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Metadynamic Metainference has been recently introduced as a theoretical framework

to determine structural ensembles by combining and weighting by their noise multiple

sources of experimental data with molecular mechanics force fields and Metadynam-

ics simulations. Here we build upon these initial developments to further extend and

streamline the computational approach and to show that Metadynamic Metainfer-

ence can actually determine a structural ensemble for a disordered peptide that is

essentially independent from the employed force field. We also show that it is possi-

ble to use a very computationally efficient implicit solvent force field in place of very

expensive state-of-the-art explicit solvent ones without a significant loss in accuracy.
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I. INTRODUCTION

Structural ensembles of proteins are becoming an invaluable tool to understand biological

mechanisms at the molecular level1–5. Accurate ensembles can represent the conformational

fluctuations of proteins and enable the observation of multiple substates populated by these

molecules in given experimental conditions, thus providing a link between structure and

function6,7. This is of particular importance when considering systems that are intrinsically

dynamic, like multi-domain proteins with disordered linkers and, more in general, intrinsi-

cally disordered proteins and regions8–10.

Determining structural ensembles for such dynamic systems is, however, a challenging

task that requires at the same time an accurate modelling and a thorough sampling of the

system’s conformational space1,11,12. Recently, to address these challenges, we have intro-

duced Metadynamic Metainference13,14 (M&M). Metainference13 is a Bayesian framework

that allows integrating multiple sources of information about a system and optimally bal-

ancing them. In this approach, one modifies the a priori knowledge about a system (i.e.

its physicochemical properties as described by molecular mechanics force fields) using data

acquired from experimental measurements, and balances those by sampling on-the-fly a sta-

tistical distribution of noises that can effectively take into account all the sources of errors

(i.e. ensemble averaging, statistical errors, systematic errors and experimental data mod-

elling errors). By combining Metainference with Metadynamics15,16 one can then enhance

the sampling of the Metainference model and explore conformational states that can be

separated by significant high free-energy barriers on the time scale of standard molecular

dynamics14.

While Metainference, as well as other statistical methods to determine ensembles1,11,

can update prior knowledge to take the available experimental knowledge into account, the

question is open about the possibility of obtaining ensembles that do not depend on the

specific prior knowledge employed. From a theoretical point of view, the farther the prior

is from providing a good description of a system, the more abundant and better the data

must be to obtain a good representation of it13. In practice, one could be interested in how

close the ensembles determined for a disordered system are when employing state-of-the-art

molecular mechanics force fields and different sources of experimental data1.

In the following we have studied the disordered peptide EGAAWAASS17 making use of
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M&M, two state-of-the-art force fields from different families that have given promising

results in describing folded and unfolded proteins (CHARMM22*18 and AMBER99SB with

TIP4P-D19) and integrated three different sources of commonly available experimental data,

NMR chemical shifts (CS), 3J-couplings and Residual Dipolar Couplings (RDCs). This

model system has been employed recently, due to the availability of multiple accurate NMR

measures17,20, to highlight the deficiencies of force fields in describing disordered systems20,21.

M&M allowed us to determine structural ensembles for this peptide that are essentially

indistinguishable from the point of view of a number of independent parameters. These

include actual experimental observables, probability distributions of multiple global degrees

of freedom and secondary structures contents.

Prompted by this observation we challenged M&M to determine an ensemble using

CHARMM3622 with the EEF1-SB23,24 implicit solvent model as an extremely computation-

ally inexpensive prior. In the case of the current peptide we could determine an ensemble

of comparable quality with those obtained from the explicit solvent force fields but at a

fraction of the computational cost. This approach could alleviate the computational cost of

studying systems that require the use of large simulation boxes and huge amounts of water

molecules.

II. THEORY AND METHODS

Metainference13 employs Bayesian statistics to allow updating a prior distribution by

considering some new additional information. In particular, Metainference is derived to

take into account informations that are the result of ensemble averaging, i.e. averaging over

a full probability distribution. In computational structural biology the prior is usually a

mechanistic force field that describes more or less accurately the interactions of the atoms.

Additional informations are structural equilibrium measures like those obtained by NMR

spectroscopy. Equilibrium observables are always the result of time and ensemble averaging

and as such should be employed to update an ensemble and not the probability of observing

a single structure. This latter case is a good approximation when the single structure rep-

resents by far the most populated state of the system. Notably, Metainference is equivalent

to Inferential Structural Determination if ensemble averaging is not taken into account25.

