
A dynamic tree-based data structure
for access privacy in the cloud

Sabrina De Capitani di Vimercati∗, Sara Foresti∗, Riccardo Moretti∗,
Stefano Paraboschi†, Gerardo Pelosi‡, Pierangela Samarati∗

∗DI - Università degli Studi di Milano, 26013 Crema - Italy Email: firstname.lastname@unimi.it
†DIGIP - Università degli Studi di Bergamo, 24044 Dalmine - Italy Email: parabosc@unibg.it

‡DEIB - Politecnico di Milano, 20133 Milano - Italy Email: gerardo.pelosi@polimi.it

Abstract—We present a novel approach for guaranteeing
access privacy to data stored at an external cloud provider. Our
solution relies on the grouping of resources into buckets then
organized with a binary search tree. The tree is built on an index
computed in a non-invertible non-order preserving way, and
supports efficient key-based retrieval. Our approach to provide
access privacy builds on this data organization providing uniform
observability to the server in access execution and dynamically
changing not only the physical storage allocation, but also the
logical structure itself. Our analysis and experimental evaluation
show the effectiveness of our approach.

Keywords—Access privacy, dynamic data structure, key-based
retrieval, binary search tree

I. INTRODUCTION

The fast and considerable advancements in ICT solutions
and available services have brought to an ever increasing adop-
tion of and reliance on external services for storing, sharing,
and accessing data. Together with convenience, involvement
of external services brings also the natural worry of ensuring
protection of confidentiality of possibly sensitive information.
The research and industrial communities have shown con-
siderable interest and attention to the problem of protecting
the confidentiality of data stored in the cloud, investigating
different aspects of the problem (e.g., [1], [2]). In general,
data are assumed to be encrypted before outsourcing and to
remain non intelligible to the server providing access to them.
If ensuring protection of the data in storage is well understood
and can rely today on a fine range of solutions, the problem
of guaranteeing confidentiality of the access itself (access
privacy), while recognized as important, is still in its early
days. Protecting access confidentiality requires maintaining
confidential the fact that an access request aims at a specific
piece of information or that two requests aim at the same target.
Besides desirable by itself, confidentiality of access strengthens
storage confidentiality (as a breach of access confidentiality
could leak information on the actual data content behind the
encrypted storage).

Traditionally addressed within the line of work of Private
Information Retrieval (PIR) [3], [4] (known to suffer from high
computational complexity), access confidentiality has been
recently addressed by several researchers aiming at more prac-
tical solutions, limiting computational overhead and providing
effective key-based retrieval capabilities. Among them, there
are the more recent ORAM-based solutions and the shuffle
index [5], [6], [7]. A common aspect of these approaches is the

idea of breaking the otherwise static correspondence between
data and the physical locations where they are stored.

In this paper, we propose a novel approach to provide ac-
cess privacy. Our solution groups resources in buckets accord-
ing to a randomly and non-invertible mapping and associates
non-order preserving indexes with buckets, organizing then
bucket indexes with a binary search tree. Such bucketization
and indexing provide fine support for key-based retrieval while
protecting confidentiality of original index values and their
relationships. Like previous works, our approach dynamically
changes the allocation of buckets (i.e., nodes of the tree) to
physical blocks at every access, so to destroy the correspon-
dence between data and physical locations. In addition to this,
our approach protects confidentiality by making accesses all
look alike from the point of view of the server, and continu-
ously changing the logical organization of data themselves.

The main advantage of our approach is that it does not
require to store data at the client. Both the shuffle index [5]
and ORAM-based solutions [6], [7] require instead to maintain
a local cache and a local map and stash, respectively. We note
that while ORAM-based solutions allow also the storage of the
local map and stash at the server side, this solution yields a
bandwidth blowup of at least two order of magnitude compared
with an unprotected solution [8]. Besides not requiring the
client to commit storage, being stateless for the client, our
approach supports access by multiple clients. Compared with
the shuffle index, in addition to dynamically changing physical
location of data (as the shuffling does), we also change the
logical structure, adding a further level of confusion with re-
spect to observables by the server. Compared with ORAM [6],
[7], [8], in addition to providing good reliability guarantees
(being resilient to client failures, as all resources are always
stored at the server in a complete and consistent way), we
enjoy satisfactory performance figures. Considering that the
main service provided by data outsourcing applications is
the durable and reliable storage of data, our approach keeps
the state of the system safely stored on the remote server.
Hence, our solution fits well within the replication, backup,
and migration mechanisms adopted by any storage back-end
application to cope with software or hardware failures during
the system lifetime.

II. OVERVIEW OF THE APPROACH

Our goal is to protect access privacy against any possible
observer. Since the most powerful observer is the storing server
itself, without loss of generality, we assume the server as our
observer. Our approach to provide access privacy is based on978-1-5090-1445-3/16$31.00 c⃝ 2016 IEEE (CloudCom’16)

© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

a combination of techniques that avoids causing, in access
execution, observables that can be exploited by the server to
learn information about the access. A first level of protection is
therefore represented by our storage organization, which pro-
vides key-based retrieval functionality, while leaving content
not intelligible to the server. For storage, data are clustered in
buckets, which are then indexed which a key and organized in
a binary search tree for it to support efficient retrieval without
exposing any information on the original values. Content is
encrypted client-side before upload. Hence, the server receives
from the data owner a set of encrypted blocks to store, and
serves requests accessing them. The application of encryption
and the fixed size of the blocks ensure confidentiality in storage
of the blocks content with respect to the server.

