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Metadynamic Metainference has been recently in @ed\as theoretical framework
to determine structural ensembles by combining and weighting by their noise multiple
sources of experimental data with moleculaz.me ani)s force fields and Metadynam-
ics simulations. Here we build upon th ec.i.tia‘ryevelopments to further extend and
streamline the computational approach a t%"éhow that Metadynamic Metainfer-
ence can actually determine a strquB\@semble for a disordered peptide that is

essentially independent from the m force field. We also show that it is possi-
ble to use a very computation %f@l nt implicit solvent force field in place of very

expensive StateoftheQLQ
N
A &/
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olvent ones without a significant loss in accuracy.
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Publishihg INTRODUCTION

Structural ensembles of proteins are becoming an invaluable tool to understand biological
mechanisms at the molecular level' ®. Accurate ensembles can represent the conformational
fluctuations of proteins and enable the observation of multiple subz/ates populated by these

Nen structure and

teins that are intrinsically

molecules in given experimental conditions, thus providing a lin

function®”. This is of particular importance when considerin

dynamic, like multi-domain proteins with disordered linkerg arte, move in general, intrinsi-

cally disordered proteins and regions® 10, ~—

_—
Determining structural ensembles for such dynamic Sys‘sem is, however, a challenging

task that requires at the same time an accurate delh nd a thorough sampling of the

system’s conformational space!12, Recentl\&‘cNts d‘&b these challenges, we have intro-
1

duced Metadynamic Metainference!®* (M&l\ tainference!® is a Bayesian framework

~—

ancing them. In this approach, ong mo s the a priori knowledge about a system (i.e.

that allows integrating multiple sourc %)’1;1K tion about a system and optimally bal-
its physicochemical properties asxdic d‘by molecular mechanics force fields) using data

acquired from experimental measu nts, and balances those by sampling on-the-fly a sta-

tistical distribution of noises t C effectlvely take into account all the sources of errors

(i.e. ensemble averagin

nsﬁt:cal errors, systematic errors and experimental data mod-

15,16

elling errors). By combini tainference with Metadynamics one can then enhance

h free-energy barriers on the time scale of standard molecular

the sampling of the e(tairyerence model and explore conformational states that can be
separated by si w

dynamics®?. 5

While€Metainférence, as well as other statistical methods to determine ensembles!!!
can update pri I/knowledge to take the available experimental knowledge into account, the

questionis o}en about the possibility of obtaining ensembles that do not depend on the

%rior knowledge employed. From a theoretical point of view, the farther the prior
roviding a good description of a system, the more abundant and better the data
st\be to obtain a good representation of it'3. In practice, one could be interested in how
close the ensembles determined for a disordered system are when employing state-of-the-art

molecular mechanics force fields and different sources of experimental datal.

In the following we have studied the disordered peptide EGAAWAASS'” making use of
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Publishihg; M, two state-of-the-art force fields from different families that have given promising
results in describing folded and unfolded proteins (CHARMM?22*!® and AMBER99SB with
TIP4P-D') and integrated three different sources of commonly available experimental data,
NMR, chemical shifts (CS), 3J-couplings and Residual Dipolar Couplings (RDCs). This
model system has been employed recently, due to the availability (?/multiple accurate NMR
measures' 2%, to highlight the deficiencies of force fields in describing disordered systems?%2L.
M&M allowed us to determine structural ensembles for t@de that are essentially

indistinguishable from the point of view of a number o ixjep de

parameters. These

include actual experimental observables, probability distributions«of multiple global degrees

—
of freedom and secondary structures contents.

Prompted by this observation we challenged Mé& determine an ensemble using
CHARMM36%? with the EEF1-SB23:24 implici%}\@odel as an extremely computation-

ally inexpensive prior. In the case of the c&}%‘ tide we could determine an ensemble
of comparable quality with those obt '11(‘3d\‘mm e explicit solvent force fields but at a
fraction of the computational cost. hm could alleviate the computational cost of
studying systems that require thise arge simulation boxes and huge amounts of water

molecules. \\
II. THEORY AN E\SIODS

y

Metainference'® e loys/Bayesian statistics to allow updating a prior distribution by

%:\ad itional information. In particular, Metainference is derived to

considering some

take into agcountdinformations that are the result of ensemble averaging, i.e. averaging over

a full prébability

S/

mechdnistic ¢ field that describes more or less accurately the interactions of the atoms.

Additional i&ormations are structural equilibrium measures like those obtained by NMR
spectros

istribution. In computational structural biology the prior is usually a

py. Equilibrium observables are always the result of time and ensemble averaging
}nﬂ g such should be employed to update an ensemble and not the probability of observing
a‘single structure. This latter case is a good approximation when the single structure rep-
resents by far the most populated state of the system. Notably, Metainference is equivalent

to Inferential Structural Determination if ensemble averaging is not taken into account?.