In M&M14 multiple simulations, replicas, are performed in parallel for the same system,
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in the same conditions and using the same force field. These independent simulations are

coupled with an energy defined as a function of the difference between the average over

the replicas of a backcalculated quantity and a reference value for the same quantity (e.g.

the difference between a chemical shift calculated for all the replicas and averaged and the

experimental value for that same chemical shift). The sampling of each replica is enhanced

by Metadynamics26,27 (in this case by Parallel Bias Metadynamics28), which adds a history

dependent bias as a function of a set of collective variables (CVs). In M&M Metainference

and Metadynamics are coupled by the calculation of the average over the replicas. While

in standard Metainference each replica contributes with the same weight to the average of

backcalculated experimental observables, in M&M the weighted average provides a better

estimator. This is particularly feasible in the case where the same bias is applied to all

replicas in such a way that in the limit of a quasi-static bias the weight of a replica can be

approximated on the fly as wr ∝ exp (+V MetaD(CV(Xr))/kBT ).

In the following we first reprise Metainference theory, then we introduce a simple on-

the-fly estimate for the only parameter of Metainference and introduce a correction to take

into account the effect of the weighted average on the distribution of the forces when using

Metadynamics. Finally we extend Metainference to work with data defined but for a mul-

tiplicative constant. All the methods described in this work are implemented and available

in PLUMED29, a working and complete input file that allows reproducing our results and

gain a better understanding of M&M is provided in the Supporting Information.

A. Metainference.

The energy of a Metainference simulation is defined as −kBT ln(P ) where kB is the

Boltzmann constant, T the temperature and P the Metainference posterior distribution,

calculated over a finite number of replicas, Nr. Its general definition is:

P (f̃ ,σB,X,σSEM|d) =
Nr∏
r=1

p(Xr)

Nd∏
i=1

p(di|f̃i, σB
r,i)p(f̃i|X, σSEM

i )p(σB
r,i)p(σ

SEM
i ), (1)

where p(di|f̃i, σB
r,i) is the likelihood of the experimental data di given f̃i and a vector of σB

r,i.

f̃i is the average of the forward model fi used to predict the experimental observable i from

a model calculated on an infinite number of replicas and σB
r,i is an uncertainty parameter
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that describes random and systematic errors in the experimental data as well as errors in the

forward model. p(f̃i|X, σSEM
i ) is the likelihood of observing f̃i given an estimate ⟨fi⟩Nr over

a finite number of replicas, where ⟨fi(XXX)⟩Nr = 1
Nr

∑Nr

r=1 fi(Xr) and σ
SEM
i is an uncertainty

parameter. p(Xr), p(σ
B
r,i) and p(σSEM

i ) are the priors on the conformations Xr (i.e. the

force field), on the uncertainty σB in the experimental and backcalculated data, and on the

uncertainty σSEM in the estimate of the true ensemble average, respectively.

A simple form can be obtained by choosing a Gaussian form for the likelihood p(di|f̃i, σB
r,i)

given that p(f̃i|X, σSEM
i ) is a Gaussian for the central limit theorem. In this case it is possible

to write the Metainference energy as:

EMI(XXX,σσσ|ddd) =
Nr∑
r=1

{
Eff(Xr) + kBT

Nd∑
i=1

[(⟨fi(XXX)⟩ − di)
2

2σ2
r,i

+
1

2
ln 2πσ2

r,i +
1

2
ln
σ2
r,i

2

]}
, (2)

where Eff(Xr) is the energy of the force field for the conformation Xr, σr,i is the total uncer-

tainty defined as σ2
r,i = (σB

r,i)
2+(σSEM

i )2 and the two logarithmic terms are the normalisation

and the Jeffreys’ prior for σr,i, respectively.

1. Estimate of σSEM.

The Metainference energy in Gaussian form immediately shows the similarities between

Metainference and the replica-averaged simulations based on the maximum entropy30 princi-

ple. Indeed Metainference reduces to the maximum entropy replica-averaged modelling6,30,31

in the case that the only source of error is the ensemble averaging, σSEM
i is equivalent to the

force constant employed there. In Metainference as well as in replica-averaged restrained

simulations 1/(σSEM
i )2 is the only parameter to be set and it was shown that this must be

chosen to be the largest possible force constant that can be integrated correctly by the sys-

tem. Furthermore it was observed that it should scale more than linearly with the number

of replicas31. In Metainference σSEM is related to the standard error of the mean and as

such, in absence of other sources of errors, the force constant actually scales ∝ N2
r .

