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Abstract

Understanding how binding events modulate functional motions of multidomain proteins is a

major issue in chemical biology. We address several aspects of this problem by analyzing

the differential dynamics of αvβ3 integrin bound to wild type (wtFN10, agonist) or high affinity

(hFN10, antagonist) mutants of fibronectin. We compare the dynamics of complexes from

large-scale domain motions to inter-residue coordinated fluctuations to characterize the dis-

tinctive traits of conformational evolution and shed light on the determinants of differential

αvβ3 activation induced by different FN sequences. We propose an allosteric model for

ligand-based integrin modulation: the conserved integrin binding pocket anchors the ligand,

while different residues on the two FN10’s act as the drivers that reorganize relevant interac-

tion networks, guiding the shift towards inactive (hFN10-bound) or active states (wtFN10-

bound). We discuss the implications of results for the design of integrin inhibitors.

Author Summary

Interactions between proteins are at the basis of all biological processes in the cell. In this

context, the study of conformational responses of protein receptors to the binding of

endogenous ligands may be a source of inspiration for the design of small molecule modu-

lators that permit to control such biological processes. To progress towards this goal, we

need to unravel the molecular determinants that underlie the correlations between

sequences, structures and the onset of functional motions in the receptor, eventually illu-

minating the links between the fine atomic-scale protein-ligand interactions and the

large-scale protein motions. Herein, we have concentrated on the multidomain receptor

αvβ3 integrin bound to two different sequences of the endogenous ligand fibronectin: the

wild type one, wtFN10, which acts as an agonist activating the receptor, and a high affinity

mutant, hFN10, which acts as a true antagonist inhibiting the receptor. Through the com-

parative analysis of several dynamic descriptors at different levels of resolution, from the
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residue to domain level, we shed light on the salient conformational dynamics differences

determined by fibronectin sequence mutations: we show that it is possible to identify

interaction hotspots in the integrin binding site that specifically respond to the fibronectin

sequence variations, and allosterically drive conformational changes towards integrin acti-

vation (in the case of wtFN10 binding) or inhibition (hFN10 binding). Finally we propose

an allosteric model of integrin regulation that can be used in the design of small molecule

integrin inhibitors or modulators.

Introduction

Integrins are heterodimeric cell adhesion receptors, composed by the association of α and β
subunits. They are typically characterized by a bilobular head and two legs that span the plasma

membrane. Integrin ectodomains have been crystallized in a bent, genuflexed conformation

(corresponding to the inactive or closed state) as well as in an open one (corresponding to the

active state) with high-affinity for ligands. [1,2] Conformational changes from the bent to the

open structures in integrin extracellular, transmembrane and cytoplasmic domains underlie a

diverse range of biological processes, including cell migration, morphogenesis, immune

responses, vascular haemostasis, cell-to-cell interaction and intracellular signal transduction.

The dysregulation of these processes contributes to the pathogenesis of many diseases. [3] In

particular, αvβ3, αvβ5 and α5β1 integrins are involved in angiogenesis, tumor progression and

metastasis, whereas the platelet αIIbβ3 receptor is central to haemostasis and contributes to

thrombosis. [4–7]

Determination of the crystal structure of the ectodomain of αvβ3 in the absence and pres-

ence of a prototypical RGD ligand unveiled the modular nature of integrins and clarified the

basis of the divalent cation—mediated interaction with extracellular ligands. [1,8]

The ectodomain of αvβ3 revealed a “head” attached to two “legs” in the native, full-length

integrin, whereby the legs connect to short transmembrane and cytoplasmic segments. The

integrin head consists of the seven-bladed β-propeller domain from the αV non-covalently

bound to the βA domain of the β3 subunit (Fig 1a). The αV leg is formed by an Ig-like “thigh”

domain attached to two large colinear β-sandwich domains, designated calf-1 and calf-2. The

β3 leg is formed by an Ig-like hybrid domain, the βA projecting from one of its loops, a PSI

domain, four EGF-like domains, and a membrane proximal β-tail domain (βTD). The RGD

sequence of physiologic ligands typically engages αvβ3 in a cleft between the β-propeller and

βA domains, producing a characteristic electrostatic clamp between the guanidinium moiety

of the RGD-triad and aspartic acids of the αv subunit and, at the same time, enabling

RGD-Asp(Oδ1/Oδ2) to coordinate a metal ion at MIDAS (Metal Ion-Dependent Adhesion

Site) of the β3 subunit (Fig 1b and 1c). [9]

The crystal structures of the bound and unbound forms of αIIbβ3 and αvβ3 provide a struc-

tural model of the ligand-effects on the two proteins, and of their activation mechanism.

[2,8,10] In this context, experiments have shown that ligand binding to the head of αIIbβ3

induces the opening of the hinge between the βA and hybrid headpiece domains, implying a

transition from the closed unbound state to the open one upon ligand binding. [2,11–14] Dif-

ferent structural observations, based on soaking the RGD containing drug cilengitide into

αvβ3 crystals have implied that the hinge is closed even in the presence of the ligand. [1,15]

According to structural modeling based on EM-data for αvβ3, and on EM, SAXS cryo-

tomography and FRET for αIIbβ3, extension at the knees unclasps integrins from a compact

bent conformation, where the legs are bent at the knees and folded back against the head.

Fibronectin Modulation of αvβ3 Integrin Conformational Dynamics
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Subsequently, in integrin headpiece opening towards the active state, the hybrid domain

swings out, the βA domain evolves to the open conformation, and affinity for other endoge-

nous ligands increases. The bend occurs between the thigh and calf-1 domain of αV and

between EGF domain 1 and 2 of β3. [8,11] Adair and co-workers suggested that ligand binding

provides the energy for additional conformational changes, including perhaps genu-extension,

thus triggering integrin out-in activation and signaling. [16]

The conformational changes vary with cell type and the state and nature of the ligand.

[8,11,17]

Endogenous integrin-ligands include proteins such as fibronectin, fibrinogen, vitronectin,

collagen, laminin, that mediate the coupling between the cell and the extracellular matrix

(ECM) and cellular cytoskeleton through adaptor molecules like actin, talin, filamin etc.

[17–20]

Fig 1. 3D-structure of integrin αvβ3 and αvβ3-FN10 complexes. a) Full-length αvβ3 ectodomain representation. αv domains are labeled and colored

with shades of blue, β3 domains are shown with shades of pink. For clarity, αvβ3 is displayed in the extended conformation. α1 and α7 helices of the β3

chain are labeled and shown in cartoon. b-c) αvβ3-wtFN10 and αvβ3-htFN10 complexes. Cyan and pink color codes are used for αv and β3 subunits,

respectively. Fibronectin domain is displayed in yellow ribbons, blue spheres represent Mn2+ ions at metal-binding sites. Insets: blowup of the FN-RGD

motif and Mn2+ at metal-binding sites. D150αv and D218αv of the electrostatic clamp are labeled. In c) W1496FN and Y122β3 are indicated with ghost

surfaces. See main text.

doi:10.1371/journal.pcbi.1005334.g001
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The chemical and structural properties of the framework around the RGD sequence and

the complementary features displayed by the integrin binding pockets have been shown to

affect recognition between the partners and to determine the functional consequences of the

interaction. [3]

Fibronectin (FN) is a prominent example of how differential recognition between

sequences is translated into different functional consequences. FN is a widely expressed ECM

protein and a promiscuous ligand for integrins as well as for numerous other cell adhesion

receptors. FN exists as a soluble dimeric glycoprotein of two monomers, each of them com-

posed by three repeating modules.

