 as the initial state for the simulated dynamics.
By labelling with |ηr〉 the r-th pixel of the SLM, we have |x〉 � ∑

r ηr(x) |ηr〉, where
|ηr(x)|2 is the probability that the component x passes through the r-th pixel. In this
notation the identity I �

∑
r |ηr〉 〈ηr | expresses the fact that all detectable components

pass through the pixels.
The initial state of the environment then reads ρE �

∑
r,s Ars |ηr〉 〈ηs |, where the

matrix
Ars �

∫
dx | f (x)|2ηr(x)η∗s(x) (4.6)

is positive definite with trace equal to one. The SLM imprints a pixel-dependent phase
on the horizontal polarization component, which we denote by e−2iφr (t̄). The unitary
interaction operator can therefore be written in the form

U(t̄) � exp

[
−2iPH ⊗

∑
r

φr(t̄)Pr

]
, (4.7)

where PH � |H〉 〈H | and Pr � |ηr〉 〈ηr |. As a result,

U(t̄) |H〉 ⊗ |ηr〉 � e−2iφr (t̄) |H〉 ⊗ |ηr〉 (4.8)
U(t̄) |V〉 ⊗ |ηr〉 � |V〉 ⊗ |ηr〉 . (4.9)
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Upon tracing out the environment, from ρSE(t̄) � U(t̄)
(
ρS(0) ⊗ ρE

)
U(t̄)† we obtain

the state of the qubit

ρS(t̄) �
1
2

∑
r

Arr

(
1 e−2iφr (t̄)

e2iφr (t̄) 1

)
, (4.10)

so that only the coherences are affected by the dynamics. In our case for the diagonal
elements we have Arr � 1/n (n � 100) because the selected PDC spectrum is basically
rectangular. In general, one can apply corrections to the matrix Arr to compensate
inhomogeneities in the spectrum.

In the limit of a large number of noise realizations r, if the phase φr is sampled
according to the probability distribution of the stochastic process B(t), Eq. (4.10) will be
equivalent to the dephasing map of Eq. (3.14).

The discussion above starts from the assumption that the initial state is the pure state
in Eq. (4.5). However, due to the imperfections of the experimental apparatus, in each
realization the state is not exactly pure but rather of the form ρS,exp � pρS + (1 − p)ρmix,
where ρmix �

1
2 |H〉 〈H | + 1

2 |V〉 〈V | is the maximally mixed state, so that the relevant
quantity to be measured is

〈H |ρS,exp(t̄)|V〉 �
1
2

p
〈
e−2iφr (t̄)

〉
n
. (4.11)

In our setup, the average over the realizations of the noise is performed by (coherently)
collecting thedifferent spatial components |ω〉 through the lens L2 and the gratingG2 into
a multimode fiber. The state reconstruction is performed by the tomographic apparatus
T placed between the SLM and the lens L2.

The realizations of the stochastic processes are generated according to the numerical
recipes presented in Section 1.4. For the RTN, the initial values Br(0) are chosen randomly
between ±1 with equal probability. For the OU process, gor each realization (i.e. for each
pixel) we impose the initial condition Xr(0) � 0.

The time step for the simulation is δ t̄ � 0.001 (in arbitrary units). The acquisition
is done at the time steps t̄i � i × 50δ by assigning the phases φr(t̄i) �

∫ t̄i

0 Br(τ)dτ
to the pixels and then by reconstructing the state with the tomographic method by
performing four projective measurements [109, 110, 113], namely onto the states |H〉,
|V〉, the circular polarization |R〉 � (|H〉 − i |V〉)/

√
2 and the −π/4 diagonal polarization

|DD〉 � (|H〉 − |V〉)/
√

2.
In order to obtain the parameter p, we acquire a reference measure using the RTN

with γ � 0 (that is, static noise). In this case we have 〈e−2iφr (t̄)〉 � cos(2t̄). In Fig. 4.2b
we can see the coincidence counts vs. the simulation time t̄ in the case of the RTN with
γ � 0. From the fit (blue solid line) with the function Ncc(t̄) � N(1 + p cos(2t̄)) we
find p � 0.88 ± 0.02 as well as N � 186 ± 2. Thus, in the general case we can write:〈

e−2iφr (t̄)
〉

n � (Ncc(t̄) − N)/p.
Notice that 〈e−2iφ(t̄)〉 is real-valued because the two considered stochastic processes

have zero mean (and indeed, from the tomographic measures, we find that the imag-
inary part of 〈e−2iφr (t̄)〉n is zero within the experimental uncertainty). Thus, in order
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Figure 4.3: Dynamics of the off-diagonal element of ρS(t̄), C(t) � |〈e−2iφr (t̄)〉n |, for RTN (a)
and OU (b) with γ � 0.1. In the left panels the red circles represent the data obtained with
tomographic reconstruction of ρS,exp(t̄). In the right panels, the yellow circles are obtained with
a single projection onto the state |+〉. The blue line is the analytic solution of the model. The
shades represent intervals of 1σ (darker) and 2σ (lighter) around the analytic solution, where σ is
the standard deviation of paths obtained with 100 realizations of the stochastic process. Note that
the noise for small t̄ is due to the Poissonian fluctuations on the coincidence counts.

to estimate the trace distance we can perform just one projective measure on the state
|+〉 � (1/

√
2) (|H〉 + |V〉), since we have 〈+| ρS,exp |+〉 � 1

2

(
1 + p Re

〈
e−2iφr (t̄)

〉
n

)
.

4.2 Results for Gaussian noise and RTN

In this section we show the results obtained by running simulations of two dephasing
channels driven by Ornstein-Uhlenbeck noise or non-Gaussian random telegraph noise,
that we already discussed analytically in Section 3.2. Apart from providing a convenient
description of many realistic environments, dephasing channels also permit a simple
assessment of the non-Markovian character of the reduced dynamics of the system, as
we discussed in detail in Chapter 3. Recall that the BLPmeasure of non-Markovianity for
a dephasing channel is based on revivals of the trace distance D(t) � 1

2 ‖ρ1(t) − ρ2(t)‖1,
between two different initial states. We have seen in Section 3.4 that for a dephasing
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Figure 4.4: Dynamics of the off-diagonal element of ρS(t̄), C(t) � |〈e−2iφr (t̄)〉n |, vs t̄ evaluated by
the method of the projection onto the state |+〉 in the case γ � 1 for RTN (a) and OU (a) stochastic
process. The blue line is the analytic solution and the blue shades represent intervals of 1σ (darker)
and 2σ (lighter) around the analytical solution, where σ is the standard deviation of paths obtained
with 100 realizations of the stochastic process.

channel the non-Markovianity of the map can be assessed by looking at the coherences
of the density operator ρ(t), starting from the initial state (4.5).

In Fig. 4.3 we plot the experimental results in the case of the RTN and OU process
respectively. In both cases we have γ � 0.1 in arbitrary units. We note the presence
of strong revivals in the RTN case, according to the non-Markovian character of the
dynamics. In the OU case the off-diagonal element of ρS(t̄) decays monotonically, as
expected for a Markovian dynamics. We use an acquisition time of 10 s for each measure
of coincidence counts. For a pure dephasing dynamics one has:

D(t) � |〈e−2iφ(t)〉| ≈ |〈e−2iφr (t̄)〉n | ≡ C(t) . (4.12)

Notice that in order to obtain the non-Markovianity from the revivals of the trace distance
we need the factor 1

2 p. Indeed, while the trace distance is in principle bounded by one,
herewe estimate its value from the reduceddynamics of the off-diagonalmatrix elements,
whose actual value depends on the purity of the system state. The latter is known only in
average and it is also affected by experimental uncertainty due to the Poissonian statistics
of photon counting. The quantity C(t) is shown in Fig. 4.3 as a function of t for RTN (a)
and OU noise (b), both with γ � 0.1.

In Fig. 4.3 we can also see the comparison between the tomographic method (red
circles, on the left) and the method based on the projection on the state |+〉 (yellow
circles, on the right) in the case of the RTN and of the OU. We note that the two methods
indeed give compatible results.

In Fig. 4.4we can see the results obtained by the projectionmethod on the state |+〉 and
with γ � 1, for both RTN (a) and OU process (b). Note the decrease of non-Markovianity
of the RTN dynamics compared to the case with γ � 0.1. In turn, the non-Markovianity
vanishes when γ ≥ 2 [102]. In the case of the OU noise, the dynamics remainsMarkovian
as expected.
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Summary

• We have discussed a proof-of-principle implementation of a photonic quantum
simulator of single-qubit dephasing induced by the interaction with classical noise.
The qubit is encoded in the polarization of a single photon, and the dynamics
is obtained by dispersing the spectral components of the photon with a grating,
then applying a different phase shift (sampled according to the probability density
of the classical noise) to each component through a spatial light modulator and
then coherently collecting the components with a lens and another grating. The
advantage of this simulator is that the different realizations of the dynamics are
evaluated in parallel, thanks to the quantum nature of the photon.

• As a first example, we have run simulations of dephasing channels driven either
by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian (random telegraph) stochastic
processes, and compared them to the known analytical solutions. In particular, we
have addressed the non-Markovianity of the quantum map.

• Upon increasing the number of pixels in the spatial light modulator one may
increase the number of realizations and perform more accurate simulations of
noisy channels and complex classical environments. Moreover, the setup can be
modified to address the dynamics of two-qubit systems or other forms of noise,
such as transverse noise.