In M&M™ multiple simulations, replicas, are performed in parallel for the same system,
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Publishi:’mgi he same conditions and using the same force field. These independent simulations are
coupled with an energy defined as a function of the difference between the average over
the replicas of a backcalculated quantity and a reference value for the same quantity (e.g.
the difference between a chemical shift calculated for all the replicas and averaged and the

experimental value for that same chemical shift). The sampling of(éach replica is enhanced

2627 (in this case by Parallel Bias Metadyna 'ogi)’

n M&M Metainference

by Metadynamics ich adds a history
dependent bias as a function of a set of collective variables

and Metadynamics are coupled by the calculation of th rage over the replicas. While

in standard Metainference each replica contributes with same weight to the average of
backcalculated experimental observables, in M&M the Weigilte average provides a better
estimator. This is particularly feasible in the @ wh he same bias is applied to all

replicas in such a way that in the limit of a q&%—s!;:i‘)bias the weight of a replica can be

approximated on the fly as w, oc exp (+VM ))/ksT).
In the following we first reprise M aln heory, then we introduce a simple on-
the-fly estimate for the only param e etalnference and introduce a correction to take

into account the effect of the wei ef'age on the distribution of the forces when using

SW ference to work with data defined but for a mul-
tiplicative constant. All the memescribed in this work are implemented and available
in PLUMED? a worki gﬂ!xg:vomp ete input file that allows reproducing our results and

Metadynamics. Finally we exten

gain a better understaAnding of M&M is provided in the Supporting Information.

A. Metainfi re%

The e ergy ofia Metainference simulation is defined as —kgT In(P) where kg is the
Boltzmann nstént T the temperature and P the Metainference posterior distribution,

alcul ted 0 r a finite number of replicas, N,. Its general definition is:

) .
S \P(f, o®, X, USEM|d) = Hp Hp (d; |f17 (fZ|X USEM)p(Urz)p(Uz‘SEM)7 (1)

where p(d;| fi UEZ-) is the likelihood of the experimental data d; given f; and a vector of afi
f; is the average of the forward model f; used to predict the experimental observable i from

a model calculated on an infinite number of replicas and oP; is an uncertainty parameter

4
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Pub”Shiﬂ‘g}L ; describes random and systematic errors in the experimental data as well as errors in the

forward model. p(f;| X, oSEM) is the likelihood of observing f; given an estimate (f;)y, over

a finite number of replicas, where (f;(X))n, = N% ZT],V:Tl fi(X,) and oPM is an uncertainty

parameter. p(X,), p(oy;) and p(oP™) are the priors on the conformations X, (i.e. the

force field), on the uncertainty o® in the experimental and backcaﬂdﬂated data, and on the
uncertainty ¢>"M in the estimate of the true ensemble average, ectively.

A simple form can be obtained by choosing a Gaussian for %?e likelihood p(d;| f;, o5

given that p( fZ|X oPFM) is a Gaussian for the central limit, ore In this case it is possible

to write the Metainference energy as:

e (. <(>'>' K‘ :

Bui(X,0ld) = > { Ea(X, +kBTZ 1n2m +-1 02]}, 2)

r=1 T’lL_b
where Eg(X,) is the energy of the force fi \\@ onformation X,, o,; is the total uncer-
oSEM)

tainty defined as am = (UB )2+ 1 the two logarithmic terms are the normalisation

8Y)

and the Jeffreys’ prior for o, ;, respe

'\
1. Estimate of c°™., \Q\

The Metainference

elfgﬁeraussian form immediately shows the similarities between

Metainference and the re eraged simulations based on the maximum entropy® princi-

ple. Indeed Meta feremge refluces to the maximum entropy replica-averaged modelling®3%3!

in the case th r source of error is the ensemble averaging, oP*M is equivalent to the
force constan ployed there. In Metainference as well as in replica-averaged restrained
2 is the only parameter to be set and it was shown that this must be

simulati i '
chosefi to be t largest possible force constant that can be integrated correctly by the sys-

her 10re it was observed that it should scale more than linearly with the number

SEM ig related to the standard error of the mean and as

o eplicés?’l. In Metainference o
?ngq in absence of other sources of errors, the force constant actually scales oc N2.

In principle one should set a o™ for each experimental data used as restraint. A practical
solution to this problem that was often employed is that of selecting one value common for

all the data in a dataset. Here we introduce an alternative solution. We estimate it as

oSEM = | /max(Var[f;](t))/N,, that is the square root of the maximum over the simulation

5
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Publishi‘ng13 of the variance of the forward model for the observable ¢ divided by the number of

SEM with the number of replicas, a weak

replicas. This guarantees the correct scaling of o
time dependence and a value proportional to the variance of the backcalculated observable
and thus its dynamics. In the Supporting Information, Figure S1 and S2 show how the
algorithm allows to quickly reach a stable estimate for 5*™ in thé/ﬁrst few nanoseconds of

simulations. 3

2. Estimate of the weighted ™. \

In M&M the arithmetic average is substituted by Qei% average to consider for the
er

effect of the bias, (f;(X))n, = S0,  fi il S M w,. In this case the
forces resulting from Metainference are not e 1s‘ybuted among the replicas, but are

distributed proportionally to the weight of ch si rephca at each time step. In this case

the standard error of the mean should tak he iance of the weights into account. This

is done by implementing it as3?: \

(J.SEM)Z :—Nr i
S oM |2

Nr
2

r=1
(3)
and as for the unweigh </ ase using the square root of the maximum value sampled along

the simulation.