As in the case of other integrin ligands, FN-integrin interactions are mediated by the RGD

motif located on the 10th type III repeat.

Recently the 3D structures of αvβ3 bound to the 10th type III RGD domain of wild-type

fibronectin (wtFN10) and its high affinity mutant (hFN10) have been solved by Arnaout and

collaborators (Fig 1b and 1c). [3] The main differences between the two mutants are found in

the sequences flanking the RGD binding motif: specifically, wild-type fibronectin (wtFN10)

sequence -GRGDSPAS- is replaced by -PRGDWNEG- in high affinity fibronectin (hFN10).

hFN10 -PRGDWNEG- sequence is more polar compared to wild-type -GRGDSPAS-; it

also displays a larger surface due to the presence of the tryptophan substitution. These

sequence differences appear to modulate the ligand effects on the integrin, ultimately affecting

integrin activation. Indeed, while wtFN10 represents an integrin agonist, hFN10 behaves as a

real antagonist. [3]

Crystal structures of the αvβ3–hFN10 complex (pdb code: 4MMZ) provided an important

structural framework to investigate the activity of hFN10 as a pure antagonist; here, the novel

W1496(hFN)-Y122(αvβ3) π-π interaction is hypothesized to ‘freeze’ the integrin in an inactive

conformation (Fig 1c). This βA tyrosine is largely conserved also in α5β1 and β2 integrins, sup-

porting its key function in the activation process. [3] Moreover, the inward movement of

Y122-βA described for the wild type FN (wtFN10) complex (pdb code: 4MMX) would be

incompatible with the integrin-hFN10 crystal structure where Y122 aromatic ring would clash

with mutated fibronectin residue W1496hFN.

From biophysical data and cell-based assays, hFN10 actually behaves as a pure antagonist,

which does not induce activation-specific LIBS (Ligand Induced Binding Site epitopes) expres-

sion and also reduces cell spreading, that is an index of outside-in signaling by ligand-occupied

integrins. Moreover, it does not affect the hydrodynamic radius of the soluble αvβ3 ectodo-

main, indicating a stable compact/bent form. [3]

The above-mentioned studies and the availability of high resolution crystal structures of the

two complexes provide an optimal starting point to investigate the differential aspects of func-

tional dynamics induced by limited sequence differences in the FN ligands when bound to

αvβ3, and consequently shed light onto the determinants of integrin activation processes.

Herein, we set out to compare several aspects of the dynamics of integrin αvβ3 in complex

with wtFN10 or hFN10, as well as in the unbound state (apo), that can be linked to observed

biological activities of the molecules.

To progress along this route, we carry out microsecond long MD simulations of the two

complexes and compare their dynamic evolution from the fine level of inter-residue coordi-

nated fluctuations to larger scale domain motions. We characterize the main distinctive traits

of conformational evolution of the two complexes and propose a model for the determinants

of FN-induced differential activation of αvβ3. It is to be noted that the main differences

between the two complexes emerge at the level of internal dynamics and local reorganizations

(the RMSD between the X-ray structures of the integrin in the wtFN10 and hFN10 complexes

is limited to 0.2 nm). Indeed, while no major spontaneous transition from the analogous
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starting crystal structures can be reported, the local structural and chemical organization simi-

larity of the β3 subunit and of the coordination at the MIDAS/ADMIDAS sites between the

wtFN10 complex and the S7/S8 states observed by Springer and coworkers [10] for αIIbβ3 may

be indicative of the higher tendency for the wt complex to favor transition to the open state.

Finally, we discuss the implications of our results for the design and optimization of ligand-

mimetic integrin inhibitors.

Results

In this work, MD studies of αvβ3 in complex with the two forms of fibronectin, wild type
(wtFN10) and mutated high affinity (hFN10), are started from the two recently published crystal

structures (4MMX, 4MMZ). [3] Three replicas of 500 ns (3�0.5 μs = 1.5 μs) of all-atom simula-

tion are run for each system. Analogous simulations are run for the unbound integrin as a con-

trol. We performed unbiased MD simulations on the upper ectodomain, by cutting α and β
chains at the Thigh and Hybrid domains, respectively (see methods), in line with previous stud-

ies to investigate intra- and interdomain interactions responsible for ligand-induced integrin

conformational dynamics. [21–24] As a general control, to estimate the extent of potential arti-

facts due to using truncated domains and limited length scales, we carried out GNM analysis

[25–26] on the full-length as well as on the truncated models of complexed integrins. The cumu-

lative contributions of the first two slowest modes to the overall mobility of the protein, and the

contributions of the Thigh and Hybrid domains to such slow modes, obtained for the full length

X-ray structure and truncated models used for MD simulations are comparable. In particular, a

collectivity degree of 0.85 and 0.87 on average for full-length and truncated structures, respec-

tively, gives the extent to which structural elements move together in that particular model.

Importantly, the contribution of the thigh domain to the principal eigenvectors is comparable in

both systems: as a consequence, despite the presence of a large number of additional contacts/

constraints in the full-length structure, the thigh domain undergoes displacements similar to

those observed in the truncated model. This lends further support to our initial assumption.

As a general caveat, it must be noted that the simulated time scale, while extensive consider-

ing the large dimensions of the systems under study, may still be shorter than the time scale

accessible in experiments: in this framework, our goal is not to profile the full conformational

changes of the complexes but to illuminate the microscopic details of integrin internal dynam-

ics induced by specific ligands that can be linked to the activation of specific functional states.

Previous research demonstrated that even small differences in the structural dynamics at a

functional site can be sufficient to set the stage for a modulation of the populations of different

functionally oriented states (see also work by Nussinov and coworkers, e.g. refs [27–29]).

Here, we show that changing protein flexibility at the local and global levels can lead to the

activation/deactivation of dynamic states that can be aptly linked to experimentally probed

changes in 3D organization of the integrin.

This is expected to unveil dynamic signatures for different sub-states, providing a basis to

model the consequences of binding on the onset of functionally oriented dynamics, as well as

providing information for modulator design. Within the limitations of MD sampling, a com-

parative approach in which computational analysis of the same system in different conditions

(the complex and apo states) turns out to be a useful tool to reveal dynamical features that can

thus provide information on the salient traits of biologically relevant microscopic motions.

Structural characterization of αvβ3 in the two different complexes

αvβ3 ectodomain includes β-propeller (aa. 1–438) and thigh (aa. 439–599) domains of subunit

α and βA (aa. 109–352) and hybrid (aa. 55–108, 353–434) domains of chain β (Fig 1).

