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Abstract 

 

The ophiolite sequences in the western Elba Island are classically interpreted as a well-exposed 

ocean-floor section emplaced during the Apennines orogeny at the top of the tectonic nappe-stack. 

Stratigraphic association along with petrographic and geochemical features indicate that these 
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ophiolite sequences are remnants of slow- ultraslow spreading oceanic lithosphere analogous to the 

present-day Mid-Atlantic Ridge and Southwest Indian Ridge.  

Within the oceanward section of Tethyan lithosphere exposed in the Elba Island, we investigated 

for the first time a decameter-thick structure, the Cotoncello Shear Zone (CSZ), that records high-

temperature ductile deformation. We used a multidisciplinary approach to document the tectono-

metamorphic evolution of the shear zone and its role during spreading of the western Tethys. In 

addition, we used zircon U-Pb ages to date formation of the gabbroic lower crust in this sector of 

the Apennines. Our results indicate that the CSZ rooted below the brittle-ductile transition at 

temperature above 800 °C. An high-temperature ductile fabric was overprinted by fabrics recorded 

during progressive exhumation up to shallower levers under temperature < 500°C. We suggest that 

the CSZ may represent the deep root of a detachment fault that accomplished exhumation of an 

ancient oceanic core complex (OCC) in between two stages of magmatic accretion. We suggest that 

the CSZ represents an excellent on-land example enabling to assess relationships between 

magmatism and deformation when extensional oceanic detachments are at work. 

 

Keywords: Oceanic core complexes, Slow-spreading ridge, brittle-plastic transition, Northern 

Apennines ophiolites, Elba island. 

 

 

1. Introduction 

 

In slow- and ultraslow-spreading ridges (plate motion < 5 cm/year) the generation of new 

oceanic lithosphere is strongly controlled by the activity of detachment faults that accomplish 

exhumation of 150-6000 km
2
 wide portions of lower- crust gabbros and mantle rocks (Oceanic 

Core Complex, OCC; MacLeod et al., 2002, 2009; Ohara et al., 2003; Escartin et al., 2008). In the 
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last decades, bathymetric and geophysical studies associated to drill hole investigations and 

numerical simulations led to document sufficiently the active dynamic processes and the rock 

assemblages and composition of lower crust/mantle sections exposed at the OCC surface. In 

modern OCCs (Harigane et al., 2008; MacLeod et al., 2009; Hansen et al., 2013), detachment faults 

typically associate to ophiolite breccias unconformably overlying gabbros and mantle basement that 

contains hydrous alteration phases formed as the result of fluid-rock interaction (serpentine, talc, 

chlorite; Cann et al., 1997; Tucholke et al., 1998; Boschi et al., 2006; Karson et al., 2006; MacLeod 

et al., 2009). Although the evolution of lower crust-mantle sections exhumed in oceanic core 

complexes are intensively studied, many uncertainties still concern the dynamics of oceanic 

detachments and the rheology of the deep oceanic crust. The inability to investigate these structures 

“in the field”, in fact, makes very difficult gathering information on: (1) the spatial and temporal 

localization of deformation along the oceanic detachment fault, (2) the mechanism, rheology and 

the deep extent of the detachment and (3) how tectonics, magmatism and hydrothermal processes 

enhance the strain localization during the OCCs evolution.  

Important information that could help addressing these questions may be acquired by studies 

of fossil OCCs exposed on land. In the last decades, in fact, detailed field mapping associated with 

structural, stratigraphic, petrographic and geochemical studies enabled reconstructing the geometry 

and the internal structure of fossil OCCs, the stratigraphy of supradetachment sequences and the 

spatial and temporal relations between geometry, magmatism and tectonics at shallow level 

(Tremblay et al., 2009; Manatschal et al., 2011; Balestro et al., 2015; Festa et al., 2015; Lagabrielle 

et al., 2015; Nicholas et al., 2017).  

On the contrary, the deep roots of the OCCs are scarcely investigated. In the modern and in 

exhumed analogues OCCs, in fact, few works document the presence of a pervasive high-

temperature viscous deformation broadly associated to the oceanic detachment fault developed 

below the brittle-plastic transition (Molli, 1996; Miranda and Jones, 2010; Hanson et al., 2013; 
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Manatschal et al., 2011; Nicholas et al., 2017). Consequently, further investigations are required to 

rheologically constrain the deep extension of the oceanic detachment fault. 

In this study, we present field and microstructural descriptions and the results of lattice 

preferred orientation studies conducted on olivine and on amphibole from a previously unknown 

hundred-metre thick mylonite zone (Cotoncello Shear Zone) affecting the oceanic Tethyan 

lithosphere now exposed in western Elba Island (northern Apennine, Italy). Analogously to what 

documented in the modern Kane OCC, in the Mid-Atlantic Ridge (MAR) by Hansen et al., (2005), 

we describe structures that indicate a progressive shearing under retrogressive conditions that 

evolved from high-temperature viscous deformation to brittle-ductile localized shear zone. The CSZ 

preserves evidences that may help to understand the mechanism and the rheology of the deep extent 

of the oceanic detachment faults in modern OCC.  

 

2. Tethyan ophiolite sequences in Northern Apennines 

 

The ophiolite sequences in northern Apennines (Fig. 1) testify the Mesozoic evolution, from 

rifting to slow/ultraslow seafloor spreading, of the Tethys oceanic basin that, since Jurassic, 

separated the Adria and European continental plates (i.e. the Ligure-Piemontese Ocean). The 

knowledge of the primary architecture of the oceanic basin (Cortesogno et al., 1994 and references 

therein; Marroni and Pandolfi, 2007 and references therein) as well as the thermo-mechanical 

history of the oceanic lithosphere during mantle upwelling, lithosphere delamination and spreading 

(Molli, 1996; Tribuzio et al., 2000, 2004; 2015; Sanfilippo and Tribuzio, 2011; Piccardo et al., 2014 

and references therein) have improved significantly during the last decades, discriminating 

ophiolites produced in a slow/ultraslow spreading setting (belonging to the Internal Ligurian Units) 

and ophiolites originated in an embryonic ridge environment and associated to continental 

lithospheric rocks (belonging to the External Ligurian Units) (Fig. 1). The Internal Ligurian Units 

represent the typical section of the Middle to Late Jurassic Tethyan oceanic lithosphere. The 
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lithosphere sequence is less than 1 km thick and consists of depleted-mantle peridotite (Piccardo et 

al., 2014 and references therein) intruded by small amounts of MOR-type gabbroic complexes. The 

peridotite-gabbro association is covered by a Late Jurassic-Paleocene volcano-sedimentary complex 

in which sedimentary breccias, MORB-type basalt flows and radiolarian cherts are mutually 

interlayered (Marroni and Pandolfi, 2007 and references therein). Structures, rock assemblages and 

compositions indicate that this lithosphere sequence is analogous to what produced in the present-

day slow/ultraslow spreading setting along the Mid Atlantic Ridge (e.g. Marroni et al., 2010 and 

references therein; Sanfilippo and Tribuzio, 2011).  On the contrary, in the External Ligurian Units, 

ophiolites preserve evidences of an ocean-continent transitional domain. In these units, ophiolites 

occur as huge slide-blocks of fertile sub-continental lithosphere Sp-lerzholites, gabbros and basalts 

(retaining primary contact relationships with lower and late Permian continental crust) in late 

Cretaceous sedimentary mélanges (Marroni et al., 2001 and references therein) (Fig. 1). During 

their Oligo-Miocene emplacement on the top of the northern Apennine nappe stack, the ophiolite 

sequences experienced a polyphase deformation history and prehnite-pumpellyite to blueschists 

facies metamorphic conditions (Marroni et al., 2010 and references therein). 

  

2.1. Pre-orogenic deformation and metamorphism in the Northern Apenninic ophiolites 

 

Mylonite fabrics have been documented in gabbros and peridotites from both the Internal (e.g. 

Cortesogno et al., 1994 and references therein; Molli, 1996 with references therein) and the 

External (e.g. Molli, 1996; Tribuzio et al., 2014) Ligurian Units. Most of these shear zones have 

been described in gabbroic rocks, whereas very few studies have provided a structural and 

metamorphic description of mylonite fabrics in peridotites (e.g. Molli, 1996). Even though 

peridotite tectonites have been recognised in several places in the Northern Apennines, their 

microstructures and their pressure and temperature stability field are poorly investigated.  

Mafic and ultramafic mylonitic rocks preserved within slide blocks in the External Ligurian 
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Units provide structural and metamorphic information about the Late Triassic mantle upwelling 

(e.g. Montanini et al., 2012) and transition from continental breakup to slow-seafloor spreading. 

Granular fabric in spinel peridotite was constrained at T = 1000-1300 °C (Tribuzio et al., 2004) 

whereas later recrystallization of orthopyroxene occurred at lower temperature (T = 900-1040 °C, P 

= 1.5G Pa: Tribuzio et al., 2004). In gabbros, clinopyroxene + plagioclase-bearing mylonites 

developed probably close to sub-solidus conditions at T ~ 850 °C with no involvement of seawater 

(Tribuzio et al., 2014). Mylonitic gabbros successively develop an amphibole-bearing foliation at ~ 

710 °C (Tribuzio et al., 2014). Recent U-Pb zircon geochronology constrains the formation of lower 

gabbroic crust during the incipient oceanic lithosphere at ~161-173 (Ma Tribuzio et al., 2004; 

2016).  