Chapter 5

Entangled probes for the spectral properties of Gaussian
environments

In Chapter 3 we have discussed the dynamics of one- and two-qubit systems under the
influence of classical noise. We have seen that the effect of the environment is that of
destroying the quantum coherence and correlations of the system, thus posing a serious
limitation to the implementation of quantum technologies. We have also seen that a
non-Markovian dynamics allows for at least partial revivals of quantum correlations:
this effect can be exploited in the engineering of the environment in order to preserve the
quantum resources needed for information processing tasks.

Froma somehowcomplementary standpoint, the very sensitivity of quantum systems
to external influence can provide an effective tool to characterize unknown parameters
of a given environment [114–117]. Using quantum probes, as opposed to classical ones,
usually macroscopic and more intrusive, can be very useful in those situations where
a high precision is needed, but at the same time the sample must be preserved from
unwanted interactions with the probe. For example, the analysis of biological processes
requires low-intensity radiation to avoid burning the sample. Indeed, characterizing
the noise induced by an external complex system is of great relevance in many areas
of nanotechnology, as well as in monitoring biological or chemical processes [118–121].
Besides, it represents a crucial step to design robust quantum protocols resilient to noise
[122–127].

The proper framework to address characterization by quantum probes [128, 129], and
to design the best working conditions, is given by quantum estimation theory, which we
reviewed in Section 2.4. It provides analytical tools to optimize the three building blocks
of an estimation strategy (depicted in Fig. 5.1):

1. preparation of the probe system in a suitably optimized state,

2. controlled interaction of the probe with the system for an optimal amount of time t

3. measurement of an optimal observable on the probe.

We recall that the ultimate precision for any unbiased estimator γ̂ of a certain pa-
rameter γ is bounded by the quantum Cramèr-Rao (CR) theorem, stating that Var(γ̂) ≥
[MH(γ)]−1, where M is the number of measurements and H(γ) is the quantum Fisher



72

ρ0 interaction time t

B(t)

ρ(t) measurement

Figure 5.1: A typical quantum probing scheme consists of the preparation of the quantum probe in
a certain initial state ρ0, the interaction of the probe with the environment for a controlled amount
of time t, which will leave the probe in the state ρ(t), and finally a quantum measurement on the
probe. The experiment is repeated M times to collect classical data over which one can apply a
Bayesian estimation procedure. To maximize the precision in the estimation, the experimentalist
can thus tune, compatibly with physical and technological limitations of the setup: the initial state
ρ0, the interaction time t and the quantum measurement.

information (QFI), i.e. the superior of the Fisher information over all possible quantum
measurements described by positive operator-valued measures (POVMs).

The quantum nature of the probing system allows us to exploit its non-classical
resources to allow for better precision in the estimation of the parameter. In particular,
quantum features such as entanglement, or squeezing for continuous variable systems,
have been proven to be resources that allow to overcome classical limits to precision. In
ideal conditions, while for a classical system the variance of the estimator is proportional
to M−1, it has been shown that with quantum probes the variance becomes proportional
to M−2 (this is known as Heisenberg scaling) [3, 41, 43, 130]. This quantum-enhanced
scaling, however, can be lost in presence of noise [42, 114, 131].

Recently, single-qubit quantum probes have been proposed for the characterization
of noise by monitoring decoherence and dephasing induced by the environment under
investigation, in particularwhen the latter can be described in terms of classical stochastic
processes [45, 46, 132–134].

In this chapter we review the results obtained in [45] for single-qubit probes used to
estimate the spectral properties of a classical environmental noise, and then we present
an original contribution [135] that extends this analysis to entangled qubits, and show
how they greatly improve the characterization of a broad class of environmental noises
compared to any sequential strategy involving single qubit preparation [136–138]. In
particular, we show how to improve estimation of the correlation time (i.e. the spectral
width) of classical Gaussian noise, described by the Ornstein-Uhlenbeck process (cf.
Subsection 1.2.2).
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5.1 Single-qubit probe

Let us start by considering a single qubit interacting with a classical longitudinal noise,
that induces dephasing. The Hamiltonian is the one that we studied in Section 3.2:

H(t) � ω0σz + νB(t)σz , (5.1)

where ω0 is the energy of the qubit and B(t) is a realization of the stochastic process
that describes the noise. The autocorrelation function of B(t) depends on an unknown
parameter γ, that we want to estimate. As a paradigmatic example we consider here
a zero-mean Ornstein-Uhlenbeck process, where the parameter γ is the spectral width,
i.e. the inverse of the correlation time of the process. It is worth noticing that a similar
analysis may be carried out for other Gaussian processes, e.g. processes with power-
law or Gaussian autocorrelation functions, and that results are qualitatively the same,
independently on the choice of the autocorrelation function. We discuss the estimation
of the spectral with of RTN in Subsection 5.2.4.

We already know from our previous discussion that, if the qubit is initially prepared
in a state described by the density operator ρ(0), the density operator at the time t will
be ρ(t)with ρkk(t) � ρkk(0), k � 1, 2 and

ρ12(t) � e−2[iω0t+βγ(t)] ρ12(0) , (5.2)

where

βγ(t) � ν2
∫ t

0

∫ t

0
ds dw K(s , w) � ν2

γ
(e−γt

+ γt − 1). (5.3)

To find the optimal single-qubit preparation, we can limit our discussion to pure
states. This is due to the convexity of the QFI [137]. We then consider the general qubit
state

|θ, φ〉 � cos θ
2
|0〉 + e iϕ sin θ

2
|1〉 . (5.4)

Its evolved state under the effect of the noise is (see Section 3.2)

ρθ,φ(t) �
1
2

(
1 + cos θ Gγ(t)e iϕ sin θ

Gγ(t)e−iϕ sin θ 1 − cos θ

)
, (5.5)

where we omitted the dependence of Gγ(t) on ν, and we moved to the rotating reference
frame to get rid of the phase ω0t.

To evaluate the QFI, we use Eq. (2.116). We need the eigenvalues and eigenvectors of
ρθ,φ(t). The eigenvalues are

ρ± �
1
2

(
1 ±

√
G2
γ(t) sin2 θ + cos2 θ

)
. (5.6)

The eigenvectors have rather cumbersome expressions. The overlaps that appear in Eq.
(2.116), however, are simple enough to be reported:

〈ρ± |∂γρ±〉 � 0 (5.7)

| 〈ρ± |∂γρ∓〉 |2 �

��cot θ∂γGγ(t)
��2

4
(
Gγ(t)2 + cot2 θ

)2 . (5.8)
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Notice that the eigenvalues and the overlaps do not depend on the angle ϕ. We can
finally evaluate the QFI

Q(γ) �
sin2 θGγ(t)2∂γGγ(t)2(

1 − Gγ(t)2
) (

sin2 θG(γ, t)2 + cos2 θ
) +

sin2 θ cos2 θ∂γGγ(t)2(
sin2 θGγ(t)2 + cos2 θ

)
� sin2 θ

∂γGγ(t)2

1 − Gγ(t)2
. (5.9)

From Eq. (5.9) it is immediately seen that the optimal states are those with θ � π/2. We
can choose without loss of generality the state |+〉 � 1√

2
(|0〉 + |1〉).

To conclude the discussion of the single-qubit probe, we show that a projection
measurement onto the eigenstates of the system is optimal, i.e. it saturates the QFI (5.9).
With the state |+〉, the eigenvalues and eigenvectors of ργ(t) read

ρ± �
1
2

(
1 ± Gγ(t)

)
(5.10)

|ρ±〉 �
1√
2
(|0〉 ± |1〉). (5.11)

The FI for the projection measurement is

F(γ) �
(∂γρ+)2

ρ+
+
(∂γρ−)2

ρ−
�
∂γGγ(t)2

1 − Gγ(t)2
. (5.12)

If the noise is Gaussian, as we will consider in the following discussion, Gγ(t) �
exp(−2βγ(t)) and hence

Q(γ) �
4∂γβγ(t)
e4βγ(t) − 1

. (5.13)

5.2 Multi-qubit probes

We now move to the multi-qubit probing scenario. We assume that we can prepare an
N-qubit system in an arbitrary initial state. In particular, we consider probes prepared
both in the separable state |+〉⊗N and in the generalized GHZ entangled state

|ΨN〉 � (|0〉⊗N
+ |1〉⊗N )/

√
2 . (5.14)

We will also address non-perfect preparation of the probe states in Section 5.4.
We also consider two possible scenarios: in the first, each qubits interacts with an

independent realization of the noise. This means that the overall Hamiltonian is

H(N)(t) � H1(t) ⊗ I⊗N−1
+ I ⊗ H2(t) ⊗ I⊗N−2

+ . . . , (5.15)

where the realizations of the stochastic processes in each Hamiltonian Hi(t) are uncorre-
lated, and the expected value of Eq. (2) must be calculated over all possible realizations
of B1(t), . . . , BN (t). In the second scenario all the qubits interact with a common environ-
ment, i.e. with the same realization of the noise. Then H1(t) � . . . � HN (t) � H(t) and
the expected value in Eq. (2) must be calculated over all possible realizations of a single
stochastic process B(t).
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Figure 5.2: Schematic diagrams of possible characterization techniques. In (a) the system is
prepared in the separable state |+〉⊗N , and each of the probes interact with an independent
environment. In (b) the system is prepared in the separable state |+〉⊗N , but the probes interact
with a common environment. In (c) and (d) the N-qubit system is prepared in the GHZ state
|ΨN〉 � (|0〉⊗N

+ |1〉⊗N )/
√

2 and the qubits interact with separate and common environments,
respectively. At the output, a collective measurement is performed on the qubits.

5.2.1 Comparison of probing schemes

We now discuss the results involving all the four possible probing schemes, that are
visually summarized in Fig. 5.2.