Like other works in this area [5], our approach makes the
data structure dynamic (re-allocating nodes in blocks at every
access) to destroy the otherwise static correspondence between
nodes and blocks where they are stored. In addition to this,
we also re-arrange the tree structure itself, thus introducing a
further level of protection, and make every access to the data
structure uniform (independently of where the actual target of
a search is located in the tree). The building blocks of our
solution are as follows.

Uniform accesses (Section IV). All accesses download from
the server the same (constant) number of blocks, regardless of
where the target is located. Blocks non pertaining to the target
path are not recognizable as such. This permits to hide the
block storing the target among all the accessed blocks.

Target bubbling (Section V). At every access, the target node
is moved up in the data structure by means of rotations,
causing also a re-arrangement of the data structure. The
main motivation for bringing the target up in the tree with
rearrangement of the data structure is that a subsequent (or
close) search for the same node will not follow the same path
in the tree.

Speculative rotations (Section VI). At every access, possible re-
arrangements (rotations) at the logical level making (sub-)trees
shorter can be enforced. Reason for this is to maintain the
height of the tree to be at most twice the height of the balanced
tree, that is, 2⌊log(|N |)⌋. While not a protection technique per
se, rotations also bring protection benefits, since they cause a
change in the topology of the tree structure.

Physical re-allocation (Section VII). At every access, all the
accessed nodes are allocated to different physical blocks. Re-
allocation also entails re-encrypting nodes with a nonce (i.e.,
an always distinct random salt) so to make the nodes not
recognizable and re-allocation not traceable.

III. DATA ORGANIZATION AND STORAGE

We assume data outsourced to be generic resources iden-
tified by an index value for the search. For instance, with
reference to a relational database, resources are tuples in a
relation and the index is the primary key of the relation.
For outsourcing, we organize data with a binary search tree.
To support efficient key-based (traversal and) retrieval while
protecting the ordering among index values: i) each node is a
bucket containing up to Z real resources, and ii) index values
are mapped into bucket indexes (used in the organization of
the tree) in a non-order preserving way. Bucketization permits

...

...

...

...

...

A

C

E
F

B

D...
...

...
FA F

B

bucketsresources binary search tree storage

1
2
3
4

0

5
allocation

2
3
4
5

B
D
A

C
E

D

F

1
B0

-
-

-
-

5
0

3
1

-
2

-
-C

E

D

ΩδΦΠ

ϑπωη

λρϕε

κφδϑ

αθβϑ

ϕεωκ

Figure 1. Data structure construction and its physical representation

to limit the height of the tree, and therefore the length of
search paths. Non-order preserving mapping protects the order
relationship among the content of the nodes involved in a tree
traversal (which could otherwise be leaked). We do not make
any assumption on the mapping of original indexes to bucket
indexes as long as such mapping: i) is non invertible (to avoid
reconstructing the original index knowing the bucket index), ii)
does not require storing any explicit map at the client (i.e., it is
simply a function that can be computed at run-time), iii) is not
order-preserving (so to protect the order relationship among
original indexes), and iv) resources are well distributed among
the nodes (to have all nodes indistinguishably of the same size,
nodes with fewer resources are padded with dummies, whose
occurrences should be kept limited). A simple approach to
provide such a mapping consists in applying a pseudo-random
function on the original index values and mapping to the same
bucket the pseudo-random values with the same value for a
given number of most significant bits.

At the physical level, each node is stored in a physical
block in encrypted form. Allocation function φ : N → ID
randomly maps each node to the identifier of the physical block
where it is stored. Pointers between nodes are represented,
at the physical level, by storing in each internal node the
identifiers of the blocks storing its children. The content of
a block storing a node is obtained by first encrypting the con-
catenation of the node’s content with a random salt to destroy
plaintext distinguishability, and then concatenating the result
with the output of a MAC (Message Authentication Code)
function applied to the encrypted node and the block identifier.
Formally, the block content is computed as b=Enc||Token,
with Enc=E(salt||n,ke) and Token=MAC(id||Enc,km) where
E is a symmetric encryption function with key ke, salt a
randomly chosen salt, and MAC a strongly unforgeable keyed
cryptographic hash function with key km. In this way, the
client can assess the authenticity of the node returned by the
server as well as of the whole data structure, thanks to the
presence of pointers to children in each internal node.

Figure 1 summarizes the data structure construction (buck-
etization, tree definition, allocation) and its physical represen-
tation. At initialization time, we assume the tree to be balanced,
and hence with height ⌊log(|N |)⌋. In the following, we use the
term node to refer to an abstract data content and block to refer
to a specific memory slot in the physical structure. When either
terms can be used, we will use them interchangeably. Having
noted that each node in the binary search tree contains several
resources and the ordering of indexes of the tree does not leak
any information on the ordering among original index values,
from now on we will explain our techniques with reference to
the binary search tree and its index.

IV. UNIFORM ACCESSES

Without the application of any protection technique, access
execution and server’s observations would be as follows. To
access the node (which from now on we will call target)
containing a sought value, the client performs an iterative
process, retrieving first the block containing the root node,
and then iteratively determining the child to retrieve at the next
level until the target is reached. The observation of the server
would then be a sequence of requests of block downloads.
Serving an access, the server can observe the blocks in the path
to the target and the block storing the target (which is the last
one downloaded). Since node indexes and their parent-child
relationship do not convey any information on the original
index values (or their relationship), a path observation does
not cause a problem per se. However, accumulating exact
knowledge on target nodes and observing multiple searches,
the server could observe or infer possible access patterns, as
well as - combining observations with possible knowledge
of frequencies of accesses to real values - eventually breach
access (and even content) confidentiality.