Peridotites from the Internal Ligurian Units (Fig. 1) recorded an early shearing event (Molli, 

1996) occurred probably before their re-equilibration in the plagioclase stability field (T = 900-

1000 °C and P = 0.5 – 0.7 GPa; Rampone et al., 1993). After the Middle Jurassic gabbro intrusions 

around 161-163 Ma (Tribuzio et al., 2016) at less than 15-20 km of depth (Tribuzio et al., 1995), the 

mafic and ultramafic complexes have been deformed by a long-lived shear zone developed under 

granulite/upper amphibolite facies conditions (T = 700 – 800 °C and P = 0.4 – 0.5 GPa: Molli, 

1996; T = 660-730 °C and P = 0.3-0.4 GPa: Cortesogno et al., 1994) to greenschist facies 

conditions, that was responsible of the uplift of lower crust/mantle sections (Molli, 1996). At 

shallow structural levels, the increase in water content and the decrease in temperature (up to T  

550 °C: Cortesogno et al., 1994), lead to the growth of serpentine along mylonitic foliations in 

peridotites and contemporaneously Mg- hornblende / actinolite + plagioclase developed along the 

mylonitic foliation in gabbros (Molli, 1996 and references therein). Gabbros and peridotites were 

intensely fractured and locally affected by hydrothermal circulation that produced hornblende 

veining and coronae (Tribuzio et al., 2014) and intruded by basalt dykes (Cortesogno et al. 1994; 

Tribuzio et al., 2014). Shear zones, developed mainly at the gabbro/peridotite boundary 

(Cortesogno et al., 1994), were probably responsible of the final uplift and exposure at the seafloor. 
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Intense hydrothermal circulation may occur through those late localized shear zones, inducing 

metasomatism and, at shallower levels, the development of calcite veins (Tribuzio et al., 2014) 

and/or ophicalcites (Cortesogno et al., 1994). 

 

3. The geology of Elba Island  

 

Located in the northern Tyrrhenian Sea (Fig. 1), the Elba Island consists of metamorphic and 

non-metamorphic units derived from both continental (i.e. the Tuscan) and oceanic (i.e. Ligurian) 

domains (Fig. 2) staked toward NE during the Oligocene - Miocene Apennines orogeny (Massa et 

al., 2016 and references therein). Analogously to the architecture described in Northern Apennines, 

the oceanic units exposed in the Elba Island are in the uppermost portions of the tectonic stack (Fig. 

2). Late Cretaceous and middle Eocene to Paleocene carbonatic turbidites (i.e. External Ligurian 

Units; Raggi et al., 1965; Keller and Pialli, 1990) overthrusted tectonically the Tethyan oceanic 

sequence belonging to the Internal Ligurian Units (Fig. 2).  

After the building of the Northern Apennines belt, a great variety of acid magmatic products 

including felsic laccoliths and two large plutons (Mt Capanne and Porto Azzurro plutons) intruded 

the tectonic nappe stack (c. 8 - 6.3 Ma: Dini et al., 2002; Barboni and Schoene, 2014 and references 

therein). Their emplacement locally produced low-pressure contact metamorphism (Barberi and 

Innocenti, 1965, 1966) that reached T ~600°C and P ~0.15–0.20 GPa (Rossetti et al., 2007). Close 

to the contact with igneous rocks (few teens of metres), serpentinized peridotites have olivine 

neoblasts and mm-sized anthophyllite crystals statically grown on original (and partly preserved) 

serpentine mesh structure (e.g. S.Ilario area; Fig. 1). The Mesozoic carbonatic host rocks record the 

static growth of wollastonite, grossular and Ca-pyroxene crystals, while andalusite, cordierite, 

plagioclase, actinolite and biotite develop in the late Jurassic cherts (Barberi and Innocenti, 1965; 

1966). The intrusion of the Monte Capanne pluton at the core of a km- scale antiform, led to the 

centrifuge tilting of host rocks (Bouillin, 1983). The local stress field in the host rocks all around 
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the pluton led to the development of centimeter to decimeter sized asymmetrical folds with axial 

planes dipping gently away from the pluton (Bouillin, 1983) and to ductile mylonites produced 

under submagmatic flow conditions in the porphyritic rocks intruded slightly earlier than the pluton 

emplacement (Westerman et al., 2004). 

The knowledge of the gabbroic and mantle sequences exposed in the Elba Island is scarce 

also due to the HT-LP metamorphic overprint associated to the Mt. Capanne pluton. Geochemical 

and petrographical studies were conducted mainly in the eastern portion of the island (e.g. 

Bortolotti et al., 1994; Tartarotti and Vaggelli, 1994; Saccani and Principi, 2016), and only few 

studies investigated their tectono-metamorphic collisional evolution (Perrin, 1975; Reutter and 

Spohn, 1982). Little is known about their pre-orogenic history. Most of the studies agree that the 

oceanic lithosphere sequences cropping out in western Elba Island belong to the Internal Ligurian 

Units (e.g. Bortolotti et al., 1994; Saccani and Principi, 2016) and recorded a more complex and 

penetrative deformation compared to that documented in the ophiolite sequences of the eastern 

portion of the Elba island, but their involvement in the Apenninic orogenic prism and their tectono-

metamorphic evolution during the Apenninic orogeny is still poorly constrained and with 

controversies. Most of the studies suggest that the ophiolites derive from the Penninic Units of 

western Alps (i.e. eastern Corsica Alpine belt) displaced eastward during the Apenninic orogeny 

through brittle-ductile shear zones and affected by meter-scale west-verging folds and by very low-

grade metamorphism (e.g. Perrin, 1975). On the contrary Reutter and Spohn (1982) found low-

grade metamorphic assemblages relicts (albite, chlorite, epidote and garnet) and east-verging 

structures, suggesting that the ophiolites may represent remains of an oceanic basin subducted 

westward during the Oligocene and then implicated in the late Oligocene-early Miocene northern 

Apennine stacking. 

 

4. Methods 
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The study of the CSZ involved a detailed structural description of lithologies and 

mesostructures summarised in Fig. 3. 35 samples were selected to be investigated using polarized 

light microscopy and scanning electron microscopy (SEM) located at the INGV in Pisa, in thin 

sections cut parallel to the mineral lineation and orthogonal to the main foliation. Two selected 

samples were analysed by X-rays powder diffraction (XRPD) to determine the composition of the 

mineralizations filling the late vein systems. Three samples representative of the main fabrics 

documented in peridotites were analysed to determine the lattice preferred orientation (LPO) of 

olivine and amphibole using a neutron diffraction texture analysis, or Quantitative Texture Analysis 

(QTA), at the nuclear reactor at the Institute Laue-Langevin in Grenoble, France. To constrain the 

age of mafic intrusion, U–Pb geochronology was carried out on zircons directly on polished thin 

section of one sample of deformed plagiogranite at the CNR – IGG of Pavia with Laser Ablation 

(LA)–ICP–MS. See Appendix for further methodological details.  

 

5. The Cotoncello Shear Zone  

 

The Cotoncello Shear Zone (CSZ) is exposed in the lower crust/mantle section cropping out 

along a vertical cliff in the northern margin of the Mt. Capanne pluton at ~500 m east of Punta del 

Cotoncello (western Elba Island) (Fig. 2). Though Miocene granitic porphyries (Portoferraio 

porphyry) limit on the west and on the east the shear zone (Fig. 3), the extremely continuous 

exposure along the seacoast (~150 m) makes the CSZ the widest section of sheared peridotites in 

northern Apennines. As described in the following sections, no evidence of low- to very low 

metamorphism or of the presence of deformative structures aquired during the Apennines orogeny 

are documented in the CSZ.  

 

5.1. Geometry and structures at the outcrop scale 
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The exposed rocks are mainly peridotite (~75%vol), gabbro (~22%), pyroxenite (~2%) and 

serpentinite (1%). Gabbro intrusions (5 to 15 m thick) are located in the central and westernmost 

portions of the CSZ whereas pyroxenites crop out as meter thick layers in the central and eastern 

portions (Fig. 3). Serpentinites occur exclusively in the eastern portion of the sheared basement. 

Gabbroic intrusions are cut by decimeter -thick foliated plagiogranite veins and by meter-thick 

undeformed basaltic dikes.  

Several deformation fabrics, varying from proto-tectonite to mylonite-ultramylonite, were 

distinguished in the field (Figs. 3 and 4). All fabrics result parallel or sub-parallel to the different 

lithotypes (Fig. 3). The main foliation strikes NW-SE with an average direction of N130E and 

steeply dips (70-90°) toward NE. On the foliation plane, mineral lineation is slightly oblique and 

shows a gently to moderate (30-80°) plunge toward NW or NNE (Fig. 3). Plagiogranite veins lie 

parallel to the main foliation documented in peridotites and gabbros, whereas basalt dikes cross cut 

at low angle the main foliation. 