Separable probes, independent enviroments Since each qubit interacts with an inde-
pendent realization of the noise, this scheme amounts to N repetitions of the measure-
ment of a single qubit probe prepared in the optimal state |+〉 and thus, thanks to the
additivity of the QFI,

QSEP,IE
N (γ, t) � 4N

e4βγ(t) − 1
[∂γβγ(t)]2. (5.16)

Separable probes, common environment In this scenario the dynamics of each qubits
is not independent and we need to determine the dynamics of the whole N-qubit state.
The QFI has a readable analytical form only for two qubits

QSEP,CE
2 (γ, t) �

32
{

e8βγ(t)[sinh 4βγ(t) + 1] + 1
}

3e16βγ(t) − 2e8βγ(t) + 1
[∂γβγ(t)]2. (5.17)

One can easily see that

∀t , γ QSEP,IE
2 (γ, t) > QSEP,CE

2 (γ, t), (5.18)

since βγ(t) > 0.
We can check numerically that the maximal QFI for separable probes interacting

with a common environment is always lower than the maximal QFI for separable probes
interacting with independent environments for fixed γ also for N � 3 and N � 4. The
results, shown in Fig. 5.3a, indicate that the ratio between QSEP,CE

n (γ, t) and QSEP,IE
2 (γ, t)

decreases with N .
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Figure 5.3: (a) Ratio between QSEP,CE
N (γ, t) and QSEP,IE

N (γ, t) for different values of N . The ratio is
always lower than one and gets lower as N increases. In the limit γ � 1 the ratio reaches one.
(b)Ratios between QSEP,CE

2,max(γ) (blue), QGHZ,CE
2,max (γ) (green), QGHZ,IE

2,max(γ) (red) and QSEP,IE
2,max(γ) as functions

of γ. We can see that the GHZ probes interacting with common environment achieves a higher
maximal QFI than the other schemes. Similar plots can be produced for N > 2.

GHZprobes, independent environments In this case, the expected value of the density
operator at time t over al possible realizations of the stochastic processes B1(t), . . . , BN (t),
in the rotating reference frame, is

ρGHZ(t) �
1
2
(|0 . . . 0〉 〈0 . . . 0| + |1 . . . 1〉 〈1 . . . 1|)+

1
2

e−2Nβγ(t)(|0 . . . 0〉 〈1 . . . 1| + h.c.)
(5.19)

and we find, for the QFI,

QGHZ,IE
N (γ, t) � 4N2

e4Nβγ(t) − 1
[∂γβγ(t)]2. (5.20)

It is quite easy to prove that QGHZ,IE
N (γ, t) < QSEP,IE

N (γ, t) for all t and γ and so we don’t
have an improvement in the estimation of γ with a probe in the GHZ state if each qubit
interacts with an independent realization of the environment.

GHZ probes, common environment If the entangled qubits of the probe are affected
by the same realization of the noise, one finds that the expected value of ρ(t) is

ρGHZ(t) �
1
2
(|0 . . . 0〉 〈0 . . . 0| + |1 . . . 1〉 〈1 . . . 1|)+

1
2
(e−2N2βγ(t) |0 . . . 0〉 〈1 . . . 1| + h.c.)

(5.21)

and obtains, with the same steps used for the single-qubit probe, the following expression
for the QFI:

QGHZ,CE
N (γ, t) � 4N4

e4N2β(t ,γ) − 1
[∂γβγ(t)]2. (5.22)
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Figure 5.4: Two-qubit quantum signal-to-noise ratio R2(γ, t) � γ2Q2(γ, t) as a function of time for
two values of the spectral width γ of the noise. The blue line shows RSEP,IE

2 (γ, t), the green line
RSEP,CE

2 (γ, t), the red line RGHZ,IE
2 (γ, t) and the yellow line RGHZ,CE

2 (γ, t). From the left panel we can see
that QSEP,IE

2 (γ, t) > QSEP,CE
2 (γ, t) for all t and that QGHZ,CE

2,max (0.1) > QGHZ,IE
2,max(0.1). From panel (b) we can

see that for high values of γ the GHZ probes interacting with a common environment outperforms
the other schemes.

5.2.2 Entangled probes vs separable probes

We have derived the analytical expressions for the four possible measurement schemes.
Figure 5.4 shows the dependence on time of the QFI in the four cases and for a small and
large value of γ. We can see that the QFI as a function of time has exactly one maximum.
Indeed, notice that βγ(t) is a monotonically increasing function of t with βγ(0) � 0 (see
Eq. (5.3)). Moreover, the exponential at the denominator guarantees that Qx

N(t) vanishes
at large t. Since also ∂γβγ(t) is a monotonically increasing function of time, we can
conclude that Qx

N(t) has exactly oen maximum. The position of the maximum, however,
can not be found analytically, as the equations involved are transcendental. We will have
to make do with numerical optimization, which is nevertheless very reliable, given the
smooth behavior of Qx

N(t).
In Fig. 5.3b we show the ratios between the maximal values of the QFI for the

various cases and the maximal value for the QFI for separable probes interacting with an
independent environment, as functions of γ, in the two-qubit case. We can see that the
the ratios are below one except for the scheme involving a joint measurement on entalged
probes that interact with a common environment, when γ is above a certain treshold
value. Analogous plots may be produced for N > 2.

We can now focus on the best schemes for separable probes and for entangled probes.
For the former, we have seen that the optimal scheme is to let the probes interact with
independent realizations of the environment. The QFI, is

QSEP
N (γ, t) �

4N
e4βγ(t) − 1

[∂γβγ(t)]2. (5.23)

If the probe is prepared in a GHZ state, the optimal scheme involves the interaction
with a common environment, i.e. with the same realization of the noise. The QFI in this
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Figure 5.5: (a) the QFI QSEP
2 (t) (orange) and QGHZ

2 (t) (purple) as function of time for γ � 10. We also
show for comparison the (smaller) QFI for separable two-qubit probes in a common environment
(dashed black) . (b) the QFI ratio RN as a function of γ (log scale) for N � 2 (blue), N � 3
(green) and N � 4 (red). For small values of γ, the ratio is below one (black dashed line), and
tends asymptotically to 1/N : in this regime it is more convenient to employ separable states
than maximally entangled states. The ratio increases monotonically with γ and exceeds one at a
threshold value γ0(N), which depends on N . For asymptotically large γ, the use of N-qubit GHZ
states is N times better than the use of N qubits in a separable state.

case reads

QGHZ
N (γ, t) �

4N4

e4N2β(t ,γ) − 1
[∂γβγ(t)]2 . (5.24)

We have seen that in both cases the QFI has one maximum value, reached when the
probe interacts with the environment for an optimal time which we label t̃SEP and t̃GHZ

respectively for the two schemes.
Figure 5.6a shows how the optimal time depends on γ for the two measurement

schemes. In the separable case (black line), obviously, the optimal time does not depend
on the number of probes. The larger γ, the smaller the optimal time. This is sensible, as
greater values of γ mean shorter autocorrelation time and thus faster noise. There are
two regimes where the dependence on γ follows two different power laws.

In situations where we can control the interaction time between the probe and the
environment, it will be most convenient to set it to the optimal time. Thus, a fair
comparison between separable and entangled probes naturally involves the maximal
QFI of the two cases. We therefore introduce the QFI ratio as RN(γ) � QGHZ

N,max(γ)/QSEP
N,max(γ) ,

and analyze its behavior as a function of γ and N. When RN(γ) > 1, the use of a N-qubit
GHZ state improves estimation compared to the use of N uncorrelated probes, e.g. in a
sequential strategy.

Figure 5.5 illustrates the main results: the ratio RN(γ) is larger than one for γ > γ0(N),
where γ0(N) is a threshold value that depends on N . Moreover, RN(γ) → N for γ �
γ0(N). This result is enhanced by the fact that, upon substituting γ̃ � γ/ν and τ � γ̃t, we
may show that the quantum signal-to-noise ratio (QSNR), Eq. (2.117), does not depend
on ν. This means that, if one is able to control the coupling between the probe and the
system, one can always tune ν to achieve a situation where RN(γ̃) > 1. All the figures are
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Figure 5.6: (a) Log-log plot of the optimal interaction time t̃ as a function of γ for separable probes
(black), and for an entangled probe with N � 2 (blue), N � 3 (green) and N � 4 (red) qubits. (b)
The ratio between the optimal time for the GHZ state, t̃GHZ and for the separable state t̃SEP, for the
same values of N .

obtained by setting ν � 1.

5.2.3 Optimality of the GHZ state

Now a question arises: Is the GHZ state |ΨN〉 the optimal one? Are there other states,
entangled or not, that allow for even better precision? We are unable to give an analytical
answer to this question, because the evaluation of the QFI requires the diagonalization
of the density operator. What we know is that that the maximum for the QFI is achieved
for an initial pure state, because of the convexity of the QFI [137].

We have thus generated a large number (n � 106) of random initial pure states,
for different values of γ and for N � 2, 3, 4. To sample the Hilbert space uniformly, we
generated randomunitarymatrices distributed uniformly according to theHaarmeasure
(the algorithm can be found in Ref. [139]). For each random state, the maximal QFI,
QRND

N (γ), resulting from the interactionwith a common environment has beennumerically
evaluated Eq. (2.113). This value is then used to evaluate the corresponding QFI ratio
QRND

N (γ)/QSEP
N (γ), and to compare the estimation precision to the precision achievable

using N independent qubits interactingwith separate environments. Our results indicate
that, for γ & γ0, that is, in the region where entanglement is convenient, the GHZ state is
indeed the optimal one, thus showing that entanglement is a resource for the estimation
of the spectral width of Gaussian noise.