3. Gen /lisgtion for observables defined but for a scaling factor.
-ﬁ

Expeérimental observables can be defined modulo a multiplicative constant, this is the
case witf) RDCs as their intensity is proportional to the fraction of aligned molecules. In
T‘hﬁswases it is not possible to directly compare back-calculated and experimental data.
e possible solution is that of considering an energy term proportional to the correlation
between the experimental and the back-calculated data3®. Alternatively one can extend the
Metainference formalism to take additional parameters into account, for example a scaling

factor. In this case the Metainference energy becomes:

6
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Publishing
EMI(X,O',)\ld> =
Ny Ny , PRV 2 (4)
Z {EH(XT> + kBTZ [(Mfz();a)g dl) ln 27m + L In UT’Z
r=1 1:1 T

are the normalisation and the Jeffrey prior, respectively.

where X is the scaling factor and o2; = (of;)? + X*(o]"M)? ar@&logamthmlc terms

4. Restraint correction for high forces. ““-..

The restraint intensity dependent on o® and&5" n )ccasionally lead to unrealistic
forces, causing instability in particular in the trgnsienf)ime at the beginning of the simu-

lation when oM ig still under estimated. %ea‘é‘é the probability of this occurring a

correction factor is introduced in such a w emporarily decrease the applied forces.

This is defined as: . -

<

Sp— : _
Sp_1 — ﬁl (smm if npyps A =0

St =94 5.1+ Asln if npyps A > 0 (5)

Smax if npyps A > 0 and s; > Spax
where s, is the corr t109 f;\at timestep ¢ to be multiplied with oM, As is the step size
for the correctio fact m( and sp. are the respective minimum and maximum possible
correction val a b>Fuae 1S the number of molecular dynamics forces above a certain
threshold fércewdd, ... This update rule has the effect of immediately relaxing the restraint
in the case0 eX ssively high forces, followed by a slow annealing to the s,,;, value in the
case df no hli orce events. By specifying a s,;, value different from 1, one is able to bias

“rest t

)

\K “Simulation Details.

All simulations (Table I) are carried out with Gromacs 5.1.4%* and a development version

of PLUMED 2.3%. The peptide with sequence EGAAWAASS is created in VMD? and is

ntensity towards lower or higher values.

solvated in a rhombic dodecahedron box with side lengths of 4.5, 4.5 and 3.2 nm using 2118

7
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Publishing Water Free Back-
Simulation Force field model Performances Convergence Energies calculations
CHARMMZ22* TIP3P 14.8 Fig. S5 Fig. S13 Fig. S21
Unrestrained
AMBER99SB TIP4P-D 10.5 Fig. S6 1g S14 Fig. S22

CHARMM?22* TIP3P 14.6 Fig. 7}\,\ Fig. 523

s, JC

AMBER99SB TIP4P-D 10.3 ig. 524

CHARMM?22* TIP3P 14.4
CS, JC, RDCs

AMBER99SB TIP4P-D

ig. 525

s10 Fig. S18 Fig. S26

10(
Unrestrained CHARMM36 EEF1-SB \ Fig. S11  Fig. S19 Fig. S27

CS, JC, RDCs CHARMM36 EEF1- & Fig. S12  Fig. S20 Fig. S28

TABLE 1. All simulations performed. e,&\d water model, performances (ns/day/replica)

and experimental data used as rest S reported. Performances were estimated on an Intel

E5-2660 2.4 GHz using one threa \?N.gplica.

water molecules. Thé sy )s neutralized by addition of 3 Na™ and 2 Cl~ ions. Min-
imization of the sys r/ 1s performed with the steepest descent algorithm to a maximum
force of less thaZy kJ/mol/nm. Equilibration is performed over a time range of 500 ps
in the NVT s@ble using the Bussi thermostat®® and for 500 ps in the NPT ensemble us-
ing Parri ello/Ra an3” pressure coupling while applying a position restraint on all heavy
atomsg™Prodttidh simulations are carried out with AMBER99SB® with TIPAP-D' water
model‘and CS]ARMM22*18’39 with TIP3P*’ water model with a time step of 2 fs at a tem-

-

peraturetof 7' = 300 K in the NPT ensemble. Van der Waals and electrostatic interactions

e lled using the Particle-Mesh-Ewald*!#? approach and a cutoff for the short-range
1 ter?:tions of 0.9 nm. Constraints are applied on all bonds with the LINCS algorithm®*?

using a matrix expansion to the order of 6 and 2 iterations per step.

Metadynamics'® is performed with the Well-Tempered*, Parallel-Bias?®® and multiple-

walkers®® protocols, using a Gaussian deposition stride of 500 steps (1 ps), a bias factor of

8
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Publishi®gnd a Gaussian height of 0.3 kJ/mol for 14 replicas. The following collective variables are
biased, corresponding sigma values are given in parentheses: All backbone 1 and ¢ dihedral
angles (0 = 0.6) as well as the E1-S9 C*-C* distance (¢ = 0.3 nm™'), W5 x!, W5 x?
(0 = 0.6), similarities between ¢3 and ¢g as well as 13 and s dihedral angles (o = 0.3).

Each replica is run for 100 ns for a total of 1.4 us nominal simula?én time per ensemble.

1. MéEM simulation including 2J couplings and chemieal shifts.

Metainference calculations are performed using ensem }Vem.ges weighted according to
the Metadynamics bias potential. Experimental data @e by Dames et al'”. Chemical
shifts were calculated using CamShift*647 for NH¢HN, a, C8 and C’ backbone atoms
while excluding the first and last residues. Ho-IN; H‘)HN W5 C-Cy and W5 N-Cry 3J-

e

coupling constants were calculated using theJ arp equatlon 48

//j/,

= Acos? Bcos(d + A) + C (6)

/%

where 3.J(0) is the coupling in \%d C are the Karplus parameters dependent
on the type of coupling, 6 is 1h ngle and A# is a constant shift added on to the
angle. The Karplus parameters 1ft Af are taken from ref**°. The noise is sampled
independently for each datapgint through brownian motion (flat prior) with a stepsize of
0.5 and hard limits at 0.0 T\PS

/Sm?{: 2.0, As = 0.001 and Fi,ax = 3500 kJ/mol/nm.

applied with sm% .

