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Abstract 
 

 

Chemoreception is the process that allows animals to respond to the chemical stimuli in their 

environment. In insects, this is mediated by specialized neurons expressing a variety of dedicated 

receptors and carrier proteins: olfactory (OR), gustatory (GR) and Ionotropic (IR) receptors, 

odorant binding (OBP) and chemosensory (CSP) proteins. How the evolution of these genes 

correlates with adaption to new ecological niches is still a debated topic; when these genes arose 

during arthropods evolution is also an unresolved question. To tackle the first of these issues I have 

studied these gene families in Drosophila suzukii Matsumura (Diptera: Drosophilidae), an invasive 

pest that, unlike other Drosophila, oviposits in fresh fruits. I have initially contributed in curating D. 

suzukii’s genome and transcriptome, and then annotated its entire repertoire of chemosensory genes. 

Analysis of these genes on a 14 Drosophila phylogenetic framework revealed that ORs, OBPs, and 

GRs are characterized by high turnover rates and uneven distribution of duplication and gene loss 

events on the phylogeny: these peculiar evolutionary patterns are consistent with a change in 

selective pressures. D. suzukii is characterised by loss of function of key ORs that bind volatiles 

typically released by fermenting substrates, providing with a rare example of ecological adaptation 

due to genes loss.  I further present my work in annotating and studying genes involved in the 

metabolism and perception of an aggregating pheromone that may play an active role in D. 

suzukii’s peculiar biology. To inquire the origin of chemosensory genes in insects and other 

arthropods, I have screened various recently released genomes: I identified multiple lineage-specific 

expansions of GRs in each of the arthropod clades, an interesting loss of GRs in most crustaceans, 

and the first genomic evidence of ORs in the Palaeoptera. My postgraduate work has contributed in 

identifying receptors and ligands that will be used in downstream D. suzukii control applications, 

and has shed some light in the evolution of chemosensory genes in arthropods.  

 

 

 

 

 

 

 

 

 



 

1. Introduction  

 

 

1.1. Chemoreception in insects: biology and applications 

 

Chemosensation, the ability to respond to chemical stimuli, is likely the first of the senses to have 

evolved in the history of life. While bacteria possess a simple, although efficient form of chemical 

communication using quorum-sensing (Miller and Bassler 2001), animals have evolved a complex 

system which involves membrane receptors, accessory proteins, as well as dedicated neurons and 

organs where these proteins are expressed. Not surprisingly, chemical communication is still 

widespread in the animal kingdom (Wyatt 2003; Steiger et al. 2011). Like many mammals such as 

dogs and elephants (Niimura et al. 2014), insects rely mostly on their chemosenses for their 

biology; for example, chemosensation is essential for food location, mate finding, oviposition site 

choice and predator avoidance (Firestein 2001). In fact, as a means of survival, insects have 

developed a series of morphological and molecular tools, to discriminate among the variety of 

chemical cues present in the environment, in most cases independently to mammals and other 

animals.  

 

From a molecular point of view, chemosensation in insects is mediated by at least 5 different 

protein families. Since a single insect may possess hundreds of different types of chemosensory 

proteins, expressed in thousands of dedicated different sensory neurons, chemosensation is clearly a 

highly intricate and dynamic system. In my thesis, I explore this complexity in insects, particularly 

in the emerging model, D. suzukii. In this section (1.1). I describe the morphological and molecular 

basis of chemosensation in insects with a special emphasis on Drosophila.   

 

     

1.1.1. The physiological and morphological bases of chemoreception  

 

In insects, this chemosensory signal transduction starts at the peripheral sensory system that 

involves hair like appendages called sensilla, which cover some of the body surface, particularly 

legs and antennae. These appendages are single (in case of gustatory sensilla) or multi-porous (in 

odorant sensilla), housing the dendrites of gustatory or olfactory receptor neurons (GRNs/ORNs) 

within them (de Bruyne et al. 2001; Hallem and Carlson 2004). The olfactory system is not 
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homologous between insects and vertebrates but convergent on a functional level; similarly, their 

structural organization and molecular mechanism is quite distinct  (Park et al. 2000; Hallem and 

Carlson 2004; Su et al. 2009).       

 

 

 

Fig 1.1. Distribution of chemosensory sensilla on the periphery of a fly. Light grey represents the exterior, dark grey, 

the interior. Tan represents the ORNs located on the antenna and maxillary palp. The red sensilla on the legs are male 

specific.   Figure from (Joseph and Carlson 2015) 

 

 

Morphologically, insect sensilla are classified into 3 types that differ in size, shape and cuticular 

structure (fig.1.1): club shaped basiconic sensilla, spine shaped trichoid sensilla and small cone 

shaped coeloconic sensilla (Shanbhag et al. 1999).  The neurobiology of the chemosensory system 

is well studied in the Drosophila genus, because of the biological model Drosophila melanogaster. 

While the Drosophila antenna houses both basiconic and trichoid sensilla, maxillary palps bear only 

the basiconic. The distribution of sensilla types varies in male and female in most insects studied so 

far. At least in the antennae, males possess 30% more trichoid sensilla but 20% fewer basiconic 

sensilla than females (Stocker 1994), indicating a functional importance. Both basiconic and 

trichoid are housed in single walled sensilla. Each sensillum type has a different role. Basiconic is 

required for finding food (de Bruyne et al. 2010). Trichoid sensilla respond to odours involved in 

mate recognition (Hallem et al. 2006), such as cVA (cis vaccenyl acetate), an aphrodisiac 

compound released by male fruit flies that acts as a male-male aggressive pheromone and prevents 



 

mated females from mating again. Coeloconic sensilla are unique,- they are shorter than the other 

two, and have two walls instead of one (Shanbhag et al. 1999): this type of sensilla is conserved and 

can be found in all of the insect orders (Croset et al. 2010). While the single walled basiconic and 

trichoid are predominantly housed only by ORNs, double walled coeloconic are housed both in the 

ORNs of the antennae and the GRNs of the taste organs. 

 

Unlike the ORNs of the antennae and maxillary palp, the gustatory receptor neurons (GRNs) have a 

different distribution and architecture. They are mostly concentrated at proboscis, legs and wing 

margins (Stocker 1994). Strangely, a few GRNs are also reported in the ejaculatory duct and 

oviduct (Rice 1977; Stocker 1994).  The external taste sensilla can be categorized on the basis of 

size, distribution and number of GRNs into three classes: short (s), intermediate (i) and long (l) 

types; where the short and long types have four neurons each, while the intermediate type has only 

2 GRNs (Hiroi et al. 2002).  

 

 

1.1.2.  The molecular bases of chemosensation in insects 

 

Chemosensation in insects is mediated by at least 5 different protein families, mostly expressed in 

ORN or GRN: Olfactory Receptors (OR), Gustatory Receptors (GR), Ionotropic Receptors (IR), 

Odorant Binding Proteins (OBP) and Chemosensory Proteins (CSP). In this section (1.2) I will 

provide a general introduction to the structure and function of these proteins.   

 

Odour molecules in the air pass through pores in the external cuticle of the sensilla and enter the 

aqueous lymph where they bind to various types of proteins which are secreted by the supporting 

cells surrounding the ORN/GRNs (Olfactory Receptor Neuron/ Gustatory Receptor Neuron) 

(Shanbhag et al. 2001); two of them have been shown to play a key role in chemosensation: the 

odorant binding proteins (OBP) and the chemosensory proteins (CSP). The odour is transported to 

the dendrite surface of the receptor neurons by the binding protein OBP, after which the OR-Or83b 

complex triggers electrical stimuli, that are further processed in the higher centres of the brain. 

These stimuli are carried in a series of networks: the olfactory/gustatory receptor neurons are 

bipolar, spreading their dendrites in the sensillary lymph (where they bind odours), and project their 

axons (the odorant neurons) to spherical shaped, functional processing neuronal units called 

glomeruli in the antennal lobe (Hallem and Carlson 2004) of the brain, which is the functional 

equivalent (but not homolog) of the olfactory bulb of vertebrates (Hildebrand and Shepherd 1997). 
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In order to prevent the continuous stimulation, ODEs (Odorant Degrading Enzymes) help in 

degrading odorants bound to ORs (Leal 2013).  

 

1.1.2.1. Odorant Receptors 

 

First identified in mammals by (Buck and Axel 1991), odorant receptors have been found and 

annotated in Drosophila only after 7 years (Clyne et al. 1999; Gao and Chess 1999; Vosshall et al. 

1999). The difficulty of identifying insect ORs from non-homologous mammalian ones (Benton et 

al. 2006; Wistrand et al. 2006), for example using similarity searches such as BLAST, explains this 

lag. In both insects and vertebrates, ORs are transmembrane receptors characterised by seven 

transmembrane (7TM) structures. But while mammalian ORs are a subfamily of GPCR proteins, 

insect ORs are characterised by an inverted topology, with an intracellular N-terminal and an 

extracellular C-terminal. The insect ORs constitute a very divergent set of genes, rapidly evolving 

through lineage specific expansions. Accordingly, the number of genes in each of the insect orders 

ranges from ~10 in human body louse (Kirkness et al. 2010) to ~ 300 in the wasp, Nasonia 

vitripennis (Robertson et al. 2010). As a comparison, mammalian ORs are generally numerous in 

number with 396 functional ORs in human and 1948 in elephant (Jiang and Matsunami 2015).  

 

There are 62 odorant receptor proteins in D. melanogaster, resulting from the alternative splicing of 

transcripts from 60 OR loci. Among those 60 ORs, Or83b/Orco is quite conserved across insects 

(Jones et al. 2005) and reacts as a co-receptor, forming a heteromeric complex with all the other 

specific ORs; Orco does not act as an odorant receptor itself but rather as an ion channel (See 

below). Previous attempts to elucidate the molecular mechanism of the insect ORs revealed 

different scenarios (Sato et al. 2008; Wicher et al. 2008) (fig.1.2). While the first contribution 

proposed that ORs form a functional heteromeric complex of ligand binding OR along with Orco 

(itself an OR), conforming a gated cation channel, the second contribution suggested a G-protein 

coupled receptor-like mechanism coupled with a ligand gated cation channelling. In recent times, 

works on the functional mechanism of Orco revealed the presence of further signalling cascades 

such as PKC (Protein kinase C) (Sargsyan et al. 2011; Getahun et al. 2013). Currently, it is 

suggested that these 7TM proteins function as metabotropically acting cation channels. Because of 

their transmembrane nature, modelling a 3D structure of an insect OR has been impracticable until 

recently (Hopf et al. 2015).  

 



 

Most ORs are broadly tuned to an extensive spectrum of odorants but few are narrowly tuned to 

specific volatiles. Or19a for example binds to terpenes found in citrus fruits, activating its 

oviposition circuit (Dweck et al. 2013); Or56a is invoked by Geosmin, sensing the toxic substrates, 

thereby modulating an avoidance behaviour (Stensmyr et al. 2012). Few other ORs such as Or47b, 

Or67d, Or65a and Or88a detect pheromones that trigger sexual and aggression behaviours 

(Kurtovic et al. 2007; Wang and Anderson 2010; Lebreton et al. 2014; Dweck et al. 2015). It is 

intriguing to note that ORs often work, along with OBPs, in a combinatorial fashion to distinguish 

the tiny fractions of odours from the natural environment to drive the olfactory circuit in modulating 

adaptive behaviour (Joseph and Carlson 2015).   

 

   

 

 

 

 Fig 1.2. Comparison of the models of molecular mechanism in the Odorant receptors of A) Mammals B) Nematodes. 

They function as G-protein coupled receptors, activated by cAMP and cGMP pathways, respectively. C) and D) Insects 

– Two different models of functioning of odorant receptors. (Sato et al. 2008) suggests OR forms a ligand gated ion 

channel with Orco while according to (Wicher et al. 2008), OR forms a heterodimeric complex with Orco, creating a 

gated ion channel as well as activating a cyclic AMP pathway. Figure from (Pellegrino and Nakagawa 2009). 
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1.1.2.2. Gustatory Receptors 

 

ORs and GRs share as less as 8% identity among them. ORs are insect-specific while GRs are 

found throughout Athropoda, making them relatively ancient; gustatory receptors are similar to 

ORs, both in their structure and molecular mechanism (they are inverted seven transmembrane 

proteins), but are non-homologous to other proteins. It is still unclear whether they use G-protein 

pathway or direct ligand gated channels, but, at least in Lepidoptera, they are believed to work like 

ORs in a combinatorial fashion (Zhang et al. 2011). Their three dimensional structure of these 

proteins could not be established so far. 

 

There are 60 GRs loci/genes in D. melanogaster predicted to encode atleast 68 GR proteins, 

through alternative splicing (Clyne et al. 1999). The number of GRs in insects varies from 10 in 

bees to 200 in the beetle, Tribolium castaenum. Unlike the ORs, only half of the GRs have been 

functionally characterised so far in D. melanogaster: Gr5a works by activating the sugar-sensing 

neurons, eliciting a feeding behaviour, while Gr66a and Gr93a are involved in caffeine avoidance 

(Lee et al. 2009);Gr43a, Gr64 (a-f) family are required in detecting various sugars (Dahanukar et 

al. 2007; Fujii et al. 2015). Based on the spatial distribution and expression analysis, 33 GRs are 

localized and characterized into 4 different categories of bitter sensing neurons (Weiss et al. 2011), 

of which Gr32a, Gr33a, Gr66a, Gr39a1 and Gr89a form the core of bitter sensing receptors (Lee et 

al. 2009; Moon et al. 2009; Weiss et al. 2011), that function analogous to Orco (Benton et al. 2006). 