Below the threshold, the GHZ state interacting with a common environment is no
longer optimal, and the optimal strategy involves separable probes interacting with
independent environments. For completeness, we look for the optimal state in a common
environment and find numerically that the extremal state lies in the same family of states
that had been identified in [42] as optimal probes to improve frequency estimation. The
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Figure 5.7: The curves in the logplots show the QFI ratio R2 (top) and R3 (bottom) as a function
of γ for the GHZ state (red) and the optimal state of N qubits in a common environment (green).
The two curves coincide above the threshold γ0(N). We also show the QFI ratio for 105 randomly
generated states (light blue points), uniformly distributed according to the Haar measure.

states of this family, for N qubits, have the form

|ΦN〉 �
b 1

2 Nc∑
k�0

ak |k〉 , (5.25)

where ak are normalized real coefficients, b·c denotes the integer part, and |k〉 is an
equally weighted superposition of all N-qubit states with a number k or a number N − k
of excitations. For instance, for N � 4 and k � 2,

|k〉 � |0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉 . (5.26)

The GHZ state belongs to this family with a0 � 1/
√

2 and all other coefficients set to 0.
Figure 5.7 illustrates our numerical results obtained for two and three qubits. The

plots show the QFI ratios R2 (left) and R3 (right). The red line is the ratio for the GHZ
state, the 105 light-blue points correspond to the QFI ratio of randomly generated states
and the green line is found by optimizing the QFI over the coefficients ak of |ΦN〉. We can
see that from γ & γ0(N) the red and green curves coincide, i.e. GHZ states are extremal.
We also notice that for γ & γ0(N) a significant fraction of dots lies above the r � 1 dashed
line, but the dots are sparse around the solid blue line, meaning that the GHZ state allows
for a remarkable gain in the estimation of larger values of γ, compared to the average
state in the Hilbert space.

It is worth to emphasize that optimal precision, i.e. the QFI of Eq. (5.24) may be
achievedupon implementing a simple rank-2measurement. Indeed,QGHZ

N (γ) corresponds
to the Fisher information of a projective measurement Π± � |p±〉 〈p± | onto the two
eigenvectors corresponding to the nonzero eigenvalues of the evolved density operator,
which are, respectively

p± �
1
2

(
1 ± e−2N2λ2βγ(t)

)
(5.27)

|p±〉 �
1√
2
(e−iω0σz )⊗N

(
|0〉⊗N ± |1〉⊗N

)
. (5.28)
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Figure 5.8: The QFI ratio RN as a function of γ (log scale) for N � 2 (blue), N � 3 (green) and N � 4
(red). For small and large values of γ, the ratio tends asymptotically to 1/N . There are a minimum
and a maximum (well below 1) when γ is around the threshold value γ � 2 (dashed black line)
where the single-qubit dynamics goes from the slow noise regime to the fast noise regime.

5.2.4 Probing the spectral width of RTN noise

As we have seen in Chapter 3, the RTN has the same spectrum as the OU noise, yet its
non-Gaussian statistics gives rise to a completely different dynamics. This is particularly
evident in the dephasing case, where the RTN has two qualitatively different regimes. In
the slow-noise regime, thedynamics is highlynon-Markovian and thedephasing function
GRTN is oscillating, whereas in the fast-noise regime, it is monotonically decaying.

This in turn reflects to the estimation of the switching rate γ (or equivalently, of
the spectral width). The QFI has an oscillating behavior for slow noise, with multiple
local maxima, and a single maximum for fast noise. Single-qubit probes for the random
telegraph noise have been addressed in Ref. [46], where the optimal interaction time is
found for both regimes.

Quite surprisingly, the use of entangled probes in this case is detrimental in both the
slow noise case and in the fast noise case. In particular, for asymptotically large values
of γ, where the GHZ state is optimal for the Gaussian noise, we find that RN � N−1. We
have the same scaling also for asymptotically small values of γ, as can be seen from Fig.
5.8.

The evaluation of the ratio for small values of γ is complicated because of the highly
oscillating behavior, but by inspection we see that the ratio is well below one.

5.3 Bayesian estimation

As we saw in Section 2.4, the Cramér-Rao theorem sets a lower bound to the precision of
any unbiased estimator, and a question arises on how to suitably process data coming
from the above rank-2 measurement in order to saturate the bound. Bayesian estimators
are known to saturate the CR bound for asymptotically large numbers of measurements:
in order to assess quantitatively the performance of Bayesian estimation, and to give an
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example of its use in quantum metrology, we show the results of simulated experiments
on the probing system.

In particular, we simulate the outcomes ΩM � {x1 , . . . , xM} of the measurement
Π± performed at the optimal time t̃GHZ by randomly choosing a result according to the
probabilities of Eq. (5.27) and we build a Bayesian estimator γ̂ as the mean value of the a
posteriori distribution p(γ |ΩM), starting from a flat prior distribution, i.e. with the a priori
assumption that the value of γ is equally probable in some interval [γa , γb], that is

p(γ) �
{
(γb − γa)−1 γ ∈ [γa , γb]
0 elsewhere.

(5.29)

The two possible outcomes for the projective measurementΠ± have the probabilities
in Eq. (5.27). Thus the probability that the set ΩM contains m times the outcome Π+ is
given by the binomial distribution

p+(m |γ) � p+(γ)m(1 − p+(γ))M−m . (5.30)

Given the set of outcomesΩM(m), where m is the number of measurements that read
Π+, the conditional probability for γ, Eq. (2.120), is

p(γ |ΩM(m)) �
p+(m |γ)(γb − γa)−1∫ γb

γa
p+(m |γ)(γb − γa)−1dγ

�
p+(m |γ)∫ γb

γa
p+(m |γ)dγ

. (5.31)

With p(γ |ΩM(m)), we evaluate the mean value and variance of the estimator γ̂, using
Eqs. (2.122) and (2.123).

To simulate the estimation procedure, we extract the random number m from the
binomial distribution of Eq. (5.30), then we numerically evaluate the integral in Eq.
(5.31). This last task is in general tricky, due to the fact that, especially in multiparameter
estimation, the probability space can be very large and the a posterioridistribution p+(m |γ)
can be peaked around the expected value of γ. In these cases advanced numerical
integration techniques such as Montecarlo sampling must be employed. In the problem
at hand, however, simple numerical algorithms are sufficient.

An example is presented in Fig. 5.9, for γ � 10. We chose γa � 0 and γb � 100 as
limits for the flat prior distribution, Eq. (5.29). In Fig. 5.9a we show the estimated value
of γ as a function of the number M of measurements, for a single qubit (blue) and a
four-qubit GHZ state (green). The error bars show the error

√
σ2
γ. We can see that the

precision improves with the number of measurements. This is even more apparent in
Fig. 5.9b, where the relative error ε �

√
Var(γ̂)/γ̂ is shown as a function of the number

of measurements. We see that with a relatively low number of measurements, of the
order of thousands, the bound is saturated and the situation improves by increasing
the number of qubits. The proposed scheme thus allows for an effective and achievable
estimation of the parameter γ.

5.4 Robustness to noise in the initial state preparation

Wehave seen how the use of a GHZ state allows for great improvement of the precision of
estimation of the spectral width of Gaussian noise. However, it is generally challenging
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Figure 5.9: (a) Expected value and error from Bayesian estimation as functions of the number of
measurements M, for a true value of γ � 10 (black line), for a single qubit (blue) and a 4-qubit GHZ
state (red). Notice that the expected value converges to the true value and the error decreases when
M increases. The GHZ state has smaller errors. Here γmax � 100. (b) Log-log plot of the relative
error ε �

√
Var(γ̂)/γ̂ of the Bayesian estimator as a function of the number of measurements, for

γ � 10. The lines represent the CR bound for a single-qubit measurement ( blue) and for a 4-qubit
GHZ state (red). The diamonds (single qubit) and the dots (4 qubits) correspond to the performance
of a Bayes estimator applied to simulated experiments. Bayes estimators saturate the CR bound
when increasing the number of measurements and very good performances are achieved already
for thousands of measurements. The plot also shows that estimation improves with the number
of qubits since the CR bound is saturated with a lower number of measurement. Notice that some
points are below the CR bound. This is due to the fact that the Bayesian estimator might not be
unbiased for finite values of M.

to experimentally prepare the probes exactly in the GHZ state. Typically, the preparation
involves some noise and the resulting state is not the pure target state. Let us now address
the robustness of our scheme against two common models of noise in state preparation:
depolarizing noise and dephasing noise.

A partially depolarized state is a mixture between the target state (in our case the
GHZ state ρGHZ) and the maximally mixed state:

ρp � p ρGHZ + (1 − p)I/2N , (5.32)

where 0 ≤ p ≤ 1. The purity of the depolarized state, as a function of p, is

µ(p) � 1
2N [1 + (2N − 1)p2] (5.33)

The partially dephased state, on the other hand, is

ρδ � δρGHZ +
1
2
(1 − δ)(|0〉⊗N 〈0| + |1〉⊗N 〈1|), (5.34)

where 0 ≤ δ ≤ 1, with purity

µ(δ) � 1
2

(
1 + δ2) . (5.35)
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Figure 5.10: Threshold purity µ0, as a function of the spectral width γ, above which the use of a
depolarized (a) or a dephased GHZ state (b) is more effective than a set of uncorrelated qubits.
In the shaded regions above the curve, an imperfect preparation of the GHZ state still allows it
to outperform the sequential strategy. The lines correspond to a different number N of qubits:
N � 2 (blue), N � 3 (green), N � 4 (red), N � 5 (yellow). The threshold µ0 approaches 1 when
γ→ γ0(N) and when γ→∞. There is an intermediate region where µ0 decreases to a minimum,
meaning that there is more tolerance in the initial preparation of the probe. When N increases, the
minimum of µ0 decreases and moves to larger values of γ.