2. ME§€ lation including RDCs.

25 respectively. The restraint correction for high forces was

tlo /e performed as described above with the addition of residual dipolar cou-
plings for N and Ca-Ha bonds!'”. RDCs are calculated using the #-method??, each coupling
ﬂ

calculsted independently using the dipolar coupling definition:

to1y2h (3 cos® ¥y — 1
w\ D=1 ( B (7)

where r; is the bond length, 1o is the magnetic constant, v, and - are the gyromagnetic

ratios for the two atoms, A is the Planck constant and ¥J; is the angle between the bond

and the z-axis. The coupling is then averaged and compared modulo a scaling factor A with

9
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Publishi‘ri‘g experimental data. This allows to simultaneously account for the conformational and

11,33,51,52

rotational averaging measured by RDCs . The scaling factor is sampled during the

simulation using an Ornstein-Uhlenbeck process (Gaussian prior):
1 e

where d); is the step taken, i is the specified mean of the stati 3%%81%1 distribution,

A is the scaling value at time ¢, A\ is the standard deviation he stationary Bayesian

b§s osent for N-H and Ca-Ha
RDCs are p = 8 and pu = 9 respectively and A\ = 0.5. iguee S3 and S4 the sampling

—
of the scaling factor for N-H and Ca-Ha RDCs is S%h sampling converges quickly
for

after a few steps, of notice is that the average value

distribution and dW; denotes the Wiener process. The ¥;

caling factor found is different

depending on the force field used as a prior, this is due ;athe differences in the bond lengths
-

of those bonds in the two force fields. In ARMM22* an N-H bond is 0.0997 nm long

and a Ca-Ha is 0.1080 nm long , whi N/J R99SB the same bonds are 0.1010 and
0.1090 nm long. S

<

3. MEM using the EEF. -;&h@e ,cit solvent model.

solvent are performed using the EEF1 model originally developed

‘%ﬂ subsequently optimised by Bottaro et al. (EEF1-SB)%*
in combination with. CHAR

Simulations in implici

by Lazaridis and Kaup

622. EEF1-SB is a solvent-accessible surface area based

(%)

model, where t w éof solvation is computed using a pairwise interaction term for

non-hydroge a%’ns:
4 AGPN = AGKT = filry)V; (9)

/ J#i
Whefﬁb‘zlv the free energy of solvation, AGI is the reference solvation free energy, V;

isgthe m;of atom j and

2 AGH exp{—w} (10)

) :
N
ere AGI is the solvation free energy of the isolated group, ); is the correlation length

equal to the width of the first solvation shell and R; is the van der Waals radius of atom i. The
implicit solvation model is implemented in PLUMED. In our implementation interactions are

cut off after a range of 3)\;. In addition, electrostatic interactions are further screened with a

10
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Publishipfga tion dependent dielectric constant of the form e = 1/(ar). Bottaro et al. optimised « to
15 nm~! and added an energy correction for backbone dihedrals on the N —C'—Ca—Cp3. All
these parameters and corrections are designed to be used with the CHARMMS36 force field?2.
Charged amino acids are neutralised by adjusting the partial charges, leaving a completely

neutral molecule. Minimization is performed as for the explicit Eglvent simulations. The
1

ion coefficient of 1 ps™" at
8elzdent dielectric constant

ionsare switched off smoothly
aﬁéﬂ'pnted using a neighbourlist

system is evolved by a Langevin dynamic integrator with a fri

T = 300 K. Coulomb interactions are tabulated with a distan

of e = 15r and a cut off at 0.9 nm, while van der Waals int

between 0.7 and 0.9 nm. All pairwise interactions are
with a buffer of 0.2 nm with respect to the cut-off, }:?ch is updated every 10 simulation
steps. Constraints are applied on all bonds Withqtz LI algorithm, as described above.
Metadynamics and M&M simulations are perf@tgis ;Deady mentioned for explicit solvent

L -
simulations using the same collective variab#&;p\ar neters and experimental data.

N
4. Analysis. \

=

In well-tempered Metadyn mic&%\ti e-dependent bias converges to a quasi-static dis-
tribution, as a consequence a m%sgr f convergence can be obtained by a block comparison

of the sampling after a aﬁiﬂitime. If the simulations are converged, the histograms ob-
lo

tained for non-overlappin

£

energies. / y.
i

In the pre b}\con\zergenee is assessed by comparing the free energies calculated

s of each biased collective variable for the last two 45 ns segments of the

s of simulations should result in comparable effective free

from the hist

simulation, (i€ from 10 to 55 ns and from 55 to 100 ns). The free energies represent the

effective potentidl felt by the system as a sum of the force field, the Metainference potential
if sppres

e rgies‘j)btained along the 21 collective variables employed are shown, with differences

a,bd Metadynamics. In Figure S5 to S12 the comparisons of the effective free

T'bﬁt &re limited to few high-energy regions and an average root-mean-square deviation of
0%0 kJ/mol. The converged free energies for all the collective variables are shown in Figure
S13 to S18.