Fibronectin Modulation of αvβ3 Integrin Conformational Dynamics
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Fibronectin subunit extends from aa. 1417 to 1507, engaging the interfaces of αvβ3. The two

studied fibronectin molecules target αvβ3 placing the RGD motif at a crevice in the integrin

head between the β-propeller and the βA domains making extensive contacts with both. RGD

ligands bind to the integrin β subunit via a divalent metal ion located at the top of the βA

domain, named the “metal ion-dependent adhesion site” (MIDAS). Two additional ion-bind-

ing sites border the βA domain MIDAS on either side, which are termed the “ligand-induced

metal-binding site” (LIMBS) and the “adjacent to the MIDAS” (ADMIDAS).

Differences in the sequences near the RGD binding motif at the α/β interface, combined to

the different placing of the two FNs relative to the integrin in the complex, may induce

dynamic events throughout the integrin structure that can translate into a differential activa-

tion of the integrin (Fig 1).

In general, both αvβ3-FN10 complexes are stable and metal coordination, at both β-propeller

and integrin-FN interface, is conserved during the whole length of MD simulations. However,

significant differences in the structural evolution immediately emerge, indicating the influence

of the FN sequences surrounding the RGD motif and of the initial orientations on the dynamics

of the complexes. Indeed, Essential Dynamics (ED) [30] analysis (Fig 2a) on the trajectories

highlights a rich behavior for the complex with wtFN10, in which two conformational popula-

tions are observed, both converging to more compact complex structures than the starting one.

In Fig 2b the representative structures of the two clusters are indicated: only a small deviation of

the thighαv domain occurs in the less populated ensemble (Fig 2b inset). In contrast, one main

conformational ensemble is populated for the complex with hFN10, which substantially corre-

sponds to the crystallographic structure (Fig 2a and 2c). Conformational variability of the

uncomplexed integrin (1JV2) [8] at the level of large-scale displacements is analyzed here as a

control by looking at the projections on main eigenvectors from PCA analysis of the respective

MD trajectories. It is worth noting here that except for the absence of ligand and of the metal

ions (at LIMBS and MIDAS), the X-ray structure of the apo state shows a 0.258 nm RMSD devi-

ation (Calpha atoms) from αvβ3 in wtFN10-bound form (4MMX) and 0.234 nm rms deviation

from αvβ3 in hFN10-bound structure (4MMZ). In general the conformational dynamics of the

apo state seems to be richer than the one observed for the antagonist bound hFN10-complex,

while not sampling all of the conformations of the agonist bound wtFN10-complex. Details of

ED analysis are reported in supporting information (S1 and S5 Figs).

The structural transition between integrin active and inactive states is induced by global

rearrangements of the headpiece upon fibronectin binding.

To better characterize the global conformational changes that differentiate the two com-

plexes, we analyzed the reciprocal orientations of selected subdomains in αvβ3 and of the

bound wtFN10 or hFN10. Accordingly, we defined the principal axes of integrin β3 subunit

and fibronectin domains and calculated the correspondent torsion angle along the MD trajec-

tories (see Methods). [31] Consistent with ED findings, fibronectin in the high affinity com-

plex maintains the crystallographic orientation and the torsion angle fluctuates only slightly

(+/- 20˚), oscillating between 56˚ and 82˚. On the other hand, well-defined rotational motions

characterize the wtFN10 complex, where the angle ranges between 21˚ and 84˚ (S2 Fig in sup-

porting information).

Comparable results were obtained with DynDom. [32,33] In two out of the three hFN10

replicas, DynDom fails to identify clusters of rotation vectors, therefore bound hFN10 is not

captured by the algorithm as an independently moving domain. In the complex with wtFN10,

comparing starting and final conformations, the principal rotation axis discriminates motions

of the fibronectin with respect to the β3 subunit, with a rotation angle of around 55˚.

The Radius of Gyration (Rg) and the evolution of the end-to-end distance of the thigh and

hybrid domains (defined between the Cα of two terminal residues -namely I592αv and R404β3

Fibronectin Modulation of αvβ3 Integrin Conformational Dynamics
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Fig 2. ED analysis. a) Projection of wtFN10 and hFN10 onto the first two principal modes of the simulations

(3 replicas). Calculations are carried out on C-alpha atoms of the full-length complex (integrin+FN = 1070

particles). b-c) Representative structures for wtFN10 (b) and hFN10 (c) in replica #1 corresponding to the

centroid (red balls) of the populations reported in a). Inset contains wtFN10 of the least populated cluster (left

red spot). Red arrow indicates the main structural deviation. Structure representations are given in blue (αv)

and pink (β3) colors (integrin) and yellow (fibronectin) cartoons. See also S1 Fig and S1 Table in Supporting

Information.

doi:10.1371/journal.pcbi.1005334.g002
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of thigh and hybrid domains, respectively) were next monitored as descriptors of integrin

dynamic response to different ligands (Fig 3). Moreover, given the critical role of ADMIDAS

in βA domain allostery [21] we also monitored the relative positions of the carbonyl oxygen of

M335β3 and ADMIDAS Mn2+, since it was previously shown as a viable indicator of the

closed-to-open transition in the eight steps atomic description of the RGD-induced opening

occurring in the β3 subunit of αIIbβ3. [10] In the last opening steps (from state 6 to state 8)

ADMIDAS ion shifts dragging along α1 helix as a rigid body with its coordinated D126β3 and

D127β3 while M335β3 at the β6-α7 loop moves apart. [10]

Fig 3 compares the distribution of Rg, end-end distances and M335β3 –ADMIDAS dis-

tances for αvβ3-wtFN10 and αvβ3-hFN10 complexes for all replicas: a more dynamic behavior

is consistently observed for wtFN10, indicated by the wider distributions of the distances

between the thigh and hybrid domains, the Rg and the M335β3-ADMIDAS distances. In

wtFN10 X-ray structure M335β3-ADMIDAS distance is 14.6 Å while in hFN10 is 2.9 Å. For

the wtFN10 system the distribution shows a broad range of values around ~ 12.4 Å, while for

hFN10 the distribution is more sharply centered around two values, 2.6 Å and 5.2 Å. Time-

dependent evolution of M335β3-Mn2+-ADMIDAS distances together with representative

integrin conformations are given in S3 Fig to account for the tails in the distribution analysis

of the hFN10 system. Notably, even though some variations in the M335β3-Mn2+-ADMIDAS

for the hFN system can transiently become similar to the wtFN system, these variations are not

paralleled by the global rearrangement of the integrin.

Taken together, these first observations support the onset of different dynamic regimes in

the two complexes, suggesting that the ability of the wtFN10 complex to explore a larger con-

formational ensemble may be linked to a more favorable tendency towards activation.