In both cases, an analytic expression for the QFI may be found: we have

Qp
N(γ, t) �

2N+2N4 [ (
2N − 2

)
p + 2

]
p2[∂γβγ(t)]2[

(2N − 2) p + 2
]2

e4N2β(t ,γ) − 4N p2
(5.36)

Qδ
N(γ, t) �

4N4δ2

e4N2β(t ,γ) − δ2
[∂γβγ(t)]2 , (5.37)

which are obviously less than QGHZ
N (γ), being ρp and ρδ mixed states, but may be still

larger than QSEP
N (γ). Indeed, Figure 5.10 shows that for each value of γ above γ0(N) there

is a threshold value for the purity, abovewhich the use of a depolarized or dephasedGHZ
state still leads to an improvement over the use of N uncorrelated probes. The threshold
purity µ0 is close to one for γ ' γ0(N) and for γ � γ0(N), whereas it shows a minimum
in the intermediate region, thus allowing for a certain tolerance in the preparation of
the initial state of the probe. Besides, this minimum value of the threshold gets lower
when increasing the number of qubits. Notice that the thresholdpurity ismuchhigher for
dephasing noise. This is not surprising: the estimation scheme is based on the dephasing
induced by the environment, thus the probe is more sensible to an initial dephasing due
to noise in the preparation stage.

Summary

• We have discussed the use of qubit systems as probes for the spectral properties of
a complex environment described bymeans of a classical field. The high sensitivity
of quantum systems to the effects of environment and their small size may allow
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the design of extremely precise and noninvasive probing schemes. The scheme
exploits time-dependent sensitivity of quantum systems to decoherence and does
not require dynamical control on the probes.

• We have shown that the use of entangled qubits as quantum probes outperforms
the sequential use of single-qubit probes. In particular, we have shown that a joint
measurement on entangled probes improves the estimation of the correlation time
for a broad class of environmental noises when the noise is faster than a threshold
value.

• The latter result is enhanced by the fact that, upon controlling the coupling between
the probe and the system, the threshold value can be reduced arbitrarily.

• The proposedmeasurement scheme achieves theCramér-Rao bound for a relatively
low number of measurements, upon employing a Bayesian estimator.

• We have discussed the robustness of the scheme against imperfect preparation of
the initial entangled state, by analyzing in detail the depolarizing and dephasing
noise. We have showed that there exists a threshold purity of the initial state above
which the probing schemes outperforms the sequential scheme.





Chapter 6

Continuous-time quantum walks with spatially correlated
classical noise

We now move from few-qubit systems to quantum walks. They are the generalization
of classical randomwalks and describe the propagation of a particle on a discrete graph.
As we briefly discussed in the Introduction, their quantum nature, with quantum super-
position and interference, allows for features and properties that are not seen in random
walks and that are relevant in quantum information processes.

When talking about quantum walks, there are two classes of dynamics that we can
consider:

• Discrete-time quantum walks (DTQW): The evolution of the system is step-wise.
At each step, a measurement is made on a quantum system, usually referred to
as quantum coin, and then an operation is applied to the walker, conditional to the
outcome of the measurement. The Hilbert space of the walker is thus the tensor
product of the space of the position of the particle and of the space of the coin [140].

• Continuous-time quantum walks (CTQW): In this case the evolution is continuous
in time and the walker is described by a Hamiltonian, acting on the position space
of the particle. The dynamics is thus obtained by solving the Schrödinger equation
[141].

Here we focus on continuous-time quantum walks. They have been subject of in-
tense studies, both theoretical and experimental, as they have proven useful for several
applications, ranging from universal quantum computation [48], to search algorithms
[47, 142], quantum transport [49, 143], quantum state transfer [144] and energy transport
in biological systems [145].

Given their relevance in applications, a realistic description of the dynamics of quan-
tumwalkers should take into account those sources of noise and imperfections thatmight
jeopardize the discrete lattice on which the CTQW occurs. While the effects of both dis-
order and dynamical fluctuations have been analyzed in the recent past [53, 54, 146–149],
the consequences of spatially-correlated noise on the dynamics of the walker are still
unexplored territory.

In this chapter, we present an extension [150] to the model used in Ref. [53], where a
quantum walker over a one-dimensional lattice is considered. The hopping amplitudes
are assumed to fluctuate in time as a random telegraph noise (RTN) inducing dynamical
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percolation, which results in a stochastic time-dependent Hamiltonian. We take a step
further and introduce random spatial correlations.

The spatial correlations are introduced as follows: if two adjacent hopping links are
subject to spatially correlated fluctuations, then they are affected by the same RTN time
evolution. This will lead to the formation of percolation domains within which the
tunneling amplitudes evolve according to the same stochastic noise. On a global scale,
because of these spatial correlations, the hopping fluctuations will be synchronized
domain-wise. Overall, this is perhaps the simplest type of space dependency that one
may introduce to the one-dimensional CTQW, as it does not interfere with the local
time-dependent part of the noise. The two sources of noise correlations may indeed be
treated independently. At the same time, the model allows us to describe the formation
of spatial domains and to address percolation effect.

In turn, the motivation for introducing this extra ingredient is two-fold. First, if we
aim at a more realistic description of any experimental implementation of a CTQW, we
need to take into account sources of noise. This is especially important when studying
transport properties in disordered systems in which localization, let it be Anderson
or many-body [151–153], represents an obvious obstacle. A renewed interest in this
field has spurred deep investigations in highly-engineered experimental setups, such
as cold atoms in optical lattices [154, 155], in which complex noise might be efficiently
implemented [156].

The second aspect concerns the question of whether the introduction of spatially
correlated noise might result in improving certain dynamical features, such as slowing
down decoherence or even enhancement of quantumproperties. In this respect, memory
effects are of primary importance, as they have been shown to improve the performances
of numerous protocols in quantum information [157–160] and quantum metrology [128,
161]. They also play a key role in quantum thermodynamics [162] and measurement
theory [163]. However, non-Markovian dynamics has been so far widely investigated
and understood by focusing on the time/frequency domain [8], e.g. by inspecting
quantities such as correlation functions at different times and spectral densities of certain
environments. It is this not obvious how, and whether, introducing spatially dependent
noise might affect memory effects of a given dynamical map.

6.1 Continuous-time quantum walks

Beforediscussing thedetails of thenoisywalk,webrieflydiscuss thenoiseless continuous-
time quantum walk and show its analytical solution. Here we limit ourselves to the
simplest case of a single particle on a linear lattice with N sites, with only first-neighbor
links between sites. The quantum description of the lattice requires a set of orthonormal
states | j〉Nj�1, where | j〉 represents a localized state of the particle in the jth node of the
lattice.

The Hamiltonian that describes the particle is the discrete Laplacian operator, that
describes the free motion of a particle in a periodic potential

H0 � −
∑

j

ε | j〉 〈 j | − ν0
∑

j

([| j〉 〈 j + 1| + | j + 1〉 〈 j |]). (6.1)
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Here ε is the onsite energy of each node, ν0 is the coupling coefficient between adjacent
sites: we assume that they are constant and independent of the position on the lattice.

H0 can be diagonalized exactly. If we assume periodic boundary conditions, i. e.
we assume that our lattice is a closed loop, then we can move to the Bloch basis |ψk〉 �

1√
N

∑
j exp(−ik j) | j〉 to obtain simple expressions for the eigenvalues and eigenvectors.

Upon defining θn � 2nπ/N , we have

|Ψn〉 �
1√
N

∑
j

exp(−iθn j) | j〉 (6.2)

En � ε + 2ν0 cos θn , (6.3)

with n � 1, . . . ,N . Notice that the onsite energy term only gives a shift in the energy
levels and does not affect the eigenvectors, so it can be neglected. Knowing the spectral
decomposition of H0, we are able to evaluate U(t) � exp(−iH0t) and its action onto the
initial state.

We now focus on an initially localized quantum walker, i. e. we consider as initial
state one of the basis states |ψ(0)〉 � | j̄〉. The analytical solution for the dynamics is
possible (although we don’t report the calculations here), and we can study the prop-
agation of the particle. We find that the probability distribution for the particle, given
by ψ j(t) � | 〈 j |ψt〉 |2, is highly non-Gaussian, with two peaks that move away from the
initial position as time increasing. A very interesting result is that involving the variance
of the probability distribution σ2 � 〈x2〉 − 〈x〉2. Whereas a classical particle exhibits a
diffusive behavior, with σ2 ∝ t, the quantumparticle shows a ballistic propagation: σ2 ∝ t2.

6.2 The model with spatially correlated noise

We now add the noise to the above quantumwalk model. We introduce time-dependent
stochastic fluctuations on the hopping amplitudes of Eq. (6.1), and we obtain the time-
dependent Hamiltonian H(t):

H(t) � −
∑

j

[
ν0 + νg j(t)

] (
| j〉〈 j + 1| + | j + 1〉〈 j |

)
, (6.4)

in which we neglected the onsite energy term and ν is the noise strength and {g j(t)} j

are independent RTN processes that jump between ±1 according to the switching rate γ.
This is the model that was addressed in Ref [53].