Equilibrium distributions are then recovered by reweighting the ensembles according to

the final deposited Metadynamics bias®®. The weight of each sampled conformation is given

11
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Publishing w; = exp (+VMP(CV(X))/kgT)/Z, where VMD(CV(X)) is the Metadynamics bias
calculated for conformation X at the end of the simulation and Z is the normalisation.
Chemical shifts are backcalculated using CamShift*®, residual dipolar couplings are com-
puted using the single-value-decomposition method. 3J-couplings are back-calculated using
the Karplus equation. All experimental observables are calculatfd as weighted ensemble
averages.

In addition to the conformational ensemble, the result of agMe ?ﬁerence calculation also
ezg}t{\ta dded!3. These errors

the“experimental random and

B

includes an estimate of the errors, o,’;, for all the experi

incorporate in a single number an independent estimate
-

SEM
7

systematic errors as well as the errors in the forward4nodel{Indeed, while o is an error
that accounts for the use of a limited number of Q);;icas he fly, %, is a useful additional
source of information that results from the uséwof e@ference.

Finally, in order to further compare h%les not only in terms of their agree-
ment with experimental data but also it;mgpec to finer properties, similarities between
probability distributions are comp ec%@e Jensen-Shannon divergence. Given two
probability distributions P and Kbt ined by two ensembles, their difference is

DM@KL(PM) + 5D (@) (1)

where M = $(P+Q) an Dbsthe Kullback-Leibler divergence: Dy, = Y. P(i) In(P(7)/Q(1)).

£
III. RESUL /

In the following we present the results of eight ensembles for the EGAAWAASS!” peptide
(cf. Tabled) obtained by running for each case 14 replicas for 100 ns per replica, either using
only Metadynamics, i.e. without the addition of any experimental restraint, or by coupling
t wg% ing Metadynamic Metainference!# and multiple experimental data. We have

tested t%o state-of-the-art force fields in explicit solvent, CHARMM22* in TIP3P!® and
WB\ 99SB in TIP4P-D*, and the CHARMM36 EEF1-SB?* implicit solvent force field
régently optimised to study disordered systems. The addition of experimental data modifies
the ensembles towards a result where both local and non-local properties are comparable,
irrespective of the original force field employed. The implicit solvent scheme supplemented

by the experimental data allows us to obtain results comparable to those obtained in explicit

12
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Publishi:n“gs ent at a fraction of the computational cost. A PLUMED? input file is provided in the

Supporting Information to reproduce all the simulations.

A. Comparison with the experimental data.

First, we assessed the quality of the force fields and the brL)\Metamference to
successfully improve them through the weighted incorporation o erimental informations.
Root-mean-square deviations (RMSDs) from the experim B\shown in Figure 1, show
a clear decrease, and hence an increase in the agree ent ith cxperimental data, with the
addition of more information into the system. Bo forc% fields, CHARMMZ22* in blue
and AMBER99SB in red show a comparably gbod agre
comparable trends in the per-residue dev1atloa%\TE‘)Ha Ca and CfB and more marked
differences in the case of C’ and HN che W\/’cf Figures S21-S22). Both force fields

22* describes the o angle of W5 well,

ent with chemical shifts, with

show a very good agreement with 3JH
(i.e 3Jc_cy), while both agree less he X1 angle of the same residue as well as the
3Jy., i~ and the RDCs. For thegease ch%Tmcal shifts, the per-residue comparison shows

& . 3Jc—cy, *In—cy and N-H RDCs) and more
marked differences for others , 3Jn,, —un and Ca-Ha RDCs). These differences
suggest that the two fo e‘h?ldsaare not giving an equivalent description of the peptide and

comparable trends for some

that the addition of Xperl enpal information could actually improve them.
M&M ensem s i udl chemical shifts (that are not expected to contribute particu-

good agreement) and 3J-couplings have indeed a positive effect on

the RMSDs of ll data, 1nclud1ng in particular RDCs (cf. Fig. 1), where the improvement is
r AMBER99SB than for CHARMMZ22*. Interestingly, the per-residue
trend§ are so more comparable, with AMBER99SB showing an overall better agree-
L, Wi ab the available data (cf. Figures S23-S24). Finally, the M&M ensembles also

ata (cf. Figures S25-526). This suggests that while the original force fields were
providing two alternative and not completely satisfactory descriptions of the dynamics of
the peptide under study, the M&M ensembles could instead provide ensembles that are
indistinguishable from the point of view of the available experimental observables.

The effect of Metainference on the experimental data can be also observed at finer detail in

13
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Chemical Shifts
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Transparent blue bars represent ensembles based on the

tions (C) show consistent improvement when compared to unrestrained simulations

ddition of RDC restraints has little additional impact on the quality of other experimental

rvables, while addition of chemical shifts and 3J-couplings has a positive impact on the quality

of
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Publishi.ﬁg{ 1re 2 where the distributions of the Ca-Ha RDCs and those for the Ca carbon chemical
shifts are compared. In the case of chemical shifts the distributions were already similar
between the two unrestrained force fields, with the exception of A6. Upon restraining the
chemical shifts and 3J-couplings, the distributions are translated closer to the reference

experimental values but their overall shape is unchanged. The fufther addition of RDCs

P{}&the unrestrained
simulations show very broad distributions with average values“af from the experimental
data. Furthermore, the overall shape of the distribution xxer different for the two
jg"vﬂth chemical shifts and 3J-
couplings the RDCs for W5, A6 and A7 showed an improveme

does not have any additional effect on the chemical shifts.