The first level of our protection aims at preventing the
server to observe (and accumulate) exact information on the
target of a search. To this end, we make accesses all look alike
from the point of view of the server, and perform searches
in the tree always accessing the same number of nodes (and
hence blocks at the server), regardless of where the target is
located in the tree, be it the root or the deepest leaf. Setting
the (constant) number of nodes to be accessed at every search,
we need to ensure that it is sufficient to reach any target,
that is, it can cover the longest path in the tree. In a search
tree, the number of nodes in the longest path can go from a
minimum of ⌊log(|N |)⌋ + 1 (balanced tree) to a maximum
of |N | (tree degenerated in a list). Aiming at balancing some
degree of freedom in the data structure (which we dynamically
re-arrange at every access) while avoiding degeneration, we
set a limit on the height of the tree to be at most 2⌊log(|N |)⌋
(Section VI illustrates enforcement of such a limit), which is a
well recognized performance trade-off between the height of a
perfectly balanced tree (⌊log(|N |)⌋) and the amortized height
of an unbalanced tree with the target bubbling mechanism
in place (3⌊log(|N |)⌋ − 2) [9]. The longest path in our data
structure has at most 2⌊log(|N |)⌋+1 nodes. Also, we assume
the children of the root to always be read. Hence, we set
the constant number of nodes to be read at every access to
2⌊log(|N |)⌋+2. If, as it will typically be the case, the number
of nodes in the path to the target plus the other child of the root
(meaning the one not in the path to the target) do not reach
2⌊log(|N |)⌋+2, we complement the access with other nodes,
which we call fillers. (The reason for assuming both children of
the root to be always read is to accommodate flexibility in the
choice of indistinguishable fillers.) Every access request will
always be translated into a sequence A = ⟨n1, . . . , nm⟩, with
m = 2⌊log(|N |)⌋+ 2, of accesses to nodes (corresponding to
blocks for the server).

In choosing fillers, we need to ensure their indistinguisha-
bility from nodes in a target path. In this case, from the point
of view of the server, any of the m nodes accessed could
correspond to the actual target of the search, others being nodes
in the path to the target or fillers, all indistinguishable one from
the other. In this respect, choosing fillers just at random at any
place in the data structure would not provide such a charac-

teristic, as being completely unrelated in the structure, they
could be recognizable as fillers. In fact, while (as we will see
later on) we prevent the server from accumulating topological
information across accesses, the server can observe a sequence
of blocks accessed where a sequence of never-downloaded
blocks is followed by a sequence of blocks intersecting with
a previous search. This situation would expose the blocks in
the intersection as fillers (a path is always connected, hence
their occurrence after the never-downloaded blocks implies that
they cannot belong to the path). A possible natural choice
of selecting fillers at random wherever in the tree could
then make them, or others following them in the sequence,
recognizable as fillers. To avoid exposing accesses to such
intersection attacks, we (randomly) choose fillers in such a
way that they are connected to the paths (either target or fillers)
being followed in the tree (i.e., a node can be accessed only
if its parent has been) and always proceed forward in levels
in the tree (i.e., the node visited next in the sequence cannot
have a level lower than the one visited before it). Selecting
fillers so that they are connected to nodes already accessed
(path continuity) and with monotonically non-decreasing levels
(forward visit) avoids possible intersection attacks from the
server, guaranteeing fillers to be indistinguishable from a
genuine path to a target.

Definition 4.1 (Uniform access): Let T be the data struc-
ture. A sequence A = ⟨n1, . . . , nm⟩ of nodes in T is said to
be a uniform access iff: 1) m = 2⌊log(|N |)⌋ + 2 (constant
number); 2) ∀ni ∈ A : nj ∈ path(ni, T) =⇒ nj ∈ A (path
continuity); 3) level(ni, T) ≤ level(ni+1, T), i = 1, . . . ,m−1
(forward visit).

Ensuring forward visit requires to ‘think ahead’ for the need
of fillers, to avoid being blocked in a situation where there is
no node that can be accessed at a level equal to or higher than
the last one visited, but fewer than m = 2⌊log(|N |)⌋+2 nodes
have been accessed. An easy way to avoid ending in such a
situation consists in keeping track, in each node, of the number
of nodes in the longest path of its children (i.e., for each of
them, their height plus one), and, when performing searches, of
the number of nodes to be still read to reach the fixed number
2⌊log(|N |)⌋+2. Searches can then be performed level by level
(forward visit). After having read the root and its children, we
choose, in addition to the node to the target, one or more
filler nodes, children of a node read at the previous level (path
continuity), such that the sum of the number of nodes in their
longest path is greater than the difference between the number
of nodes to be still read and the maximum length of the path to
the target. If a target is retrieved at level l, the search (at that
and subsequent levels) continues with filler nodes only. The
nodes to be accessed at each level in the tree are downloaded
in sequence and in random order, to prevent the server from
identifying how many blocks are accessed at each level and
which of them is along the path to the target.

Figure 2 illustrates two possible accesses on a sample data
structure with 26 nodes, which then requires to visit 10 nodes
at each access. Nodes involved in the access are circled with
solid lines and the numbers at their side represent the order in
the sequence of requests to the server. In both accesses, any of
the accessed nodes could be the actual target or a filler. Also,
the two accesses, while visiting different nodes, could actually
correspond to a search for the same target (e.g., B).