Not all GRs are restricted to gustation. Four of them – Gr32a, Gr33a, Gr39a and Gr68a are 

involved with sexual behaviour through pheromone detection (Moon et al. 2009; Watanabe et al. 

2011; Wang et al. 2011; Bray and Amrein 2003). Gr28b in D. melanogaster is involved in 

thermosensation (Thorne and Amrein 2008). Presence of atleast four other GRs in the antennae 

indicates their role in olfaction (Dunipace et al. 2001; Scott et al. 2001): among them, Gr21a and 

Gr63a are involved in perception of CO2 (Jones et al. 2007; Kwon et al. 2007).   

 

1.1.2.3. New classes of chemoreceptors: Ionotropic Receptors 

 

 

The role of coeloconic sensilla in chemoperception has remained vague for years until recent 

studies found that these sensilla express a new type of receptors, called as ionotropic receptors (IRs) 

(Benton et al. 2009).  Belonging to ionotropic glutamate receptor (iGluR) related gene family, they 

are categorized into two: Antennal IRs (aIRs) and divergent IRs (dIR). With the identification of 

Ir25a in various protostomes, IRs are now considered the most ancient class of chemoreceptors 



 

(Croset et al. 2010). By using expression analysis, IRs have been linked not only to olfaction (aIR), 

as they are expressed in the olfactory neurons of the antennae (Benton et al. 2009), but also to taste 

for example in acid (Ai et al. 2010), ammonia, and amines sensing (Min et al. 2013). The IRs 

expressed in taste organs such as labellum, legs, pharynx and wing margins are very divergent, and 

hence called divergent IRs (dIRs) or gustatory IRs. While aIR are extremely conserved, dIR are 

fairly lineage-specific and share less than 8.5% sequence identity with the IRs of the same species 

or different species, suggesting a dynamic evolution related to the selectional pressure from 

occupying different geographical and ecological niches (Croset et al. 2010). Indeed, (Koh et al. 

2014) show that a part of dIR gene family (Ir20 clade; ∼35 members) is expressed in GRNs, 

functioning as taste receptors, while IR52c and Ir52d, being involved in pheromone detection.   

 

The origin of IRs can be traced back to the animal ionotropic glutamate receptors (iGluR), since 

both IR and iGluR share a common protein domain organisation. The IR gene family consists of as 

many as 66 members in flies (D. melanogaster) to 10 in nematodes (Caenorhabditis elegans) and 

27 in molluscs (Lottia gigantea). Compared to dIRs, aIRs are very few, ranging from 17 in D. 

melanogaster to 2 in L. gigantea. There is no three dimensional structure of the IRs, but given their 

homology to iGluR, the ion channelling domains are expected to be identical in folding, to the 

predicted C-terminal of iGluR (Croset et al. 2010). 

 
1.1.2.4. Binding Proteins – An Overview 

 

Binding proteins- OBPs and CSPs are secreted in large quantities by the surrounding cells of the 

receptor neurons ORNs/GRNs. Although they have specific binding properties, their exact function 

remains unclear except for the role of LUSH (Obp56a) which, together with Or67a is involved with 

pheromone communication (Xu et al. 2005; Vosshall and Stensmyr 2005) and few others in taste 

perception (see below). All genes of these families are likely involved in transporting the odour 

molecules to the receptor sites present in the dendrites of the ORNs.  

 

Similar to their OR-GRs counterparts, the Arthropod specific OBPs and CSPs are not homologous 

to the mammalian binding proteins, which are lipocalins (Tegoni et al. 2000). This is because, 

insect OBPs and CSPs form alpha-helical domain structures folded in two different patterns: OBPs 

characterized by 6 conserved cysteines, while CSPs by 4 conserved cysteines residues respectively 

(Angeli et al. 1999; Leal et al. 1999), connected by disulphide bridges. In Lepidoptera, OBPs are 

found to be antennal specific (Vogt et al. 2002) and more related to ORs, while CSPs are more 
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affiliated to GRs. The occurrence of GRs and CSPs in Daphnia pulex (Crustacean, which does not 

express ORs), and the characteristic of insect-specific ORs and OBPs gave rise to the hypothesis of 

OR-OBP and GR-CSP functional dependencies. This direct correspondence does not hold true 

always: in some hymenopterans  (Calvello et al. 2003; Calvello et al. 2005), CSPs are found to be 

antennal specific. Also, the presence of both OBP and CSP in non-chemosensory tissues indicates 

other physiological functions (See review, Pelosi et al. 2014). Obp57d and Obp57e are involved in 

taste perception and host plant interactions and their evolution may have helped in driving the 

ecological specialisation in Drosophila sechellia (Matsuo et al. 2007; Matsuo 2008; Harada et al. 

2012a).  

 

OBPs in insects are very divergent, with less than 10% sequence identity (protein level) between 

species and sometimes, within a species (Pelosi et al. 2014) and are classified further into 9 sub-

families based on function and phylogenetic relationship (Vieira et al. 2007). The number of groups 

of orthologous genes ranges from 34 OBPs and 3 CSPs within the genus Drosophila to 2 OBPs and 

2 CSPs across Hexapoda. On the whole, only Obp73a and Obp59a are found across the whole 

Hexapoda which is highly suggestive of the reminiscent of the OR co-receptor, Orco (Or83b) 

(Vieira and Rozas 2011). However, this is currently under doubt, given the absence of Obp59a in 

Apis mellifera together with low level expressions in Cerapachys biroi (McKenzie et al. 2014), 

which might also be an independent case of gene loss.  To date, three dimensional structures of 

various binding proteins have been predicted in Mosquitoes (Leite et al. 2009; Murphy et al. 2013) 

and Moths (Zhou et al. 2009) using X-ray and NMR techniques. Also, the crystalline structure of 

OBP LUSH/Obp56a and the binding pockets in D. melanogaster is very well studied, given its 

importance in pheromone communication and alcohol binding (Kruse et al. 2003; Thode et al. 

2008; Ader et al. 2010). 

 

 

1.1.3. The importance of chemoreception for applied studies 

 

Insects are found everywhere, from unperturbed forests to agricultural lands and metropolitan areas. 

The insect-plant and insect-human interactions bring about both positive and negative implications 

for humans. While honey from bees and silk from moths have been used since ancient times,  many 

infectious diseases are transmitted by vectors such as Anopheline mosquitoes that cause more than 

one million human deaths per year (Korenromp 2005). Likewise, in agriculture, insects are 

responsible for ~ 35% of yield loss (Pimentel 1991). The highly successful radiation of insects can 



 

be partly attributed to their highly complex and flexible chemosensory toolkit. Chemical 

communication plays a vital role in shaping the insect’s response to the environment: insects utilize 

their sense of smell and taste equally in survival and reproduction, wherein pheromones govern 

mating behaviour.  

 

One way of controlling insects is to understand and manipulate how insects communicate among 

each other and with the external environment. There are few classical strategies using 

chemosensory-based control: i) Repellence, for example using DEET, a compound that binds 

receptor Ir40 and is used to repel and manage various insects particularly Anopheles malarial 

vectors worldwide (Klun et al. 2004); ii)  Mass trappings, for example of Tsetse flies in Africa 

using attractive chemicals based on cattle volatiles and urine; the same strategy applied in attracting 

Mediterranean fruit flies with lures such as ammonium acetate, putrescine and trimethylamine 

(Jannin 1999), or Drosophila suzukii using Droskidrink (Ioriatti et al. 2014), or ; the Colorado 

beetle, Leptinotarsa decemlineata –a major pest of potato crops in the Unites States, using specific  

pheromones (Kuhar et al. 2006); iii) mating disruption using pheromones, which has been highly 

successful for the European grape-berry moths, Lobesia botrana and Eupoecilia ambiguella or the 

codling moth Cydia pomonella (Arn and Louis 1997). Currently, other applied measures in use or 

under evaluation are vibrational disruptions, biological controls (ie.,parasitoids), sterile insect 

technique (SIT), and introduction of BT-crops: most of these methods are used without a clear 

understanding of their biological and genetic bases and/or are still inefficient or environmentally-

hazardous (van der Goes van Naters and Carlson 2006).  

 

The progress in the molecular genetics of taste and smell both at molecular and cellular level along 

with the rapid accumulation of –omics data provide us with new opportunities for tackling insect 

disease vectors and pests. For example, the knowledge of neuronal responses in identifying specific 

volatiles, combined with structure and evolution of receptor genes, can ultimately help in modelling 

the binding pockets for ligand-receptor study. For example, the Ray group used chemo-informatics 

to unveil the mechanism behind DEET avoidance by identifying its binding activity to olfactory 

receptor, Ir40 (Kain et al. 2013). This can further help in finding safe but efficient alternatives to 

DEET, which mostly remains unaffordable in under-developed countries and moreover, is 

hazardous to human and animal health. For the near future, targeting chemosensation is a promising 

tool in controlling insect vectors and pests. 
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One of the aims of my thesis is to exploit the chemosensory system of Drosophila suzukii to find 

the target genes and specific ligands which are likely to have a profound impact on the behaviour of 

the pest.  

 

 

 

1.2. Evolution, genomics, and chemoperception 

 

1.2.1. On the origin and evolution of chemoreception in insects 

 

1.2.1.1. Birth-and-death process of gene evolution 

 

All major chemosensory gene families are highly variable in size across the arthropods, and there is 

a high level of divergence even between closely related species (Sanchez-Gracia et al. 2009); this is 

reminiscent of an involvement of these genes in adapting to specific ecological niches. Indeed, the 

insect chemosensory mechanism is one of the most highly dynamic systems where continuous gain 

and loss process is thought to follow a stochastic model of birth-and-death (BD) (Guo and Kim 

2007a; McBride and Arguello 2007; Vieira et al. 2007; Sanchez-Gracia et al. 2009; Croset et al. 

2010). According to (Nei and Rooney 2005), the BD model of evolution describe a scenario in 

which new genes are randomly lost or gained by gene duplication: depending on the selective forces 

involved, few duplications may be maintained and eventually get fixed in the population, whereas 

others are deleted or become non-functional through deleterious mutations.  

 

In accordance with BD, most of the gene gains in Drosophila chemoreceptors are the result of 

tandem duplications, and hence are clustered in the genome (Vieira et al. 2007). On average, the 

level of birth and death is higher for the receptor genes than in OBPs. Not only, BD rates are higher 

in chemoreceptor gene family (λ=0.006 for ORs, λ=0.011 for GRs and OBP, λ=0.005 (McBride and 

Arguello 2007; Vieira et al. 2007; Gardiner et al. 2008)) than in the overall genome (λ=0.0012, 

)(Hahn et al. 2007). Gain and loss events are unevenly distributed across the Drosophila lineage. 

For instance, specialists such as D. sechellia and D. erecta, have lost significant OR and GR 

receptors compared to generalist species, suggesting a non-neutral evolution (McBride and 

Arguello 2007), indicating a possible role of chemosensation in ecological adaption. This is also 

reflected in the dN/dS analysis where the median ω for chemosensory genes is relatively higher 

(0.05 to 0.22) (Sanchez-Gracia et al. 2009).  



 

1.2.1.2. The origin of chemosensation 

 

Arthropods are the most diverse and successful phylum of animals that live or have ever lived on 

earth. They have conquered virtually all  ecosystems including extreme environments such as 

Antartica and deserts, and were the first animals to colonize land, ~130 Million Years Ago (mya) 

before vertebrates (Anderson et al. 2013). By coupling genome data and fossil records, it was found 

that arthropods colonized land at least four times independently: the first terrestrialisation event was 

that of the myriapods (centipedes and millepedes at 510 mya) followed by that of arachnids and 

hexapods (insects and their kin) nearly synchronous with or even earlier than the first land plants 

(Ordovician; 470 mya); crustacean colonization of land (eg: by isopods) occurred much later (Rota-

Stabelli et al. 2013b). We know from earlier works (Pelosi et al. 2006; Penalva-Arana et al. 2009;  

Sanchez-Gracia et al. 2009) that odorant receptors should have originated during the transition of 

organisms from water to land, as an adaptation to sense air-borne mediated chemicals, likely during 

the split of Crustacea/Hexapoda (Sanchez-Gracia et al. 2009). However, results from (Missbach et 

al. 2014) contradicts this general view and suggest a non-causal link between OR emergence and 

terrestrialization. Instead, the OR coreceptor (Orco) has been found in Zygentoma (silverfish), but 

not in earlier hexapod lineages such Archeognatha. This scenario set the origin of ORs within the 

flying insects (Paleoptera plus Neoptera) concomitantly with the emergence of vascular plants, 

rather than within the hexapods (Entognatha plus Insecta) concomitantly with terrestrialization 

events. It is not clear, however if the origin of a mature OR system (involving both Orco and 

specialized OR) occurred in the Neoptera or earlier in the ancestor of Palaeoptera, a question that I 

will address in my thesis.  In any case, the ability to perceive odours on land must have evolved 

independently various times in Hexapoda, Myriapoda and Chelicerata either through a system based 

on ORs or using other type of receptors. 