force fields as is the case for W5, A6 and A7. Upon restra
-~
in the agreement with the

experimental data and an improved similarity betfveen theswo ensembles. The final addition

of RDCs restraints shrunk the distributions ﬁ%@a’ced them closer to the reference
co

experimental values making the overall shbx arable between the two ensembles as
visible from the quartiles. Once agai tMa istributions are not only similar in the

average value but also in their quartiles, suggesting that the two final ensembles obtained by

restraining CHARMM?22* and

1B
with the experimental values put N
B. Convergence to@ common ensemble.
£

While the comparisen with the experimental data suggests that it is possible to use M&M

SB in TIP4P-D are not only in good agreement

similar to each other.

to generate ensemblesystarting from two alternative priors encoded in the two employed force
fields — whigh
is still possiblé at

redin remarkable good and similar agreement with the experimental data — it
st in principle that the ensembles could give different results if observed
through otherethniques. In order to test the hypothesis that M&M can provide at least in
pringiple a u)ique ensemble, we analyzed the similarities of the ensembles with respect to
other in@pendent properties.

Sln\ igure 3 the ensembles are compared using two alternative similarity metrics. In the
left panel the probability distributions of the radius of gyration for all the pairs of ensembles
are compared, their dissimilarity is measured by the Jensen-Shannon divergence (see Anal-
ysis). None of the employed experimental data is a direct measure of the radius of gyration,

which makes this a good candidate for an observable that can reveal differences between the

15
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N
o

residué witho e addition of data (top row, A and D) and with addition of chemical shifts,
3 Jeeouplings (tniddle row, B and E) and chemical shifts, 3J-couplings and RDCs (bottom row,
Crand F» Transparent blue distributions represent ensembles based on the CHARMMZ22* prior,
my%ransparent red distributions represent ensembles based on the AMBER99SB in TIP4P-D
water prior. Means and quartiles are indicated by full and dashed lines respectively, while the true
experimental value is shown as a dot. Left panels (A, B, C) show the comparison of Ca carbons

chemical shifts, right panels (D, E, F) show the comparison of Ca-Ha RDCs .
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PubliShi]‘Eg1 rained ensembles. With the addition of information into the system, convergence towards
a common distribution is remarkably visible (bottom right). While the unrestrained simula-
tions show a remarkably different behaviour, with the CHARMM?22* ensemble being more
compact than the AMBER99SB one, both start developing a pronounced peak at about
0.85 nm with the introduction of additional information. This is (t/isible in the form of an

increased overlap between the two distributions. The Jensen-S M}lon ivergence confirms

the visual suggestion. Of notice is that the probability distribtxi'\or the AMBER99SB en-
ce

semble, once updated with chemical shifts and 3J-couplin to be already converged,

in line with the good agreement of this ensemble with R ‘?(E&Fig. 1). A posteriori one
—

can speculate that the experimental data employed, eyen if rgporting about local quantities,

includes indirect information about the extende@ate of“the peptide. Since AMBER99SB

with TIP4P-D prior already provides an extenﬂ%lske:r?ole, less data is needed to converge

the distribution overall. \1
The distance matrices (Figure 3B) a m e notion of convergence of the ensembles

0 suppert
towards a unique indistinguishable gone. this case we compared the average distances

among all residues calculated using tﬁeﬁ'ﬁre of mass of the residues. Again none of the
experimental data report on s CISQH\(: lution information. Here the deviation decreases
in a fashion corresponding with MSen—Shannon divergence in the left panel. To further
Wée}t?e original ensembles with respect to the similarities of the

stress the differences b

final ensemble, the iong for the overall backbone dihedral similarities and the end-

to-end distance a

It is of notice t unrestrained CHARMM22* and fully restrained AMBER99SB are

closer in si ity than the two unrestrained simulations and vice versa, as shown by both

analysis fepoufed 1mwFigure 3. This again supports the notion of a funnelled picture towards
a cominon un {ensemble that is independent from the prior knowledge, and also suggests

how

e—othe—art force fields seem to be converging to such a unique ensemble from

L

d erentﬂftarting points.

<

C.\, Ensemble determination in implicit solvent.

While the simulations discussed above show strong differences when not restrained, both

use priors of similar quality with respect to experimental measures. An interesting question

17
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FIG. 3. Convergence towards a unique ensen@u panels show two measures of ensembles-

dissimilarity. A) Ensemble convergence s ownsen—Shannon divergences between the prob-
tion

0.00

ability distributions of the radius of gyr all pairs of simulations in explicit solvent given
in nat (natural unit of informatio tro .’hansparent blue distributions represent ensembles
x

ansparent red distributions represent ensembles based

based on the CHARMMZ22* pri [W\
on the AMBER99SB in TIP4P-D watgr prior. Lighter backgrounds indicate a lower divergence and

thus higher similarity. e improvement is subjectively noticeable by comparing the underlying

probability distributi s}) red-deviation inter-residue distance matrices between each pair

of simulations. L?(er di nc/ deviations correspond to a higher degree of similarity.

is therefore« h ‘) restrained simplified prior fares with respect to more conventional and
até priors. To this end, we performed M&M simulations using the computation-

implicit solvent model EEF1-SB (cf. Table I). The combined results can

besseentin Figure 4. The unrestrained ensemble is in relative good agreement with RDCs

while sh§7ving a worse agreement with the other data than the explicit solvent unrestrained