A C

D

E

F

G

H

I

J

K

L

M

2

45 6

78 9

10

B

1

N

O
3

Q

P

S

T

V

W

X

Y

Z

U

R

A C

D

E

F

G

H

I

J

K

L

M

3

5

7

1

N

2

Q

P

S

T

V

W

X

Y

Z

U

R

4

6

8

9

10

O

B

(a) (b)

Figure 2. Two sample accesses

V. TARGET BUBBLING

Our second protection technique aims at hiding from the
server subsequent (or close) searches for the same target.
Even with fillers, such searches would necessarily contain
the same path, and this situation could be easily observed by
the server that would see access to the common sequence of
corresponding blocks. For instance, any search for R in the
tree in Figure 2 will visit nodes M, O, Q, W, U, S, R and
3 filler nodes (one of which will always be G), accessing the
corresponding blocks. Observing accesses that visit 8 common
blocks, the server can reasonably infer that the accesses are for
the same target with high probability. The longer the common
sequence, the higher the probability that the target of the
two accesses is the same. To protect against such intersection
attacks, our second technique simply dictates to bubble the
target of a search up in the tree, so that at the end of the access,
the target appears at the top of the tree (regardless of where
it was before the search). A subsequent search for the same
target (repeated search) would find the target high in the tree,
then randomly proceeding following filler nodes. This would
result in an access retrieving a set of blocks different from
the previous one, hence appearing to the server as a search
for a different target. A repeated search would then not be
recognizable as such by the server.

In choosing where to move the target up in the tree, we
note that placing the target in the root would seem the best
choice for protecting repeated subsequent searches (as any
search always accesses the root anyway). This would possibly
expose recurrences of the same target at a fixed distance. In
fact, after a sequence of all different searches (each aiming at
a different target), the target of the m-last search would be
at level m in the tree (having first been placed in the root
and then moved down m times to accommodate the bubbling
of the subsequent targets), and the server could exploit such
a knowledge to make inferences on the target of the access.
While noting that, due to the synergy with the other techniques
of our approach, this situation would not be that deterministic,
to avoid any determinism in the first place, we move the target
up in the tree choosing the (high) level at which to place it
at random. We assume a level top (which we expect to be
typically 1 to 3) above which the target should be placed. At
every access, the new tree level at which the target should
be placed is randomly chosen between 1 and the minimum
between top and the current level of the target (a target is
never moved down).

Moving the target up in the tree at the wished level is
realized by applying classical single tree rotations of binary

y

x

T2T1

T3

ρ(x, T)

−→
←−
ρ(y, T ′)

y

T3T2

T1

x

y

(a) T (b) T ′

Figure 3. Tree rotations

search trees. A rotation essentially swaps the child-parent
relationship between a node and its parent, placing the node
at the level of its parent and making the parent a child of the
node (right if the node was the left child of its parent and
vice versa). We denote the rotation of a node n in a tree T as
ρ(n, T). Figure 3 illustrates the result of such rotations, where
tree T ′ in Figure 3(b) is the result of rotation ρ(x, T) and
tree T in Figure 3(a) is the result of ρ(y, T ′). In the figure, we
single-out only nodes directly involved (x and y), representing
the remaining ones as sub-trees (T1, T2, T3). Formally, a tree
where the target has bubbled up is defined as follows.

Definition 5.1 (Bubbled target): Let T be the data struc-
ture, n be a target node, l=level(n, T) be its level before the
access, and l′ ≤ l be the new level at which the target should
be placed. The data structure T ′ equivalent to T where the
target has bubbled up is T ′ = ρ(n, (ρ(n, . . . (ρ(n, T))))), with
level(n, T ′) = l′, obtained by recursively applying a sequence
of l′ − l rotations.

For instance, Figure 4(a) illustrates the nodes accessed by a
search for U. The target is double circled, nodes in the path to
the target are colored, and filler nodes are denoted with solid
lines. Curved arrows on arcs show the rotations to bubble the
target to the root level, swapping U with (in sequence) W, Q,
O, and M. Figure 4(b) shows the resulting tree.

As already noted, since at each access the target is moved
up in the tree, the targets of recent accesses will be located
high in the tree (close to the root), while nodes that have not
been accessed since long time will be at deeper levels in the
tree (close to leaves). This is due to the fact that rotations that
bubble up the target change the level of the other nodes in
the top levels of at most one (up or down), and therefore it
takes a few accesses for a high (or raised high) node to move
down in the tree (e.g., the root node in Figure 4(a) becomes
the left child of the root in Figure 4(b)). We also note that
repeated accesses to a same target keep it in the top levels of
the tree. This provides protection of repeated searches, since
all such accesses, following random filler nodes in the tree,
will look all different. We also note that bubbling the target
with a recursive sequence of rotations causes changes in the
topology of the tree, adding confusion to the server.

VI. SPECULATIVE ROTATIONS

Bubbling up the target after each access causes a natural re-
organization of the tree. Because of rotations, at each access
the height of the tree can increase (or decrease) by one. A
long sequence of accesses can then potentially unbalance the
tree structure. To ensure that any node can be reached via a
uniform access, we need to maintain the height of the tree
to be at most 2⌊log(|N |)⌋. To this end, at every access, we
consider nodes involved in the access in decreasing order of
level in the tree, and, for each node, we evaluate whether its

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

V

W

X

Y

Z

U

1

3 2

45

67

8

9

10

A

B

C

D

E

F

G

H

I

J

K

L

V

W

X

Y

Z

P

Q

R

S

T

N

O

M

U

G

H

I

J

K

L

V

W

X

Y

Z

M

U

A

D

E

FA

B

C

N

O

P

Q

R

S

T

(a) accessed nodes and target bubbling (b) speculative rotations (c) resulting tree

Figure 4. Nodes downloaded to access U and rotations performed to bubble up the target (a), tree with the target bubbled to the root and speculative rotations
(b), and the resulting tree (c)

rotation can shorten some paths in the tree. Intuitively, rotation
ρ(ni, T) decreases by one the length of the path reaching one
of the children of ni, while increasing by one the length of the
path reaching ni’s sibling, say nj . For instance, with reference
to Figure 3, rotation ρ(x, T) shortens of one the length of all
paths ending in T1 and increases by one the length of all paths
ending in T3 (the contrary happens for rotation ρ(y, T ′)). It is
then easy to see that rotating ni is potentially beneficial to
shorten (or maintain limited) the height of the tree every time
the height of the subtree rooted at ni is greater than the height
of the subtree rooted at its sibling nj of at least two.