 

While ORs seems to be restricted to insects, GRs and IRs are present in other Arthropoda such as 

Crustacea (Daphnia pulex) (Penalva-Arana et al. 2009), Chelicerata (Ixodes scapularis, 

Tetranychus urticae) (Gulia-Nuss et al. 2016) and Myriapoda (Chipman et al. 2014), suggesting 

that these arthropod lineages rely on GR and IR for odour sensing, untangling, but also 

complicating the evolutionary history of peripheral arthropod chemosensory system. It is still 

unclear whether the vertebrate GPCRs and the insect chemoreceptors (OR and GR) originated from 

a common ancestor. Recent evidence points to a scenario where arthropod chemoreceptors might 

have originated from GUR (Gustatory-related receptors) receptors of nematodes and/or GRL (GR-

like receptors) of Cnidaria (Robertson et al. 2003). Unlike ORs and GRs, the evolutionary history of 



 

13 

 

IRs can be traced to protostomia (550-850 mya), with the presence of the conserved antennal 

receptor, Ir25a in the entire Ecdysozoa, Lophotrochozoa and Cnidaria. Similarly, another aIR, such 

as Ir93a is present throughout the Arthropoda.  As previously discussed IRs are closely related to 

the ionotropic glutamate receptors (iGluR). A likely scenario is that IRs evolved from an iGluR 

(involved in neurotransmission). The drastic, lineage based evolution of dIRs are attributed to retro-

transposition, through the process of random re-insertions of reverse transcribed copies of the 

parental genes (Croset et al. 2010). The evolution of GRs and IRs along the Arthropoda phylogeny 

is poorly understood: for example it is clear that branchiopods, ticks and mites possess GRs, but 

nothing is known in other crustacean or chelicerate classes. For this reason in the last part of my 

PhD studies (one year spent at the University of Bristol with Davide Pisani) I have annotated a large 

dataset of GRs and IRs from various arthropods with fully sequenced genomes, and performed 

phylogeny of the GRs rooting them with GR-Like genes as outlined in section 4.4.2.  

 

 

 

1.2.2. Comparative genomics in the post-genomic era  

 

 

With cost-effective sequencing technologies and advanced development of software tools, it is now 

possible to sequence genomes de novo and perform basic comparative genomics in-house. While 

earlier genome sequencing relied on Sanger-based sequencing technologies, NGS (next generation 

sequencing) currently dominate the sequencing market with technologies including Illumina, 

Pacific Biosciences, Roche/454, ABI/Solid and Ion Torrent: all these technologies guarantee high 

throughput at reasonable cost. Choosing a platform can be tricky, as each sequencing technology 

offers different outputs. Among all, Pacific Biosciences (Eid et al. 2009) gives the longest of the 

read lengths (14 kb), but with a high error rate (Ribeiro et al. 2012). While ABI/Solid has a low 

error rate, it produces shorter reads (75 bp) with a longer run time, making it useful in identifying 

the transcribed regions in the genome (Horner et al. 2010). Though Roche gives longer read lengths 

(700 bp) and Ion Torrent has a high throughput (80-100 Mb/h), both their outputs are prone to 

homopolymer-associated errors (Loman et al. 2012). On the other hand, Illumina gives the highest 

throughput with least number of consensus error: for example, Illumina HiSeq 2500 offers high 

throughput (900 Gb to 1 Tb/ 6 days), reasonably high quality reads (2 x 250 paired-end reads; 

accuracy > 99.5%) for a cheaper price and in a relatively, quick time. For these reasons, we have 

used Illumina HiSeq for the whole genome sequencing (WGS) and transcriptome projects described 



 

in my thesis. Therefore, given the ease of generating NGS data and the many new dedicated 

bioinformatics tools, it is not surprising at all, that as of March, 2016 there are 6,136 genome 

projects (inclusive of organelles) of animals in the databases, of which 975 are of insects. In 2011, 

i5K project was launched, that aims to sequence 5000 genomes of insects and other arthropods, 

initiated mostly towards insecticide and pesticide resistance (Robinson et al. 2011).  

 

One of the biggest bottlenecks of NGS genome sequencing is the assembly of raw data. The rapid 

development in the sequence assembling resulted in a dramatic increase in number of assembly 

tools that follow three main paradigms: Greedy, overlap-layout-consensus, and De Bruijn graph. 

Each of these tools are tailored to specific sequencing platforms and projects. For example, 

assemblers based on the De Bruijn Graph such as Velvet (Zerbino and Birney 2008) and ABySS 

(Simpson et al. 2009) are more popular for the whole genome assembly, especially to suit the 

outcome of Illumina and SOLiD. Their functionality is inclusive of, but not limited to accurate 

shorter read fragments, produced from high coverage data sets. On the other hand, Trinity (Haas et 

al. 2013) and Oases (M.H. Schulz 2012) (based on Velvet) are widely used for transcriptomic data. 

In any case, one of the most common hindrance in sequence assembly and mapping are repetitive 

regions: when a read length is shorter than the repeat length (and maps to more than one region), the 

assembler is confused by this artefact. Hence, the accuracy of the data highly depends on how much 

an assembler is willing to tolerate the errors, given, the similarities of distinct regions (Nagarajan 

and Pop 2013). This can partly be overcome by in –depth sequencing to produce high coverage 

data. Moreover, to increase the accuracy and size of the assembly, sequencing paired-end or mate-

paired data can help in producing overlapping pairs/mates that can be stitched together, which are in 

average, twice the length of the reads produced by the single-end sequencing. Although there are no 

means of predicting a correct genome assembly, most of the genomic studies assess the quality of 

post-assembly using N50 values, to approximately measure the contiguity of an assembly. N50 is 

the statistical measure of the reads that includes contigs that make up greater than or equal to 50% 

of the assembly size. Hence, lower the N50 value, less contiguous is the assembly. However, recent 

works suggest a non-correlation of N50 value to the actual quality of an assembly (Earl et al. 2011). 

Upstream of assembly, there are also popular pre-assembly editing tools such as fastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and fastx 

(http://hannonlab.cshl.edu/fastx_toolkit) toolkit to perform quality control that can help in 

improving and evaluating the quality of the data to be assembled. Once the assembly is retrieved, 

there are plenty of options to choose from various annotation tools that one can use, often 

depending on the source and size of the data (WGS/RNA-seq/single-celled). Irrespective of the 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit/
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methods, a useful first analysis in genome assembly is masking the repeats, which refers to both 

low complexity regions and mobile genetic elements (Smit et al. 1996-2010).   

 

The processed/assembled genome data can be annotated in two ways. An empirical approach 

predict genes using pre-existing gene models, which are used to train the intron-exon boundaries 

prediction (Yandell and Ence 2012). In a second approach annotation is ab initio and the software 

use mathematical models to predict the genes and their alternative splice-forms. However, even in 

the absence of reference gene models, aligning EST, RNA-seq and protein sequences to a genome 

can assist in training the algorithm as in case of MAKER (Holt and Yandell 2011) that combines 

AUGUSTUS (Stanke et al. 2004) and SNAP (Korf 2004). The next phase of gene prediction is 

annotation of specific gene families/orthology. This is also done in two ways: i) manually- which is 

labour intensive and slow, ii) automatically- using automated pipelines that can be less reliable but 

most commonly used, especially for smaller genome projects. Often, the manually curated datasets 

result in relatively high quality annotations (Misra et al. 2002; Yandell et al. 2005), as in the case of 

the human genome project.  In general, orthologous gene identification works well only with 

reliable information from closely related reference species. In the absence of a reference the risk is 

to find misorthologs, false positives, and false negatives. Extremely gapped/incomplete genome 

assemblies clearly worsen the correct identification of orthologs. In general, there is always a 

delicate trade-off between specificity and coverage/depth/completeness of the genome sequencing: 

A clear growing problem in comparative genomics is that, for economic reasons, low 

coverage/poorly assembled genomes are preferred, causing errors in gene identification (Yandell 

and Ence 2012). 

 

To make sense of genes annotated in genomes, it is essential to study them on an evolutionary 

framework. The most important issue is llikely the comparison with closely related species, 

commonly called as ‘sister species’. This allows identification of genes that are shared between the 

species of interest and the sister species: such genes are not unique and are likely less important in 

describing the peculiar biology of the species of interest. Conversely, genes that are unique are good 

candidate to play a role in determing the phenotype of the species of interest. Divergence times may 

also play an important role in making sense of comparative genomics because they allow inferring 

the rate of gene gain and loss in the various lineages, as I have done when studying genes on a Birth 

and Death framework (see Results; section. 4.3.1). Furthermore, proper outgroup choice plays a 

significant role, as it can influence the structure of the phylogenetic tree based on its rooting 

position, and further help in polarising genomic event on the ingroup species gene tree.   



 

1.3. Drosophila suzukii- an invasive pest in Western countries 

 

 

With increased global trade, western markets import huge quantities of goods from tropical regions 

such as South America and South Eastern Asia. Occasionally, such goods are infested with invasive 

species that easily gets disperse: one of those is Drosophila suzukii Matsumura (Diptera: 

Drosophilidae, commonly known as SWD - Spotted Wing Drosophila) , a fruit fly endemic to South 

East Asia, first reported in Japan in 1930s (Kanzawa 1939; Mitsui et al. 2010). In 2008, arrival of 

the species in the US and Europe was reported synchronously in California, Spain and Italy, mainly 

near the ports (Walsh et al. 2011; Cini et al. 2012; Rota-Stabelli et al. 2013a). After a decade, D. 

suzukii has now spread to UK, and Scandinavia in North East Europe to Serbia in the west, thus 

showing a high dispersal potential. Also, it is well established in North America, Canada and in 

some parts of South America (Asplen et al. 2015). Further reports are expected to see a trend in the 

spreading of the pest in other unconfirmed territories. Like D. melanogaster, most species of 

Drosophila are attracted by, feed and oviposit only on rotten substrate. D. suzukii similarly feeds on 

over ripened or decaying fruits at adult stage, but it oviposits on fresh, soft and stone fruits causing 

a menace to fruit crop production. D. suzukii pierces the fruits using the serrated ovipositor (fig 1.3) 

(Kanzawa 1939; Walsh et al. 2011), an evolutionary trait shared with two other species, Drosophila 

subpuchrella and Drosophila pulchrella. However, these two species are not reported to produce 

any economic damage to the crops in their native geographical location (Mitsui et al. 2010).  The 

infestation of D. suzukii leads to the primary problem of larval feeding inside the fruit pulp. 

However, what makes the fruit inedible is the infection caused by fungi and bacteria from the 

pierced and damaged skin of the infested fruit. This led to unmarketable fruits and huge agricultural 

losses in the dispersed regions. For example, severe economic damage was registered in Trentino 

province of Italy in Europe, losing about 3 million € in 2011 alone (Ioriatti et al. 2015a). In US, 

pacific coastal States suffered atleast 500 million $ annually, which formed a whopping 76% of 

total soft fruit production (Walsh et al. 2011). Although cherries and berries are preferred 

substrates, the host range of D. suzukii is very wide with infestations reported on pears, apricots, 

figs, tomatoes, peaches and, more threatening for Italian economy, to some variety of grapes (Rota-

Stabelli et al. 2013a; Ioriatti et al. 2015b). 
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Monitoring and management of the pest have relied on emergency measures to effectively control 

the population, mostly resorting to pesticides. These systems however can leave hazardous 

chemicals on fruits when treatments are close to harvest (Rota-Stabelli et al. 2013a). Hence, other 

alternative and eco-friendly strategies such as mass trappings, mating disruptions, biological 

controls using parasitoids are being applied and/or studied to tackle the spread (Cattel et al. 2016; 

Rossi-Stacconi et al. 2016). Studying the chemosensory repertoire in D. suzukii has the potential of 

providing genes and ligands that can be used for downstream control strategies based on repellents 

and attractants.  

 

Given the significance of the current status of pest management, two draft genomes of D. suzukii 

have been sequenced and assembled, one from Italy (discussed in my thesis) and another from 

North America. (Ometto et al. 2013) (That I have co-authored) confirmed that D. suzukii is well 

nested within the Drosophila clade, and further in the melanogaster subgroup. D. melanogaster is 

one of the most studied model organisms and a carefully mapped genome, refined gene annotations 

coupled with experimental data can significantly help in understanding the biology of D. suzukii. 

Also, thanks to the availability of the Drosophila biarmipes genome, comparing the genome of D. 

biarmipes, a non-pest, sister species, can be a good strategy in exploiting the uniqueness of D. 

Fig 1.3. Serrated ovipositor of D. suzukii. Figure from 

Department of Entomology, University of Florida. 



 

suzukii. In fact, doing comparative genomics, particularly of chemosensory genes, could be a 

fundamental step for downstream applied research.  

 

The shift in preference for ripe fruits in D. suzukii also offers a unique possibility for comparative 

evolutionary studies on the adaptive origin of new ecological and behavioural traits. Throughout the 

last decades, Drosophila proved to be an excellent model organism for a wide range of studies, 

from sexual selection to shifts in food preference (Dekker et al. 2006; McBride 2007; Stensmyr et 

al. 2012). Moreover, the availability of rich literary resource based on physiological findings of D. 

melanogaster chemoreceptors, can be exploited (Muench and Galizia 2015) to interpret D. suzukii’s 

behaviour. The first part of the thesis that I present here is one of the very few works to combine 

bioinformatic and experimental data to demonstrate the ecological adaption in a Drosophila species. 

Studying the evolution of the chemoreceptor genes in Drosophila suzukii as an insect pest and 

evolutionary model (where we have sequenced both its genome and transcriptome), using 

comparative genomics can help to unveil its ecological adaption. Further, the result of this work has 

provided with a list of candidate genes (chemoreception and pheromone synthesis), involved in the 

ecological shift in the behaviour of D. suzukii. Most of these receptors/genes, and the respective 

neurons where they are expressed will become the targets of detailed neurophysiological and 

behavioural experiments for further downstream applications.  
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2. Main objectives 

 

2.1. To unveil the evolutionary dynamics of chemoreception in a pest species, using D. 

suzukii and its genome as a model. 