At the mesoscale, two main fabrics were documented exclusively in peridotites: proto-

tectonites (PF1) (Figs. 3, 4 and 5a), mainly preserved in the eastern portion of the CSZ and 

tectonites (PF2) (Figs. 3, 4 and 5a, b), in the central and western portions of the CSZ. The tectonitic 

fabric is evidenced by elongated olivine and pyroxene crystals (0.4 - 1 cm; Figs. 5a, b). Gabbros 

recorded a strongly partitioned mylonitic fabric (Figs. 3 and 5c, d) that produced a network of 

ultramylonites and mylonites (GF2; Fig. 4) locally preserving lenses of coarse-grained, poorly 

deformed gabbro (GF1 in Fig. 4). Both gabbros and peridotites recorded a lower temperature 

mylonitic event (PF3 and GF4; Fig. 4) that produced a continuous and/or anastomosed mylonitic 

foliation highlighted by acicular amphibole crystals (Figs. 4 and 5b). This mylonitic foliation trends 

parallel to the previous fabrics. Several meter thick tremolite-bearing shear zones occur mainly at 

the boundary between peridotites and gabbros (Figs. 3) producing tremolitites in peridotites and 

cm-thick green phyllonites in gabbros (Figs. 5e, f). The foliation (N140-150°E) within the localized 
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shear zone envelops centimeter to meter thick- lenses of peridotites and gabbros showing an 

internal foliation (PF2 and GF2) discordant with the external one (Figs. 5e, f). 

 

5.1.1. Geometric relationships between CSZ and Miocene intrusive rocks 

The stack of the Apenninic tectonic units and the Miocene emplacement of the Mt. Capanne 

pluton were responsible of the actual trend and position of CSZ. Notwithstanding the vertical 

exposure of the outcrops, the crosscutting relations between the CSZ fabrics/structures and the 

Miocene intrusive rocks are well exposed in the field.  

The porphyry delimiting the western boundary of the CSZ transposed the mylonitic fabrics 

documented in the peridotite-gabbro sequence (PF2, PF3, GF2; Fig.6a). Close to the porphyry, in 

fact, the tectonite/mylonite foliation becomes parallel to the sub-magmatic foliation documented in 

the porphyries whereas few meters away they form and angle of c. 60-70° (Fig.6a). At the western 

boundary instead, mylonitic foliation in gabbros (GF2) (Fig. 3) and sub-magmatic foliation in 

porphyry show an apparent parallelism induced by the vertical exposure of the cliff. Moreover, 

approximately in the central portion of the CSZ, an E-W trending meter-thick undeformed granitic 

dyke (Fig. 3) crosscuts the mylonitic foliations in sheared peridotites and gabbros (Fig. 6b) and 

contains decimeter-thick angular enclaves of tectonite peridotite (PF1), high-temperature mylonite 

peridotites (PF2) and mylonitic gabbro (GF2) (Fig. 6c). These geometrical relationships imply that 

the intrusion of the Miocene magmatic rocks occurred in an already sheared basement. This timing 

is also confirmed by the static growth of euhedral gedrite – anthophyllite crystals (50-400 m), 

induced by the pluton emplacement, onto all the fabrics documented in the CSZ (see Section 6 for 

detailed descriptions). 

 

5.2. Serpentinization processes 
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Serpentine minerals (both in the veins and in the groundmass) were documented mainly in the 

eastern portion of the CSZ (c. 5% of rock volume) and close to the m-thick tremolite-bearing shear 

zones. These veins show a maximum of 3 cm in thickness and 35 cm in length and are partly or 

completely replaced by magnetite. In the westernmost sector of the CSZ, fibrous serpentine fills 

mm- to sub-millimeter tabular veins whereas cm-thick veins filled by lizardite and talc developed 

discordantly to the foliation associated to the tremolite-bearing localized shear zones (PF5) (see 

Appendix 2 for XRDp results and field photo). The lenticular and tabular veins cross cut the proto-

tectonite (PF1) and the tectonite foliation (PF2). The geometrical relationships between lower-

temperature foliation (PF4-GF3) and serpentine veins are more complex. The tabular veins seem to 

postdate the low-temperature foliation (PF4) in the lower strain domains whereas it seems to be 

interrupted in correspondence of the cm-thick localized strain domains (Fig. 5b).  

 

5.3. LA-ICP-MS U-Pb dating results 

 

In the selected plagiogranite vein (see Appendix for a detailed sample description), zircon 

commonly occurs as aggregates of euhedral grains aligned parallel to the foliation and mainly 

associated with biotite. Inclusions and fractures, with or without fragment displacement, are 

frequent. Zircon grains in CL have oscillatory and sector zoning typical of growth under magmatic 

conditions and brighter CL domains locally occur crosscutting the zircon grains from the edges to 

the inner domains (see Appendix 4). These brighter domains probably testify a fluid-assisted 

recrystallization process. 

A total of thirty analyses were collected on twenty-eight zircon grains (see Appendix 4): 

thirteen analyses were performed using a spot size of 25 μm and seventeen at 10 μm. U-Pb data are 

mainly discordant and define three main alignments on the Tera-Wasserburg diagram, with lower 

intercepts at about 201Ma, 173 and 160Ma (Fig. 7a). The observed discordance of the data can be 

related to crystal-plastic deformation of zircon at amphibolite-facies metamorphic conditions (e.g. 
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Timms et al., 2006; Piazolo et al., 2012). Only eight data resulted concordant at 195  11Ma, 183  

12Ma, 178  9Ma, 174  7Ma, 173  6Ma, 172  11Ma, 172  6Ma and 161  6 Ma (2 error) with 

a weighted average age of the main cluster at about 174Ma (Fig. 7b). Integrating CL features and 

U-Pb data, we suggest that zircon grains indicate a main magmatic event at about 174Ma with a 

later perturbation of the U-Pb system 10 Ma later. The old U-Pb concordant data and the lower 

intercept age at about 200Ma may be interpreted as due to partial resetting of inherited zircon 

grains.  

 

6. Microstructures 

 

The summary of the fabrics documented at meso and microscopic scale in gabbros and 

peridotites of the CSZ is showed in Fig. 4. In addition to the fabric documented at the meso-scale, 

we recognized at the microscopic scale an olivine + spinel + ilmenite mylonitic fabric in peridotites 

(PF3 in Fig. 4) and a metasomatic event (phlogopite blastesis) in both peridotites and gabbros (see 

Section 6.3). 

Microstructural analysis was used to refine and confirm mesoscopic observations and to 

define mineral parageneses associated to the different foliations. Three fabrics were exclusively 

documented in the peridotites (proto-tectonites, PF1, tectonites, PF2, mylonites, PF3) and two in the 

gabbros (metagabbros, GF1, and mylonite/ultramylonites, GF2). These fabrics are then overprinted 

by a metasomatic event that produced the growth of phlogopite. A later mylonitic event that 

produced Amph - bearing mylonite (PF4 and GF3, in peridotites and gabbros respectively) and the 

tremolite – bearing, metric localized shear zones (PF5 and GF4) overprint and partly obliterate, all 

the previous fabrics. Static euhedral amphiboles (50-500 m) with gedritic composition overprint 

previous metamorphic associations and are interpreted as evidence of the contact metamorphism 

related to the Mt. Capanne pluton emplacement. To describe chronologically the different fabrics 

and metamorphic events, we first present the fabrics documented exclusively in the peridotites and 
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in the gabbros and then we describe the metasomatic blastesis and the Amph -bearing shear fabrics 

documented in both lithotypes. 

 

6.1. Peridotites 

 

6.1.1. Proto-tectonite (PF1) 

Proto-tectonites (PF1 in Fig. 4) consist mainly of olivine (87-88 Fo%), orthopyroxene (87-90 

En%), clinopyroxene and Cr-rich spinel (Table 1). Olivine shows heterogeneous grain size 

distribution with slightly elongated grains parallel or at small angle to the main foliation. It 

generally shows weak undulose extinction, amoeboid boundaries with embayment structures and 

sub- and new grains up to 100-250 μm in size (Fig. 8a). These microstructures indicate grain 

boundary migration recrystallization mechanisms. Occasionally, olivine shows granular texture 

(Fig. 8a). Pyroxene in contact with olivine crystals generally shows curvilinear and amoeboid grain 

boundaries, suggesting that mantle pyroxene was partly replaced by a late olivine growth. Within 

the granoblastic portion of the rocks, spinel occurs as euhedral zoned crystals whereas skeletal 

spinel is preserved elsewhere.  

 

6.1.2. Tectonites (PF2) 

Tectonite peridotites (PF2 in Fig. 4) consist mainly of olivine (81-84 Fo%; Table 1), spinel 

and Mg-rich ilmenite (Figs. 8b-d). Olivine and spinel generally occur as less than 1 mm thick 

ribbons that are locally boudinaged and have a maximum aspect ratio of 10:1 (Figs. 8b, c). The 

thicker ribbons often consist of monocrystalline olivine grains (0.7-1.5 mm) that show weak 

undulatory extinction, weak shape preferred orientation with long axis parallel to the ribbon 

boundaries and microfractures oriented orthogonal to the ribbon boundaries. The thinner ribbons are 

made by either elongated olivine grains (0.8-1 mm) or by granoblastic aggregates of olivine and 

spinel with size up to 50 μm, that locally show 120° triple junctions and no evidence of 
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intracrystalline deformation (Fig. 8d). Spinel occurs in two different textural positions: within the 

olivine ribbon as equigranular grains (20-50 μm) with straight grain boundaries (Fig. 8d) and 

homogeneous composition, and as elongated grains (100-200 μm) oriented parallel to the olivine-

spinel ribbons (Figs. 8c, d). Mg-rich ilmenite grains are partly fractured and are up to 1mm (Fig. 