Definition 6.1 (Beneficial rotation): Let T be the data
structure, ni be a node in T , and nj be its sibling. Rotation
ρ(ni, T) is beneficial to possibly keep the height of T limited
iff height(ni, T)>height(nj, T) + 1.

For instance, the beneficial rotations that are performed over
the tree in Figure 4(b), resulting when bubbling up the target,
are ρ(C,T) and ρ(Q,T). Enforcing them results in the tree in
Figure 4(c). Note how rotating C decreases the length of the
paths to D and F, decreasing also by one the height of the
tree itself. Note also how the topology of the tree has changed
with respect to the tree before the access (Figure 4(a)).

A beneficial rotation does not guarantee to reduce the
height of the tree, but it can shorten sub-trees, hence avoiding
later degeneration of the structure. At every access, we evaluate
whether rotating accessed nodes would be beneficial and, if
so, we perform such speculative rotations. This regardless of
the height of the tree, to also try to avoid reaching a length
close to our limit of 2⌊log(|N |)⌋. As only exception, we never
perform rotations on direct children of the target (or of one
of its ancestor) as this would decrease the level of the target
(which should instead remain at the level where it was bubbled
up). For instance, considering the tree in Figure 4(b), even if
rotation ρ(M,T) is beneficial, it would move the target to a
lower level. In our example, the height of the tree resulting
from the application of speculative rotations (Figure 4(c)) is 5
while the height of the tree before access (Figure 4(a)) was 6.

Typically, simply performing beneficial rotations at every
access allows maintaining the height of the tree within our
aimed maximum of 2⌊log(|N |)⌋. In the unlikely case (one
over 3,000 in our experiments) where after such speculative
rotations the tree height is 2⌊log(|N |)⌋+1 (given our control
it can certainly never go higher than that at any access), a
further pass of rotations can be performed.

An additional advantage of our speculative rotations is

related to the protection of access privacy. In fact, a rotation
swaps the parent-child relationship between the rotated node
and its parent, also changing the parent of one of its children
(see Figure 3). Therefore, rotations change the topology of
the tree, modifying search paths for some nodes. Since the
topology changes at every access, the server cannot accumu-
late knowledge on it. We note that accommodating different
topological structures is also the reason why we do not aim at
maintaining the tree perfectly balanced (as the structure would
have less degrees of freedom), and set instead - was a trade-
off - our height limit to be twice the height of the perfectly
balanced tree.

VII. PHYSICAL RE-ALLOCATION

Enforcing rotations to bring up the target and shorten
paths changes the logical organization of the tree. As noted,
such a change in topology provides some protection since
it changes the location of nodes and therefore paths to be
followed to reach them. Still, since the tree is a search tree,
even if topology changes, strong commonalities can remain
even after rotations. For instance, a rotation reverses a parent-
child relationship between two nodes ni and nj , but still the
two will be connected. A sequence of rotations can bring more
changes, but still common sub-paths may remain. The fact that
the server can infer the path followed to reach a given node is
not an issue per se since, as already noted, the index on which
the tree is organized does not convey any information on the
original index values and their relationships. However, if the
server can maintain such a knowledge across the accesses, it
can potentially reconstruct the topology of the tree and observe
paths in common between different accesses, hence possibly
learning information on an access.

We note that the server only observes accesses to blocks
(not nodes) and that the parent-child relationship is (partially)
known to the server since the access is iterative: a block will be
child of one of the blocks accessed before. The uncertainty of
the parent-child relationship comes from the fact that more
nodes can be accessed at any level of the tree (since in
addition to the target, also filler nodes will be followed). The
(i − 1)-th block accessed in an access sequence could be a
parent, uncle, brother or even not be in a direct relationship
with the i-th accessed block. For instance, in the sequence of
nodes A=⟨M,O,G,Q,B, W,C,U,S,R⟩ (Figure 4(a)) accessed to
retrieve U, M is parent of O, O is sibling of G, G is uncle of
Q, Q is not in relationship with B. However, such uncertainty

cannot provide protection from a server observing common
blocks among sequences of accesses. To prevent the server
from accumulating information on the topology of the tree, we
destroy such information by re-allocating all nodes involved
in an access changing their physical location (i.e., changing
the blocks where they are stored). At the physical level, and
therefore from the point of view of the server, topological
information is destroyed. A block idi that contained the child
of another block idj before an access can now contain a
node appearing in a completely unrelated path that might even
have only the root in common with the path to idj , or be
the root itself. A subsequent access visiting the same block
idi might (and most probably will) pertain to a completely
different path in the tree. In other words, with re-allocation
the (even uncertain) information on relationships among blocks
that can be observed in an access will not hold anymore after
the access is completed, preventing knowledge accumulation
by the server. The physical re-allocation of nodes is formally
defined as follows.

Definition 7.1 (Re-allocation): Let T be the data structure
and ∀ni ∈ T , idi = φ(ni) be the identifier of the physical
block storing ni before the access. Let A be the nodes involved
in an access execution and π : IDA → IDA be a random
permutation of IDA = {φ(n) : n ∈ A}. Re-allocation changes
the allocation function φ for all ni ∈ A to be φ(ni) = π(idi).