Ligand-dependent integrin internal dynamics

The type of bound fibronectin and the consequent differences in the corresponding X-ray

structures appear to have a profound influence on the dynamic evolution of the complexes. To

gain fine-grained insights into the determinants of the dynamic differences we calculated the

fluctuations of pairwise amino acid distances (Distance Fluctuation, DF) [34] in the MD tra-

jectories of the two complexes (see Methods). Such measure has been previously shown to

shed light on the effects of ligands on internal long-range pair coordination. [35] While intra-

domain coordination is somewhat expected given the spatial proximity between amino acids,

Fig 3. Gyration radius, end-end and Met335β3 (carbonyl oxygen) and Mn2+-ADMIDAS distances of wtFN10

and hFN10. Distributions refer to the full-length simulation time (3*0.5 μs = 1,5 μs per system). Wider populations

indicate higher variability. See main text for the definition of Thigh-Hybrid (end-end) distance. See also S3 Fig).

doi:10.1371/journal.pcbi.1005334.g003
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the analysis of coordination patterns between residues that belong to different domains can

aptly highlight internal dynamic modulations that depend on the identity of the bound ligand.

The DF matrix for the complex with wtFN10 (Fig 4a) indicates more fluctuating internal

dynamics. Regions of strong dynamic coordination (low fluctuation) alternate with regions

where inter-residues distances show large fluctuation, i.e. low coordination. In particular, αv-

thigh and β3-hybrid domains appear as the regions of greatest variation. In an interesting con-

trast, the presence of high-affinity FN (hFN10) reverberates in the increase of overall rigidity

of the αvβ3 integrin, characterized by patterns of highly coordinated (low fluctuation) residue

pairs that diffuse throughout the structure of the whole protein: in particular, in Fig 4b DF

matrices show that thigh and hybrid domains of the αv and β3 are highly coordinated.

Increased rigidity and coordination among different domains may oppose the onset of confor-

mational changes required for integrin activation.

Additional information on the mechanistic determinants of different functional properties

is obtained by analyzing the residue-based root mean square fluctuations of αvβ3 in the two

complexes. Interestingly, this simple measure shows that the largest divergences occur at the

αvβ3 interacting surfaces. In particular, fluctuations in the β-propeller-βA interfaces in the

wtFN10 complex are much larger than in the case of the high-affinity complex. Averaged fluc-

tuations and relative standard deviations for the three replicas per system are displayed in Sup-

porting Information in S4 Fig.

Overall, these data indicate that the two different FN10 sequences trigger specific differen-

tial dynamic responses in the two complexes, evident at the level of macroscopic structural

changes as well as at the level of microscopic internal coordination. Binding of wtFN10 or

hFN10 at the interface between the integrin alpha and beta subunits may thus be linked to the

onset of different functionally oriented conformational events.

Fig 4. DF matrices. Distance fluctuations are averaged along full-length simulation time for a) wtFN10 and b) hFN10. Darker spots indicate low inter-

residual fluctuation, while lighter stripes evidence highly flexible inter-distances. For clarity only αvβ3 domains are plotted. On x- and y- axes integrin

residues are reported (diagonal matrix) and divided into αv (green) and β3 (pink) subunits.

doi:10.1371/journal.pcbi.1005334.g004
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It is necessary to underline here that MD simulations carried out on the uncomplexed αvβ3

as control show that the apo dynamics is less rigid than the hFN10 and more reminiscent of

the dynamical character of agonist bound wtFN10 (S5 Fig). It is to be noted here that the apo

system lacks LIMBS and ADMIDAS ions due to crystallization conditions.

Interactions at the interface FN-αvβ3: hFN vs wtFN

The knowledge obtained so far on differential aspects of the αvβ3-fibronectin dynamics is

complemented here by a comparative analysis of the fine specific interactions in the interface

region that can be aptly used to make manifest the relatedness between the binding of different

sequences flanking the RGD motif and the origin of specific functional dynamics.

The high affinity -PRGDWNEG- sequence in hFN10 favors a characteristic placing of the

RGD motif at the αvβ3 interface, in which fibronectin W1496hFN is observed to limit the

mobility of such fragment and of the whole hFN10-complex as a consequence: at the interact-

ing surfaces, hFN10 shows extensive packing with bulky aromatic amino acids from the βA

domain. At the beginning of the simulation, aromatic side-chains of Y122β3, W129β3,

Y1446hFN and W1496hFN align to get closer to one another and form a tightly packed aromatic

cluster. The stability of such association is validated by pairwise centroid distances and inter-

planar angle (θ) evolution along the full-length simulation time (1.5 μs) (Fig 5 and S6 Fig).

At the same time, this conformation permits the electrostatic clamp of the Arginine guani-

dinium of the RGD motif with D218αv, D150αv and it favors the stabilization of the initial coor-

dination of Mn2+ ions at LIMBS, ADMIDAS and MIDAS sites. Overall, the hydrophobic

packing may ’direct’ the onset of novel interactions, acting as the driving force for the stabiliza-

tion in solution of the structure obtained by crystallography.

The combination of bulky and packed organization of residues, electrostatic stabilizing

interactions and metal coordination sum up to impede movements in the immediate vicinity,

limiting the motional freedom of hFN10 (Fig 2 and S1 Fig). The final consequence is that no

conformational rearrangement is observed, and the original/crystallographic orthogonal ori-

entation at the interface is conserved. Overall, in the hFN10 complex the conformation of the

β3 subunit and the coordination at MIDAS/ADMIDAS are qualitatively similar to the S1 state

of αIIβ3 integrin described by Springer [10] as a closed/inactive state, as already mentioned. It

should be noted that this similarity is mostly qualitative, as the two integrins represent differ-

ent systems, with different organizations and sequences.

In contrast, in wtFN10, the fibronectin domain bends upon βA domain providing access to

dynamic states that lead to viable conformations alternative to the ones observed in the crystal

structures. The Oδ1/Oδ2 Asp (RGD) coordination of the metal ion at MIDAS appears to be

less stable than the correspondent one in hFN10 (S7 Fig). Furthermore, for wtFN10 the classi-

cal interaction between R1493wtFN and D150αv and D218αv is broken to form a novel interac-

tion with D219αv while for hFN10 is mainly conserved. On the other hand, the coordination of

D1495FN of RGD motif to the MIDAS cation is kept in all replicas of both wtFN10 and hFN10

systems (S7 Fig).

Finally, in wtFN10 the sequence flanking the RGD motif, -GRGDSPAS-, cannot establish

the hydrophobic association determined by the tryptophan indole (-PRGDWNEG-) in

hFN10. [1,2] In wtFN10 Y1446wtFN is engaged in interactions with αv chain (see S2 Table)

while integrin W129β3(βA) is free to flip outward, populating an alternative rotameric state.

The higher conformational variability of W129β3(βA) in the complex with wtFN10 com-

pared to hFN10 is clearly highlighted by structural cluster analysis (see Methods and S8 Fig).

In the wtFN10 case, two major conformational clusters are visited, corresponding to the start-

ing X-ray-like and flipped orientations of the side chain. The two conformations are
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reminiscent of the S7/S8 states defined by Springer and coworkers [10], respectively. In con-

trast, in hFN10 the indole side-chain is mostly exposed to the solvent in an arrangement over-

all similar to the starting conformation.