8c). Very small (50-80 μm) relicts of clinopyroxe have been rarely documented. The tectonite fabric 

is overprinted by two later mylonitic events (i.e. PF3 and PF4 in Figs. 3 and 4; see sections below).   

 

6.1.3. High temperature mylonites (PF3) 

The transition between tectonites and mylonites is fairly sharp and it is marked by an abrupt 

grain size reduction. The mylonitic foliation (PF3 in Fig. 4) is made of very fine-grained olivine 

(20-50 μm; 88-90 Fo%; Table 1) and (rare) orthopyroxene (~20 μm) neoblasts, without evidence of 

intracrystalline deformation, associated to elongated spinel and ilmenite grains (Fig. 10). The 

mylonitic foliation wraps large (0.6-1.2 mm) ortho- and clinopyroxene grains (interpreted as relicts 

of proto-tectonites; Fig. 9) and locally asymmetric polycrystalline olivine ribbons (interpreted as 

relicts of tectonites; Figs. 9a, b). Occasionally the pyroxene porphyroclasts are kinked and are partly 

replaced by amphibole (Fig. 9a), olivine lamellae and olivine embayments (Figs. 8b-d). The olivine 

ribbons themselves wrap the clinopyroxene grains (Figs. 9a, b). In the thicker ribbons (>500μm), 

olivine crystals show heterogeneous grain size (up to 250 μm), weak shape preferred orientation, 

oblique to the external mylonitic foliation, and occasionally granular texture with 120° triple 

junctions, testifying that local grain growth and annealing processes were active (Fig. 9a). In some 

ribbons, olivine shows homogeneous grain size distribution (150-200μm) with aspect ratio (long 

axis/short axis) of 3:1, undulatory extinction and strong shape preferred orientation with long axis 

parallel or oblique (<35°) to the mylonitic foliation (Fig. 9b). Euhedral olivine neoblasts (~ 20 μm 

in size) and (rare) anorthite (~ 30 μm) have been instead documented in the pressure shadows (Fig. 

9c) and inside fractures oriented orthogonal to the high temperature mylonitic foliation, both in Mg-

rich ilmenite and clinopyroxene porphyroclasts.  
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6.2. Metagabbros 

 

6.2.1. Magmatic fabrics (GF1) 

Magmatic fabrics (GF1 in Fig. 4) are preserved as centimeter thick pods within the mylonites 

and ultramylonites fabric (Figs. 5c, d). GF1 fabric consists of an association of medium to coarse-

grained plagioclase (50-48An%) and pyroxene euhedral crystals (40-60En%; Table 1), ranging in 

size from 0.5 to 2 mm (Fig. 10a) showing evidence of weak dynamic recrystallization. 

 

6.2.2. High temperature mylonites (GF2) 

High temperature mylonite (and ultramylonite) fabrics (GF2 in Fig. 4) form an anastomosed 

network of high-strain domains that envelop lenses of less deformed gabbros (Figs. 3 and 10). 

Mylonite fabric  (Fig. 10b) is marked by flattened aggregates of iso-oriented pyroxene (700 - 300 

μm) and plagioclase (1.5 mm - 300 μm) crystals defining the main foliation. Plagioclase 

porphyroclasts show undulatory extinction, deformation twinning and very-small sub- and new-

grains indicating intracrystalline deformation and dynamic recrystallization under temperatures of 

450-600°C (Passchier and Trouw, 2006). Pyroxenes locally show kink, undulatory extinction and 

very thin rims of fine-grained new-grains (10-20 m) indicating the action of intracrystalline 

deformation and sub-grain recrystallization.  

The ultramylonite fabric (Figs. 10c, d) is marked by fine-grained layers (80-200 m –thick) 

made of plagioclase (50-63An%) and pyroxene + plagioclase (titanite), characterized by 

homogeneous grain size (10-40 m), straight boundaries and elongated parallel to the mylonitic 

foliation (Fig. 10d). Pyroxene relicts, mainly preserved within the thicker plagioclase ribbons, are 

strongly fractured and boudinaged, with amoeboid boundaries resulting from both reactions (the 

biggest grains show rims (? embayments) of 10 m plagioclase grains) and sub-grain boundary 
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recrystallization (Figs. 10c, d). The transition between mylonite and ultramylonite is gradual and 

marked by a change in grain size and in the degree of shape preferred orientation. 

 

6.3. Phlogopite metasomatic event 

 

Tectonite peridotites (PF2), mylonite peridotites (PF3) and mylonite/ultramylonite gabbros 

(GF2) are affected by metasomatic blastesis of phlogopite (Figs. 4 and 10a, b). In GF2, phlogopite 

crystals (20-100 m) grew in 30 m – 1 mm thick layers along the mylonitic/ultramylonitic 

foliation (Fig. 11c). Rarely, phlogopite is found in veins cross-cutting the main foliation (Fig. 10d). 

Locally, it wraps elongated plagioclase and pyroxene crystals. In strained plagioclase affected by 

bookshelf structures, phlogopite grew along the crystal fractures (in association with very small 

plagioclase new grains) (Fig. 11d). In ultramylonites, phlogopite grew in pressure shadows 

(associated to ilmenite) and in weak asymmetric tails around rigid plagioclase + pyroxene 

aggregates (Fig. 10c). However, even though most of the phlogopite crystals grew parallel to the 

earlier mylonitic foliation (i.e. GF2), several small crystals (200-300 m) are oriented orthogonally 

to it (Fig. 11d).  

 

6.4. Lower-temperature mylonites (PF4 and GF3) 

 

Lower-temperature mylonites (PF4 and GF3 in Fig. 4) consist of strongly aligned fibrous 

and/or acicular Ca-rich amphibole grains showing heterogeneous grain size (50- 500 μm) and 

composition ranging from Mg-hornblende to tremolite-actinolite (Fig. 12a; Table 1). These 

mylonites, developed heterogeneously along the CSZ (Fig. 3), are poorly developed in metagabbros 

and proto-tectonites peridotites whereas they are widespread in tectonite (PF2) and mylonite 

peridotites (PF3) (Figs. 8a-d, 9a, b, d, 10b and 11a, b). In the spaced domains in tectonite and 

mylonite peridotites, the foliation is marked by discontinuous and 50 μm – 1 mm thick amphibole-
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rich layers that envelop sub-rounded to elongate olivine and orthopyroxene (1 – 0.5 mm in size) 

(Figs. 8b-d and 8a, b, d). In mylonite gabbros, acicular amphibole crystals bound elongated 

plagioclase and clinopyroxene porphyroclasts (Figs. 10d and 11d) and fill the necks of boudinated 

plagioclase (Fig. 12b) testifying their growth contemporaneous to microfracturing. The Ca-

amphibole crystals overprint phlogopite crystals, grown during the metasomatic event, and 

plagioclase (Fig. 11a).  

 

6.5. Tremolite-bearing shear zones (PF5 and GF4) 

 

The m-thick localized shear zones developed at the boundary between gabbros and peridotites 

(Figs. 3 and 5) are characterized by a continuous mylonitic foliation and by 0.7 to 1.2 mm-spaced C 

-type shear bands marked by fine-grained (60 – 100 μm) tremolite crystals (Fig. 12c) characterized 

by well-developed shape and crystal preferred orientation. 

 

7. Olivine and amphibole quantitative LPO 

 

7.1. Quantitative Texture Analysis (QTA) data description 

 

Fig. 13 shows the Lattice Preferred Orientations (LPO) of amphibole and olivine in three 

peridotite samples representative of PF1 (sample COT14), PF2 (sample COT18) and PF3 (sample 

COT16) (see Fig. 3 for samples location and Appendix Fig. 3). In Fig. 13 LPO are displayed as pole 

figures where the three main fabric axes are represented with the XZ plane being the figure plane 

and the XY plane the orthogonal to the pole figure, with X axis being the horizontal direction. 

Moreover, the crystallographic axes and angles are shown to better visualize the pole figure 

relations. Pole figures represent the normal directions to specific planes of Bragg and they may or 

may not coincide with crystallographic directions, as explicitly declared in Fig. 13. For the 
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orthorhombic olivine all the normal poles correspond to regular crystallographic axes whereas for 

the monoclinic amphibole this is true only for the normal (pole) to (010) or {0k0} planes. 