 

I shall contribute in assembling and curating D. suzukii genome using up to date 

protocols and methods. I shall then focus on the annotation of genes involved in 

chemosensation (ORs, GRs, aIRs, OBPs, CSPs) and in their analyses under an 

evolutionary framework. The goal is to unveil uniqueness in the repertoire of 

chemosensory genes in D. suzukii, and link this data with phenotype in search of likely 

adaptive genomic changes that would explain some of D. suzukii peculiar biology. 

Genes of interest, as well as the chemical ligands associated with them, may ultimately 

become target of downstream applied research. 

 

 

2.1. To increase our understanding of the origin and evolution of chemosensory receptors 

in Arthropod.  

 

For doing so, I shall search various recently released genomes of hexapods, 

crustaceans, myriapods and chelicerates in search for ORs, GRs, and IRs. Careful 

annotations of these receptors may clarify their distribution on the species phylogeny 

and shed light on some long lasting questions such as the origin of smell in insects.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3. Methods summary  

 

I outline here a brief overview of methods I have used during my studies. I have summarised them 

in the bioinformatic pipeline of figure 3.1 which depicts a flow of experiment from 

genome/transcriptome assembly and gene annotation, to phylogenetic and birth and death (BD) 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 3.1.The pipeline of bioinformatics experiments I have conducted in my thesis.  
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For each of the projects of my thesis (See Results), I followed one or more sections of this pipeline. 

Here I provide a summary of each of section while a complete description is provided in the 

methods section of each of the attached manuscripts.  

 

 

RNA-seq assembly 

Data quality was evaluated with fastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/, last accessed April 3, 2013) and 

Tallymer (Kurtz et al. 2008). Low-quality positions were trimmed using fastx 

(http://hannonlab.cshl.edu/fastx_toolkit/, last accessed April 3, 2013) with a threshold of 0.3. I 

assembled the resulting 30,951,598 read pairs using two distinct approaches. First, we used Oases 

(M.H. Schulz 2012) with k-mers ranging from 25 to 53, obtaining 24,358 contigs (length 100–

15,000 bp). In the second approach, I used ABySS (Simpson et al. 2009) with k-mer 45 and 

obtained 140,736 contigs. The two sets were merged using cd-hit (Li and Godzik 2006) with an 

identity threshold of 100% and eventually super-assembled using CAP3 (Huang 1999) using default 

settings.  

Genome assembly  

Unlike RNA-seq data, the genome was cleaned for Wolbachia and Mitochondria using Smalt 

(http://www.sanger.ac.uk/resources/software/smalt) by mapping the reads using genomes of 

five Wolbachia strains (W. ananassae, W. melanogaster, W. simulans, W. willinstoni, and wRi) and 

the D. melanogaster mitochondrial DNA (mtDNA) respectively. The resulting reads were further 

cleaned using Sickle (https://github.com/najoshi/sickle), after which both the 180bp and 300bp 

libraries scored, on average, a qvalue of 35. We used ABySS (Simpson et al. 2009) to assemble the 

resulting 20Gb raw data with k-mer size ranging from 48 to 64 (Table 3.1).  

 

K-mer size N contigs n:200 n:N50 N80 N50 N20 max sum (Mbp) 

48 1,399,155 93,256 7,826 1,369 4,756 18,300 208,969 185.3 

54 1,200,237 105,190 9,204 1,283 4,445 15,559 169,965 195.7 

64 961,286 131,597 12,820 1,089 3,565 11,309 169,947 209.6 

 

Table 3.1. Genome assembly statistics. Abyss trials with different k-mer size. n:200 is the number of contigs shorter 

than 200 bp, n:N50 is the number of contigs longer than the median, N80 is the size of the 80 percentile, N50 is the 

median contig size, N20 is the size of the 20 percentile, sum is the overall contigs size in millions of base pairs. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.sanger.ac.uk/resources/software/smalt
https://github.com/najoshi/sickle


 

After quality assessment of the assemblies, we retained as best assembly, the one obtained using a 

k-mer of 64. Choosing a k-mer is often tricky, as it is a trade-off between the accuracy and repeat-

identified problems. K-mer is influenced by factors such as assembly size, assembly errors and N50 

value. We chose K-mer of 64 as it gave the maximum size of assembly, with an acceptable N50.  

 

Repeat composition 

I studied the composition of repeat elements in D. suzukii and 12 other Drosophila using 

RepeatMasker (Smit et al. 1996-2010). I analysed the entire genomes without distinguishing 

between euchromatin and heterochromatin partitions, as these information are either incomplete or 

unknown for most of the Drosophila species used in this study. I used all fragments irrespective of 

their length, because the D. suzukii genome assembly and some of the other draft genomes 

contained many contigs shorter than the 200 kb limit recommended (Consortium 2007). I quantified 

the presence and size of repeats as the percentage of repeated sequences over the draft genome size. 

This approach has the advantage of reducing biases due to the uncertain draft genome size of the 

different species, which may vary due to the different assembly strategies and/or genome quality 

levels, and may not reflect the actual genome size. To account for this inaccuracy, we further 

calculated the percentage of total repeats using two contrasting and conservative estimates of the 

putative average Drosophila genome size (a minimum at 130 Mb and a maximum at 180 Mb). 

 

Mitogenomics and Phylogenomics 

I used D. melanogaster mitochondrial DNA as a reference to extract the CDS in D. suzukii and 8 

other Drosophila (D. biarmipes, D. bipectinata, D. elegans, D. eugracilis, D. ficusphila, D. 

kikkawai, D. rhopaloa, and D. takahashi). Comparison with both assembled genome and 

transcriptomes yielded partial sequences, and revealed several putative NUMTs (‘nuclear 

mitochondrial DNA sequences’, portion of mitochondrial DNA that have been transferred into 

nuclear genome). The nearly complete mitogenome of D. suzukii was assembled creating a 

consensus between genome and transcriptome data. The sequence of the 13 mtDNA protein coding 

genes from D. suzukii and from 8 Drosophila above were then aligned using MUSCLE with the 

orthologues from 13 other Drosophila with an annotated/published mitogenome. For phylogenetic 

analysis, we further assembled a concatenated alignment of 91 nuclear coded CDS extracted from 

the transcriptome of D. suzukii and other 21 Drosophila (details are in Ometto et al. 2013). Both 

datasets were processed into three different ways to make three types of datasets: the first one 

contained all 3 nucleotide positions; the second had the 3rd codon position removed; the third 

contained the corresponding amino acid data. Further, we inferred phylogeny from each of these 
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datasets using different phylogenetic frameworks (Bayesian and ML), both homogenous and more 

sophisticated heterogeneous models such as CAT + GTR on a Dayhoff recoded data set as in (Rota-

Stabelli et al. 2013c).  

 

Gene prediction and Ortholog Search 

To annotate genes I have used ab-initio algorithms such as Augustus in combination with PSI-blast 

(Stanke and Waack 2003) (Altschul et al. 1997).  Moreover, I performed individual manual blast 

searches to identify and annotate genes both in D. suzukii and D. biarmipes  (more details are in the 

manuscript, Ramasamy et al, 2016). For the GR and IR genes of the Arthropoda, I used tblastn 

extensively along with evidence-based gene model software Exonerate (Slater and Birney 2005). 

The resulting annotations were used to search the genomes using hmmsearch and hmmbuild with 

HMMer (Mistry et al. 2013).   

 

(Gene) Phylogenetic analysis 

To help in the annotation of the Drosophila gene trees (OR, GR, OBP, CSP, aIR), I constructed six-

species gene phylogenies. The gene and protein sequences for D. erecta, D. ananassae and D. 

pseudoobscura were downloaded from FlyBase (Drysdale et al. 2005) and their orthologous 

relationships predicted by OrthoDB (Waterhouse et al. 2013). I then added the orthologues of D. 

melanogaster, D. suzukii and D. biarmipes, and built multiple sequence alignments at both 

nucleotide and protein level for each of the 3 families with MUSCLE (Edgar 2004b) using 

TranslatorX (Abascal et al. 2010).  The genome sequences for various arthropods were downloaded 

either from i5k genome project ((Consortium 2013); https://www.hgsc.bcm.edu/i5k-pilot-project-

summary) or European nucleotide archives at EBI (http://www.ebi.ac.uk). However, for the GR 

and IR identification in Arthropoda, I used UPP (Ultra-large alignments using Phylogeny-aware 

Profiles) (Nguyen et al. 2015), which is quite useful for highly diverged proteins like 

chemoreceptors. Also, the dataset was huge and filled with fragmented sequences, as in most cases 

the gene prediction cannot find the initial N-terminal regions. The profile-based alignment from 

UPP was aligned further with Muscle (Edgar 2004a) and manually cleaned for gap-filled sites. For 

all the alignments, phylogenetic analysis was done using maximum likelihood framework, with 100 

bootstrap replicates, configured in RAxML v.7.2.8 (Stamatakis 2014). Since the input sequences 

were amino-acids, protein models of replacement- GTR (Waddell and Steel 1997) or one of its 

empirical versions, LG (Le and Gascuel 2008), were used to compute tree search, together with a 

https://www.hgsc.bcm.edu/i5k-pilot-project-summary
https://www.hgsc.bcm.edu/i5k-pilot-project-summary
http://www.ebi.ac.uk/


 

Gamma distribution with four discrete categories and an empirical estimation of amino acid 

frequencies (F).    

 

Signatures of selection 

We used PAML to calculate ω (dN/dS) for each of the coding proteins involved in chemoreception. 

While the ratio of synonymous substitution to non-synonymous substitution (dN/dS) of zero 

indicate purifying or negative selection, dN/dS above one is an evidence of positive selection. 

Under free ratio models implemented in codeml, we calculated branch specific rates (model=0, 

NSsites=0; model=2, NSsites=0). Also, to identify D. suzukii specific positive selections, we used 

branch-site specific model (model=M2a, NSsites=2) to test the occurrence of affecting sites.  Prior 

to the test, alignments were manually curated for frame shifts (See Methods in Ramasamy et al 

2016). I did not check for signatures of selection in the fragmented, partial dataset of Arthropod 

chemoreceptors.  

 

Birth Death Analysis 

I mapped the evolution of each of the gene families (OR, GR, aIR, OBP) on a 14 Drosophila 

species trees using the tree topology proposed by (Ometto et al. 2013). I estimated the gene family 

size at each internal node and family turn-over rates for each branch by using stochastic models 

implemented in BadiRate version 1.35 (Librado et al. 2011). The program uses the information of 

the divergence time and the number of genes at the extant species over a phylogenetic framework. I 

used the BDI-FR-CML model where the probability of genes at each internal node is modelled by 

maximum likelihood assuming that each lineage evolves independently. I have also predicted the 

rate of expansion or contraction on a time tree using the gene gain and loss information at each 

branch as: Rate of Expansion/Contraction = No of gains + No of losses / Divergence time in mya. 
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4. Summary of results   

 

The work from this thesis has contributed to 4 publications in international peers review journals 

(included in Appendix B). Here I present a synthetic summary of these contributions. These results 

include mainly my own work. However, because of the strong interdisciplinary nature of my thesis 

project, some sections describe work that I have conducted together with some colleagues of mine: 

in such cases I have used the plural form (we) in presenting results. In few circumstances, I have 

further presented work done entirely by colleagues of mine; this is because these results were an 

essential complement to my own results: in these cases I explicitly referred to “my colleagues”.  

 

4.1. Genome and Transcriptome of D. suzukii 

 

To aid gene annotation and ease understanding the biology and the evolution of D. suzukii, we 

sequenced both its genome and transcriptome. I contributed in cleaning and assembling both 

genome and transcriptome, I compared the repeat composition, annotated mitochondrial genomes, 

and helped in using genome data to clarify the phylogenetic affinities of D. suzukii.  

 

4.1.1. Sequencing and Assembly of genome and transcriptome 

 

We sequenced and assembled a draft genome and transcriptome of D. suzukii from an Italian Alpine 

population. Assembly of the nuclear genome was performed using both 180 bp and 300 bp libraries. 

The 180 bp library generated 67,153,264 100 base read pairs totaling 14.3 gigabases (Misof et al.) 

and the 300 bp library 51,792,255 100 base read pairs covering 10.4 Gb. Contigs that are longer 

than 1 kb have been submitted to the European Nucleotide Archive at EBI web site 

(http://www.ebi.ac.uk/, last accessed April 3, 2013) with the accession numbers: CAKG01000001–

CAKG01061569. The draft genome was sequenced to high depth (an average of 80× coverage) and 

comprises 49,558 contigs spanning a total of 160 Mb. The RNAseq sequencing generated a total of 

35.7 million 100 base paired reads. The final assembled data set consisted of 25,810 putative 

transcripts with lengths varying from 50 to 16,500 bp. The size of the genome and transcriptome are 

comparable with that of D. melanogaster and other sequenced Drosophila. 

 

 

 

http://www.ebi.ac.uk/


 

4.1.2. Comparative genomics of repetitive elements in D. suzukii 

 

 

Results show that nearly 9% of the D. suzukii genome is composed of repeats: this is comparable to 

amount of repeats found in D. biarmipes and D. takahashii. However, the association between the 

phylogeny of the Drosophila species and the composition of transposable elements is not congruent 

for few closely related species. For example, D. simulans has only a quarter of the D. sechellia’s 

repeat composition (See fig.4.1). This might be due to the lineage-specific effects of horizontal gene 

transfers (Biémont and Cizeron 1999). The two classes of repeats, retrotransposons and DNA 

transposons, differ in their functional mechanism of transposition. With the presence or absence of 

long terminal repeats, retrotransposons can be further distinguished into LTR and non-LTR families 

which differ in their abundance of distribution in Drosophila. LTR which are more conserved than 

the non-LTRs, are found higher (fig. 4.2) in D. suzukii.   
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Figure 4.1. Repeat elements in D. suzukii genome. The distribution and number of repeats in D. suzukii is similar to 

that of sister species D. biarmipes and D. takahashii, consistent with their phylogeny.   
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                            Figure 4.2. Composition of Retro-transposon and DNA transposon in D. suzukii.  