We now introduce spatial correlations in the noisy Hamiltonian (6.4) as follows.
We assume that two adjacent links of the lattice can be noise-correlated with a certain
probability p. Formally, this translates to the following autocorrelation function:

E
[
g j(t)gk(0)

]
�

{
∝ e−2γt , if j, k correlated
0, otherwise

. (6.5)

For a single noise realization, these spatial correlationswill formM domains of lengths
{L1 , L2 , . . . , LM}, corresponding toM independentnoise evolutions {g1(1), g2(t), . . . , gM(t)}
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respectively, as shown in Fig. 6.1. The distribution of the domains is random and differ-
ent for each noise realization: the probability PM of having M domains in a particular
noise realization is described by a binomial distribution

PM �

(
N − 1
M − 1

)
(1 − p)M−1pN−M , (6.6)

which corresponds to the following average domain length L̄ (as a function of p)

L̄p �

N∑
M�1

(
N
M

)
PM �

pN − 1
p − 1

. (6.7)

By continuity, we define L̄1 � limp→1 L̄p � N . In this case, there is a single noise domain
that spans the whole lattice.

So far, the amplitude of the fluctuations ν has been considered a free parameter of
the strength of the noise. Here, we are interested in the effects of noise space and time
correlations per se, rather than in the noise strength. Thus, we set this parameter to
ν � ν0, meaning that, from now on, we are only going to consider percolation noise: the
local hopping amplitudes can switch between 0 and 2ν0 [164], resulting in links that are
created and destroyed randomly in time, according to the statistics of the RTN process.
Quite obviously, this analysis can be carried out for any value of ν and ν0.

For each noise realization, the system time evolution is ruled by the operator U(t) �
T e−i

∫ τ
0 dτH(τ). The open dynamics of the walker is unraveled by computing the ensemble

average of the unitary dynamics over all possible realizations

ρ̄(t) � EQW
t (ρ0) � E

[
U(t)ρ0U†(t)

]
{g(t)} (6.8)

where E [.]{g(t)} indicates the average taken over an (in principle) infinite number of
implementations of the sets {g1(1), g2(t), . . . , gM(t)} and ρ0 is the (fixed) initial state of
the walker. Needless to say, the solution to Eq. (6.8) is analytically out of reach, given the
dimension of the Hilbert space and the number of fluctuators.

One could in principle apply the transfermatrixmethod described in Subsection 3.3.1,
suitably generalized to the problem at hand, and numerically diagonalize the matrices.
But a quick evaluation of the matrices’ sizes gives an idea of the challenge. If we have
N sites and N fluctuators (i.e. we are in the case p � 0), while the size of the transfer
matrix for the quantum walker is (N2 − 1) × (N2 − 1), which, for N � 100 is at the reach
of current computers, the size of the matrix describing the noise state is 2N × 2N ∼ 1068

elements for N � 100.
We must thus resort to a numerical approximation of the ensemble-average with the

simulation of a finite number of noise realizations R, as we discussed in Equation 3.51.
For all the quantities computed in this chapter, the size of the noise sample is R �

10 000, which guarantees statistical robustness of our results. The code for simulating
the dynamics is similar to the one presented for qubits: we report it in Appendix B for
completeness.
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t
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Figure 6.1: Schematic representation of the model. The lattice is divided in random spatial
domains {L1 , L2 , . . . , LM} for a single realization of the noise, generated according to Eq. (6.6) and
of average length L̄p . Tunneling amplitudes within the same domain fluctuate synchronously in
time and according to the same stochastic process. Different domains evolve independently from
each others.

6.3 Non-Markovianity, diffusion and localization

As previously mentioned, the noise-averaged dynamics of the walker can no longer
be described by Schrödinger equation and one has to resort to the machinery of open
quantum systems. In this respect, a relevant question is whether the open dynamics
of the walker is memory-less, i.e. Markovian, or non-Markovian. In Ref. [53] memory
effects in the dynamics of the walker in presence of spatially uncorrelated RTN were
investigated for some selected initial states leading to the conclusion that decreasing
the switching rate γ enhances the memory effects. That scenario corresponds to noise
domains of average length L̄ � 1 and therefore it is a special case study of the more
general model introduced in this chapter.

Intuitively, since the non-Markovian dynamics is intrinsically connected to the time-
dependency of the environment correlation functions, we can expect that whenever
the spatial-uncorrelated noise is Markovian, it will also be Markovian in the spatially-
correlated-noise case. This is simply because, as mentioned previously, the spatial corre-
lations in the noise do not interfere with the RTN itself but they only assist it. However, if
memory effects are present already in the spatially uncorrelated scenario, it is not obvious
a priori how long-range correlated noise with L̄ > 1 will affect the non-Markovianity of
the quantum map.

We use again the BLP measure (cf. Subsection 2.3.1) to characterize memory effects
in the open dynamics of the walker, as was done in [53]. The BLP measure is nearly
impossible to compute exactly because it involves a state optimization procedure and
the number of parameters to optimize over increases exponentially with the number
N of sites in the lattice. Nonetheless, it does provide a rather intuitive interpretation
of memory effects in open systems and it still allows to get an insight of the behavior
of memory effects by selecting some significant pairs of initial states. Using the RHP
measure is out of question, because there are no easy ways of evaluating entanglement
for high dimensional systems.

In Ref. [53], the dynamics governed by Eq. (6.4) in absence of spatially correlated
noise was analyzed in detail, showing a transition from a diffusive to a localized regime
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as a function of the switching rate γ. Furthermore, depending on the strength of the
noise, a quantum-to-classical transition was also observed for the fast noise case (γ > 1),
resulting in a Gaussian probability distribution of the walker’s state.

Here, we aim at understanding the role of noise spatial correlations in the dynamical
behavior of the walker. Specifically, we want to understand whether spatially correlated
noise domains help the particle spread over the lattice or whether they instead favor
localization. We quantify the extent of noise-induced localization by means of the inverse
participation ratio (IPR) [165], defined as

I(t) �
N∑

j�1
〈 j | ρ̄(t) | j〉2 . (6.9)

IPR is bounded between 1/N and 1withI(t) � 1/N meaning complete delocalization
and I(t) � 1 corresponding to localization on a single site. The larger the IPR, the more
localized the particle is. Using IPR we now investigate how the spatially correlated
time-dependent noise affects the diffusive properties of the walker.

6.4 Results

6.4.1 Localized particle

We now present the results on the dynamical properties of the walker in a noisy, spatially
correlated lattice. The evolution of the walker is obtained by randomly generating the
domains and the noise realizations, computing the single realization unitary dynamics
and finally performing the ensemble average (6.8) for a N � 100 lattice and for R � 10 000
iterations. First, wewill focus on the non-Markovian character of the quantummap, then
analyze the diffusive properties of the CTQW. As anticipated above, the maximization
involved in the BLP measure is a nearly impossible task for most physical systems.
Because of our computational resources and the complexity of the model at hand, this
case-study is certainly no exception. However, we can still compute the integral in
Eq. (2.98) for some relevant initial pairs of states and gain useful information regarding
at least their dynamics.

Since we are interested in the interplay between noise-induced localization andmem-
ory effects due to spatially correlated noise, we restrict our attention to pairs of initial
states that are localized on adjacent sites and we compute the following quantity

nτ
(
γ, L̄

)
�

∫
ÛD(t)>0

dt
d
dt

D
(
EQW

t (ρN/2), EQW
t (ρ1+N/2)

)
, (6.10)

for a fixed final time τ, as a function of γ. In the above equation, ρ j � | j〉〈 j | and
EQW

t � EQW
t (γ, L̄) is the dynamical map computed via Eq. (6.8) that depends upon the

value of the noise switching rate γ and the average domains length L̄. The integral over
time in Eq. (6.10) is up to the fixed time τ.

In Fig. 6.2a we display nτ
(
γ, L̄

)
for a N � 100 lattice and ν0τ � 20. We choose this

truncation time to ensure that the tails of the walker wave-function have not yet reached
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Figure 6.2: (a) Non-Markovianity nτ(γ, L̄) as a function of the average domain length L̄ and
switching rate γ for percolation noise. The selected initial states are |N/2〉 and |N/2 + 1〉 with
N � 100 and ν0τ � 20. In the white region, nτ(γ, L̄) � 0. (b) Long-time value of the IPR as a
function of average domain length L̄ and switching rate γ for percolation noise for the initial states
|N/2〉 for the same values of N and ν0τ.

the boundaries of the lattice and thereforewe need not toworry about finite-size-induced
memory effects. Here we analyze a range of values for γ that are known to generate non-
Markovian dynamics, for the same initial states, in the case of non-correlated RTN [53].

The striking feature we immediately notice is that, after a minimum located at L̄ ≈ 2
and independent of γ, as the average domain length L̄ is increased, the non-Markovian
character evaluated through Eq. (6.10) also increases. Thus spatial correlations in the
noise make memory effects stronger, at least for this set of initial states. An intuitive
theoretical explanation of this behavior might be the following. The presence of domains
with a typical length L̄ is effectively equivalent to amplifying the single-link contribution
to memory effects proportionally to the size of the domain. The walker experiences a
smaller effective lattice of size M with, however, stronger average local disorder. We
performed this calculation using increasingly separated localized initial states and found
the exact same behavior, with the only difference being a smaller value of nτ

(
γ, L̄

)
.