The observed α1-W129β3 rotamer switch in wtFN10 causes a general rearrangement in the

interaction network by invading the space of the β6-α7 loop, consistent with the mechanism

proposed by Springer and collaborators for the last steps toward αIIbβ3 opening path. [10] In

Fig 5. Close-up view of hFN10 complex. Important structural elements are indicated: α1 (green), α7 (red),

strand β5 (blue). Mn2+ are displayed as transparent blue spheres. Ghost cartoons are used for αvβ3 (cyan

and pink codes for αv and β3, respectively) and fibronectin (yellow). Ghost surface evidences W129β3,

Y122β3, W1496FN and Y1446FN (from the right to the left). RGD-guanidinium and aspartic acids of the

electrostatic clamp (namely D150αv and D218αv) are also indicated as sticks. Note that the solvent-exposed

Y122β3 belongs to β5 strand (blue) that spans the whole β3 subunit (see main text).

doi:10.1371/journal.pcbi.1005334.g005
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hFN10, W129β3 preferentially stabilizes around the starting conformation, thanks to extended

packing with hFN10 W1496hFN (to be noted that this residue corresponds to S1496 in

wtFN10). Overall, in the wtFN10 complex the conformation of the β3 subunit and the coordi-

nation of MIDAS/ADMIDAS are qualitatively similar to the S7/S8 states of αIIβ3 integrin

(3ze1.pdb, chain B) described by Springer and coworkers as an open/active state. [10]

These structural observations indicate that the behavior of the wtFN10-integrin complex is

much richer than that of hFN10. It must be noted here that we are not describing the opening

transition of integrin, but we are observing the possibility for the complex with wtFN10 to

explore a diverse range of local interaction networks and conformational states of specific resi-

dues that are compatible with different activation states described by Springer and coworkers

[10], albeit for a different yet related system. Such considerations are consistent with the initial

hypothesis that integrin may react to binding a protein ligand primarily via a fine-tuned reor-

ganization of intra-protein interaction networks and dynamic states, which can eventually be

connected to the onset of large scale motions.

Next, we calculated hydrogen bonds and salt bridges at the interacting surfaces of FN10

and integrin. Apart from aspartic acids from the β-propeller (D150αv, D218αv) that coordinate

the arginine guanidinium of the RGD motif (R1493FN), novel interactions are established dur-

ing the simulations that can be used to discriminate the two complexes. Compared to the X-

ray starting structure, only during the wtFN10 complex simulations we observed the formation

of new salt bridges with the β-propeller residues. Important electrostatic interactions are

R1448wtFN-D218αv, R1445wtFN-D218αv, -D150αv and -D148αv and R248αv-E1462wtFN. Two dif-

ferent salt bridges are formed with β subunit of both systems: R1448wtFN-E312β3 and

R1445hFN-D251β3 (S2 Table).

In wtFN10 simulation, the crystallographic Y122β3 backbone bond with the Oδ2 oxygen of

Asp (RGD) is transient and it is lost in the first frames of conformational rearrangement. Thus

an outward movement of the tyrosine exposes it to the solvent. In contrast, in hFN10 the

indole moiety of the W flanking residue of the RGD-optimized sequence -PRGDWNEG-

freezes Y122β3 at the top of α1 helix via hydrophobic packing as already illustrated (Fig 5).

Notably, the hydrogen bond between Asp (RGD) and Y122β3 (and consequently the β1-α1

loop) seems to play a critical role in regulating the lifetime of the principal RGD-αvβ3 bond

(Asp-MIDAS) by shielding it from free water molecules, as already reported by Vogel and col-

laborators. [21] Consistently, previous docking studies have conferred a critical role to Y122β3

in the ligand-receptor recognition process. [36,37]

Another important interaction between hFN10 and β3 concerns D251β3. This amino acid

stably forms a salt-bridge with R1445hFN. During the simulation of the wtFN10 system D251β3

does not form any H-bonds or salt bridges with the receptor and the same arginine can be

engaged by different amino acids from the αv domain in the wtFN10, e.g. D218αv-R1445wtFN

(see S2 Table and S9 Fig). Due to its nature and position, such interaction (alternating between

α and β chain) is crucial to stabilize the orientation of the fibronectin onto the integrin

ectodomain.

Not surprisingly, the N215β3-D1495FN (RGD) hydrogen bond (one of the crystallographic

interactions) is the only conserved contact displayed by all replicas, and in hFN10 it is also sta-

bly engaged by the other carboxylate oxygen of the aspartic acid of the RGD. Such interaction

is observed in approximately 23% of the total simulation time (1,5 μs) in the wtFN10 whereas

it is present in the 38% for the hFN10.

This observation can be related to the swing-out mechanism of the hybrid domain. The

RGD coordination of this asparagine, located in the loop connecting helices α2 and α3, is

incompatible with the α1-β1 motion and then with the hinge opening. Recently, similar con-

clusions were reported for not-inducing swing-out of small isoDGR containing peptides. [24]
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Next, we analyzed the structural responses of the MIDAS and ADMIDAS binding sites to

the presence of either FN10 form. Experimentally, the difference between open and closed

conformation at the βA-hybrid domain interface is translated into a ~3 Å displacement of the

MIDAS and ADMIDAS-coordinating β1-α1 loop of the βA domain, which alters affinity for

RGD-partner binding by ~1,000-fold in αIIbβ3. [10] ADMIDAS metal ion moves toward the

MIDAS metal ion also in α5β1. [38] These rearrangements are parallel to βA domain opening

to a high-affinity state.

To this end, we monitored Mn2+ distance at MIDAS and ADMIDAS and correlated it

with the β-hybrid opening. In good agreement with experimental observations, we observe

smaller MIDAS-ADMIDAS Mn2+ distances for wtFN10 simulations. In particular, shorter

Mn2+- Mn2+ spacing coincides with the largest Thigh-Hybrid relative distortion, at long-

range distances (S10a Fig). This is not the case of hFN10 where MIDAS-ADMIDAS separa-

tion is conserved and settled around a longer distance than in the wild type (S10b Fig). From

the cumulative distribution of Mn2+-Mn2+, it is evident that hFN10 is characterized by a

dominant peak centered at 8.5 Å, with a queue of less populated bins at higher distances. In

the case of wtFN10, the distribution is wider and with bins of comparable populations span-

ning a larger set of distances, reaching smaller values (~6 Å). As we have already commented

above, observed local rearrangements do not necessarily associate to global conformational

changes (S3 Fig).

Overall, analysis of binding networks shows once more that the wtFN10 explores diverse

sets of interactions with αvβ3, favoring the population of different conformational ensembles

than the ones determined by hFN10. Globally, wtFN10 may determine a deviation from the

original crystal structure leading to the integrin opening motion linked to activation, while

hFN10 stabilizes the complex in the closed conformation.

Discussion

Dynamical and functional Implications of integrin-fibronectin interactions

hFN10 acts as a pure antagonist of αvβ3 and lacks the partial agonism that is often observed in

other protein ligands that exploit RGD as a recognition motif, as well as RGD-based peptido-

mimetics. [3]

At the β-propeller-βA interface FN inserts into the binding cleft by orienting its RGD motif

to enable Asp(Oδ1/Oδ2) to coordinate the metal ion at MIDAS site. The binding of the recog-

nition triad occurs across the αv and β3, where the guanidinium of the Arginine (RGD) shifts

between D218αv and D150αv of the β-propeller domain of the αv subunit.