Re-allocation entails moving a node to a different physical
block (or leaving it at the same if so dictated by the permu-
tation). Re-allocation requires to re-encrypt the node with a
different random salt. All blocks accessed will be rewritten
and will all look different from any read block. The server
will then not be able to learn any information on the re-
allocation process and, in particular, will not be able to trace
where the former content of a block might have been re-
allocated. We note that, at the physical level, re-allocation
also requires to update the parents of the re-allocated nodes,
to guarantee the correct representation of pointers to children
(and then the correctness of the tree structure). This is not
an issue since the path continuity guaranteed by the access
(Definition 4.1) ensures that the parent of every node involved
in the re-allocation is also involved in the re-allocation (and
therefore it is available to the client for content update and
re-writing). Figure 5(a) illustrates the original content of the
blocks accessed by the search in Figure 4, an example of their
physical re-allocation, and their content after re-allocation.
In the figure, we report in each node its index value and
the identifier of the blocks storing its children (symbol −
denotes the absence of the child). The block identifier is
reported on the left of each block. Figures 5(b-c) illustrate the
server view before (b) and after (c) the access, where blocks
downloaded/uploaded are colored.

Thanks to the fact that every node is moved to a dif-
ferent untraceable physical block every time it is accessed,
re-allocation prevents the server from determining whether
two accesses visited a same node (or sub-path). Hence, the
server will not be able to reconstruct the frequency of accesses
to nodes by observing accesses to physical blocks. Indeed,
accesses that aim at the same target (or visit the same path in
T) will access a different set of physical blocks. Furthermore,
since re-allocated nodes belong to different paths and are
located at different levels in the tree, re-allocation also destroys
information the server could have gained on the topology of

00 R
-

00→13 00 Q
25

- 24
.

04 G 25 04→19 04 C 14
07 18

05 U
15 05→12 05 W

02
02 21

.

12 C - 12→04 12 U 15
18 05

13 M 04 13→15 13 R -
19 -

14 W
05 14→05 14 B

16
21 -

15 S
00

15→24 15 M
19

23 00
.

19 O 01 19→25 19 G 04
24 07

.

24 Q
09

24→00 24 S
13

14 23

25 B 16 25→14 25 O 01
12 09

00 βΥ #ϖ 01

02 γι πu 03

04 Ξψ ϵh 05

06 +Ω ϕΨ 07

08 ρ$ pΓ 09

10 ϵr q∆ 11

12 τw θµ 13

14 eυ αη 15

16 ζj εσ 17

18 fλ κω 19

20 Σχ ΛΘ 21

22 ϱδ φϑ 23

24 νξ ς! 25

00 mµ #ϖ 01

02 γι πu 03

04 kψ ων 05

06 +Ω ϕΨ 07

08 ρ$ pΓ 09

10 ϵr q∆ 11

12 rα :τ 13

14 Ξς ξΥ 15

16 ζj εσ 17

18 fλ ηj 19

20 Σχ ΛΘ 21

22 ϱδ φϑ 23

24 θβ κυ 25

(a) (b) (c)

Figure 5. An example of physical re-allocation (a) and of view of the server
before (b) and after (c) the access in Figure 4

the tree by observing the sequence of accessed blocks/nodes.
In fact, a block storing a node at level i in the tree might
contain after the access a node in a completely different path
and at a completely different level.

VIII. ANALYSIS AND EXPERIMENTAL EVALUATION

To assess the access privacy provided by our approach
we need to evaluate the indistinguishability of accesses or -
put another way - the degree of confusion on the accesses to
the server. To this end, we start noting that the physical re-
allocation employed by our approach can be compared with
the physical re-allocation of the shuffle index [5] (it is actually
stronger). In particular, the shuffle index re-allocates the logical
nodes accessed on disjoint physical paths of its tree structure
on a per-level basis. The entropy-based analysis used to show
the soundness of such a mechanism in obfuscating the mapping
between nodes and blocks applies also to our approach. In ad-
dition, our approach enjoys even stronger guarantees than the
ones proved in [5]. Indeed, the shuffle index changes physical
location of only a limited set of nodes and operates only within
level of the logical structure, while our approach changes the
allocation of all nodes involved in an access, operating also
across levels, hence producing a complete re-allocation of
the whole set of accessed nodes. With respect to short-term
observations (protected by the cache in the shuffle index) our
approach, bubbling the target at the top, is clearly protected
since repeated accesses are indistinguishable, as already noted.
Enjoying such theoretical analysis and observations, which
apply also to our solution, we then performed an experimental
analysis on our approach. We evaluated how and to what extent
our proposal hides to the server the correspondence between
nodes and blocks where they are stored. We implemented
our approach in Java and evaluated: i) how the height of the
data structure can vary; ii) the effectiveness of rotations in
protecting access privacy; iii) the degree of obfuscation of the
actual paths observed by the server at every access request
due to the physical re-allocation.

In our analysis, we used a data structure with 256 nodes and
a height ranging from 8 to 16. We simulated different access
profiles by synthetically generating a sequence of target index
values that follow a self-similar probability distribution with

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Profile 50-50 Profile 80-20 Profile 90-10

Minumum

Maximum

Figure 6. Average height of a tree with 256 nodes, considering 500, 000
accesses

skewness γ in the range [0, 0.5]1. A value of γ=0.5 generates
a sequence of values that follows a uniform probability density
function. The results of our experimental evaluation have
been obtained executing 500, 000 accesses for target values
drawn from three self-similar distributions [10] with γ=0.5
(50-50 rule), γ=0.20 (80-20 rule), and γ=0.10 (90-10 rule),
respectively.