\?f?r{ es, suggesting that RDCs are better captured by the extended description of the
p

tide resulting from this prior (cf. Figure 4B). As expected the root-mean-square devi-
ations showed a marked decrease with the addition of experimental data. The restrained
ensemble is then, when compared with Figure 1, at least on par with the unrestrained ex-

plicit solvent simulations. The probability distribution of the radius of gyration (Figure 4B)
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FIG. 4. Results of M&M simula ng the EEF1-SB implicit solvent model. A) Root-mean-

square deviations of the u rained and fully restrained implicit solvent simulations. B) Proba-
bility distributions of t e% gyration for unrestrained and restrained implicit solvent as well
as fully restrained %}2 simulations. The Jensen-Shannon divergences of the probability
distributions of tzr ius of'gyration between CHARMM36 and CHARMM22* with full restraints
and CHARM BQith restraint and unrestrained CHARMMS36 are 0.015 nat and 0.203 nat (nat-

ural unit ¢f injprm ion entropy) respectively. C) Squared-deviation inter-residue distance matrix

betwegn fully
&)
shQws tl@a dramatic effect of the restraint. The prior is clearly biased towards very open

—Xg ile the explicit solvent simulations show a more balanced picture (Figure 3A). This

stfained CHARMM22* and fully restrained CHARMM36 EEF1-SB simulations.

bias is not surprising given that EEF1-SB was explicitly optimised for disordered systems?*.
The restrained implicit solvent simulation is able to alleviate the over-extended description
provided by the prior even if without reproducing quantitatively the pronounced peak at

0.8 nm present in CHARMMZ22*. Nonetheless, the Jensen-Shannon divergence of 0.015
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Publishihg veen fully restrained CHARMM?22* and fully restrained CHARMM36 with EEF1-SB
support their overall similarity, indeed this divergence is very similar to the one observed
between the partially restrained explicit solvent simulations. Finally we compared the al-
ternative similarity metric in the form of inter-residue distances (Figure 4C), which are
practically indistinguishable. /

ry stguctures and elon-
gated conformations. In order to further test the similari 0“626 ensembles in explicit
and implicit solvent we calculated the secondary structu k5‘\&0% over the ensembles

using STRIDE with errors estimated using the bloclf_‘s dardwerror approach®. While

Disordered systems are often characterised by transient sec

all ensembles show poor helical and hairpin contentt(cf. Fﬁg S30-S31), a convergence of
the conformational space as a function of the addition o erimental information towards
a common ensemble for both the explicit and\%:;{c}olvent simulations can be appreci-
ated for the turn and coil content (cf. Fig."§32 and S33, respectively). The unrestrained
AMBER99SB as well as the unrestrained XWM% EEF1-SB ensembles show a lower
turn content than the CHARMM?2 unr~\ai~n‘ed ensemble and an opposite behavior for
the coil content. The successiv add?fbf experimental data brings the AMBER99SB,
CHARMM22* and CHARMM36 -3B fully restrained ensembles to show essentially
the same turn content and th&\;{ac@ﬂ content.

These results further, nfo‘(ssthe notion that M&M allows a radical reshaping of the prior
i0

ensemble to a commen so
Y.

/ y.
"5%"5

that is consistent across vastly different priors.

IV. CON

The 14st fé€w years have seen a large increase in the assessment of force fields. While
there fis a clearsgfend in the improvement of force field quality, their transferability between
disorde and ordered systems and the robustness of the resulting structural ensembles

21,5659

fo disorgered systems is often questione . To circumvent force field limitations as

Xﬁ}l &S imitations in the resolution of experimental techniques, hybrid methods based on
the integration of experimental data and molecular dynamics simulations have seen a huge
growth®!!. Here, we first simplified the setup of Metadynamic Metainference simulations
to make them essentially parameter free, and extended the formalism to account for exper-

imental data that are defined modulo a constant. Then we studied a disordered peptide
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Publishifigunderstand two concepts: First, to which extent, given enough experimental data, it is
possible to obtain ensembles of structures that do not depend explicitly on the molecular me-
chanics force field employed, and second if it possible to obtain results of comparable quality
at a fraction of the computational cost. By comparing two state-of-the-art explicit-solvent
force fields and integrating them with multiple sources of experimefital data we determined

two ensembles that are essentially indistinguishable from each o

e?an ifferent from those
obtained using the force fields alone. Furthermore, results ofico rable quality have been

obtained using M&M, the same data and a very inexpen vSm icit solvent force field.
—~

_—
SUPPLEMENTARY MATERIALS k&
See supplementary material for convergencé:t}{@free energy profiles as a function of
mics

the collective variables employed in metadymg 13’more comparisons with experimental

data.

~

ACKNOWLEDGMENTS w ~
The authors acknowledge@t by the Technische Universitat Miinchen - Insti-

tute for Advanced Study, funded %y the German Excellence Initiative and the European
Union Seventh Framewerk Programme under grant agreement n. 291763. We gratefully

acknowledge the G for Supercomputing e.V. (www.gauss-centre.eu) for funding

this project by Q/ idi

niz Superco g tre (LRZ, www.Irz.de). We thank Massimiliano Bonomi, Giovanni

Bussi, Bersdd Reif and Michele Vendruscolo for useful discussions and suggestions.

N
REF REN§S

ﬁ
™. Bonomi, G. T. Heller, C. Camilloni, and M. Vendruscolo, Curr. Opin. Struct. Biol.

106 (2017).
. Wei, W. Xi, R. Nussinov, and B. Ma, Chem. Rev. 116, 6516 (2016).