While RGD binding takes place in a similar fashion in the two complexes, dissimilar orien-

tations of the full-length fibronectins, wtFN10 and hFN10, on the top of the integrin determine

different local interaction networks that reverberate in dissimilar structural rearrangements

(Fig 2 and S2 Fig): wtFN10 rotates upon the βA domain in the first nanoseconds of the simula-

tions, making several stable novel contacts with superficial amino acids from both integrin

chains. In contrast, hFN10 persists in its original orientation for the full trajectory, establishing

interactions mainly with the βA lobe. Differential effects are arguably attributable to changes

in the sequences flanking the RGD recognition motif.

X-ray resolution of hFN10-αvβ3 complex shows a π-π edge-to-face interaction for Y122β3

and W1496hFN. Along the simulation, starting on the top of helix α1, we observe an increased

association of highly bulky and aromatic amino acids, that form a stable and tightly packed

hydrophobic core at the interacting surfaces, involving W129β3 and Y122β3 from βA and

Y1446hFN and W1496hFN from high affinity fibronectin (Fig 5 and S6 Fig).
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The crystallographic distance between Y122β3 and W1496hFN centroids is 4.9 Å while the

interplanar angle θ is 25.8˚.

The relative orientation and distance between these residues is well preserved along the tra-

jectory. Distances between their centroids and the distributions of angles between their corre-

spondent planes (θ) can be considered in the range of general hydrophobic π-stacking for

aromatic residues (distance between 4.9 and 10.4 Å, θ angle between 1.2˚ and 89.9˚, for stacked

and T-shaped arrangements). [39–42]

In the wtFN10 complex, Y122β3 forms a π-cation interaction with R214β3 of the βA chain

and this packing is stably preserved along the simulation (distance between 4.6 and 6.9 Å).

Moreover, corresponding integrin-W129β3 in the wtFN10 complex results very flexible, point-

ing alternatively towards the solvent or towards the interior of the protein (see S8 Fig). Large

changes in position and rotamer of this residue have been extensively discussed and linked to

the activation opening described for αIIbβ3. [10]

These data point to the role of the high-affinity RGD sequence in hFN10 in favoring the

characteristic orthogonal docking of fibronectin on the top of αvβ3. The stable orientation and

interactions of the hFN10 domain rigidify the whole complex, increasing internal coordination

throughout the α and β subunits of the integrin. In this framework, the lack of the bulky tryp-

tophan chain flanking the RGD region in wtFN10 can be considered as the determinant for

the conformational re-organization observed in the wtFN10-αvβ3 complex. In our model,

such a voluminous amino acid at the surface of hFN10 may prevent large movements and

therefore represents the lock of the “activation” reaction, freezing and screening Y122β3 from

solvation, in line with previous research. Structural and mutational studies support a critical

role for the novel W1496hFN-Y122β3 π-π interaction in ’freezing’ the integrin in an inactive

conformation. [3]

The different interaction networks and microscopic conformational dynamics may repre-

sent the molecular determinants for the observed functional differences between the two

complexes.

Together, these data point to αvβ3 functioning in specific ways determined by the

sequences and recognition motifs of endogenous protein ligands. A key question in elucidating

integrin activation relates to what determines the onset of specific functionally oriented

motions and the ability to predict their consequences: this would allow the distinction of the

role of the ligand as an agonist or an antagonist.

In our study, we distinguish and characterize opening motions vs. conformational stabiliza-

tion as a function of differences in the ligand binding sequences: in this frame of thought, the

extensive and stable packing determined by the tryptophan side chain in hFN10 acts as a

blocker for the initial series of conformational events necessary for integrin activation, namely

β3 opening and overall reorganization of domain distances and orientations. In contrast, the

absence of tryptophan in wtFN10 determines a different set of contacts that translates into a

much more pronounced internal flexibility of the integrin domains paralleled by the ability to

explore a wider portion of conformational space, which can ultimately favor integrin activa-

tion. Our results also highlight the role of the interaction networks of Y122β3 as the driver con-

trolling conformational changes: this tyrosine is located at the top of the β5 strand that runs

across hybrid and βA domains of the β3 subunit and the direct link to RGD-binding (Fig 5).

Indeed, while the RGD binding site (namely, aspartic acids from the β-propeller—devoted to

the electrostatic clamp—and metal ions within the βA-coordinated by Asp (RGD) carboxyl

oxygen) is almost identical in the low-affinity and high-affinity form of the integrin, large con-

formational changes are seen at the hybrid lobe upon activation and, more precisely, at the

hinge angle between βA and hybrid domains. [21] In this context, the “hinge opening” is con-

sidered as the first step that initiates the global genu-extension of the cytoplasmic tails. In fact,
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disclosing of the β-tail can only occur after the extension of the hybrid and βA domains,

induced by the hinge opening.

On these bases, we can consider the mechanism of ligand-controlled (de)activation of

integrin in the light of allosteric control concepts. The integrin binding pocket is conserved

and serves to anchor the incoming ligand. The pocket interactions with different ligand

sequences determine the accurate re-positioning of the FN domains: specific residues flanking

the common RGD recognition motif in the two FNs modulate interactions with the integrin,

supplying the critical foundation that allows the Y122β3. The residues of either FN10 interact-

ing with Y122β3 act then as the driver residues that control the shifts of integrin population

from the inactive (hFN10-bound) to the (partially) activated state (wtFN10-bound) through a

specific reorganization of pre-existing interaction networks around Y122β3. We thus speculate

that the extent of reorganization around the integrin binding site may determine the shift

towards inactive or active states. The mechanism of stabilization of functional states differs as

a function of the sequences of the ligands, and antagonism is determined by the presence of

bulky, aromatic moieties flanking RGD that optimally pack in the integrin recognition site and

consequently block hinge opening and domain reorganization. Agonism is favored by the

absence of such flanking motifs, which allows more conformational freedom and pushes integ-

rin towards the active conformation.

Delivering related but independent set of information, PCA and DF analyses can be com-

bined to capture the main determinants of the differential conformational dynamics of the

integrin induced by different ligand: the former characterizing large-scale collective motions,

the latter identifying the sub-blocks and motifs that sustain the 3D fold organization necessary

for activity. In addition, to further support the hypothesis that different interaction patterns at

the binding site can trigger a differential global rearrangement of the integrin complex, we

applied the linear mutual information method to unveil concerted correlations. This method

can detect correlated motion regardless of the relative orientation and includes nonlinear con-

tributions. [44] This analysis (S11 Fig) corroborates previous observations indicating that

wtFN10 and hFN10 binding determine different dynamic responses of the integrin. In this

framework, cross-correlations are markedly increased when hFN10 is bound at the αvβ3 inter-

face. Moreover, correlations diffuse throughout the 3D structure. In the case of wtFN10,

mutual information-based analysis shows that the mechanism for transmission stops at the

local level, whereby high coordination appears to entail primarily residues that are proximal to

the ligand. In the remainder of the integrin, higher coordination patterns appear to involve

intra-domain relationships among residues. In contrast, in the case of hFN10, high mutual

information relationships between residues span the whole complex “overcoming” the subdo-

mains structural organization. Changes in correlations again are in agreement with previously

discussed dynamical features observed during MD simulations.