In principle one should set a σSEM
i for each experimental data used as restraint. A practical

solution to this problem that was often employed is that of selecting one value common for

all the data in a dataset. Here we introduce an alternative solution. We estimate it as

σSEM
i =

√
max(Var[fi](t))/Nr, that is the square root of the maximum over the simulation
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time of the variance of the forward model for the observable i divided by the number of

replicas. This guarantees the correct scaling of σSEM
i with the number of replicas, a weak

time dependence and a value proportional to the variance of the backcalculated observable

and thus its dynamics. In the Supporting Information, Figure S1 and S2 show how the

algorithm allows to quickly reach a stable estimate for σSEM in the first few nanoseconds of

simulations.

2. Estimate of the weighted σSEM.

In M&M the arithmetic average is substituted by a weighted average to consider for the

effect of the bias, ⟨fi(XXX)⟩Nr =
∑Nr

r=1
wr

Nw
fi(Xr), where Nw =

∑Nr

r=1wr. In this case the

forces resulting from Metainference are not equally distributed among the replicas, but are

distributed proportionally to the weight of each single replica at each time step. In this case

the standard error of the mean should take the variance of the weights into account. This

is done by implementing it as32:

(σSEM
i )2 =

Nr

(Nr − 1)N2
w

[
Nr∑
r=1

(wrfi(Xr)− ⟨w⟩⟨fi(XXX)⟩)2−

+2⟨fi(XXX)⟩
Nr∑
r=1

(wr − ⟨w⟩)(wrfi(Xr)− ⟨w⟩⟨fi(XXX)⟩) + ⟨fi(XXX)⟩2
Nr∑
r=1

(wr − ⟨w⟩)2
]
(3)

and as for the unweighted case using the square root of the maximum value sampled along

the simulation.

3. Generalisation for observables defined but for a scaling factor.

Experimental observables can be defined modulo a multiplicative constant, this is the

case with RDCs as their intensity is proportional to the fraction of aligned molecules. In

these cases it is not possible to directly compare back-calculated and experimental data.

One possible solution is that of considering an energy term proportional to the correlation

between the experimental and the back-calculated data33. Alternatively one can extend the

Metainference formalism to take additional parameters into account, for example a scaling

factor. In this case the Metainference energy becomes:
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EMI(XXX,σσσ, λ|ddd) =
Nr∑
r=1

{
Eff(Xr) + kBT

Nd∑
i=1

[(λ⟨fi(XXX)⟩ − di)
2

2σ2
r,i

+
1

2
ln 2πσ2

r,i +
1

2
ln
σ2
r,i

2

]} (4)

where λ is the scaling factor and σ2
r,i = (σB

r,i)
2 + λ2(σSEM

i )2 and the two logarithmic terms

are the normalisation and the Jeffrey prior, respectively.

4. Restraint correction for high forces.

The restraint intensity dependent on σB and σSEM can occasionally lead to unrealistic

forces, causing instability in particular in the transient time at the beginning of the simu-

lation when σSEM is still under estimated. To decrease the probability of this occurring a

correction factor is introduced in such a way as to temporarily decrease the applied forces.

This is defined as:

st =


st−1 − ∆s

100
ln( st−1

smin
) if nFMD>Fmax = 0

st−1 +∆s ln(nFMD>Fmax + 1) if nFMD>Fmax > 0

smax if nFMD>Fmax > 0 and st > smax

(5)

where st is the correction factor at timestep t to be multiplied with σSEM, ∆s is the step size

for the correction factor, smin and smax are the respective minimum and maximum possible

correction values and nFMD>Fmax is the number of molecular dynamics forces above a certain

threshold force Fmax. This update rule has the effect of immediately relaxing the restraint

in the case of excessively high forces, followed by a slow annealing to the smin value in the

case of no high force events. By specifying a smin value different from 1, one is able to bias

the restraint intensity towards lower or higher values.

B. Simulation Details.

All simulations (Table I) are carried out with Gromacs 5.1.434 and a development version

of PLUMED 2.329. The peptide with sequence EGAAWAASS is created in VMD35 and is

solvated in a rhombic dodecahedron box with side lengths of 4.5, 4.5 and 3.2 nm using 2118
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Simulation Force field
Water
model Performances Convergence

Free
Energies

Back-
calculations

Unrestrained

CHARMM22* TIP3P 14.8 Fig. S5 Fig. S13 Fig. S21

AMBER99SB TIP4P-D 10.5 Fig. S6 Fig. S14 Fig. S22

CS, JC

CHARMM22* TIP3P 14.6 Fig. S7 Fig. S15 Fig. S23

AMBER99SB TIP4P-D 10.3 Fig. S8 Fig. S16 Fig. S24

CS, JC, RDCs

CHARMM22* TIP3P 14.4 Fig. S9 Fig. S17 Fig. S25

AMBER99SB TIP4P-D 10.2 Fig. S10 Fig. S18 Fig. S26

Unrestrained CHARMM36 EEF1-SB 389.4 Fig. S11 Fig. S19 Fig. S27

CS, JC, RDCs CHARMM36 EEF1-SB 244.9 Fig. S12 Fig. S20 Fig. S28

TABLE I. All simulations performed. Force-field, water model, performances (ns/day/replica)

and experimental data used as restraints are reported. Performances were estimated on an Intel

