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1. Introduction

Ranks are everywhere in our lives. We rank, we are ranked, and we sometimes
depend on ranks. We rank our interests (conscientiously or not), we rank friends
according our preferences, we rank colleagues, etc. . . At the same time, we are
ranked at high school, during the university carrier (and after). In addition, we
hope that our team will be well-ranked at the end of the season, and we contin-
uously reorder our priorities, based, also, on these ranks. A rank is essentially a
permutation of a group of thinks, and usually it is not totally predictable.

In statistics, permutation procedures are becoming more and more popular
for constructing sampling distributions, by reordering the observed data. Ba-
sically, random shuffles of the data are used to get the correct distribution of
a suitable test statistic under a given null hypothesis. It is usually much more
computationally intensive than standard statistical tests. Non-parametric tests
are often proposed for testing the homogeneity of two or more populations (see,
recently, [10]). For functional data, the importance of the permutation approach
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is discussed in, e.g., [2]. In [5], the method of nonparametric combination of de-
pendent permutation tests is reviewed together its main properties. A specific
permutation procedure is also used in variable selection (see, e.g., [7]).

The idea at the base of the classical permutation procedure is that all the
permutations are equally likely to be expressed, at least in principle. In other
words, exchangeable-like assumptions are assumed in the sample, under the null
hypothesis. Conversely, in this paper, we work with random permutations of a
set which are assumed to be biased by some “preference values”. Consequently,
the rank of each objects of the set is expected to be higher if its preference value
is higher, see [8]. This random procedure models, for example, the final rank of
a league, which is biased by the strength of each team at the beginning of the
season.

A similar idea may be found in the context of discrete choice model, where
under study is the process that leads to an agent’s choice among a set of possible
actions, see [9] for a recent book. The agent’s preferences may by inferred by a
researcher, by estimating its utility function. The final choice is based on these
preferences: the higher the preference is, more likely the corresponding action
will be chosen. This paper extends that idea, by considering not only the “final
choice” of the agent, but all the rank of the agent, as in the models given, for
example, in [8].

This framework of discrete choice model has recently inspired a new tech-
nique for random variable generation, see [1]. Here, we use also the idea at the
base of this technique for an exact efficient simulation of the whole process of
permutation with bias. Based on this result, a likelihood ratio test may be effi-
ciently defined to test whether the hypothesized preferences were exact or not,
or, in other words, If the final rank neglects the expectations. We then apply
this new theory to the data of two of the most known European soccer league:
the Spanish La Liga and the English Premier League, by comparing the final
tables of the last 25 years with the expectations at the beginning of each year.

The paper is structured as follows. Section 2 introduces the methodological
novelties of this paper. At the beginning, we define the model of permutations
with bias, then we introduce the (parametric) likelihood ratio test together with
the definition of the exact p-value of the test, and we conclude the section with
the description of the efficient Monte Carlo procedure to evaluate the p-value.
Section 3 deals with the application of the methodology. It starts by describing
the models that describes the link between the team ranking at the beginning
of the season, and the expected performance of that team at the end of the
season. These expected performances are used as biases in our model, and in
the second part of the section we perform the hypothesis test for each season and
for each league, and we present the results. In Section 4 we give the conclusions
of the paper, while in the appendix we derive the correctness of the Monte Carlo
procedure.
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2. Permutations with bias

In the sequel, the permutations of the set {1, . . . , n} are denoted with bold
Greek letters, so that π = (π1, . . . , πn) is such that πi ∈ {1, . . . , n} for any i and
πi 6= πj if i 6= j. We use uppercase bold Greek letters, as Π, to denote random
objects with value in the set of permutations. The vectors as q = (q1, . . . , qn)
will be always defined with strictly positive elements, if not differently stated.
Accordingly, it is possible to evaluate the natural logarithm, denoted here by
log(·), to each of its elements.

At time t = 0, we assume to have n different objects, labelled with their
natural index {1, . . . , n}. In addition, the sequence q = (q1, . . . , qn) of positive
preference values is associated to our objects.

We work with permutations with bias, that are particular ordered samplings
without replacement of our objects, where the selection probability depends
on the preference values. The result is a random permutation Π with law (1),
obtained with the follow procedure.