 

 

High occurrences of gypsy and copia elements and absence of Bel/Pao and SINEs family is in line 

with the characteristic of most Drosophila species. The total and family-wise composition of repeat 

elements in D. suzukii is similarly shared by the closely related species characterized by a different 

biology: henceforth, it is possible to exclude repeat enrichment as a reason behind the peculiar 

biology of D. suzukii. 

 

4.1.3. Incongruence between mitochondrial and nuclear phylogeny 

 

Comparative genomics relies on a robust phylogenetic tree, which should be used to polarize 

evolution of genes. For this reason, we used data from the D. suzukii mitogenome and transcriptome 

to conduct a comprehensive multi-locus genome scaled phylogenetic and dating analysis using 20 

additional Drosophila species. We conducted two separate analyses using two distinct datasets, a 

mitogenomic one and a transcriptomic one. For the mitogenomic dataset, I have assembled D. 

suzukii mtDNA in 15 contigs, spanning 14,736 bp; from this mitogenome, I extracted coding 

sequences and generated an alignment of 21 Drosophila species. Colleagues of mine generated a 91 

nuclear coded protein-coding genes extracted from the transcriptomes of the same 21 species. All 

analyses converged on a tree that confirmed a sister relationship between the 

suzukii and takahashii subgroups, but failed to converge on some internal relationships of 

Drosophila. This is most likely because of a lack of phylogenetic signal in the mtDNA. For 

example, the apparently robust bootstrap support (97%) in mtDNA phylogeny against the sister 

relationship eugracilis-melanogaster subgroup (supported instead by nuclear dataset) vanishes 

when highly saturated third codon positions are excluded, or when an amino acid data set was 

employed; this indicate that signal contradicting the nuclear phylogeny carried by mitochondrial 

genomes is concentrated in unreliable (likely saturated) third codon positions whose substitutions 

for the most part are synonymous  (Ometto et al. 2013). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. The evolutionary affinities of D. suzukii and the other Drosophila species inferred from phylogenomic and 

mitogenomic data. (A) Phylogenetic analyses of 91 orthologous nuclear genes. (B) Phylogenetic analyses of 12 

mitochondrial genes. Both data sets support an Asian affinity of D. suzukii, and a sister relationship with D. biarmipes. 

 

 

 

4.2. Investigating the evolution of sexual pheromone perception in D. suzukii 

 

 

The power of D. suzukii genome data resides in being a useful repository for quickly obtaining 

orthologues for comparative studies aimed at understanding its ecology, biology and behavior. 

Apart from olfaction and gustation, pheromone detection is a key aspect of sexual communication 

and hence, reproductive behavior. Long chain hydrocarbons, present in the cuticle and known as 

cuticular hydrocarbons (CH), play a major role in insect’s reproduction. By combining gas 

chromatography and mass spectrometer, some of my colleagues measured the CH profile of D. 
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suzukii for male and female, separately.  Apart from minor differences, both sexes exhibited 

isomorphic CH profile. However, the CH profile of D. suzukii surprisingly shows lack of cVA: 

Among the CH, cis-11-octadecenyl acetate (cVA) is the best studied pheromone communication 

system (Symonds and Wertheim 2005). cVA increases mate acceptance in females, reduces 

attractiveness of newly mated females, reduces male–male courtship, while increasing aggression 

between males (Wang and Anderson 2010).  cVA is found throughout the Drosophila lineage, even 

in basal ones like obscura and immigrans; hence, its complete absence in D. suzukii males is 

striking given its prominent role in both sexual and social behavior. In accordance to that my 

colleagues found that the ejaculatory bulb, where the cVA is produced has significantly shrunk in 

volume, compared to D. melanogaster. 

 

In an attempt to find the molecular bases of cVA absence in D. suzukii, I have searched the D. 

suzukii genome for various Desaturase and Elongase gene families involved with the biosynthesis 

of species-specific cuticular hydrocarbons in D. melanogaster. Desaturases are essential for lipid 

metabolism and to maintain the structure and function of biological membranes, and in insects are 

further involved with the biosynthesis of cuticular hydrocarbons and pheromones. Although there 

are 8 Desaturases in the gene family of D. melanogaster, so far only three have been implied in 

biosynthesis of hydrocarbons and mate recognition: desat1, desat2 and desatF (Roelofs and Rooney 

2003) (Chertemps et al. 2006).   
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Figure 4.4. Phylogenetic analysis of (A) Desaturase family, where D. suzukii misses Desat2 gene and (B) Elongase 

family, where two key genes EloF (red shade) and Elo68a (blue shade) are highlighted. EloF is missing in D. suzukii, 

while Elo68a being conserved. The tree is rooted using midpoint.  

 

 

I have extracted, and annotated these genes in D. suzukii and D. biarmipes and conducted 

phylogenetic analyses to understand their evolution in D. suzukii. Results show that while desat1 

and desatF are conserved throughout the Drosophila phylogeny, but that D. suzukii and D. 

biarmipes have lost desat2 (See fig.4.4A). I further conducted a comprehensive analysis of 

Elongase orthologs in various Drosophila species and I found a complex scenario in which EloF 

and Elo68a are part of a large family of Elongases. We have named these putative Elongases using 

alphabetic letters from A to Q, leaving the F to EloF.  Most of these putative Elongases are 
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conserved. Elo68a, which is directly involved in cVA production, is normally present in D. suzukii, 

but EloQ and EloF are missing in D. suzukii and EloC is likely duplicated. (see fig.4.4A, red shade 

in fig. 4.4B). EloF is mainly involved in female pheromone synthesis and courtship, and in D. 

simulans, non-expression of EloF, along with DesatF is thought to have played a role in species 

isolation and in turn, speciation (Chertemps et al. 2007). EloF is a candidate gene involved in the 

loss of cVA production in D. suzukii. 

 

In Drosophila, cVA is recognized by Or67d, a receptor expressed on T1 neurons of trichoid 

sensilla, which innervate the glomerulus DA1 present in the antennal lobe (Kurtovic et al. 2007). 

My colleagues found that D. suzukii has less number of T1 sensilla compared to other Drosophila, 

in accordance with a reduced sensitivity for cVA.  On the other hand, the T4 sensilla that houses 

Or65a neurons are more abundant in D. suzukii. In D. melanogaster, it is shown that Or65a is 

involved in suppressing cVA-mediated male-male aggression and decreasing receptivity towards 

recently mated females (Liu et al. 2011). Also DL3, the section of glomeruli that innervates T4 

sensilla in D. suzukii is significantly enlarged. To understand if this difference was accompanied by 

molecular variations, I have extracted and analyzed Or67d and Or65a and the results show that 

these genes are well conserved in D. suzukii (fig. 4.5).  
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Figure 4.5. cVA odorant receptors are conserved in D. suzukii. Phylogenetic tree of Or67d and Or65a in D. suzukii and 

other Drosophila. These genes are extremely conserved in D. suzukii and the other species sampled. This suggests that 

these genes are indeed expressed in neurons of T1 and T4 sensilla and are structurally constrained to recognize cVA, as 

indicated by the electrophysiological responses. The tree is rooted with the OR co-receptor, Orco.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Fruitless/cVA signalling pathway is conserved in D. suzukii. A) Simplified scheme of the signalling cascade 

controlling fruitless mediated sexual characterization in Drosophila. B) sexlethal is present with both its two main 

isoforms in D. suzukii, which however miss an extremely conserved region at aa 332 C) Transformer is also conserved 

in both female and male isoforms in D. suzukii. One of the binding site of miRNA124 is variable in D. suzukii, but still 

capable of binding miRNA124 (see panel D). D) Transformer gene of D. suzukii contains both miRNA-124 binding 

sites. Left shows the binding site at 3’UTR of transformer in D. melanogaster (upper) and D. suzukii (lower). Right 

panel shows the binding site at the last transformer exon. E) A cladogram of putative Fruitless isoforms in D. suzukii 

compared with known isoforms in D. melanogaster, with each possible exons aligned. All the alignment from which 

trees have been constructed are available for downloading at http://dx.doi.org/10.6084/m9.figshare.865654. 

 

 

It can be interpreted that both these genes are indeed expressed in T1 and T4 sensilla respectively, 

structurally constrained to recognize cVA. Given such a switch in the size between the two 

glomeruli of T1 and T4 sensilla of D. suzukii, it’s possible that the cVA played an antagonistic role 

in mating behavior. 
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I have further analyzed a range of transcription factors involved with sexual behaviors and response 

to cVA in D. melanogaster (fruitless (fru), sexlethal (sxl), transformer (tra) and doublesex (dsx)). I 

found Fruitless (Hall 2002) to be conserved in D. suzukii, as well as miRNA-124 binding sites 

upstream of transformer, a factor directly involved in cVA production in male D. melanogaster. A 

male-specific splicing variant of fruitless, FruM, causes sex-specific neuronal growth, targeting and 

corresponding behaviour (Demir and Dickson 2005). My gene annotations show that the fru region, 

spanning 100 kb of genomic DNA, contains all putative exons to build the various isoforms found 

in D. melanogaster, including FruM fig. 4.6E; (Stockinger et al. 2005). I also found that 

sexlethal (Billeter et al. 2006)), transformer (Fernández et al. 2010)) and doublesex (Rideout et al. 

2010)), are well conserved in D. suzukii (fig. 4.6). However, we noted that the volume of DA1, a 

section of glomeruli is sexually isomorphic in D. suzukii. This contrasts with D. melanogaster, 

where Fru causes a substantial dimorphism in volume and behaviour between males and females 

(Stockinger et al. 2005). Similarly, the two other glomeruli receiving input from sensory neurons in 

the fru circuitry, VA1v and VL2a, were also sexually isomorphic. However, DL3 was 19% 

enlarged in male compared with female D. suzukii, whereas DL3 is isomorphic in D. 

melanogaster (Stockinger et al. 2005). This may indicate an altered expression of Fru in the 

olfactory circuitry of D. suzukii males and females. This notion of an altered expression pattern 

in D. suzukii is substantiated by the observation that Fru is translated in brains of both sexes of D. 

suzukii, whereas in D. melanogaster only in males(Yamamoto et al. 2004). However, I did not 

explore the RNA-seq of D. suzukii due to low coverage of libraries available. 

 

My colleagues performed a behavioral experiment to see the effect of cVA in D. suzukii and they 

could confirm an adversary effect of cVA in its courting and mating behavior. It is also shown that 

the species uses cVA as a short range cue to avoid rotten fruits.  

 

Overall, my phylogenetic analyses of genes involved in the metabolism and regulation of CVA 

indicated that most of them are conserved in D. suzukii, although the loss of an Elongase and a 

Desaturase may represent cases of ecological adaptation. Further work is needed in functionally 

characterizing putative isoforms of the analyzed gene families. Overall, results indicates that cVA 

or cVA related compounds may be used as deterrents for the soft fruit industry, in disrupting the 

mating and/or oviposition behavior of D. suzukii in an integrated pest management. 

 

 



 

4.3. The role of chemosensation in the making of a pest 

 

 

4.3.1. Evolution of chemosensory genes in D. suzukii: Increased turnover rates of the ORs, 

OBPs and GRs  

 

I have extracted, annotated and studied the evolution of the main 5 chemosensory genes (  olfactory 

receptors (OR), gustatory receptors (GR), odorant binding proteins (OBP), chemosensory proteins 

(CSP) and antennal ionotropic receptors (aIR) in D. suzukii and D. biarmipes. In D. suzukii, the 

chemosensory repertoire consists of 74 protein coding genes from 67 OR loci, 85 protein coding 

genes from 77 GR loci, 53 OBPs, 4 CSP and 18 aIRs.  

 

 

 

 

 

Figure 4.7. Relative count of chemosensory genes in 14 Drosophila species. Although a correlation between gene 

families can be seen mostly in all species, there is a discrepancy in i) high number of GRs in D. suzukii - D. biarmipes 

lineages and ii) a reduction of GRs in D. sechellia and D. erecta. 

 

 

The OR gene family proved to be extremely dynamic in the branch leading to D. suzukii, with eight 

gene gains (duplications of Or19a, Or49a, Or59a, Or59c, Or67a and quadruplication of Or23a), 

two genes that likely lost their original function (Or85a, Or74a; see below on how we defined a 

change of function), and two new isoforms (the locus of Or42a has three likely transcription start 
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sites). In the branch leading to D. suzukii and D. biarmipes, I further identified a loss of function for 

Or22a, a loss of Or98a, duplications of Or65c and Or22b, and a triplication of Or67a. In D. suzukii 

all OR duplications arose by tandem replication. The GR family is characterised byan expansion of 

various genes in the branch leading to D. suzukii and D. biarmipes: Gr59c-d is duplicated 7 times, 

Gr92a-93d-93N thrice, Gr36a-c twice, followed by one gain in Gr22a-f, Gr59a-b and Gr98b-d 

each. D. suzukii, in specific, has a gain in Gr59a-b and Gr59c-d with no loss. Concerning OBPs, I 

identified three changes in the D. suzukii repertoire, namely duplications in Obp46a and Obp47a 

and loss of Obp18a.  Overall, my annotations indicate a fair conservation of the aIR and CSP gene 

family size among the Drosophila species, while the OR, GR and OBP gene families are highly 

variable. 