Furthermore, it is important to emphasize here that quantitatively sampling the conforma-

tional changes at the basis of integrin activation/blockage by unbiased atomistic simulations is

extremely demanding. Besides the use of pulling or targeted MD simulations which gave

unprecedented insight into the basis of conformational changes [21–23], we hypothesize that

such conformational changes cannot be simply described by one single reaction coordinate or

by a combination of a limited number of simple reaction coordinates for metadynamics-type

simulations. Indeed, we think that domain rotations and reorganizations should be taken into

account.

In conclusion, the type of fine atomistic interactions and their action on microscopic con-

formational changes can help provide a molecular explanation of observed inhibiting vs. acti-

vation effects. Interestingly, we have shown that the comparative analysis of a combination of

global measures (overall flexibility, large scale domain rearrangements) and of local structural
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environment variations in the recognition regions can reflect the difference between induced

active and inactive states. Characterizing the determinants of microscopic dynamics from MD

simulations can help rationalize the onset of functional protein motions, that can be linked to

experimentally-observed structural and functional modifications.

In conclusion, these considerations may be useful in the design of small molecule modula-

tors of the function of αvβ3 integrin function: we propose that it may be possible to realize

peptidomimetics containing the RGD sequence in an optimal arrangement for stable binding,

whose role as antagonist or agonist can be modulated by the type and stereoelectronic proper-

ties of the RGD-flanking groups.

By comparing the results of MD simulations with the determinants of integrin modulation

induced by different FN sequences, we can investigate the effect of the aromatic substituent at

the scaffold nitrogen atoms (exploring bulky side chains of aromatic amino acids) and of the

recognition sequence (examining RGD-like motifs) on αvβ3 integrin internal dynamics. [44–

45] The identification of peptidomimetic ligands able to efficiently mimic the behavior of the

high affinity fibronectin mutant (underlying pure antagonism) could lead to the generation of

new compounds that are unable to promote integrin activation and thus can act as pure

antagonists.

In particular, the presence of large aromatic moieties may aptly block integrin opening,

providing a new generation of real antagonists. [46–50] This hypothesis is supported by the

recent observation that the modification of the barbourin KGDW sequence (venom disinte-

grin) led to the development of a cyclic hexapeptide (eptifibatide) that demonstrated high

affinity for αIIbβ3. [46]

Methods

MD simulations

Molecular dynamics simulations were carried out on αvβ3-wtFN10 and αvβ3-hFN10, and on

the unbound form of the integrin. Starting models were retrieved from Protein Data Bank

with access number 4MMX, 4MMZ, and 1JV2, respectively.

Integrin extracellular domain was cut at the Thigh domain of the αv, including β-propeller

and Thigh domains (residues 1–599) and at the β-hybrid domain of the β3, including βA and

hybrid domains (residues 55–434); whereas fibronectin type-III domain 10 comprises residues

1417–1507.

To the best of our knowledge, no previous simulations have been carried out on the β-pro-

peller—Thigh full-length domain of the αv chain. [21,51]

Wild-type fibronectin (wtFN10) tripeptide RGD-enclosed sequence -GRGDSPAS- is

replaced by -PRGDWNEG- in high affinity fibronectin (hFN10) in X-ray structures.

Because Mn2+ ions are known to regulate integrin activation and are present under physio-

logical conditions, crystallographic Mn2+ are kept at the three integrin metal ion binding sites

as well as at the β-propeller domain.

The MD simulation package Amber v12 was used to perform computer simulation apply-

ing Amber-ff99SB�ildn force field. [52] The two systems were solvated, in a simulation box of

explicit water molecules (TIP3P model), [53] counter ions were added to neutralize the system

and periodic boundary conditions imposed in the three dimensions. Mn2+ ions were modeled

based on hydration free energy parametrization derived from Musco et al. [24] Final simulated

systems are made of ~ 200 000 atoms.

After minimizations, systems were subjected to an equilibration phase where water mole-

cules and protein heavy atoms were position restrained, then unrestrained systems were simu-

lated for a total of 3 microseconds, in a NPT ensemble; Langevin equilibration scheme and
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Berendsen thermostat were used to keep constant temperature (300 K) and pressure (1 atm),

respectively. Electrostatic forces were evaluated by Particle Mesh Ewald method [54] and Len-

nard-Jones forces by a cutoff of 8 Å. All bonds involving hydrogen atoms were constrained

using the SHAKE algorithm. [55]

To enhance sampling three independent replicas of 500 ns (3�0.5 μs = 1.5 μs) were run for

each system with different initial velocities.

Figures are rendered using VMD. [56]

Distance fluctuation analysis

We computed distance fluctuations, DFij, along simulations to assess the intrinsic flexibility of

proteins. Given rij the distance between Cα atoms of residues i and j:

DFij ¼ < ðrij� < rij >Þ
2
>

distance fluctuation, DFij, is defined as the time-dependent mean square fluctuation of the dis-

tance rij, where the brackets indicate the time-average over the trajectory. DF is calculated for

any pair of Cα along simulation time. Low DF values indicate highly coordinated residues. [34]

Collective motions analysis

Based on the assumption that the major collective modes of fluctuation could be linked to pro-

tein function (Essential Dynamics [30]), MD simulations have been analyzed by means of

principal components analysis (PCA). This method recovers the modes that produce the great-

est contributions to the atomic root mean square deviations in the given dynamic ensemble.

Thus large-scale collective motions can be collected, as well as the extreme conformations of

the system along the simulation, providing information of time-dependent transitions. Addi-

tionally, we carried out linear mutual information as introduced by the Grubmuller group.

[43,57] See supporting material for details.

Domain axes and torsion angles

Definitions of rotation axes and torsion angles around these axes help to quantify conforma-

tional changes. Principal axes were determined for wtFN10 and hFN10 β3 integrin domains

throughout the simulation time to follow structural transitions. Measurements were obtained

by UCSF Chimera package. [31]

DynDom description

Protein domains can be determined from the difference in the parameters governing their

quasi-rigid body motion, and in particular their rotation vectors. Given a structure, by super-

imposing each main-chain segment in its initial conformation onto its final conformation by

least-squares best fitting, we can define the displacement vectors representing the rigid body

displacement of the segment. A K-means clustering algorithm is used to identify dynamic

domains from clusters of rotation vectors corresponding to main-chain segments. The pro-

gram DynDom takes two conformations, the initial and the final state, and determines

dynamic domains on the basis of the conformational change. [32–33]

Rotamers cluster analysis

Cluster analysis was performed over the region of α1(βA) including W129 (aa. M124-I131) of

the β3 chain, using Gromos method for clustering, described by Daura et al. [58]: To find clus-

ters of structures in a trajectory, the RMSD of atom positions between all pairs of structures is
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determined. For each structure the number of other structures for which the RMSD is 0.2 nm

or less is calculated. The structure with the highest number of neighbors is taken as the center

of a cluster, and forms together with all its neighbors a (first) cluster. The structures of this

cluster were thereafter eliminated from the pool of structures. The process was repeated until

the pool of structures was empty. In this way, a series of non-overlapping clusters of structures

was obtained. Central structure of each cluster is provided. 5000 time frames per replica

(15000 per system) are used in the calculation.