At each time t ∈ {1, . . . , n}, an object is selected between the existing ones
with probability proportional to its preference value qi, independently on the
past. Its label πt is assigned to the t-th rank, and the object is discharged. At
the end, the random permutation π = (π1, . . . , πn) of the first n numbers is
obtained with probability Pq or likelihood L given by

Pq(Π = π) =

n∏
i=1

qπi∑n
j=i qπj

=: L(q|π). (1)

Remark 1. We underline that (1) is not sensitive to multiplicative factors. In
fact, if ri = cqi, then

n∏
i=1

rπi∑n
j=i rπj

=

n∏
i=1

cqπi∑n
j=i cqπj

=

n∏
i=1

qπi∑n
j=i qπj

.

2.1. A likelihood ratio test

In a permutation with bias, it is possible to define the following likelihood ratio
test

H0 : q = q0,

H1 : q 6= q0,
(2)

where the likelihood ratio test statistic is

Λ(π) =
L(q0|π)

sup{L(q|π) : q ∈ Rn+ }
.

The likelihood ratio is small if the alternative model is better than the null
model and the likelihood ratio test provides the decision rule as follows:

Do not reject H0 if Λ > c∗;

Reject H0 if Λ < c∗;

Reject H0 with probability q if Λ = c∗.
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By symmetry arguments, it is obvious that sup{L(q|π) : q ∈ Rn+ } is a constant
function of π, and hence the critical region may be computed with L(q0|π)
(instead of Λ) with a constant c (instead of c∗). The values c, c∗, q are usually
chosen to have the desired significance, in that

qPq0(Λ = c∗)+Pq0(Λ < c∗) = qPq0(L = c)+Pq0(L < c) = Significance level of the test.

When q1 = · · · = qn, then all the objects are equally likely to be extracted,
and, as expected, we get Pq1=···=qn(Π = π) = 1

n! , for any π. As a consequence,
in this uniform case, we obtain a test which is independent on the observed π.
This is not the case when the terms qi are different, that we will our case study.

Given the ordered sequence qσ1
≤ qσ2

≤ · · · ≤ qσn of q, even if the prob-
lem {π : L ≤ c} is, in general, intractable, it is obvious that the sequence
(σ1, σ2, . . . , σn) belongs to the critical region and the sequence (σn, σn−1, . . . , σ1)
to the acceptance one. In fact, for any permutation π and i = 1, . . . , n, we have∑n
j=i qσj ≥

∑n
j=i qπj ≥

∑n
j=i qn+1−σj and hence, by (1),

L(q|(σ1, σ2, . . . , σn)) = min
π∗

L(q|π∗) ≤ L(q|π) ≤ max
π∗

L(q|π∗) = L(q|(σn, σn−1, . . . , σ1)).

However, in principle, once a certain π∗ is observed, it is possible to define the
p-value in the classical way

p-value =
∑

π : L(q|π)<L(q|π∗)

L(q|π) =
∑

π : L(q|π)<L(q|π∗)

Pq(Π = π), (3)

where q = q0 for the test given in (2).

2.2. Efficient simulation

To compute (3) for a given value of q and an observed sequence π∗, a Monte
Carlo procedure is used here to calculate an approximated empirical p-value in
the following way.

In the spirit of [8] and, more recently, [1], it is possible to generate a random
permutation π in the following way. A random vector X = (X1, . . . , Xn) with
independent components is generated, where each Xi is distributed as an expo-
nential random variable with parameter qi. The random permutation is defined
as the indexes of the order statistics: (Xπ1

, . . . , Xπn) = (X(1), . . . , X(n)). In the
Appendix, we show that this generation has the same law of (1) (as also given
in [8, Equation (4)] and in the reference therein):

Pq(Xπ1 < · · · < Xπn) = Pq(Π = π). (4)

This result extends also that of [1], where it is shown that Pq(Π1 = π) =
qπ/

∑n
1 qi. Note that, since we are interested only in the order of the indexes,

we may simulate Yi = log(Xi), and we compare directly {Yi, i = 1, . . . , n}
(see, again, [8, Section 4]). To do so, we start with a table of independent
uniform random variables {Ui,m, i = 1, . . . , n,m = 1, . . . ,M}. Then we compute



Giacomo Aletti/Permutations with bias 5

Y
(m)
i = log(− log(Ui))− log(qi), and we register the ordered indexes in π(m) =

{π(m)
i , i = 1, . . . , n,m = 1, . . . ,M}, so that

Y
(m)

π
(m)
1

< Y
(m)

π
(m)
2

< · · · < Y
(m)

π
(m)
n

, for any m = 1, . . . ,M.