 

In general, the annotation process required various rounds of iterative searches, combining 

automated and manual approaches. One of the interesting, but an expected results is that I could 

recover more paralogs (particularly frame-disrupted pseudogenes) using the manual annotation, 

rather than the automated de-novo approach.  In the bioinformatic community, compromises in 

gene annotation approaches between faster predictions using automated pipelines against slower but 

more accurate predictions using manual approaches is well known (Misra et al. 2002; Yandell et al. 

2005).  My results show that though the automated approach is most commonly used, it can lead to 

false negatives, impairing the correct interpretation of functional genomics or applied studies.   

 

The birth-and-death analysis based on the timetree of fourteen Drosophila species showed an 

increase in the turnover rates of OR and OBP genes in D. suzukii. Apart from simulans and 

pseudoobscura group, D. suzukii is the only species to have a turnover rate higher than 1 (overall 

rate of expansion and normalized beta rate are 1.36 and 0.018 respectively, fig. 4.8A). D. suzukii 

clearly falls as an outlier, along with D. pseudoobscura and D. simulans, in the box plots of figure 

A). In fact, the total number of events in D. suzukii is higher than the other two groups (n=10), but 

occurred during a longer evolutionary time scale (7.3 mya). These genomic events present a non-

random distribution: seven out of the ten events in D. suzukii are clustered in a well-supported clade 

(BS=71) in the gene phylogeny (See grey part in fig. 4.9). This sub family comprises less than a 

third of the whole OR family (17 out of 61), housing most of the gene gains/losses that characterize 

D. suzukii (refer Ramasamy et al. 2016). Indeed, a Fisher exact test (two tailed, P = 0.25) confirmed 

a significant departure of the D. suzukii lineage from a random distribution of genomic events on 

the phylogeny. Apart from D. suzukii, three other species scored significantly- D. sechellia, D. 

virilis and D. ananassae. 



 

 

Figure 4.8. Evolution of OR and OBP on the Drosophila phylogeny. A: Distribution of the OR gene family size rate 

variation mapped on a time-tree. Each branch in the tree has overall rate of variation (rate of gain + rate of loss/ 

(divergence times)) followed by the beta and delta parameters describing respectively birth and death rates from the 

Badirate analysis using BDI-FR-CML parameters. β and 𝛿 values are rounded at the fifth integer. B: Same caption as 

ORs for OBPs. C: boxplots of overall rate of variation, beta, and delta for OR rate variation. D: Same caption as ORs 

for OBPs.  
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Figure 4.9. Phylogenetic tree of Odorant Receptor. Most of the genomic events detected in D. suzukii (duplications, 

losses, loss of function, positive selection, see legend) cluster significantly in two subfamilies highlighted with grey 

shade. The tree is inferred using the protein sequences from the entire gene families of 6 species (D. melanogaster, D. 

erecta, D. suzukii, D. biarmipes, D. ananassae, and D. pseudoobscura). Support at each selected nodes is the bootstrap 

support from the analysis of 100 pseudo-replicates.  
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Figure 4.10. Evolution of Gustatory Receptors on the Drosophila phylogeny. A: Distribution of gene gains (above 

branches, in bold) and losses (below branches) on a cladogram depicting phylogeny of 14 Drosophila species; values at 

the right of each terminal or internal nodes are the number of genes calculated by Badirate using BDI-FR-CML model. 

B: Distribution of the gene family size rate variation mapped on a time-tree. Each branch in the tree has overall rate of 

variation (rate of gain + rate of loss/ (divergence times)) followed by the beta and delta parameters describing 
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respectively birth and death rates from the Badirate analysis. β and 𝛿 values are rounded at the fifth integer. C: boxplots 

of overall rate of variation, beta, and delta. 

 

 

 

Figure 4.11. Phylogenetic tree of Gustatory Receptor. Clades are coloured based on the functional assays. The 

expansion of GR clade in suzukii subgroup is coloured in blue to indicate the duplication in one part of the tree. The tree 

is inferred using the protein sequences from the entire gene families of 6 species (D. melanogaster, D. erecta, D. 

suzukii, D. biarmipes, D. ananassae, and D. pseudoobscura). Support at each selected nodes is the bootstrap support 

from the analysis of 100 pseudo-replicates.  

 

 

In case of OBPs, the turnover rates are in general lower than ORs for all the species. Again, D. 

suzukii’s overall turnover rate is higher than the average and is one of the highest in the 

melanogaster group. Although D. suzukii is not an outlier in the boxplot analysis, the branch 

leading to D. suzukii and D. biarmipes is an outlier for what concern the rate of loss (fig. 4.8D).  

 

Gustatory receptors similarly show a significant enrichment on the branch grouping D. suzukii and 

D. biarmipes, where we could count 15 gains, but no losses. This correspond to a significant gene 

family enrichment (thick branch in fig. 4.10A and boxplot of fig. 4.10C), and to one of the highest 

overall turnover rates in the Drosophila phylogeny (2.63), second only to D. sechellia. Similar to 

ORs, most of the duplications/losses that characterise the suzukii subgroup are clustered in a well-



 

supported group of genes (See fig. 4.11): this is again an indication of non-random distribution, 

although no statistical tests have been yet performed. The chemosensory proteins CSP evolve 

instead similar to other Drosophila species, both in terms of rate of evolution and number of 

genomic events (data not shown). As for aIRs, both the rate of evolution and gene family size does 

not vary, except for a gain in D. mojavensis and a loss in D. sechellia (data not shown).  

 

The process of birth-and-death assumes that chemosensory genes are randomly gained or lost by 

local genomic events, and that their fate (fixation, or loss/acceptance) is mostly defined by natural 

selection (Vieira et al. 2007). In the case of D. suzukii (or its subgroup), we observe an increase in 

the birth-and-death rate of the OR and GR (and to a lesser extent OBP) gene families relative to 

other lineages (figs. 4.8, 4.10). Selection may have played a major role in shaping the duplication 

pattern in D. suzukii receptor genes because duplications and deletions are not randomly distributed 

along the gene phylogenies (See the grey clade in fig. 4.9). While mutational events (deletions, 

duplications, consequent positive selection) occur randomly, their fixation is not necessarily 

random; in the case of D. suzukii, selective fixation of certain mutational events may have instead 

been favoured by natural selection. The observation that such high dynamism occurs within a single 

clade of ORs and GRs suggests that in D. suzukii there has been a shift in the perception of the 

ligands that characterised such gene clades. The increased rate of GR gain is however shared 

between D. suzukii and D. biarmipes; therefore its adaptive role, if any, should be associated with 

the biology of both species and not only with that of D. suzukii. In any case, we can hypothesize 

that a modification of the chemosensory system, and the associated assortment of receptor genes, 

accompanied the change in the reproductive lifestyle of D. suzukii.  

 

 

4.3.2. Making sense of the ecological significance of the duplicated/lost genes   

 

To understand the ecological role of duplicated/lost chemosensory genes in D. suzukii, we 

combined our knowledge of their evolution (results outlined above), with behavioural assays, 

electro-physiological experiments, and information from previous works on D. melanogaster (the 

DoOR v.2 database). We focused mainly on OR and OBP, and evaluate whether certain chemicals 

or chemical classes are over- or under- represented among those eliciting a response in the 

duplicated/lost OR genes in D. suzukii.  
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Results show that most of the duplicated/lost/under positive selection ORs in D. suzukii respond in 

Drosophila melanogaster to medium sized esters (Or22a, Or42a, Or59c, Or67a, Or98a, but also 

Obp18a), to similarly sized fatty alcohols (Or74a, Or85a), and to large although chemically 

unrelated cyclic compounds (Or19a, Or59a, Or98a); more details are in fig. 4 of (Ramasamy et al. 

2016). These patterns are confirmed by a quantitative screening of the DoOR database which 

reveals a variety of esters such as ethyl-butyrate, methyl-hexanoate, pentyl-acetate and isopentyl-

acetate. Two of the ORs that lost their original function (see next section: 4.3.2) in D. suzukii 

(Or85a and Or22a), bind with high affinity to ethyl 3-hydroxybutyrate and ethyl (and methyl) 

hexanoate, compounds associated with yeast and bacterial fermentation (Antonelli et al. 1999). 

Another OBP gene, Obp57d, is triplicated in both D. suzukii and D. biarmipes and is involved in 

detecting hexanoic and octanoic acids, which are toxic for Drosophila in general, but not to D. 

sechellia (Matsuo et al. 2007; Harada et al. 2012b).  

 

It is not straightforward to generalise the biological significance of the many duplications and losses 

that characterize ORs in D. suzukii, as these receptors are elicited by a large assortment of ligands, 

and because the DoOR database has many biases (see (Ramasamy et al. 2016) for details). 

Nonetheless, our analyses point toward a role of fatty alcohols, esters, and aromatic compounds 

which are clearly over-represented as ligands of duplicated/lost genes (compared to all other ORs) 

in D. suzukii. Among esters, the most represented are ethyl butyrate and isopentyl acetate; the latter 

is present in many ripening soft fruits that host D. suzukii (Revadi et al. 2015), and is also released 

by fermenting materials such as wine and vinegar (Cha et al. 2013). Behavioural assays conducted 

by colleagues of mine demonstrate that egg-laying females of D. suzukii are indeed attracted by 

lower amount of IPA than D. melanogaster are. We speculate an adaptive scenario in which D. 

suzukii has tuned its chemosensory system to better discriminate the odour blend from ripening 

fresh fruit (for example releasing low amount of IPA), from rotting ones (releasing higher amount 

of IPA). Our result further point toward three genes Or19a, Or59a, Or67a, which are duplicated in 

D. suzukii, and that respond to different types of aromatic volatiles in D. melanogaster. This may 

suggest a change in the response to cyclic/aromatic compounds in D. suzukii, as also indicated by 

(Keesey et al. 2015). Any of these duplicated genes are candidates for having replaced other ORs in 

D. suzukii (see 4.3.2). 

 

As for GRs, most of the duplicated ones in suzukii subgroup are known to be expressed in bitter-

sensitive sensilla in D. melanogaster (Weiss et al. 2011). Among them, Gr59c is broadly expressed 

and is hypothesized to work in combination with other GRs in bitter sensing neurons. Other 



 

duplicated GRs- Gr36a-c, Gr59a, Gr59c-d, Gr22b-f, Gr98b and Gr92a, are expressed in the 

labellum and/or forelegs, and may be linked with bitter sensing (Weiss et al. 2011; Ling et al. 

2014). The fact these duplicated GRs are housed in specific class of sensilla, and cluster in one 

phylogenetic clade indicates their possible function in binding similar ligands. It is possible that 

such a rapid expansion of GR underlies differential tolerance for bitter compounds.  

 

 

4.3.3. Altered responses of sensory physiology driven by loss of function of key receptors 

 

In D. suzukii, the amino acid sequences of two odorant receptors (Or22a and Or85a) present 

deletions or stop codons that compromise their reading frame, but otherwise retained high sequence 

similarity with their D. melanogaster orthologues (fig. 4.12). Because Or22a and Or85a are 

transcribed, there is the intriguing possibility that these changes did not cause a pseudogenization of 

the gene, but rather are associated to a change of function. The aforementioned “deleterious” 

changes are indeed, found in portions of the exons that are missing in the transcripts (available only 

for the American strain, Bioproject Accession: PRJNA221549), suggesting new exon structures and 

novel splicing patterns that resulted in at least one transmembrane region being lost in each of the 

genes when compared to the D. melanogaster proteins. A third receptor, Or74a, is more likely a 

pseudogene because it retains poor similarity with the orthologs in other species. We further 

validated these differences using PCR analysis: results confirmed that the genomic region covering 

the first transmembrane helix is completely absent from the American strain (dotted line in fig. 

4.12A, and indicated two different alleles in Italian population, while only one in American (fig. 

4.12C). While introns (including the newly formed ones) are fairly divergent between the American 

and the Italian genome, exons are highly conserved and did not accumulate deleterious mutations. 

Given that these two ORs- Or85a and Or22a present an interesting case of possible change of 

function, my colleagues performed single sensillum recordings from the large basiconic sensilla that 

house neurons expressing Or85a (ab2B) and Or22a (ab3A) in D. melanogaster. Results 

demonstrated that the D. suzukii cognate neurons have a strongly shifted response profile compared 

to D. melanogaster (see fig. 6 in Ramasamy et al. 2016). 
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Figure 4.12. Different non-functional Odorant Receptors in American and European population. The structure of the 

predicted coding sequences (CDS) of Or85a (panel A), Or22a (panel D) and Or74a (panel E) from the genome analysis 

of the Italian (IT) and American (US) strains of D. suzukii. For the American strain, we also provide the CDS from 

transcriptome (Chiu et al. 2013). Dotted lines in D. suzukii indicate that the CDS is missing either from the genomes or 

the transcriptome. B and C: agarose gel (2%) electrophoresis of different splice variants present in different individuals 

of American and Italian D. suzukii populations: US – American strain, IT – Italian strain, L – Ladder. 

 

 

In D. melanogaster, the ab2B neuron is tuned to oxidized esters typical of rotten fruit like ethyl 3-

hydroxybutyrate: our recordings from ab2B demonstrate that D. suzukii does not respond to this 

odour (fig. 6A; Ramasamy et al. 2016), but rather had acquired an increased affinity for 2heptanone, 
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supporting a loss of function of its cognate receptor Or85a (see also Keesey et al. 2015, and a likely 

replacement by another OR. Similarly, while the ab3A neuron responds strongly to ethyl and 

methyl hexanoate in D. melanogaster (see also Andersson et al. 2012), D. suzukii has lost its high 

sensitivity to these compounds and acquired an increased sensitivity for ethyl acetate (fig. 6B; 

Ramasamy et al. 2016). Indeed, these two compounds are typical of ripening fruits (Keesey et al. 