 

7.1.1. Amphibole 

The three samples are characterized by similar LPOs, where the pole to (100) is almost 

parallel to the Z-axis, with this parallelism being more evident in the COT18 sample. Pole to (010) 

(i.e. [010] axis), is less clustered, with a slightly defined maximum close to the X axis and a girdle 

close to the XZ plane in the COT14 and COT16 samples, while for COT18 the girdle is normal to 

XZ plane and at ≈10 degrees to X. The normal to (001) displays a well-defined cluster close to the 

Y axis in COT16; this cluster is broader in COT14 where a girdle develops almost parallel to the 

XY plane. COT18 displays a similar girdle parallel to the XY plane, with a <10 degrees to X, but 

the cluster is absent. The described textures have been already described in amphibolites and 

amphibole-bearing schist worldwide (Siegesmund et al., 1994; Imon et al., 2004; Barberini et al., 

2007; Zhang et al., 2013; Zucali et al., 2014; Getsigner and Hirth, 2014) and are typically related to 

amphibolite to granulite facies conditions (T = 650 - 800°C) at relatively low pressures (0.4 - 0.8 

GPa).  

 

6.1.2. Olivine 

Olivine LPO in PF1 and PF2 fabrics (COT14 and COT18) is characterized by [100] axes that 

plot at ≈10 to 30 degrees to the X direction in the XZ plane and at ≈10 degrees in the XY plane, 

producing a cluster at low angle to the lineation X. Correspondingly, [010] axes define a girdle 

close to the YZ plane, with a weak maximum at ≈70 degrees to the X direction in the XZ plane and 

≈80 degrees in the YZ plane (Fig. 13). Conversely, PF3 fabric (COT16) displays a disperse 

distribution of the main crystallographic axes, though [001] defines a cluster close to the Y axis, 

with a dispersion along the XY plane. PF1 and PF2 LPO distributions are typical for high 

temperature (T >800°C) olivine deformation, as described for olivine under variable stresses and 
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water contents (Jung et al., 2006; Karato et al., 2008; Mainprice 2007; Warren et al., 2008). The 

disperse olivine LPO developed in PF3 mylonite and associated with amphibole LPO may be 

ascribed to a general decrease in temperature, below 800°C. 

 

8. Discussions 

 

8.1. The Cotoncello Shear Zone: reconstructing the deformation along a fossil oceanic detachment 

fault 

 

Considering that (1) the ophiolite sequences cropping out in western Elba Island are 

classically interpreted as representative of a typical oceanward section of Western Tethys oceanic 

lithosphere (i.e. the Internal Ligurian Units), (2) we documented the presence of HT ductile fabrics 

both in gabbro and peridotites and (3) the almost complete lack of a widespread and diffuse water-

rock interaction (as instead documented on the seafloor exposed at the surface in modern OCC), we 

suggest that the CSZ represents the deep root of a fossil oceanic detachment fault developed in a 

slow spreading oceanic domain. In analogy with the Kane OCC on the Mid-Atlantic ridge (Hansen 

et al., 2015), the CSZ preserves evidences of a dominant high-temperature viscous deformation 

developed under low-pressure granulite to upper amphibolite facies conditions (e.g. fabrics PF1-

PF3 and GF1-GF2; Fig. 4) lately overprinted by brittle-ductile localized shear zones. 

After an early event during which peridotites were affected by recrystallization of olivine (in 

elongated ribbon) and spinel + ilmenite  orthopyroxene (Fig. 14a, t1), gabbros and peridotite 

shared the same history. After the emplacement of gabbros (slightly before c. 170Ma) the entire 

oceanic lithosphere section was affected by a mylonite event (PF3-GF2; Fig. 14b, t2) in upper 

amphibolite facies conditions (Fig. 4). A high-temperature phlogopite metasomatic event related to 

the gabbro emplacement was documented in both lithotypes. Although, in modern OCCs the 

occurrence of phlogopite is rarely documented, an example has been reported from an OCC located 
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near the Rodriguez Triple Junction in the Indian Ocean (Soda et al., 2010). The final mylonitic 

events in the CSZ (PF4-GF3; Fig. 14b, t3) are associated to the widespread growth of Mg-

hornblende along a penetrative mylonitic foliation and to the late development of the tremolite-

bearing shear zones (PF5-GF4; Fig. 14c, t4) localized manly at the gabbro-peridotite boundaries 

(Fig. 3). These final deformations took place from lower amphibolite to upper greenschist facies 

conditions (Fig. 4).  

Microstructures and syn-kinematic mineral assemblages indicate that the different mylonitic 

fabrics are characterized by progressively colder temperature (from granulite to upper greenschist 

facies). The parallelism existing between HT ductile fabrics (T: 800-600°C) at meso and microscale 

(PF1-PF4 and GF1-GF3) is consistent with a continuous deformation processes. In particular, a 

relevant feature is the development of lower temperature foliation (i.e. highlighted by the growth of 

amphibole PF4 and GF3) in sharp complete structural continuity and parallelism with previous 

granulite facies foliations marked by preferred growth of olivine and pyroxene (PF1-PF3 and GF1-

GF2). Similar features, observed at micro-to mesoscale also in other analogue OCCs (Vauchez et 

al., 2012; Nicholas et al., 2017), are therefore diagnostic of oceanic detachment faults. Slightly 

discordant relationships were observed in the localized brittle-fabric shear zones (i.e. PF5 and GF4) 

where all previous ductile fabrics are crosscut by tremolite-bearing foliation (Figs. 5e, f).  

Microstructures indicate that the first event of shearing (PF2) occurred below the plastic-

brittle transition at temperature >800°C (as suggested by LPO analyses results; granulite facies). 

The overprinting of brittle microstructures (e.g. bookshelf in plagioclase; Fig. 11c) on ductile 

fabrics in both gabbros and peridotite mylonites (PF3 - GF2), indicate that the emplacement of 

gabbros may have occurred immediately below, or in correspondence to, the brittle-plastic 

transition (BPT) at temperatures of c. 800°C (Fig. 14, t2 and Fig. 15). In analogy with modern 

OCCs (Andreani et al., 2007; Hansen et al., 2013), the almost complete absence of serpentines 

supports the fact that fabrics PF3-GF2 occurred in correspondence, or below, the seismic Moho, 

characterized by seismic P-waves velocities of c. 8km/sec (e.g. Andreani et al., 2007), at the depth 
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of c. 6-10 km (Fig. 15; e.g. deMartin et al., 2007; McLeod et al., 2009; Hansen et al., 2013). These 

values are also inferred by works on analogue on land OCCs (e.g. Manatschal et al., 2011) and are 

coherent with petrographic studies conducted on the gabbroic rocks from Northern Apennine 

(Piccardo, 1994; Tribuzio et al., 1995).  

In our reconstruction, the gabbroic bodies, emplaced within a high-temperature viscous shear 

zone, probably rooted below the BPT (<6-10km), enhanced the strain softening and the localization 

at depth of the oceanic detachment fault (ODF) that bounds the OCC. In analogy with the modern 

OCCs (Tucholke et al., 1998; Dick et al., 2000; deMartin et al., 2007; Hansen et al., 2013), the 

detachment fault may also root below (or near) the melt rich zone or the magma chamber. The high-

temperature shear zones affecting peridotites and gabbros (PF3-GF2) may have acted as conduits 

for magma-derived fluids that, immediately above the BPT, produced the widespread blastesis of 

amphibole at temperature between 650 and 800°C (PF4-GF3) (Fig. 14, t3 and Fig. 15). At this 

depth, seawater-dominant derived fluids and the alteration front may promote efficient deformation 

localization along the ODF. At shallower crustal level (i.e. close to the sea floor), brittle-ductile 

shear zones and extensional faults (at the seafloor) may accommodate the flexural rotation of the 

OCC that is responsible of the exposure of the large portion of lower crust/mantle peridotites and of 

its dome shape. We suggest that the tremolite-bearing shear zones were developed during this strain 

accommodation and that the roll-over of the ODF was responsible of the slight discordant relations 

between these shear zone and the previously ductile fabrics (Fig. 14, t4). The widespread blastesis 

of tremolite indicates that during this phase temperature was below 500°C. Seawater percolation 

becomes important and serpentine minerals (and talc) grew within or close the Tr-bearing shear 

zones as testified by the development of lizardite + talc veins documented in the western sector of 

the CSZ. In conclusion, the deformation fabrics documented in the CSZ indicate a progressive 

shearing along a linear rock path during a delamination processes under retrogressive conditions 

(Vauchez et al., 2012), that involve cooling, changes in deformation conditions and strain 

localization along a lithospheric shear zone. 
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No evidence of brittle deformation (i.e. cataclasites), pervasive serpentinization related to 

upper crustal level conditions and exposure at the sea floor levels are recorded in the CSZ. In 

addition, in the south-central Elba Island (Portoazzurro locality; Fig. 1) the boundary between upper 

mantle/lower crust and post-extensional sedimentary covers (i.e. pelagic limestones) is marked by 

serpentinites, dm-thick ophicalcites and ultramafic sedimentary breccias (Barnes et al., 2006). 

Lithotypes and rock associations similar to those documented in the Portoazzurro area were recently 

described in the alpine ophiolite units exposed in western Alps and Corsica Island where they are 

interpreted as produced by extensional tectonics and rock-fluid interactions at the exposed footwall 

of an oceanic detachment fault (Manatschal et al., 2011; Balestro et al., 2015; Festa et al., 2015; 

Lagabrielle et al., 2015). In conclusion, the presence of ductile fabrics and the lack of ophicalcites, 

serpentinites and/or talc-chlorite schists above the upper mantle/lower crust denudated section 

indicates that the CSZ can be interpreted as an analogous of the deep root of a present-day oceanic 

detachment fault.  