Data structure. Figure 6 shows the average height of the
tree for the different access profiles. As visible from the
figure, the average is around 1.5h (with h=⌊log(|N |)⌋ as a
baseline), with a sample standard deviation of 1. Hence, the
data structure maintains itself within the set limit, also nicely
providing rooms for fillers in the search. Since the height of
the tree dictates the number of client-side interactions that
would be needed to access the data structure (following a path
in the tree), we note that, requesting a constant number of
accesses, our solution exhibits a ×2 overhead with respect to
an encrypted binary tree (i.e., an encrypted binary tree that
still requires the client to visit the tree level-by-level), which
however would provide no access privacy protection at all.

Effectiveness of rotations. To evaluate the effectiveness of
rotations (target bubbling and speculative) for protecting access
privacy, we analyzed the average length of the common prefix
paths to a common target in sequences of subsequent accesses.
Figure 7(a) shows the results of such an analysis, where the
x-axis reports the node identifiers in ascending order, and the
y-axis reports the average length of the common prefix. It
is interesting to note that the reported average value for the
maximum common prefix of the logical paths aimed at the
same target is around one third the average height of the tree
(Figure 6), implying that rotations largely change the topology
of the data structure. Also, if the statistical distribution of
the target values is highly skewed, only a few values will
be accessed for serving most of the access requests. The two
spikes in Figure 7(a) confirm that our approach keeps as near as
possible to the root the most recently (and frequently) accessed
nodes, thus being effective in making subsequent accesses to
the same target indistinguishable from random ones.

Path obfuscation. The experimental evaluation validates the

1Given an index domain of cardinality d, a self-similar distribution with
skewness γ provides a probability of 1−γ of choosing one of the first γd
domain values; the same proportion holds when considering any sub-range of
the domain values.

ability of physical re-allocation involving all accessed nodes
to provide indistinguishability of the profiles of the accesses
to the data structure.

Figure 7(b) shows the rank/frequency distribution of block
identifiers observed by the server when only physical re-
allocation is applied. The figure shows that the physical re-
allocation alone is already able to make skewed frequency
distributions of the accesses to the blocks quite close to the
one corresponding to a flat access profile.

Combined protection. The small differences among the curves
in Figure 7(b) are a consequence of the information leakage
coming from the observations of the blocks shared by different
access requests. Such differences disappear thanks to the
contribution of rotations. This is visible in Figure 7(c), showing
the rank/frequency distribution of block identifiers observed
by the server during the execution of access requests when
all our protection techniques are applied. The figure validates
our approach to preserve access privacy as it shows how the
proposed techniques make skewed frequency distributions of
accesses to the blocks statistically indistinguishable from the
one produced by a uniform access profile.

IX. RELATED WORK

With the increasing interest in data outsourcing, many
proposals have first been devoted to the protection (of the
confidentiality) of data in storage (e.g., [11], [12]). Re-
cently, significant attention has been given to the problem
of protecting confidentiality of accesses. Current proposals
are based on Private Information Retrieval (PIR) techniques
or on dynamically allocated data structures, which change
the physical location where data are stored at each access
(e.g., [3], [4], [5], [6], [7], [13], [14], [15], [16], [17], [18]).
PIR solutions are computationally expensive and do not protect
content confidentiality (e.g., [3], [4]). Dynamic data structures
rely on the Oblivious RAM (ORAM) for protecting content,
access, and pattern confidentiality (e.g., [6], [7], [16], [18]),
or on tree-based structures (e.g., [5], [13], [14], [15], [17]).
While preliminary ORAM-based proposals suffer from high
computational and communication overheads, recent attempts
(e.g., ObliviStore [6] and Path ORAM [7]) make ORAM more
practical in real-world scenarios [19].

Path ORAM based solutions [7] store data both at the
server side and in a local cache (stash) at the client side.
The client also stores a position map (with size proportional
to the number of data blocks) that keeps track of where
the data are physically stored. To reduce to one block the
storage at the client, recent proposals move the stash from
client to server and store the position map recursively on
the server in smaller ORAMs. These approaches, however,
cause an increase in response time and a bandwidth blowup
of over two orders of magnitude in data exchange between
client and server [8]. To reach a constant bandwidth blowup,
an additively homomorphic encryption construction can be
used to perform server computations (i.e., ω̃(log4 N), where
N is the number of outsourced data blocks), but at the
cost of an increased computational effort for the client (i.e.,
ω̃(log2N)) [20]. Our approach applies only efficient symmetric
encryption primitives and has limited bandwidth blowup and
client storage capacity (ω(logN) blocks) as well as lower
computational requirements (O(logN)) at the client side.