2015). Response of neuron expressing Or74a was not tested since in D. melanogaster this receptor 

is expressed during larval stage (Kreher et al. 2005). 

 

 

 

 

4.4. Evolution of chemosensory receptors in Arthropoda 

 

 

4.4.1. Odorant Receptors and new findings in Palaeoptera 

 

I tested the hypothesis that ORs originated concomitantly with the emergence of vascular plants (in 

the branch leading to Zygentoma plus pterygotes (Missbach et al. 2014)) by searching OR/Orco in 

the recently sequenced basal-insect genomes, Ephermeroptera (Mayfly), Odonata (dragonfly) and 

Archeognatha (Bristletail).  

 

My annotations (fig. 4.13) indicate that Archeognatha (Machilis hrabei) completely lack any 

OR/Orco. I could find instead fully formed Orco in the Palaeoptera (mayfly and dragonfly), the first 

extant flying lineages of insects. Palaeoptera have been long considered anosmic because they lack 

glomerular antennal lobes and mushroom body calyces, involved with olfaction in other insects 

(Farris 2005); however, recent studies indicated an aerial borne sense of smell for dragon flies 

(Rebora et al. 2012; Piersanti et al. 2014). Given the low number of olfactory sensilla and smaller 

sized antennae, previous attempts to identify OR/Orco from Palaeoptera RNA-seq proved 

unsuccessful (Missbach et al. 2014).  Unlike Zygentoma that has 6 Orco, I could only find a single, 

although full-length conserved copy of Orco in the genomes of Ladona fulva (dragonfly) and 

Ephemeroptera danica (mayfly) and no traces of specific ORs. Although I performed extensive 

searches, this does not completely exclude presence of (false negative) ORs: while Orco is well 

conserved, ORs are often lineage specific and may differ from the ones in other insect orders, 
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therefore it is difficult to find ORs in unexplored lineages using homology. I have only performed 

annotations of ORs; further research will focus on reconstructing their phylogeny. 

 

Overall, my results confirm that Orco originated in the common ancestor of Zygentoma and 

Pterygota (a clade known as Dicondylia). It also suggests that a fully formed OR mechanism 

evolved quite later, only in the neopterans, as Palaeoptera are characterized by the sole presence of 

Orco. The presence of the sole Orco in Zygentoma and Palaeoptera suggests that these groups are 

characterized by a primordial, not yet developed OR based olfactory system. This is not surprising 

from an ecological perspective. Palaeoptera for example spend their life as aquatic juveniles: in 

water, taste plays a pivotal role, and olfaction may not be required. Furthermore, adult mayflies do 

not feed, while Odonata seems to have a biology strongly driven by sight (Futahashi et al. 2015); 

smell may be less important in these two orders of insects.  

 

 

4.4.2. Lineage based, rapid evolution of GRs  

 

I further explored the distribution of GRs and IRs, two chemosensory receptors whose functional 

role in insects is more devious than ORs (Croset et al. 2010; Montell 2013). GRs are mostly 

involved in taste, but some of them are tuned to small gases such as CO2 (Kwon et al. 2007). IRs are 

broadly expressed in both olfactory (aIR) and gustatory receptor neurons (dIR) in Drosophila. The 

ability of these two types of receptor to sense both water-borne and air-borne chemicals, while OR 

virtually being only air borne detectors, suggests that they are both more ancient than ORs, and that 

their evolutionary patterns may be complex. The distribution of these receptors in the arthropod is 

still however poorly understood. Taking advantage of the increasing availability of arthropod 

genomes (Consortium 2013, https://www.hgsc.bcm.edu/i5k-pilot-project-summary), I searched 

these genomes, as well as other available transcriptomes, for both GRs and IRs.  
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Figure 4.13. List of species included in the study and the corresponding number of GRs and IRs identified. Species in 

blue indicate annotations taken from previous studies and the ones with asterisk are predicted only from respective 

transcriptomes (See Missbach et al. 2014). The Molecular clock is adapted for higher order species from (Rota-Stabelli 

et al. 2013b) and for holometabola and chelicerate from (Misof et al. 2014; Sharma and Giribet 2014; Garrison et al. 

2016). The dotted lines indicate absence of accurate divergence times. NA indicates the annotation is not yet done.  

 

My annotations indicate a complex pattern of GR evolution in arthropods. Acari and Diplopoda for 

example are characterized by few GRs, while Merostomata (Horseshoe crab), Pycnogonida (Sea 

spider), Scorpiones and Chilopoda possess many orthologs. Some of these difference may be, 

however, due to false negatives, for example in the case of the diplopod Trigoniulus, the original 

annotation was not focused on GRs. The ballooning spider, Stegodyphus, is the only arthropod 

(apart from some Crustacea) to completely lack GRs. In case of Tetranychus urticae, even 

performing various rounds of gene prediction analysis, I could only recover 4 putative 

chemosensory genes. This is in contrast with the study (Grbic et al. 2011), which found ~135 

receptors as putative chemosensory genes (ORs and GRs): my annotation indicates that these may 

all be false positives. Conversely to GRs, IRs are more homogenously present throughout the 

sampled lineages, and are in general more abundant than GRs. Apart from Branchiopoda in 

Crustacea, GRs are completely missing in Malacostraca and Copepoda. I also analysed the RNA-

seq of Oniscidea, a terrestrial isopod but could not recover any GRs or IRs; the absence of IRs 

suggest a poor/incomplete transcriptome, therefore it has not been included in figure (4.13). Within 

insects, Hemiptera and Isoptera (Termites) have the highest number of GRs, next to Holometabola. 

Isoptera have the most number of IRs (~150), while the Hymenoptera have the lowest of all, with 

only 10 (Croset et al. 2010). While I have annotated both GRs and IRs in the genomes, as detailed 

in the figure (4.14), I have analyzed only the phylogeny of GRs. The phylogenetic analysis of IRs 

and ORs will be carried out as a part of future work. 

 

The GR dataset was mainly composed of fragmented proteins, in most cases covering only 6th and 

7th transmembrane helices. This is because this gene family is characterized by lineage specific 

expansions and hence gene prediction algorithms and HMM-based profile searches likely failed to 

extract full length sequences. I validated these findings by performing blast searches against the 

Uniprot database and found no false positives. The GR alignment showed an interesting pattern: 

while the last two transmembrane helices are conserved throughout all arthropods, some internal 

transmembrane (likely helical) domains in Myriapoda show a different alignment structure, from 

the rest of Hexapoda (Appendix A). The phylogenetic analysis of GRs was performed on two 

different datasets: a full length alignment encompassing all sites (fig. 4.14), and a dataset including 



 

only the more conserved C-terminal (fig. 4.15). The main difference is the position of the 

myriapods GR. However, both trees are fairly unresolved at many nodes as indicated by low 

bootstrap supports (BS). However, it is possible to observe clear local expansions in each of the 

main arthropod lineages: Hexapoda (green and pink), Crustacea (light blue), Myriapoda (yellowish) 

and Chelicerata (red). In particular, all myriapod GR seem to have a unique origin and a puzzling 

direct orthology with a crustacean GR. In both trees is possible to observe a small group of GR 

close to the root that includes genes from hexapods, branchiopod and chelicerates: this may 

represent the ancestral set of GR in the arthropods. It is also possible to observe a clear large 

chelicerate expansion and an equally large pancrustaecan (Hexapoda plus Crustacea) expansion. 

Intriguingly, both Maximum Likelihood trees depict a clade of insects plus branchiopod (to the 

exclusion of few other insects and dipluran GRs); this challenge the monophyly of both insects and 

hexapods (Rota Stabelli et al. 2013), but see for example (Carapelli et al. 2007). Although 

interesting, any possible speculations over the groupings in figure 4.14 and 4.15 should be taken 

with care because BS are extremely low and in most cases insignificant, suggestive of a complex, 

likely contrasting, surely weak, phylogenetic signal in these sequences. The phylogenetic analysis 

of GR I’m presenting is therefore extremely preliminary and more work is needed, possibly using 

Bayesian inference, to disentangle the weak phylogenetic signal in the dataset.  
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Figure 4.14. Phylogenetic tree based on whole alignment dataset of Arthropoda GR, rooted with GR-like of Cnidaria 

and Lophotrocozoa (black). Protein alignment made from 523 positions. Color code: flying insects Pterygota (green), 

other hexapods (Apterygota and Entognatha (pink), Crustacea (sky blue), Myriapoda (Brown/yellow) and Chelicerata 

(red). The tree is the Maximum Likelihood tree inferred by RAxML using the GTR-G model with bootstrap supports 

from the analysis of 100 pseudo-replicates.. Highly fragmented and partial sequences have been removed from the 

analysis. 

 

 

 



 

 

 

 

Figure 4.13. Phylogenetic tree based on conserved C-terminal alignment dataset of Arthropoda GR, rooted with GR-like 

of Cnidaria and Lophotrocozoa (black). Protein alignment made from 201 positions. Color code: flying insects 

Pterygota (green), other hexapods (Apterygota and Entognatha (pink), Crustacea (sky blue), Myriapoda (Brown/yellow) 

and Chelicerata (red). The tree is the Maximum Likelihood tree inferred by RAxML using the GTR-G model with 

bootstrap supports from the analysis of 100 pseudo-replicates. Highly fragmented and partial sequences have been 

removed from the analysis. 
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5. Conclusion and future perspectives 

 

 

 

D. suzukii genomics  

The invasive nature of D. suzukii and the consequent damage to soft fruit industry required 

immediate attention; to tackle this issue in a sustainable and efficient way, my host lab has 

sequenced its genome and transcriptome, and I have contributed to its analysis (Ometto et al. 2013). 

The assembly size revealed that D. suzukii’s genome is comparable to those from most other 

Drosophila, both in term of size and repeat elements. The genome of D. suzukii has been extremely 

useful throughout my thesis as a quick and reliable source for obtaining full length genes; in the 

absence of a genome, I would have relied on transcriptome with the risk of finding only partial 

genes and high amount of false negatives, which would have impaired the correct interpretation of 

comparative studies. 

  

My analyses of mitochondrial genomes indicate a sister relationship of D. suzukii with D. 

biarmipes. Although the transcriptomic dataset confirmed such relationship, the two datasets did 

not converge in the placement of D. eugracilis, because of signals concentrated in the third codon 

positions of mitochondrial dataset. This incongruence has thought me the importance of using 

different datasets (mitogenomic, transcriptomic), substitution models (homogeneous, heterogeneous 

models) as well as different phylogenetic frameworks (ML, Bayesian) to identify systematic errors, 

if any, in phylogenetic studies. 

 

Importantly, D. suzukii’s likely closer related species, D. subpulchrella, has not been included in 

my analyses: if D. subpulchrella is the actual sister species to D. suzukii, then some of the 

evolutionary events I have ascribed to D. suzukii may instead be shared by both species. On the 

other hand, D. subpulchrella may in fact have a reproductive biology more similar to the typical 

Drosophila one (Atallah et al. 2014), so that the functional changes that I have found along the D. 

suzukii lineage may be really reflecting the new reproductive habit in this species. The genome of 

the D. subpulchrella is under sequencing in my hosting lab, and annotations of its gene repertoire 

with that of D. suzukii will clarify this issue, and hopefully confirm some of the findings of my 

research.   

 

 



 

Chemosensory genes of D. suzukii, their ecological significance and utility in pest control 

 

 

‘The act of smelling something, anything, is remarkably like the act of thinking itself’ 

                                                                                                              -Lewis Thomas 

 

The insect chemosensory system is one of the most dynamic among the animals, given their level of 

diversity and successful invasions of extreme ecologies. Hence, they are forced to reinvent 

mechanisms so as to perceive appropriate volatiles, and are subjected to strong selective pressures. 

How the chemosensory system responds to selective pressures is essential in answering key 

evolutionary questions. For example, the correlation between host specialization and olfaction has 

been documented in few Drosophila species. The results of such studies immensely encouraged me 

in taking up the case of D. suzukii, a pest that has switched its ovipositing substrate from rotten 

fruits to fresh fruits. In my study, I have identified and annotated the entire chemosensory system of 

D. suzukii, to understand the role of its chemosensory genes and their evolution in influencing the 

pest’s behaviour. My work (Ramasamy et al. 2016) is one of the very few to combine evolutionary 

genomics with behavioural analysis. Results show that D. suzukii has an accelerated chemosensory 

evolution among other species of the same genus, particularly the olfactory receptors. Notably, D. 

suzukii is the only species to show both an increase in the OR turn-over rate and a non-random 

distribution of events in its phylogeny. 

 

I have identified few key genes and my colleagues have found their associated ligands which may 

have played a role in the peculiar phenotype of D. suzukii. I found a burst of duplication in genes 

that have affinity to a variety of ligands, particularly esters such as IPA (Isopentyl acetate), which 

my colleagues and I suggested to play a peculiar role in D. suzukii (Revadi et al. 2015). On the 

contrary, the pest have lost few relevant genes such as Or22a and Or85a, which bind volatiles 

released from fermenting fruits. Interestingly these two tend to have different isoforms (gene 

structures) in European and American populations. The physiological recordings by my colleagues 

confirm this, where the neurons ab3A and ab2B respectively expressing Or22a and Or85a receptors 

have shifted their sensitivity towards other compounds (fig. 6; (Ramasamy et al. 2016)).  