The log-likelihood `m = `π(m) of each simulated sequence is hence registered
without the common additive factor

∑
i log(qi), in the following way1

`m = −
n∑
i=1

log
( n∑
j=i

q
π
(m)
j

)
, for any m = 1, . . . ,M.

The comparison of these latter with `π∗ = −
∑n
i=1 log(

∑n
j=i qπ∗

j
), that is com-

puted for the observed sequence π∗, gives

q̂ =
#{m : `m < `π∗}

M
. (5)

Summing up, we generate i.i.d. random permutations π(m) with common dis-
tribution Π (by (4)) and then we compute the sequence of {`m,m = 1, . . . ,M},
which are themselves realizations of i.i.d. random variables. Note that (5) gives
the empirical p-value, since

Pq(π ∈ Π : `π < `π∗) = Pq(π ∈ Π : L(q|π) < L(q|π∗)) =
∑

π : L(q|π)<L(q|π∗)

Pq(Π = π).

3. Premier League and La Liga: season results and expectations

In this section, we analyse two soccer national leagues from 1992-93 (first Pre-
mier League season) to 2016-17, to test whether the final tables were expectable
or not. For each season, we compute the a priori expectations of the probability
of winning each season for each team, and we compare it with the final obtained
ranks of the teams.

3.1. Elo ratings and expected probability of winning the season

The World Football Elo Rating (ER) is becoming more and more popular due
to its significant power of prevision, see, e.g., [4]. ER is based on the Elo rating
system and includes modifications to take various soccer-specific variables into
account.

The difference in the ERs between two teams serves as a predictor of the
outcome of a match with a logistic model. In other words, the logarithm of the
winning probability of each match is essentially proportional to ER, up to a

1Many softwares have the built-in function cumsum. It is more convenient to store π(m) in re-
verse order, i.e. p = (q

π
(m)
n

, q
π
(m)
n−1

, . . . , q
π
(m)
1

), and to compute `m = -sum(log(cumsum(p))).
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Fig 1. Comparison between ELO ratings and logarithm of expected winning probabilities based
on the odds of the principal online betting players. The ordinary least square linear fitting
(dashed line) is plotted together with a robust one (solid line).

factor for the advantage of the home team. Obviously, there is more uncertainty
in the result of a single game than in the averaged result of a season, and
hence we must recalibrate the ER based model. We show in a moment that the
expected winning probability of the season of each team, in logarithm scale, is
again proportional to its ER.

To achieve this task, we have downloaded the odds for the winner of the
Premiere League of all the big competitors in the UK online betting system at a
day of summer, a quiet period. We have computed the averaged expected prob-
ability of winning of each team, and we have compared with the correspondent
ELO rating. In Figure 1, the scatter plot shows a good linear model (Multiple
R-squared: 0.9026, Adjusted R-squared: 0.8972, p-value < 10−9). We have cali-
brated the model with a robust regression fitting (using an M estimator, see [3])
to reduce the contribution of the evident outlier. Note that the slope parameter
is the sole interesting one, as underlined also in Remark 1.

The expectation of the winning probability for each team is hence computed
considering its ER at the 1st of October of the corresponding season. In this way,
we think to have included the ELO adjustments due to the summer markets,
which are reflected in the initial part of the season. Summing up, we are assum-
ing that ERs of 1st of October are good predictions of the initial expectations
of the people for the teams of that season. The relative expected probabilities
of winning each season are shown in Table 1-2 and in Table 3-4 for the Premier
League and La Liga, respectively, together with the ranks obtained by the teams
at the end of the season.