 

8.2. Timing of gabbro emplacement and ODF activity 

 

Assuming that the magmatic ages obtained in gabbroic rocks from ophiolite units constrain 

the formation of new oceanic lower crust, it is logic to use these ages to broadly estimate the age of 

extensional tectonics leading to continental breakup and oceanic spreading. In the last decades the 

magmatic ages of gabbroic rocks intruded in the Tethyan ophiolite sequences now exposed in the 

Western Alps and Northern Apennines were intensively investigated (see the reviews of Balestro et 

al., 2015 and Tribuzio et al., 2016). Nevertheless, the reconstruction of the paleogeography of 

western Tethys Ocean identifying the sectors of earlier spreading is very difficult and should be 

done with great caution. The paleogeographic restoration of the oceanic basin, in fact, is strongly 

biased by the pre-orogenic and orogenic tectonics that dismembered the pristine oceanic 
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architecture. In addition, the alpine metamorphism may have caused perturbations in the U/Pb 

system. Consequently, individuating a possible trend for magmatic propagation is difficult. 

The main zircon U/Pb cluster ages obtained in the gabbros from the Western Alps ophiolite 

units range from 166 to 155Ma (Lombardo et al., 2002; Rubatto and Hermann, 2003), even if the 

younger ages should be revisited due to the Alpine metamorphism that could led to Pb loss 

(Tribuzio et al., 2016). The main cluster of ages from the accretion of the lower crust in the 

Northern Apennines range from 163-160 Ma and 173-161 Ma for the oceanward (i.e. Internal 

Ligurian Units) and continentalward (i.e. External Ligurian Units) portions, respectively (see 

review of Tribuzio et al., 2016). According to Tribuzio et al., (2016) the spreading started at c. 161 

Ma. 

Even if some of the U-Pb ages collected in this study (c. 174Ma) are in agreement with the 

oldest ages of oceanic Tethyan lithosphere (Internal Ligurian Unit) in Northern Apennines, more 

geochronological investigations are needed in order to shed light on the complex tectono-magmatic 

history of these intrusive rocks. 

Our data are also coherent with the ages of radiolarian cherts cropping out c. 20 km east of the 

study area and dated by Chiari et al., (2000) at c. 169-147.7 Ma (pers. comm.). The age of these 

post-extension sediments may so corroborate that the activity of the ODF described in this study is 

probably older that 169Ma. 

 

8.3. Hydrous phases in the CSZ 

 

Although the sheared rocks of the CSZ were affected by a widespread growth of hydrous 

phases (e.g. phlogopite and Mg-hornblende/tremolite), they show a very low content of serpentine. 

This feature strongly contrasts with the rest of ophiolites exposed in the Elba Island (and Northern 

Apennines) in which serpentine reaches 60-85% of the rocks volume, and an amphibole-bearing 

foliation is absent. The absence of serpentine and the simultaneous development of HT ductile 
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fabrics seem to support the idea that the studied mantle/crustal section was not exposed at the see 

floor but instead deformed at depth. 

Phlogopite is the older OH-bearing mineral documented in the CSZ. Its blastesis relationships 

and microstructures indicate the presence of K-enriched fluids during the late stages of PF3/GF2 

and absolutely before the development of PF4/GF3. It can be either (1) related to the emplacement 

of the gabbros (Soda et al. 2010) or (2) a consequence of mobilized seawater fluids (Cortesogno et 

al., 1994). Considering the lack of serpentine minerals, we suggest that the temperature during the 

metasomatic event was higher than that of the serpentine stability field (T > 500°C) and that the K- 

metasomatism occurred with negligible seawater component.  

The second OH-bearing phase observed in the CSZ is Mg-hornblende. It may be produced by 

fractional crystallization process following the formation of gabbroic cumulates deeply in the crust 

with a limited contribution of seawater (Flagler and Spray, 1991; Bach et al., 2004; Koepke et al., 

2004, 2007). In addition, LPO analyses indicate that amphibole grew at temperatures lower than 

800°C. The poorly developed network of serpentine veins, now partly or completely replaced by 

magnetite, may corroborate this hypothesis. In fact, serpentine can be partially or completely 

replaced by magnetite, with consequent production of Si-enriched fluids, by reaction (Frost and 

Beard, 2007): 

serpentine = magnetite + silica + H2O + H2       (1) 

This evolution is consistent to what suggested by Mellini et al., (2005) that described, in the 

eastern Elba Island, magnetite replacing poorly crystallized lizardite + chrysotile-bearing veins 

(grown during the early stage of oceanic metamorphism at temperature above 350-400°C). The thin 

tabular veins of fibrous serpentine documented in the western outcrops of the CSZ may be produced 

during minor, very late, episodes of deformation. In agreement with the reconstruction of 

Cortesogno et al. (1994), we suggest that close to the exposure at the seafloor, hydrothermal activity 

localized within the tremolite-bearing meter-thick shear zones, may have induced Si-metasomatism 
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and consequent precipitation of talc in the cm-thick veins (see Appendix 2) by reaction (Bach et al., 

2004): 

serpentine + silica = talc + H2O        (2) 

Si may derive by reaction (1) and be transported at shallow structural levels along the 

localized shear zones (PF4 and GF3). Tribuzio et al. (2014), on the other hand, suggest that since 

the Ligurian Tethys is classically interpreted as a slow-/ultraslow seafloor spreading basin, Si 

probably derived from high-temperature water-rocks reactions (Bach et al., 2004; Ray et al., 2009) 

triggering partial melting of gabbros under greenschist facies conditions.  

 

8.4. Comparison with modern OCC and present-day slow spreading ridge  

 

OCCs are dome-shaped structures bounded by normal faults (i.e. ODF) trending parallel to 

the spreading axes and characterized by km size apparent offsets. The fault motion and its later 

flexural rotation occur at the same time of denudation and uplift of the lower crust/upper mantle 

sections when the volume of magma production is insufficient to accommodate extensional rates 

along slow- ultraslow spreading ridges (i.e. Mid-Atlantis Ridge and Southwest Indian Ridge). The 

rock suites derived from different lithospheric levels and exposed at the fault surface are deeply 

altered as a consequence of pervasive interaction between faulting, fault rocks and fluids, producing 

serpentinites and ultimately talc-tremolite-chlorite schists (e.g. Tucholke et al., 1998; Boschi et al., 

2006; Escartín et al., 2008; MacLeod et al., 2009).  

The partitioning, the strength and the kinematic evolution of shear deformation along the 

ODF have been investigated by several authors in the last decades documenting a dominant brittle 

deformation with pervasive development of secondary hydrous phases (e.g. MacLeod et al., 2002; 

Escartín et al., 2003; Harigane et al., 2008). On the other hand, very few authors have documented 

the presence of diffuse high-temperature viscous deformation (e.g. Dick et al., 2000; Mehl and 

Hirth 2008; Miranda and Jones, 2010; Hanson et al., 2013). In particular along the Mid-Atlantis 
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Ridge, 100 to 400 m thick high-temperature ductile shear zones were documented below a thinner 

volume of rocks affected by brittle deformation (Karson et al., 2006; Mehl and Hirth 2008; Miranda 

and John, 2010; Hansen et al., 2013). For example, in the Kane OCC, Hansen et al. (2013) 

described crystal-plastic deformation at T > 700°C and suggested that the ODF rooted below or into 

the brittle-plastic transition.  

In the Jurassic ophiolites exposed in Western Elba, only scarce low-temperature hydrothermal 

alterations are described (e.g. the Tr-bearing shear zone in the CSZ) and neither ophicalcites nor 

reworked tectonic breccias have been documented between the sheared peridotites and gabbros and 

the marine deposits. Our observations indicate that small bodies of gabbros were intruded below or 

in correspondence of the brittle-plastic transition at T ≈ 800 °C and depth of 6-10 km within an 

early ductile high-temperature shear zone rooted at depth in the upper mantle peridotites (Figs. 14 

and 15). This reconstruction is broadly in agreement with those proposed by Hansen et al., (2013) 

and Dick et al., (2010) at the Kane OCC (MAR) and at the Southern Indian Ridge, respectively, 

whereas it contrasts with other studies in which ductile fabrics were not related with the ODF 

activity (e.g. Escartín et al., 2003; Manatschal et al., 2011).  

Along different sections across the Mid Atlantic Ridge, earthquake hypocenters reach 

maximum depths of c. 7-8 km (e.g. Toomey et al., 1988; deMartin et al., 2007; Mcleod et al., 2009). 