Supporting Information

S1 Text. Essential dynamics and linear mutual information.

(DOCX)

S1 Table. PCA sampling. The inner product of the essential eigenvectors of the first half with

the essential eigenvectors of the second half of each simulation and cosine content for replica

is shown.

(DOCX)

S2 Table. List of hydrogen bonds and salt bridges between fibronectin and αvβ3 in the

wild-type (wtFN10) and high-affinity (hFN10) complexes. Bonds are calculated considering

full-length FN against αvβ3. Amino acids of the αv chain (β-propeller) are indicated in bold. �

indicates contacts present in the x-ray structure. % is the fraction of time (1,5 μs per system)

where the interaction is present. Only interactions with % higher or equal to 1 are reported.

RGD motif numbering is R1493,G1494,D1495.

(DOCX)

S1 Fig. ED analysis. a) Time-dependent projections of wtFN and hFN onto the first two prin-

cipal modes per replica. b) Projection of wtFN and hFN onto the first two principal modes of

the three simulations. Calculations are carried out on C-alpha atoms (979 particles) of αvβ3.

Reference structure used for the fitting of either systems is integrin in the wtFN complex (pdb

code: 4MMX). The two eigenvectors account for the 55% (wtFN10) and 46% (hFN10) of the

total variance of the simulations.

(TIF)

S2 Fig. Rotation axes of a) wtFN10 and b) hFN10 complexes. β3 (pink) and Fibronectin (yel-

low) domains are shown as cartoons in the starting conformation (t = 0) and corresponding

principal axes are displayed. Blue arrows indicate the fibronectin torsion angle along the simu-

lation time (replica #1). For clarity, only β3 subunit is shown and the orientation of the two

domains in a) and b) displays the maximal value of the distortion. Torsion angles ranges

between 21˚ and 84˚(a) and between 56˚ and 82˚ (b). c) Time-dependent evolution of the rota-

tional angle described by the principal axes of β3 and FN domains for wtFN10 and hFN10 in

the three replicas. See main text.

(TIF)

S3 Fig. Met335β3-Mn2+ (ADMIDAS) distance. Time evolution series are plotted for each rep-

lica (0.5 μs) of wtFN (a) and hFN (b) systems. Integrin conformations corresponding to repre-

sentative distance values are displayed. For hFN we report structures relative to two extreme

distance values.

(TIF)

S4 Fig. Root mean square fluctuation. Root mean square fluctuations are plotted per residue

(r) and averaged for the 3 replicas along simulation time for wtFN10 (left) and hFN10 (right)
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systems. Major differences are visible at β3 chain (starting at r = 600). For clarity, fibronectin

domain has been omitted. Error bars represent standard deviation.

(TIF)

S5 Fig. Apo αvβ3 dynamics (1JV2). a) ED analysis. Projection of the uncomplexed αvβ3 onto

the first two principal modes of the simulation. Calculations are made on the C-alpha atoms.

b) DF matrix. Distance Fluctuations are averaged along 500 ns simulation time. Darker spots

indicate low inter-residual fluctuation, while lighter striper evidence highly flexible inter-dis-

tances.

(TIF)

S6 Fig. Hydrophobic cluster. a) Pairwise centroid distances and b) interplanar angle (θ) evo-

lution between Y1446hFN, W1496hFN, Y122β3, W129β3 of the hydrophobic cluster along simu-

lation time (0.5 μs � 3 replicas of hFN10). Red diamonds indicate Y122 β3-W1496hFN packing

evolution confirming π- stacking described in ref 3 and discussed along the main text. Note

that amino acids are considered paired for centroid distances < 12 Å, while interplanar angle

distribution (between 0˚ and 90˚) accounts for stacked and T-shaped conformations.

(TIF)

S7 Fig. Fluctuation of Mn2+ at MIDAS. Coordination of Mn2+ at Midas site by carboxylic

oxygens- Oδ1 (black) and Oδ2 (red)—from aspartic acid of RGD for individual replica. High

flexibility is shown by wtFN10 coordination shell (left panel) compared to the more stable

hFN10 system.

(TIFF)

S8 Fig. Cluster analysis of wtFN10 and hFN10 MD trajectories. Close-up view of the βA

(β3) that directly contacts fibronectin (transparent cartoons). α1 is shown as pink solid car-

toons and α1-W129β3 rotamers in sticks. a) Central structure of each cluster for wtFN10 (rep-

lica #1) is displayed starting from red (starting frames of the simulation and 0.56% of

representativeness) to the gray/blue rotamers (final frames and accounting for the remaining

99.4% of the population). b) Central structure of the unique cluster found for hFN10. Cluster

analysis was performed over the region of α1(βA) enclosing W129 (aa. M124-I131) of the β3

chain, using an RMSD cutoff of 0.3 and selecting Gromos method for clustering. [4] 5000 time

frames per replica were analyzed.

(TIFF)

S9 Fig. Example of fibronectin-integrin interactions. a) Hydrogen bond evolution: wtFN10

D218αv-R1445FN in the top panel, and hFN10 D251β3-R1445FN in the bottom panel. b) Spatial

rearrangement of fibronectin in the complex. αvβ3 is in cyan and pink cartoons while FN10

domain is colored yellow. Interacting amino acids are shown in sticks using the same color

code of the correspondent subunit.

(TIFF)

S10 Fig. Midas-Admidas displacement. a) Relationship between Mn2+-Mn2+ distances at

Midas and Admidas and long-range conformational change. Solid ribbons for αvβ3 and blue

spheres for Mn2+ and transparent ribbons and white spheres are used for the two extreme

structures of the structural rearrangement. b) Cumulative distribution of Mn2+-Mn2+ interdis-

tances at Midas and Admidas binding sites. Data sets refer to full-length simulation time

(1,5 μs) for wtFN10 and hFN10 systems. The main difference between wild type and high

affinity FN10 is to be found in the width and height of the bars in the histogram. In this respect

it appears that hFN10 is characterized by a dominant peak centered at 8.5 Å, with a queue of

less populated bins at higher distances. In the case of wtFN10, the distribution is wider and
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with bins of comparable populations spanning a larger set of distances.

(TIFF)

S11 Fig. Linear mutual information analysis. Comparison of generalized correlation coeffi-

cient matrices for wtFN10 (a) and hFN10 (b). Data represent average matrices of the three rep-

licas per system (calculated on c-alpha atomic coordinates. c) 3D mapping of the most

correlated blocks of hFN10 (color scale of red boxes in b is proportional to correlation). Green

box refers to FN domain. The generalized correlation can detect correlated motion regardless

of the relative orientation and includes nonlinear contributions. A density estimator nearest-

neighbor parameters k = 6 was applied.

(TIF)
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