3V. Venditti, T. K. Egner, and G. M. Clore, Chem. Rev. 116, 6305 (2016).
‘L. D. Cabrita, A. M. E. Cassaignau, H. M. M. Launay, C. A. Waudby, T. Wlodarski,
C. Camilloni, M.-E. Karyadi, A. L. Robertson, X. Wang, A. S. Wentink, L. S. Goodsell,

21


http://dx.doi.org/10.1063/1.4981211

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishing€ A. Woolhead, M. Vendruscolo, C. M. Dobson, and J. Christodoulou, Nat. Struct. Mol.
Biol. 23, 278 (2016).
°S. Milles, D. Mercadante, I. V. Aramburu, M. R. Jensen, N. Banterle, C. Koehler, S. Tyagi,
J. Clarke, S. L. Shammas, M. Blackledge, F. Grater, and E. A. Lemke, Cell 163, 734

(2015). /

SK. Lindorff-Larsen, R. B. Best, M. A. Depristo, C. M. Do M. Vendruscolo,

Nature 433, 128 (2005)

"A. Ramanathan, A. Savol, V. Burger, C. S. Chennubho a,)N . Agarwal, Acc Chem
Res 47, 149 (2014).

8H. J. Dyson and P. E. Wright, Nat Rev Mol Cell %7 2005).

9J. Habchi, P. Tompa, S. Longhi, and V. N. Uyersk Rev. 114, 6561 (2014).

0E. Papaleo, G. Saladino, M. Lambrughi, K dor Ijgfsen F. L. Gervasio, and R. Nussi-
nov, Chem. Rev. 116, 6391 (2016). &\

UE. Ravera, L. Sgheri, G. Parigi, an C\b\(*hl t, Phys. Chem. Chem. Phys. 18, 5686
(2016). %“

M Schor, A, S. 1. S. Mey, andiC. P\ MdtPhee, Biophys Rev 8, 420 (2016).
13M. Bonomi, C. Camilloni, A, Ca \a d M. Vendruscolo, Science Advances 2, 1501177

(2016). N
MM. Bonomi, C. Camilléni,“and M. Vendruscolo, Sci. Rep. 6, 31232 (2016).
15A. Laio and M. Pa ine‘rr\hc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).
16Q. Valsson, P. Tiw ,/ar}d . Parrinello, Ann. Rev. Phys. Chem. 67, 159 (2016).
17S. A. Dames Z}nﬁe » N. Vajpai, P. Bernado, M. Blackledge, and S. Grzesiek, J. Am.
28) 13508 (2006).
, K¢Lindorff-Larsen, and D. E. Shaw, Biophys. J. 100, L47 (2011).
195, Piana, As G/Donchev, P. Robustelli, and D. E. Shaw, J. Phys. Chem. B 119, 5113
293(.).\3
. T. % Leung, O. Bignucolo, R. Aregger, S. A. Dames, A. Mazur, S. Berneche, and
siek, J. Chem. Theory Comput. 12, 383 (2016).
.?alazzesi, M. K. Prakash, M. Bonomi, and A. Barducci, J. Chem. Theory Comput.
11, 2 (2015).
2R. B. Best, X. Zhu, J. Shim, P. E. M. Lopes, J. Mittal, M. Feig, and A. D. MacKerell, J.
Chem. Theory Comput. 8, 3257 (2012).

22


http://dx.doi.org/10.1063/1.4981211

! I P | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record. |

Publishiﬁ’g Lazaridis and M. Karplus, Proteins: Structure, Function, and Genetics 35, 133 (1999).
245, Bottaro, K. Lindorff-Larsen, and R. B. Best, J. Chem. Theory Comput. 9, 5641 (2013).
2W. Rieping, M. Habeck, and M. Nilges, Science 309, 303 (2005).
26C. Camilloni, A. Cavalli, and M. Vendruscolo, J. Chem. Theory Comput. 9, 5610 (2013).
27C. Camilloni and M. Vendruscolo, J. Am. Chem. Soc. 136, 898242014)

28], Pfaendtner and M. Bonomi, J. Chem. Theory Comput. 11 (g)ﬂ{

PG, A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, ¢a Bussi, Comput. Phys.
Commun. 185, 604 (2014). \

30A. Cavalli, C. Camilloni, and M. Vendruscolo, J. ChemPhys=138, 094112 (2013).

31B. Roux and J. Weare, J. Chem. Phys. 138, 08410 601

3D. F. Gatz and L. Smith, Atmospheric Envirodment 2958195 (1995).

33C. Camilloni and M. Vendruscolo, J. Phys. S%;E‘DIQ, 653 (2015).

34M. J. Abraham, T. Murtola, R. Schulz w . C. Smith, B. Hess, and E. Lindahl,
SoftwareX 1-2, 19 (2015). \

35W. Humphrey, A. Dalke, and K. Schultéw, J Mol Graph 14, 33 (1996).

36G. Bussi, D. Donadio, and M. arrﬁeo‘,\]. Chem. Phys. 126, 014101 (2007).

3"M. Parrinello and A. Rahm %ﬁq&l Phys. 52, 7182 (1981).

38V. Hornak, R. Abel, A. Ok&ﬁ\&i‘od{bine, A. Roitberg, and C. Simmerling, Proteins
65, 712 (2006).

39A. D. Mackerell, D¢ Ba w M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field,
S. Fischer, J. G Gly . Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T.
Lau, C. Matto ick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux,

mith, R. Stote, J. Straub, M. Watanabe, J. Widrkiewicz-Kuczera,

~Karplus, J. Phys. Chem. B 102, 3586 (1998).

OW. F-Jor Sél, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J.

(@f .79, 926 (1983).

. Esstslann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pederse