P-waves velocity models used to define these hypocenters show that at this depth Vp is c. 8km/sec 

(e.g. Canales et al., 2000; deMartin et al., 2007). Vp models used in natural OCCs and studies 

linking serpentine content and seismic waves (e.g. Canales et al., 2000; Escartin et al., 2001; 

Andreani et al., 2007) indicate that at c. 8km/sec, which for definition marks the seismic Moho, 

serpentine is absent (Fig. 15). As in the CSZ, serpentine was not present during the pervasive 

shearing (i.e. PF1, PF2 and PF3 in peridotites and GF1 and GF2 in gabbros), we suggest that the 

CSZ activity started deep in the lithosphere in correspondence or slightly below the seismic Moho 

(i.e. the brittle-ductile transition; Fig. 15).  
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Rock associations analogous to what documented at the exposed surface of modern (e.g. 

Boschi et al., 2006) and ancient (Balestro et al., 2015; Festa et al., 2015; Lagabrielle et al., 2015) 

OCCs were documented c. 15 km east/southeast respect to the CSZ in the Portoazzurro area (Fig. 1) 

where c. 30 cm-thick ophicalcites are covered by 40-50 cm of debris flow deposits, interlaid 

between sheared serpentinites and radiolarian cherts/pelagic deposits (Barnes et al., 2006). It is 

worth to note, however, that the collisional and post-collisional tectonics affecting the Elba Island 

have strongly dismembered the original architecture of the Jurassic oceanic seafloor.  

 

10. Conclusions 

 

We report the first description of a hundred-meter thick mylonite zone (Cotoncello Shear 

Zone) affecting a lower crust/mantle section exposed in the western Elba Island (Italy). The 

sequence, typical of a slow-/ultraslow spreading ridge setting, was not affected by the orogenic 

deformation and metamorphism related to the Apennines orogeny and was only tilted by the Mt. 

Capanne pluton emplacement. In the studied section, the contact metamorphism is limited to the 

static growth of gedrite crystals.  

Field and microstructural data associated to lattice preferred orientation measurements and U-

Pb zircon geochronology led us to constrain how tectonics, magmatism and hydrothermal processes 

enhanced the strain localization during the OCCs evolution. The U-Pb zircon ages determined in the 

plagiogranite dyke suggest that the ophiolites exposed in the western Elba island were produced 

during an incipient phase of spreading and that the reopening of U-Pb system at 160Ma may be 

due to a later magmatic episode. Between these two episodes of magmatism, extension was mainly 

accommodated by tectonics with the localization of deformation along an oceanic detachment fault 

(ODF) (i.e. OCC activity). We suggest that during this amagmatic phase, the ODF rooted below the 

plastic-brittle transition. Our results indicate that the spatial and temporal localization and activity 

of the ODF were controlled by different parameters (i.e. gabbroic intrusions, magmatic fluids, 
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temperature, seawater content) and that the mechanism and rheology of the detachment changed 

during the exhumation path. In analogy to what recently documented in the Kane oceanic core 

complex on the Mid-Atlantic Ridge (Hansen et al., 2013), we conclude that the CSZ may therefore 

represent an excellent laboratory to investigate on land the deep root of an OCC and the 

relationships between magmatism and deformation developed at different structural levels during 

the activity of the ODF. 
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Figure Captions 

 

Fig. 1. Ophiolitic units in Northern Apennines, Corsica Island and western Alps. 

 

Fig. 2. Geological sketch map of Elba Island and location of study area. 

 

Fig. 3. Schematic geological cross section of the Cotoncello Shear Zone (CSZ). The stereographic 

projections of the main structures are indicated (Schmidt projection, lower hemisphere), as well as 

the location of studied samples and the pictures showed in Figs. 5 and 14. 

 

Fig. 4. Summary of the fabrics documented at meso and microscopic scale in gabbros and 

peridotites in the CSZ. See text for further details. 

 

Fig. 5. Field evidences of the Cotoncello Shear Zone (see Fig. 3 for location). (a) Lens of proto-

tectonite peridotites (proto-tect) wrapped by tectonite peridotite foliation (Stect). (b) Tectonites 

peridotite (Stect) partly overprinted by amphibole-bearing mylonitic foliation (Amp-my). Black 

rectangles indicate the location of microphotographs shown in Figs. 7c and 10c. Sub-millimeter 

veins of fibrous serpentine cross cut the amphibole-bearing mylonitic foliation (white arrow). (c) 

Lenses of metagabbro (m-g) preserved within mylonite gabbro (Pl: plagioclase; Smy: mylonitic 

foliation). The location of photomicrographs shown in Fig. 10a, b is indicated. The picture 

represents a vertical surface and it is rotate 90° anticlockwise. (d) Network of ultramylonites in 

gabbros. (m-g: meta-gabbro; Su-my: ultramylonitic foliation). The location of Fig. 10c is indicated. 

The picture represents a vertical surface and it is rotate 90° anticlockwise. (e) Meter-thick localized 

shear zone in tectonite peridotites in the eastern portion of the CSZ (Amph-Sm: amphibole-bearing 

foliation). (f) Detail of the localized shear zone in gabbros. Decimeter-sized lens of gabbro showing 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 40 

an internal mylonitic and ultramylonitic foliation (Smy) oriented at high-angle to the external fine-

grained amphibole-bearing foliation (Amph-Sm).  

 

Fig. 6. Geometrical relations between Miocene intrusive rocks and CSZ. See Fig. 3 for pictures 

location. (a) Portoferraio porphyry limiting the eastern boundary of the CSZ. A sketch showing the 

geometrical relation between tectonite peridotite (Stect) and sub-solidus magmatic foliation (Smag) 

in porphyry is also indicated. (b) Cross-cutting relationships between the meter-thick undeformed 

granite dyke located in the central portion of the CSZ and the mylonite peridotite (Smy: mylonitic 

foliation). (c) Enclaves of mylonite gabbros within the undeformed meter-thick granite dyke in the 

central portion of the CSZ (Smy: mylonitic foliation). 

 

Fig. 7. U-Pb Zr geochronology. (a) Concordia diagram and (b) U-Pb concordant data from the 

selected zircons. 

 

Fig. 8. Photomicrographs of microstructures in proto-tectonite (PF1) and tectonite peridotites (PF2). 

(a) Weak isoriented olivine crystals (Ol) with amoeboid boundaries (white arrow) and sub- and 

new-grains (white and black circle, respectively) in prototectonites (cross-polarized light, XPL). 

Triple junctions (black arrow) may indicate the occurrence of to grain growth/annealing processes. 

Isoriented acicular Mg-hornblende (Mg-Hbl) crystals (PF4) overprint the olivine and orthopyroxene 

(Opx) crystals. (b) White dash lines delimit relicts of olivine (Ol) –ribbons characterizing the 

tectonite fabric (PF2). This fabric is overprinted by mylonite peridotite (PF3) and by shear planes 

(yellow lines) marked by elongated spinel (Sp) and fine-grained olivine crystals, which define 

sigma-type olivine porphyroclast. Amphibole-bearing layers (Amph-Sm; PF3) overprint both 

tectonite (Stect; PF1) and mylonite (Smy: PF2) foliations; black arrow: antophillite - gedrite 

amphibole related to the contact metamorphism occurred during the Mt. Capanne pluton 

emplacement. Plane-polarized light (PPL). (c) Olivine (Ol) ribbon (delimited by white lines, PF2) 
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preserved within mylonite peridotite (PF3; Smy: mylonitic foliation; PF3) (PPL). Amphibole–

bearing foliation (Amph-Sm; PF4) cross cuts at low-angle the olivine-ribbon and the mylonitic 

foliation. The location of Fig. 7d is indicated. Sp: spinel: Mg-Ilm: Mg-rich Ilmenite; Ilm: ilmenite. 

(d) Backscattering SEM image showing detail of Fig. 7c. Ol: olivine; Sp: spinel; Gd: gedrite; 

Amph: amphibole; Ilm: ilmenite. 

 

Fig. 9. Photomicrographs of mylonite peridotite microstructures (PF3). (a) Clinopyroxene (Cpx) 

porphyroclast (partly replaced by amphibole) surrounded by a fine-grained matrix of olivine (Ol), 

orthopyroxene, spinel and ilmenite. Cross-polarised light (XPL). Below the CPx, an Ol-ribbon 

relicts of PF2, lies parallel to the mylonitic foliation (Smy). In the upper portion of the 

photomicrograph, the Smy is overprinted by amphibole–bearing foliation (Amph-Sm; PF4). (b) 

Aggregate of clinopyroxene (CPx) crystals enveloped by the mylonitic foliation (Smy) and by thin 

olivine-ribbons (white lines) (XPL). The biggest clinopyroxene show olivine (Ol) lamellae and 

olivine embayments. The upper strain cap is marked by strongly elongated olivine crystals affected 

by undulatory extinction. Amph-Sm: amphibole-bearing foliation. The location of Fig. 8c is 

indicated. (c) Backscattering SEM image of a fine-grained domain located in the strain shadow of 

the clinopyroxene porphyroclast (CPx) in Fig. 8b. Ol: olivine; Pl: plagioclase. (d) Clinopyroxene 

(CPx) porphyroclast enveloped by the amphibole-bearing foliation (Amph-Sm; PF4) (XPL). Smy: 

mylonite foliation; Ol: olivine; ngOl: olivine new grain. The location of Fig. 8e is indicated. (e) 

Backscattering SEM image of a fine-grained domain located in the rim of the clinopyroxene 

porphyroclast (CPx) in Fig. 8d. Ol: olivine; OPx: orthopyroxene; Chl: chlorite. 