Solutions that rely on tree-based data structures provide

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

a
ve

ra
g
e
 le

n
g
th

 o
f
lo

n
g
e
st

 p
re

fix
 m

a
tc

h

node identifiers

Access profile 90-10
Access profile 80-20
Access profile 50-50

 30000

 32000

 34000

 36000

 38000

 40000

 0 50 100 150 200 250

co
u
n
t

rank of block identifiers

Access profile 90-10
Access profile 80-20
Access profile 50-50

 30000

 32000

 34000

 36000

 38000

 40000

 0 50 100 150 200 250

co
u
n
t

rank of block identifiers

Access profile 90-10
Access profile 80-20
Access profile 50-50

(a) (b) (c)

Figure 7. Average length of the maximum common prefix among the paths reaching the same target (a) and rank/frequency distributions of the block identifiers
corresponding to self-similar access profiles with γ∈{0.5, 0.2, 0.1} when only the physical re-allocation (b), and when all protection techniques are applied (c)

a good trade-off between privacy and performance (e.g., [5],
[13], [14], [15], [17]). Among them, the shuffle index has first
been proposed in [13]. A shuffle index is a dynamically allo-
cated B+-tree offering access and pattern confidentiality, while
supporting efficient key-based data organization and retrieval.
The B+-tree is stored at the server side in encrypted form
and jointly uses cover searches (fake searches indistinguishable
from actual searches, executed in parallel), cache (most recent
visited target paths), and shuffling for protecting the confiden-
tiality of accesses (corresponding to physical re-allocation).
The shuffle index has then been extended to support access
control [21] and concurrent accesses by different users [14], to
operate in a distributed scenario characterized by the presence
of multiple (three) storage servers [15], and to support insertion
and removal of tuples in the outsourced relation [5]. The
main differences between the shuffle index and our solution
is that they are based on different protection techniques and,
in particular, the shuffle index does not change the logical tree
structure but relies mainly on shuffling. Also, our proposal
does not require any client-side storage.

X. CONCLUSIONS

We presented a dynamic tree-based data structure for
storing resources at an external server and guaranteeing access
privacy. Our approach does not require to maintain any storage
at the client side. The advantage of being stateless, besides
not requiring the client to commit resources, also consists in
accommodating multiple clients and providing resilience of
the structure against failures or non availability of the client.
The dynamically restructuring of the tree at both logical and
physical levels provides access privacy, making the frequency
distribution of accesses to the physical blocks indistinguishable
from the one produced by a uniform access profile.

ACKNOWLEDGMENTS

This work was supported in part by the EC within the
7FP under grant agreement 312797 (ABC4EU) and within the
H2020 under grant agreement 644579 (ESCUDO-CLOUD).

REFERENCES

[1] S. De Capitani di Vimercati, S. Foresti, and P. Samarati, “Managing and
accessing data in the cloud: Privacy risks and approaches,” in Proc. of
CRiSIS, Cork, Ireland, October 2012.

[2] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements
for resource management in cloud computing,” in Proc. of CSE, Paphos,
Cyprus, December 2012.

[3] R. Ostrovsky and W. E. Skeith, III, “A survey of single-database private
information retrieval: Techniques and applications,” in Proc. of PKC,
Beijing, China, April 2007.

[4] C. Cachin, S. Micali, and M. Stadler, “Computationally private in-
formation retrieval with polylogarithmic communication,” in Proc. of
EUROCRYPT, Prague, Czech Republic, May 1999.

[5] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Shuffle index: Efficient and private access to outsourced
data,” ACM TOS, vol. 11, no. 4, pp. 19:1–19:55, October 2015.

[6] E. Stefanov and E. Shi, “ObliviStore: High performance oblivious cloud
storage,” in Proc. of IEEE S&P, San Francisco, CA, May 2013.

[7] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path ORAM: An extremely simple Oblivious RAM
protocol,” in Proc. of CCS, Berlin, Germany, November 2013.

[8] L. Ren, C. W. Fletcher, X. Yu, A. Kwon, M. van Dijk, and S. Devadas,
“Unified oblivious-RAM: Improving recursive ORAM with locality and
pseudorandomness,” IACR Cryptology ePrint Archive, vol. 205, 2014.

[9] D. Sleator and R. Tarjan, “Self-adjusting binary search trees,” J. ACM,
vol. 32, no. 3, pp. 652–686, Jul. 1985.

[10] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. Weinberger,
“Quickly generating billion-record synthetic databases,” in Proc. of
SIGMOD, Minneapolis, MN, 1994.

[11] H. Hacigümüs, B. Iyer, S. Mehrotra, and C. Li, “Executing SQL over
encrypted data in the database-service-provider model,” in Proc. of
SIGMOD, Madison, WI, June 2002.

[12] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and efficient
ranked keyword search over outsourced cloud data,” IEEE TPDS,
vol. 23, no. 8, pp. 1467–1479, 2012.

[13] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Efficient and private access to outsourced data,” in Proc.
of ICDCS, Minneapolis, MN, June 2011.

[14] ——, “Supporting concurrency and multiple indexes in private access
to outsourced data,” JCS, vol. 21, no. 3, pp. 425–461, 2013.

[15] ——, “Three-server swapping for access confidentiality,” IEEE TCC,
2016, pre-print.

[16] J. Dautrich and C. Ravishankar, “Tunably-oblivious memory: Gen-
eralizing ORAM to enable privacy-efficiency tradeoffs,” in Proc. of
CODASPY, San Antonio, TX, March 2015.

[17] P. Lin and K. Candan, “Hiding traversal of tree structured data from
untrusted data stores,” in Proc. of WOSIS, Porto, Portugal, April 2004.

[18] P. Williams, R. Sion, and B. Carbunar, “Building castles out of mud:
Practical access pattern privacy and correctness on untrusted storage,”
in Proc. of CCS, Alexandria, VA, October 2008.

[19] V. Bindschaedler, M. Naveed, X. Pan, X. Wang, and Y. Huang,
“Practicing oblivious access on cloud storage: The gap, the fallacy, and
the new way forward,” in Proc. of CCS, Denver, CO, October 2015.

[20] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs,
“Onion ORAM: A constant bandwidth blowup oblivious RAM,” in
Proc. of TCC, Tel Aviv, Israel, January 2016.

[21] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Access control for the shuffle index,” in Proc. of DBSec,
Trento, Italy, July 2016.