In Fig. 6.2b, we display the long-time IPRI(ν0τ) as a function of γ and L̄ computed for
the initially localized state |N/2〉. This quantity is defined as the quasi-stationary value
that the IPR reaches before boundary effects come into play. Interestingly, for a fixed γ,
this has a maximum at L̄ � 1, similarly to nτ

(
γ, L̄

)
, and decays fast as L̄ increases. While

uncorrelated slow noise tends to keep the walker localized around its initial position,
spatial correlations break the localization and lead to a stronger diffusion of the wave
function across the lattice. By increasing the value of the switching rate γ, the IPR
becomes smaller as we approach memory-less and more diffusive dynamics. Therefore,
while the presence of slow noise (γ < 1) tends to favor localization, by adding random
spatial correlations to the very same noise we can limit this effect and allow the walker
to propagate through the lattice while still retaining memory effects in its dynamics.
Overall, and perhaps quite unexpectedly, for a small fixed γ, a spatially-correlated RTN
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Figure 6.3: Expectation value of the momentum operator 〈p〉 (left) and IPR I (right) as a function
of time, for different average domain lengths L̄, for γ � 0.1 (a), 1 (b) and 10 (c), with lattice size
N � 100. The black dashed line indicates the noiseless case. The initial state is Gaussian, Eq. (6.11),
with k0 � π/2, ∆ � 10.
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tends to suppress localization while still enhancing memory effects.

6.4.2 Gaussian wave packets

To investigate the transport properties in this setting we turn our attention to an initial
Gaussian wave packet, equipped with an average momentum k0 and spatial spread ∆

|G〉 �
N∑

j�1

[
1√

2π∆2
e−
( j− N

2 )2
2∆2

]
e−ik0 j | j〉 . (6.11)

We study the behavior of both the IPR and the average momentum operator p̂ � −i∇,
computed using the Born rule 〈p̂(t)〉 � Tr

[
ρ̄(t) p̂

]
, which represents the average quantum

velocity at which the wave packet travels across the lattice. Figure 6.3 shows the time
evolution of these two quantities for three different values of the switching rate γ and
different average domain lengths L̄. In this case, the effects of the spatially correlated
RTN become even clearer. The wave-packet momentum 〈p〉 (left column) decreases in
time, until it eventually vanishes asymptotically, and this decay is faster for smaller values
of γ, in agreement with Fig. 6.2b. However, while space-uncorrelated noise leads to a
faster reduction of 〈p̂〉, spatial correlations in the RTN allow the wave-packet to preserve
momentum and travel longer across the lattice before stopping. In the limiting case of
L̄ � N (i.e. p � 1), the average momentum 〈p̂〉 is preserved, as in the noiseless case.

Similarly to the case studied above, the IPR (right column of Fig. 6.3) generally
decreases in time. However, there seems to exist a more complicated interplay between
γ and L̄. For small γ the IPR decays faster for larger values of L̄, indicating that spatial
correlations break the noise-induced localization, in agreementwith our previous results.
For larger switching rates γ, instead, the situation is quite the opposite: strong spatial
correlations prevent the particle distribution from spreading further, thus preserving the
initial IPR, with the limiting case of p � 1, i.e. L̄ � N that gives the slowest possible
decay.

Since the average momentum 〈p〉 decreases very slowly in time in this regime, the
original wave packet can travel across the lattice, maintaining its original shape. This
feature is the key ingredient for quantum transport and state transfer, where one wants a
quantumstate to evolve across a complex network,without losing its quantumproperties,
so that its quantum information content can be recovered from another point in the
network.

Therefore, we have again evidence of how introducing spatial correlations in the noise
helps preserving dynamical properties better than in the spatially uncorrelated case. This
can surely be exploited to design protocols for state transfer and communication across
networks.

Summary

• Wehave discussed the effects of spatial correlations on the dynamics of continuous-
time quantum walks on noisy percolation lattices. The model, which allows us to
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address memory effects and transport properties, is based on a stochastic time-
dependent Hamiltonian, where the hopping amplitudes between adjacent nodes
are described as local random-telegraph processes, which themselves show spatial
correlations.

• The presence of strongly spatially correlated noise induces robust memory effects
on the quantum map, as compared to the case of uncorrelated RTN. The BLP
measure for the non-Markovianity of the map increases with the average length of
the domains.

• Spatial correlations lead to localization-breaking, i.e. make the walker able to
spread over the network and to reach distant nodes while still undergoing non-
Markovian dynamics. This is shown by looking at the evolution of the inverse
participation ratio of the walker.

• Spatially correlated RTN improves transport properties of an initially traveling
Gaussian packet compared the analogue uncorrelated case.



Conclusions

In this thesis we have discussed and characterized the dynamics of quantum systems
interacting with classical noise. We have covered the dynamics of one- and two-qubit
systems and presented an experimental simulation of such dynamics. We have also
shown a probing technique that allows to estimate properties of the classical noise using
entangled qubits. Such a characterization is of great relevance in the quest for develop-
ing quantum technologies, as any physical implementation of qubits is affected by the
interaction with the environment. Finally we have addressed quantumwalks affected by
spatially correlated classical noise, covering its diffusion and transport properties.

The interaction with classical noise is relevant in two different aspects. One one hand,
there are physical quantum systems that interact with external macroscopic sources of
noise that may be treated classically, for example a noisy magnetic field used to control
the qubit or macroscopic bistable fluctuators that affect solid state qubits with RTN. On
the other hand, the classical description can be an alternative to the usual approach of
describing the environment as a quantum bath. In many situations, this description
may be challenging or inappropriate. In these cases, modeling the environment with
classical random fields, without invoking a quantum environment at all allows to reduce
the degrees of freedom and simplify the description. For certain types of dynamics, for
example dephasing the decoherence induced by a quantum bath may be equivalently
described in terms of stochastic fluctuating classical fields [11].

In particular, we considered one- and two-qubit systems interacting with environ-
ments that are modeled by Gaussian stochastic processes and the RTN, which is a non-
Gaussian process, and is the basic building block ofmore complex forms of noise. Among
the Gaussian processes, we chose as a paradigmatic example the Ornstein-Uhlenbeck
process, that has the same Lorentzian spectrum of the RTN. We first considered the
dephasing dynamics induced by longitudinal noise, that is, noise with frequencies that
are far away from the typical frequency of the qubit, that effectively alters the quantum
coherence of the system without affecting its energy and we reviewed analytical results
for the two noises.

We then moved to the case of transverse noise, where the energy of the qubit is not
conserved and the dynamics is more complex. We discussed an analytical solution for
the RTN that allows us to obtain the exact transfer matrix, and the numerical methods to
simulate the Gaussian noise. We showed the trajectories in the Bell state tetrahedron, the
dynamics of quantum correlations and we discussed the non-Markovianity of the map.
We also highlighted that the two sources of noise, Gaussian and non-Gaussian, give
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qualitatively different dynamics, meaning that the power spectral density is not enough
to characterize the effect of the noise when it has a non-Gaussian statistics. At the same
time, we showed that the effects of RTN can be simulated by OU noise and viceversa
by suitably tuning their correlation time. We also underlined once more that the non-
Markovianity of the map is connected to temporary revivals of quantum correlations,
proving to be a resource for the processing of quantum information.

We have then discussed a photonic quantum simulator of single-qubit dephasing
induced by the interaction with classical noise. The qubit is encoded in the polarization
of a single photon, and the dynamics is obtained by dispersing the spectral components
of the photon with a grating, then applying a different phase shift (sampled according to
the probability density of the classical noise) to each component through a spatial light
modulator, and then coherently collecting the components with a lens and another grat-
ing, effectively averaging over the realizations of the dynamics, which are evaluated in
parallel, thanks to the quantum nature of the photon. We presented the results of simula-
tions of dephasing channels driven by Gaussian (Ornstein-Uhlenbeck) or non-Gaussian
(random telegraph) stochastic processes, and compared them to the known analytical
solutions. In particular, we have addressed the non-Markovianity of the quantum map.

The implementation presented in this thesis is a proof of principle. Upon increasing
the number of pixels in the spatial light modulator, one may increase the number of
realizations and perform more accurate simulations of noisy channels, or explore more
complex forms of classical noise such as 1/ f noise. Moreover, the setup can be modified
to address the dynamics of two-qubit systems, for instance by using both the photons
coming from the non-linear crystal as signal. The apparatus could also simulate other
forms of noise, such as transverse noise, where analytical solutions lack and one has to
resort to numerical simulation.

We then turned to a probing scheme where qubits are used to infer the spectral
properties of a complex environment described bymeans of classical Gaussian dephasing
noise. The high sensitivity of quantum systems to the effects of environment and their
small size may allow the design of extremely precise and noninvasive probing schemes.
In particular, we looked for a quantum improvement in the estimation, by looking at
the role of quantum correlations. We have shown that the use of entangled qubits as
quantum probes outperforms the sequential use of single-qubit probes. In particular,
we have shown that a joint measurement on probes prepared in a GHZ state improves
the estimation of the correlation time for a broad class of environmental noises when
the noise is faster than a certain threshold value. The variance of the estimator scales
proportionally to N−2 as opposed to the classical scaling N−1, entanglement is thus a
resource for a quantum enhancement in the estimation of the spectral width.

The latter result is enhanced by the fact that, upon controlling the coupling between
the probe and the system, the threshold value can be reduced arbitrarily. We have also
discussed a simulation of a Bayesian estimation procedure, showing that scheme achieves
the Cramér-Rao bound for a relatively low number of measurements, upon employing
a Bayesian estimator. We have discussed the robustness of the scheme against imperfect
preparation of the initial entangled state, by analyzing in detail the depolarizing and
dephasing noise. We have showed that there exists a threshold purity of the initial state
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above which the probing schemes outperforms the sequential scheme.
Finally, we have addressed the dynamics of continuous-time quantumwalks on noisy

percolation lattices and, in particular, we discussed the role of spatial correlations on the
memory effects and transport properties of the walker. The model is based on a stochas-
tic time-dependent Hamiltonian, where the hopping amplitudes between adjacent nodes
are described as local random-telegraph processes, which themselves show spatial corre-
lations. As a matter of fact, spatially correlated noise results in stronger memory effects
in the dynamics and it partly suppresses the localization induced by its randomness,
allowing the walker to spread further and faster across the lattice. The analysis provides
novel insight into the effects of spatially correlated noise on simple graphs and repre-
sents a first step into the understanding of the role of correlated fluctuations on complex
networks, which, in turn, are extremely relevant to several quantum information and
computation tasks, such as quantum algorithms, quantum communication and models
for realistic transport across distant nodes.