3.2. Unbelievable seasons

To evaluate the unexpected results of the two national leagues, we have modelled
each final season ranks as a permutation with bias. The likelihood test (2)
is performed, with q0 being the relative expected probabilities of winning. A
significant p-value (less than 0.05), computed as in (5), reveals that either the
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Fig 2. Surprisal of the seasons’ final tables, plotted as self-information of the p-values. A
surprisal of more than 3 correspond to a p-value less than 0.05.

expectations were wrong or that the result is highly surprising. In both cases,
from a personal perception, the lower is the p-value, the higher is felt strange the
final table. In information theory (see [6]), the fact that an event is informative
is measured thorough its self-information or surprisal, and computed as the
opposite of the natural logarithm of the probability of the event. The scale is
given in the natural unit of information (nat).

In Figure 2 it is plotted the time series of the surprisals of the p-values. As
known, the result of Leicester has made the 2014-15 season exceptional, the
third more unpredictable English season in the Premier League era. It should
be stressed that not only the winner, but all the teams contribute to the unpre-
dictability of the final table according to their initial strength and final ranks.
This is the case for the Spanish 2003-04 season, where the debates of both the
Celta de Vigo and the Real Sociedad (19th and 15th in the final rank, respec-
tively) made this season “unbelievable”.

4. Conclusions

In this paper, we have presented a new test for permutations with bias, that are
ordered samplings without replacement where the selection probability depends
on a preference value of each unit. Since the sample size is given by n! possible
permutations and analytic expressions are not given, we have provided a method
to compute Monte Carlo p-values in an efficient way.

As an example, we have studied the results of the Spanish La Liga and of the
English Premier League, since the foundation of the latter. By analysing Elo
ranks of the teams at the beginning of each season, we could find the rational
expectations for the different seasons. We have tested whether the final tables
were in accordance with the expectations, and we found that more than 30% of
the seasons had unpredictable results, in both the Spanish and English league.
That’s soccer!
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Appendix A: Mathematical derivation of (4)

In this Appendix, we give the mathematical proof of the accuracy of our Monte
Carlo procedure. We begin with a lemma.

Lemma A.1. For π = (π1, . . . , πn), let gπ : (0, 1) × {1, . . . , n} → R+ be the
function so defined:

gπ(u, k) =

{∫ u
0
qπkv

qπk−1gπ(v, k + 1)dv if k < n.∫ u
0
qπnv

qπn−1dv if k = n.

Then

gπ(u, k) =

n∏
i=k

qπiu
qπi∑n

j=i qπj
,

and, in particular, gπ(1, 1) =
∏n
i=1

qπi∑n
j=i qπj

.

Proof. For k = n, it is a standard computation. For k < n, by backward induc-
tion,

gπ(u, k) =

∫ u

0

qπkv
qπk−1

n∏
i=k+1

qπiv
qπi∑n

j=i qπj
dv

=

∏n
i=k qπi∏n

i=k+1

∑n
j=i qπj

∫ u

0

vqπk−1+
∑n
i=k+1 qπidv

=

∏n
i=k qπi∏n

i=k+1

∑n
j=i qπj

[v
∑n
i=k qπi ]u0∑n
i=k qπi

=

∏n
i=k qπiu

∑n
i=k qπi∏n

i=k

∑n
j=i qπj

=

n∏
i=k

qπiu
qπi∑n

j=i qπj
.

The desired result is a consequence of the previous lemma, as shown below.

Proof of (4). We recall that, given a geometric random variable X with param-
eter q, the random variable U = exp(−qX) is uniformly distributed on (0, 1).
Accordingly, if we transform the random vector X, we obtain so that

P (Xπ1
< · · · < Xπn) = P

(
− log(Uπ1)

qπ1

< · · · < − log(Uπn)

qπn

)
= P

(
U

1
qπ1
π1 > · · · > U

1
qπn
πn

)
,

where (Uπ1 , . . . , Uπn) is a vector of i.i.d. random variables uniformly distributed

on (0, 1). As a consequence, the random vector (U
1
qπ1
π1 , · · · , U

1
qπn
πn ) has density

f(u1, . . . , un) =

n∏
i=1

qπiu
qπi−1
i 1(0,1)(ui),
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and hence, by Lemma A.1,

P (Xπ1
< · · · < Xπn) =

∫ 1

0

qπ1
u
qπ1−1
1

(∫ u1

0

qπ2
u
qπ2−1
2

(∫ u2

0

· · · du3
)
du2

)
du1

= gπ(1, 1) = Pq(Π = π).
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