 

Fig. 10. Microstructures in gabbros. (a) Medium to coarse-grained plagioclase (Pl) and pyroxene 

(Px) euhedral crystals showing evidence of weak dynamic recrystallization (fabric GF1) Cross-

polarized light (XPL). (b) Mylonite fabric (GF2) marked by flattened aggregates of isoriented 

pyroxene (Px) and plagioclase (Pl). The porphyroclasts are wrapped by the mylonitic foliation (Sm) 
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overprinted by the lower temperature amphibole-bearing foliation (Amph-Sm) (XPL). (c) 

Ultramylonite fabric (GF2) is marked by fine-grained layers of plagioclase (Pl) and pyroxene (Px) + 

plagioclase (titanite: Ti). Phl: phlogopite; Smy: mylonite foliation. Plane-polarized light. (d) 

Backscattering SEM image of ultramylonite. See Fig. 9c for location. Pl: plagioclase; Px: pyroxene; 

Phl: phlogopite.  

 

Fig. 11. Phlogopite metamorphic event. (a) Phlogopite (Phl) crystals overprinted by later amphibole 

crystal (Amph) of PF4. Cross-polarized light (XPL). (b) Backscattering SEM image of phlogopite 

(Phl) crystals truncated by the amphibole-bearing foliation (Amph-Sm) of PF4. Pl: plagioclase; Ol: 

olivine; Mg-Hbl: Mg-hornblende; Chl: chlorite; Stect:  tectonite foliation (PF2); Note the euhedral 

gedrite crystals (Gd) grew on both Pl, Phl and on Amph-Sm. (c) Vein of phlogopite grown 

orthogonally respect to the mylonitic foliation (Smy; GF2). Pl: plagioclase; Plane-polarized light. 

(d) Syn-kinematic phlogopite (Phl) filling the offset of bookshelf structures in a plagioclase (Pl) 

(XPL). Px: pyroxene; Smy: mylonitic foliation of GF2. 

 

Fig. 12. Microstructures and mineral composition of amphiboles related to fabric PF4-GF3. (a) 

Chemical composition of amphiboles. (b) Plagioclase (Pl) crystal deformed during the ductile 

mylonitic event (GF2) disrupted by microfaulting. Isoriented syn-kinematic amphibole (Amph) 

crystals grew between the two fragments (PPL). Amph-Sm: Amphibole-bearing foliation; Chl: 

chlorite; Px: pyroxene. (c) C’-type shear bands highlighted by fine-grained amphibole crystals 

(XPL). Ol: olivine; Amph- Sm: amphibole-bearing mylonitic foliation; C: shear plane; S: mylonitic 

foliation. 

 

Fig. 13. LPO Pole figures for amphibole and olivine in FP2 and FP3 peridotites from the CSZ 

(samples COT14, COT16 and COT18).  X-Y-Z mesoscopic fabric axes are shown schematically as 

reference for pole figures. Crystallographic relations for amphibole monoclinic (2
nd

 setting) and 
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olivine orthorhombic are also shown together with relations between normal to crystallographic 

planes and crystallographic axes. 

 

Fig. 14. Cartoon showing the evolution of the Tethyan Oceanic Core Complex using the 

information collected in the CSZ. See text for further explanations and discussions. 

 

Fig. 15. Sketch of oceanic core complex at a slow spreading ridge with domain of hydrothermal 

circulation. The zone of active serpentinization is characterized by decrease in density and lower P 

waves velocity (right). Hypothetical location of fabrics documented in the CSZ is also shown.  
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Figure 15  
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Table 1. Selected chemical analyses. 
  

PF1- Prototettoniti cot 14 PF2 tettoniti Cot18 
PF3 myloniti COT 

16 

GF1 – 

cot8 
metagabb

ro 

GF2 myl-

ultramyloni

te 

cot 9a, cot 

9b 

PF4-GF3 PF5-GF4 

HT-

eve
nt 

 miner

al 
Ol Opx Sp Cpx Ol Sp Opx Ol Pl OPx Pl Pl 

Mg-

Hbl 

Mg-

Hbl 
Tr Tr 

Pl 

                   

 SiO2 40.4

8 

58.6

0 
- 

55.9

8 

39.0

6 
- 

56.1

9 
40.69 42.7 

56.34 47.76 54.78 48.8

1 

51.2

1 

55.9

8 

55.4

6 

53.18 

 TiO2 - 0.02 0.11 - - - 0.26  - 0.04 0.00  0.53 0.57 - 0.34 0.00 

 Al2O
3 

- 0.51 
28.1

8 
0.96 - 66.35 2.68  37.2 

0.88 33.15 28.57 
8.25 6.11 0.96 3.00 

29.47 

 FeO 11.5

6 
7.25 

20.5

2 
5.10 

17.3

9 
16.1 9.75 10.81 - 

6.88 0.00 0.27 
5.61 6.28 5.1 3.09 

0.21 

 MnO 0.17 0.11 0.35 0.63 0.48 0.04 0.57 0.15 bdl 0.12   0.34 0.18 0.63 0.15 0.00 

 MgO 48.5

5 

31.8

2 

11.3

7 

22.4

1 

43.0

2 
17.92 27.2 49.64 bdl 

35.17   22.1

6 

24.1

6 

22.4

1 

24.3

7 

0.00 

 CaO 
0.02 0.16 - 

12.1

3 
0.03 0.07 2.28 0.14 

19.6

2 

0.16 15.50 10.45 
8.75 7.57 

12.1

3 

10.4

3 

11.18 

 Na2O - 0.33 - 0.39 - - 0.71  0.08 0.42 2.37 5.55 0.82 0.9 0.39 0.47 5.10 

 K2O - 0.01 - 0.09 - - 0.04  - 0.09 0.01 0.15 0.3 0.07 0.09 - 0.07 

 Cr2O
3 

- - 
39.5

9 
0.11 - - 0.06  - 

0.16   
- - - - 

0.00 

                   

 total 100.
7 

98.8
1 

100.
1 

97.8 
99.9

8 
100.4

8 
99.7

4 
101.4

3 
99.6 

100.2
6 

98.79 99.77 95.6
7 

97.1 97.8 
97.3

1 
99.38 

                   
 Oxy 4 6 32 6 4 32 6 4 8 6 8 8 24 24 24 24  

                   

 Si 1.01 2.06 - 2.05 0.99 - 2.00 0.99 1.98 1.92 2.21 2.48 6.95 7.16 7.79 7.62 2.43 

 Ti - 0.01 0.02 - - - 0.01  - 0.00 0.00 0.00 0.06 0.06 - 0.04 0.00 

 Al - 0.02 8.04 0.04 - 15.84 0.11  2.04 0.03 1.81 1.52 1.39 1.01 0.21 0.49 1.58 

 Fe2+ 0.22 0.21 3.77 0.16 0.37 2.55 0.29 0.22 - 0.19 0.00 0.01 0.67 0.73 0.59 0.35 0.01 
 Fe3+ - - 0.38 - - 0.18 -  -  0.00  - - - - 0.00 

 Mn 
- 

0.00

3 
0.07 0.02 0.01 0.01 0.02 0.00 - 

0.00 0.00 0.00 
0.04 0.02 0.07 0.02 

0.00 

 Mg 1.76 1.67 4.10 1.22 1.63 5.41 1.44 1.79 - 1.79 0.00  4.70 5.03 4.64 4.99 0.54 

 Ca 0.00

2 

0.00

6 
- 0.48 0.00 0.02 0.09 0.00 0.98 

0.00 0.77 0.51 
1.34 1.13 1.81 1.54 

0.45 

 Na 
- 

0.02

3 
- 0.03 - - 0.05  0.01 

0.03 0.21 0.49 
0.23 0.24 0.11 0.13 

0.00 

 K 
- - - 

0.00
4 

- - 
0.00

2 
 - 

0.00 0.00 0.01 
0.05 0.01 0.02 - 

0.00 

 Cr 
- - 7.58 

0.00

3 
- - 

0.00

2 
 - 

0.00 0.00  
- - - - 

0.00 

                   

 sum 
1.98 4.01 

23.9

7 
4.00 2.02 23.99 4.00 2.03 5.00 

4.05  5.01 15.4

1 

15.4

1 

15.1

1 

15.1

7 

2.73 

                   

 Fo %  88.2

2 
- - - 

81.0

5 
- - 89.12 - 

   
- - - - 

 

 En % 
- 

88.0

9 
- 

65.2

5 
- - 

78.5

4 
 - 

89.68   
- - - - 

 

 Wo % 
- - - 

25.3
8 

- - -  - 
0.29   

- - - - 
 

 Ab%           21.66 48.58      

 An % 
- - - - - - -  

99.2
7 

 78.28 50.55 
- - - - 

54.56 
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Highlights 

• the CSZ is a mylonitic shear zone affecting the Western Tethys oceanic lithosphere 

• Ductile shearing occurred at temperature >800°C and continue at temperature <500°C  

• It represents the deep root of an ancient analogue oceanic detachment fault 

• U/Pb ages suggest that the study oceanic lithosphere is the oldest in North Apennines 