The understanding of the dynamics of open quantum systems and the possibility
of controlling it are of paramount importance for developing quantum technologies.
The behavior of quantum correlations under the influence of complex external environ-
ments must be addressed in any physical implementation in order to design devices
for quantum information processing. In this sense, quantum non-Markovianity has re-
ceived increasing attention not only as a theoretical concept, but also as a resource for
technology, as it allows for recoherence effects that preserve the quantum correlations
that are needed in information processing devices. Experimental advances in the ma-
nipulation of many physical systems (such as ultracold atoms, optical, solid state and
superconducting quantum systems) opened the door to fascinating new possibilities re-
garding quantum simulation and reservoir engineering. In this thesis we have covered
all these aspects in the specific scenario of quantum systems (qubits or quantum walks
over lattices) interacting with classical noise. The results presented here shed some light
on the behavior of quantum correlations and the presence of recoherence effects due to
the non-Markovianity of the dynamics, and contribute to the general understanding of
system-environment interaction. Reservoir engineering and high precision metrology
and quantum simulation are key tools that will allow the development of new quantum
devices and advances in fundamental research.





Appendix

A Transfer matrix elements for a qubit affected by RTN

Here we write explicitly the nonzero elements of the 3 × 3 transfer matrix T defined in
Subsection 3.3.1, Eq. (3.35). Here µi and ηi are the solutions of Eqs. (3.40) and (3.41).

T11 �
eµ2t

[
µ1µ3

(
1 − 2ω2) − 2ω2 (

2γ2 + γµ2 − 4ω2) ]
4
[
1 − ω2

(
2γ2 + ω2

) ]
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3
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(A.1)
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T22 � 2γω2

{
eµ1t

[
µ2

(
γ − µ3

)
+ γµ3 + 4

(
1 + ω2) ]

γ
{
4
[
1 − ω2

(
2γ2 + ω2

) ]
+ 2γµ1 (1 − 6ω2) + µ2

1 (1 − 5ω2)
}

+
eµ2t (

2γ2 + γµ2 − 4 + µ1µ3 − 4ω2)
γ

[
8γ2ω2 − 4 − 2γµ2 (1 − 6ω2) − µ2

2 (1 − 5ω2) + 4ω4
]

−
(
2γ + µ3

)
eµ3t

4
[
1 + 2ω2(1 − γ2) + ω4

]
+ 2γµ3 (1 − 2ω2) + µ2

3 (1 + ω2)

}
(A.3)



102 B Code for simulation of a quantum walk with spatially correlated noise
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B Code for simulation of a quantum walk with spatially correlated
noise

In this Appendix we report the MATLAB/Octave code that simulates the dynamics of
the quantum walk subject to random telegraph noise, with spatial correlations.

The noise domains are generated according to the prescription presented in the main
text. Each domain is labeled by an integer number. The N × R matrix latticeDef

associates, for each of the R realizations of the noise, each site with its corresponding
domain number. The RTN is generated in the same way as we discussed in Section 1.4.

The output of the function is an object containing a vector of time instants t and the
cell array rhoAvg, containing ρ̄ at each time instant. All the quantities of interest can be
evaluated from ρ̄. The code below assumes a particle initially localized in the middle of
the lattice. An initial Gaussian wavepacket can also be considered by suitably modifying
the initialization of psi.

function qw = qw_disorder(varargin)

% QW_DISORDER Simulates a 1-particle 1-d quantum walk with RTN noise

% and disordered domains

%

% qw = qw_disorder() uses default values for the parameters and

% returns a QuantumWalk struct (see below)

%

% qw = qw_disorder(’param1’,value1,’param2’,value2, ...) allows to

% set custom values to the parameters

%

% PARAMETERS

%

% latticeSize size of the lattice

% noiseRealizations number of noise histories to average over

% time rather selfexplanatory

% gamma switching rate of the RTN

% p the probability of correlation between two sites

% noiseAmp Amplitude of the noise wrt the coupling

% onSiteEnergy selfexplanatory

% coupling Couplign between first neighbors

% DysonOrder Order of expansion of the Dyson series of U
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% jumpProb the prob. of a jump in a time step (default .02)

% seed set the seed of the random number generator

%

% RETURNS

%

% A struct containing the above parameters and the fields

%

% t time vector

% rhoAvg A cell array containing the average density operator at

% each time instant

% Argument parsing

ip = inputParser;

addParameter(ip,’noiseRealizations’,500, @isnumeric);

addParameter(ip,’latticeSize’,100,@isnumeric);

addParameter(ip,’time’,10, @isnumeric);

addParameter(ip,’jumpProb’,0.2,@isnumeric);

addParameter(ip,’gamma’, 1., @isnumeric);

addParameter(ip,’noiseAmp’,.9,@isnumeric);

addParameter(ip,’onSiteEnergy’,2,@isnumeric);

addParameter(ip,’coupling’,1,@isnumeric);

addParameter(ip,’DysonOrder’,8,@isnumeric);

addParameter(ip,’seed’,4,@isnumeric);

addParameter(ip,’p’,.0,@isnumeric);

parse(ip,varargin{:});

%% Parameters

qw.N = ip.Results.latticeSize; % Lattice size

qw.p = ip.Results.p;

qw.noiseRealizations = ip.Results.noiseRealizations;

R = qw.noiseRealizations

qw.time = ip.Results.time; % Total evolution time

% jumpProb specifies the probability to have a jump in the timestep

% It is used to determine the appropriate dt so that we don’t miss

% jumps of the fluctuators, so it must be low (e.g. 0.2 or less)

qw.jumpProb = ip.Results.jumpProb;

% Switching rate

qw.gamma = ip.Results.gamma;

% Initial position of the particle

qw.initialPos = floor(qw.N / 2); % Particle localized in the center

% Array that specifies the spatial noisy domains

% Each number represents a noise realization. If two sites have

% the same number then their noise is correlated
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qw.latticeDef = cumsum([ones(1,R); ...

(rand(qw.N -1,R) < 1-ip.Results.p)]);

domainIndices = qw.latticeDef;

% Parameters of the Hamiltonian

qw.onSiteEnergy = ip.Results.onSiteEnergy;

qw.coupling = - ip.Results.coupling; % First-neighbor coupling str.

qw.noiseAmp = ip.Results.noiseAmp * qw.coupling; % Noise amplitude

Hdiag = qw.onSiteEnergy * ones(qw.N,1); % On-site energy

% Order of expansion of the Dyson series for

% U = exp (- i H dt)

qw.DysonOrder = ip.Results.DysonOrder;

% Set the seed of the random number generator

rng(ip.Results.seed, ’twister’)

% dt for each time step (must be much smaller than the correlation

% time of the RTN because otherwise we miss jumps)

dt = min(.5, qw.jumpProb / qw.gamma);

qw.t = linspace(0, qw.time, floor(qw.time / dt)); % time vector

% Adjust dt so that we have the exact number of timesteps

dt = qw.t(2) - qw.t(1);

timesteps = length(qw.t); % Number of timesteps

% Initial state of the system

psi = zeros(qw.N, R);

psi(qw.initialPos, :) = 1; % Initially localised particle

% Function that returns the intervals between the next jumps.

% It draws n x m numbers from an exponential distribution

rtn_dt = @(n,m) - log(rand(n, m)) / qw.gamma;

% Count the number of spatial domains

domainCount = domainIndices(end, :);

% Initial noise coefficients (equal probability of being +/- c0

% A matrix of randomly chosen +1 and -1

pm = 2 * randi(2, max(domainCount), R) - 1;

nu = qw.noiseAmp * pm(domainIndices); % Initial noise coefficients

r1 = circshift(1: qw.N, [0, 1]); % [N, 1, ..., N - 1]

l1 = circshift(1: qw.N, [0, -1]); % [2, ..., N, 1]
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% Next jump times

deltat = rtn_dt(max(domainCount), R);

%% Output variables

% Density operator

[qw.rhoAvg{1:timesteps}] = deal(zeros(qw.N));

qw.rhoAvg{1} = psi(:,1) * psi(:,1)’;

%% Simulation loop

for ti = 2 : length(qw.t) % Time loop

for ni = 1 : R % Noise realizations loop

% At each time step we update the first

% band diagonal of the Hamiltonian

Hi1 = qw.coupling + nu(:,ni);

% We evaluate the evolved psi by Dyson-expanding U,

% up to a given order

kQ = psi(:,ni);

for k = 1 : qw.DysonOrder

kQ = (-1i * dt) / k * ...

(Hdiag.*kQ + Hi1.*kQ(r1) + Hi1(l1).*kQ(l1));

psi(:,ni) = psi(:,ni) + kQ;

end

% We check which of the fluctuators have jumped.

% If they did, we flip their state and calculate

% the next jump time, updating the jump-time vector

jumpdomains = qw.t(ti) > deltat(:,ni);

jds = sum(jumpdomains);

if jds > 0

jumps = qw.t(ti) > deltat(domainIndices(:,ni),ni);

nu(jumps,ni) = - nu(jumps,ni);

deltat(jumpdomains,ni) = deltat(jumpdomains,ni) + ...

rtn_dt(jds,1);

end

% We build the average density operator

qw.rhoAvg{ti} = qw.rhoAvg{ti} + ...

psi(:,ni) * psi(:,ni)’ / R;

end

end

end
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