 

In case of GRs, the clade leading to D. suzukii and D. biarmipes shows a high rate of variation 

(Crava, Ramasamy et al. in prep), with many duplications that can be attributed to one specific 

clade of receptors known to be expressed in bitter sensing neurons in D. melanogaster. Further 
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studies should concentrate in performing single cell recordings in the neurons expressing these 

receptors as my colleagues already did for ab2B and ab3A neurons. Whatever might be the case, 

such duplications are shared also by D. biarmipes, and hence their adaptive role, if any, should be 

associated with the biology of both the species.  

 

I have also focused on class of enzymes and transcription factors involved in the sexual 

communication and mating behaviour of Drosophila mediated by the pheromone cVA (Dekker et 

al. 2015). D. suzukii shows loss of a gene both in desaturase and elongase gene families, both 

shared by D. biarmipes. Odorant receptors, Or67d and Or65a directly involved in cVA perception 

and consequently mating behaviour are conserved in D. suzukii as well the transcription factors 

such as fruitless, transformer, doublesex and sexlethal. Further work is needed in functionally 

characterizing the putative isoforms of Elongases as they may be responsible for the loss of cVA In 

D. suzukii. 

 

Overall, my analysis indicates that chemosensory genes contributed in shaping, at least partly, the 

adaptive behaviour in D. suzukii: we have found duplications in genes with affinity for fresh fruit 

volatiles and loss of function in genes that in D. melanogaster are found to respond ligands emitted 

from decaying substrates. The above mentioned important genes along with the ligands they bind, 

as given in fig.4 of (Ramasamy et al. 2016), are promising targets for further functional analysis, for 

example expression in a heterologous empty neuron system. It is my hope that the results presented 

here will help direct research efforts in the development of more targeted odour-based trapping and 

control methods. Future works should test those ligands for which there has been a shift in 

chemosensation, particularly 1-hexanol, 2-heptanone, and beta-cyclocitral, the two latter being 

putatively new ligands of respectively ab2B and ab3A neurons in D. suzukii.    

 

Evolution of chemosensory genes on a birth-death process 

Chemosensory genes are some of the many gene families known to evolve through a process of 

gene gain and loss, conveniently described by the birth and death model of evolution (Nei and 

Rooney 2005). Some of my analyses provided results that did not match previous ones (conducted 

on similar datasets but with different taxon sampling). For example, the distribution of gene 

gains/losses along my OR phylogeny slightly differs from inferences made on a more restricted 

sample of Drosophila (Guo and Kim 2007b; McBride and Arguello 2007): some of the gains  that 

were previously located on the branch subtending the melanogaster subgroup, in our analysis are 

located on the branch subtending the whole melanogaster group.  Furthermore, my estimate of OBP 



 

overall birth rate in Drosophila (β = 0.0028) differed from that of the whole arthropods (β = 0.0049, 

(Vieira and Rozas 2011)), indicating that Drosophila OBP turnover rate is lower than in most other 

arthropods.  

 

On the origin and radiation of chemoreceptors in Arthropods 

For the very first time, I could identify and annotate an entire Orco gene in the Palaeoptera, which 

have been long considered anosmic. In accordance with (Missbach et al. 2014) I could not find any 

OR/Orco in Diplura and Archeognatha, confirming the origin of insect-specific ORs in the branch 

leading to pterygotes and Zygentoma. My screening of GRs in basal Hexapoda, Crustacea, 

Myriapoda and Chelicerata revealed a strong lineage specific evolutionary dynamics. I have found 

that except for Branchiopoda, the sampled Crustaceans completely lack GRs. This might be an 

additional clue in solving the Pancrustacean phylogeny, supporting the sister relationship of 

Hexapoda and Branchiopoda. However, future works on the genome of Remipedia and Oligostraca 

are needed to validate my findings. 

 

Final remarks 

In conclusion, my work on the chemosensory receptors has helped in exploring some fundamental 

questions pertained to the origin and evolutionary dynamics of these multi-gene families. Science 

has come a long way in analysing the evolutionary origin of smell and taste in insects, owing to the 

intriguing and complex nature of the proteins underlying these senses. With my work, I could 

confirm that ORs are specific to insects and GRs are functionally lineage specific. As for 

Drosophila, my work further pushes forward our understanding of the evolutionary dynamics of 

these genes in this important biological model. In the case of D. suzukii, the list of candidate genes 

and ligands that I have identified are good candidates for downstream applied physiological and 

behavioural experiments.  
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Appendix A – Supporting Materials 

 

 Annotation Olfactory Receptor Odorant Binding Protein 

 

A)Partial genes 

 

Or33a,Or33b,Or42a, 

Or43a,Or46aA,Or46aB, 

Or47a,Or47b,Or49a2 

Obp47b,Obp5,Obp73a 

 

B)Missing genes 

- Obp50b,Obp50d,Obp51a, 

Obp56c,Obp56g, Obp57e 

C)Allelic variants  

removed 

- Obp19b,Obp56a, 

Obp56h,Obp59a 

D)possible isoforms  

ignored in bd 

Or42a(B,C),Or46a(B) , Or69a 

(B,C,D,E) 

 

 

 

 

 

Table S2. List of odorant genes (OR, OBP, aIR) in 14 Drosophila species. The list for all but D. 

suzukii and D. biarmipes is taken from previous studies as mentioned in the Methods section 

(Ramasamy et al. 2016)  Cases of pseudogenes are assumed as gene loss here. 

 
 

FAM_ID SIM SEC MEL YAK ERE SUZ BIA ANA PSE PER WIL VIR MOJ GRI 
OR10A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR13A 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

OR19A 1 1 2 1 1 2 1 1 1 1 1 1 1 1 

OR1A 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

OR22A 1 1 1 1 1 0 0 4 2 2 1 1 1 2 

OR22B 1 0 1 0 0 1 1 0 0 0 0 0 0 0 

OR22C 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

Table S1. Annotation information where A) and B) are the list of incomplete chemosensory 

genes and proteins in Trentino strain of D. suzukii replaced with sequences from Californian 

strain of D. suzukii; C) Possible allelic variants identified from D. suzukii, ignored due to 

heterologous nature of the genome; D) Putative isoforms in D. suzukii that have shared exons 

as a result of alternative splicing are ignored from Birth – Death analysis. 



 

OR23A 1 1 1 1 1 4 1 1 1 1 1 1 2 1 

OR24A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR2A 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

OR30A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR33A 1 1 1 1 1 1 1 2 1 1 1 0 0 0 

OR33B 1 1 1 1 1 1 1 3 2 2 1 0 0 0 

OR33C 1 1 1 1 1 1 0 1 1 1 1 1 1 1 

OR35A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR42A 1 1 1 1 1 1 1 1 2 2 1 2 2 1 

OR42B 1 1 1 1 1 1 1 1 1 1 1 1 1 8 

OR43A 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

OR43B 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

OR45A 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

OR45B 1 1 1 1 1 1 1 1 1 1 0 1 1 1 

OR46A 1 1 1 1 1 1 1 1 1 1 1 1 1 4 

OR47A 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

OR47B 1 1 1 1 1 1 1 1 1 1 1 1 2 1 

OR49A 1 1 1 1 1 2 1 1 2 2 1 1 1 2 

OR49B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR56A 1 1 1 1 1 1 1 1 2 1 1 1 1 1 

OR59A 1 1 1 1 1 2 1 1 1 1 2 3 1 2 

OR59B 1 1 1 1 1 1 1 1 1 1 1 2 1 2 

OR59C 1 1 1 1 1 2 1 1 1 1 1 0 0 0 

OR63A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR65A 1 1 1 1 1 1 1 3 0 0 2 0 0 0 

OR65B 1 1 1 1 1 0 0 0 5 2 0 0 1 0 

OR65C 1 0 1 2 1 2 2 0 0 0 0 0 0 0 

OR67A 3 1 1 2 2 4 4 1 1 0 3 2 2 2 

OR67B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR67C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR67D 1 1 1 1 1 1 1 2 1 1 1 1 1 5 

OR69A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR71A 1 1 1 1 1 1 1 1 1 1 1 1 1 2 

OR74A 1 0 1 1 1 0 1 1 1 1 1 1 1 1 

OR7A 1 1 1 1 1 1 1 1 0 0 1 0 0 0 

OR82A 1 1 1 1 1 1 1 1 1 1 4 1 1 1 

OR83A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR83B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR83C 1 1 1 1 1 1 1 1 1 1 2 2 2 1 

OR85A 1 1 1 1 1 0 1 0 0 0 1 0 2 0 

OR85B 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

OR85C 1 1 1 1 1 1 1 1 1 0 1 1 2 2 

OR85D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR85E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR85F 1 1 1 1 1 1 1 1 1 1 6 1 1 1 

OR88A 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

OR92A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OR94A 1 1 1 1 1 1 1 1 1 1 1 0 1 1 

OR94B 1 1 1 1 1 1 1 1 1 0 1 1 1 1 

OR98A 1 1 1 2 2 1 1 3 3 2 4 3 3 2 

OR98B 1 0 1 1 1 1 1 1 1 1 1 1 0 0 

OR9A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ORN1 0 0 0 0 0 0 0 0 1 0 3 1 1 1 

ORN2 0 0 0 0 0 0 0 0 0 0 0 2 5 1 

LUSH 1 1 1 2 1 1 1 1 1 1 1 1 1 1 

OBP18A 1 0 1 1 0 0 1 1 0 0 7 0 1 1 

OBP19A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP19B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP19C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP19D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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OBP22A 1 1 1 1 2 1 0 0 0 0 0 0 0 0 

OBP28A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP44A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP46A 1 1 1 1 1 2 1 1 1 1 1 1 1 1 

OBP47A 1 1 1 1 1 2 1 1 1 1 1 0 1 1 

OBP47B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP49A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP50A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP50B 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

OBP50C 1 1 1 1 1 1 1 1 1 1 3 1 1 1 

OBP50D 1 1 1 1 1 1 1 1 1 1 2 0 1 1 

OBP50E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP51A 1 1 1 2 0 1 1 0 0 0 1 0 0 0 

OBP56A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP56B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP56C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP56D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP56E 1 1 1 1 1 1 0 1 1 1 1 1 2 0 

OBP56F 1 1 1 1 1 0 0 3 0 0 0 1 0 0 

OBP56G 1 1 1 1 1 1 1 1 2 2 5 1 1 1 

OBP56H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP56I 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

OBP57A 1 1 1 1 1 1 1 1 0 0 1 0 0 0 

OBP57B 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

OBP57C 1 1 1 1 1 1 1 2 1 1 3 2 2 2 

OBP57D 1 1 1 1 1 3 3 1 1 1 1 0 0 0 

OBP57E 1 1 1 1 1 1 1 0 0 0 0 0 0 0 

OBP58B 1 1 1 1 1 1 1 1 1 1 1 1 1 3 

OBP58C 1 1 1 1 1 1 1 1 1 1 1 1 1 3 

OBP58D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP59A 1 1 1 1 1 1 1 0 1 1 1 1 1 1 

OBP69A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP73A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP83A 1 1 1 1 1 1 1 1 1 1 1 2 2 2 

OBP83B 1 1 1 1 1 1 1 1 1 1 1 0 0 0 

OBP83CD 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

OBP83EF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP83G 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP84A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP85A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP8A 1 1 1 1 1 1 1 0 1 1 1 1 1 0 

OBP93A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP99A 1 1 1 2 1 1 1 1 1 1 1 1 1 1 

OBP99B 1 1 1 1 0 1 1 3 1 1 1 1 1 1 

OBP99C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

OBP99D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR8A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR21A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR25A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR31A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR40A    1 1 1 1 1 1 1 1 1 1 1 1 1  

IR41A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR60A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR75A 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

IR75B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR75C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR75D 1 1 1 1 1 1 1 1 1 1 1 1 2 1 

IR76A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR76B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR64A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 



 

IR68A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR84A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR92A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

IR93A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

               

 

 

 

 

Table S3. Overrepresentation of ligands in duplicates/lost ORs in D. suzukii. 
 

 

 

Ligand Type 10 ORs 

of figure 

4 

27 other ORs Normalised 

Skew 

1-Hexanol alcohol 4 6 0.3 

E3-hexenol alcohol 3 3 0.5 

3-octanol alcohol 3 7 0.1 

heptan-2-ol alcohol 2 0 1.0 

3-methyl-2-buten-1-ol alcohol 2 2 0.5 

E2-hexenol alcohol 2 3 0.3 

1-octen-3-ol alcohol 2 6 0.0 

E2-hexenal aldehyde 2 7 -0.1 

acetophenone aromatic 3 3 0.5 

phenylacetone aromatic 2 0 1.0 

methyl-benzoate aromatic 2 1 0.7 

benzaldehyde aromatic 2 3 0.3 

ethyl-benzoate aromatic 2 3 0.3 

2-methyl-phenol aromatic 2 5 0.1 

ethyl-butyrate ester 4 4 0.5 

Iso pentyl acetate ester 3 6 0.2 

pentyl acetate ester 3 6 0.2 

butyl-proponoate ester 2 1 0.7 

methyl-hexanoate ester 2 2 0.5 

butyl-acetate ester 2 5 0.1 

ethyl-3-hydroxy-butyrate ester 2 5 0.1 

Isobutyl acetate ester 2 5 0.1 

propyl-acetate ester 2 6 0.0 

6-methyl-5-heptenone ketone 3 3 0.5 

2-Heptanone ketone 2 9 -0.2 

linalool terpene 2 0 1.0 
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Figure S1. A part of the whole GR alignment showing different structures of the internal domains 

(likely helices) between Myriapoda (below) and the rest of Arthropoda sequences.   
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