E5-2660 2.4 GHz using one thread per replica.

water molecules. The system is neutralized by addition of 3 Na+ and 2 Cl− ions. Min-

imization of the system is performed with the steepest descent algorithm to a maximum

force of less than 100 kJ/mol/nm. Equilibration is performed over a time range of 500 ps

in the NVT ensemble using the Bussi thermostat36 and for 500 ps in the NPT ensemble us-

ing Parrinello-Rahman37 pressure coupling while applying a position restraint on all heavy

atoms. Production simulations are carried out with AMBER99SB38 with TIP4P-D19 water

model and CHARMM22*18,39 with TIP3P40 water model with a time step of 2 fs at a tem-

perature of T = 300 K in the NPT ensemble. Van der Waals and electrostatic interactions

are modelled using the Particle-Mesh-Ewald41,42 approach and a cutoff for the short-range

interactions of 0.9 nm. Constraints are applied on all bonds with the LINCS algorithm43

using a matrix expansion to the order of 6 and 2 iterations per step.

Metadynamics15 is performed with the Well-Tempered44, Parallel-Bias28 and multiple-

walkers45 protocols, using a Gaussian deposition stride of 500 steps (1 ps), a bias factor of
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8 and a Gaussian height of 0.3 kJ/mol for 14 replicas. The following collective variables are

biased, corresponding sigma values are given in parentheses: All backbone ψ and ϕ dihedral

angles (σ = 0.6) as well as the E1-S9 Cα-Cα distance (σ = 0.3 nm−1), W5 χ1, W5 χ2

(σ = 0.6), similarities between ϕ3 and ϕ6 as well as ψ3 and ψ6 dihedral angles (σ = 0.3).

Each replica is run for 100 ns for a total of 1.4 µs nominal simulation time per ensemble.

1. M&M simulation including 3J couplings and chemical shifts.

Metainference calculations are performed using ensemble averages weighted according to

the Metadynamics bias potential. Experimental data is provided by Dames et al17. Chemical

shifts were calculated using CamShift46,47 for NH, HN, Hα, Cα, Cβ and C’ backbone atoms

while excluding the first and last residues. Hα-N, Hα-HN, W5 C-Cγ and W5 N-Cγ 3J-

coupling constants were calculated using the Karplus equation48:

3J(θ) = A cos2(θ +∆θ) +B cos(θ +∆θ) + C (6)

where 3J(θ) is the coupling in Hz, A, B and C are the Karplus parameters dependent

on the type of coupling, θ is a dihedral angle and ∆θ is a constant shift added on to the

angle. The Karplus parameters and shift ∆θ are taken from ref49,50. The noise is sampled

independently for each datapoint through brownian motion (flat prior) with a stepsize of

0.5 and hard limits at 0.001 and 25 respectively. The restraint correction for high forces was

applied with smin = 1.0, smax = 2.0, ∆s = 0.001 and Fmax = 3500 kJ/mol/nm.

2. M&M simulation including RDCs.

Simulations are performed as described above with the addition of residual dipolar cou-

plings for N-H and Cα-Hα bonds17. RDCs are calculated using the θ-method33, each coupling

is calculated independently using the dipolar coupling definition:

Di = −µ0γ1γ2~
8π3

(
3 cos2 ϑi − 1

r3i

)
(7)

where ri is the bond length, µ0 is the magnetic constant, γ1 and γ2 are the gyromagnetic

ratios for the two atoms, ~ is the Planck constant and ϑi is the angle between the bond

and the z-axis. The coupling is then averaged and compared modulo a scaling factor λ with
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the experimental data. This allows to simultaneously account for the conformational and

rotational averaging measured by RDCs11,33,51,52. The scaling factor is sampled during the

simulation using an Ornstein-Uhlenbeck process (Gaussian prior):

dλt =
1

2
(µ− λt) + ∆λ

e

π
dWt (8)

where dλt is the step taken, µ is the specified mean of the stationary Gaussian distribution,

λt is the scaling value at time t, ∆λ is the standard deviation of the stationary Bayesian

distribution and dWt denotes the Wiener process. The values chosen for N-H and Cα-Hα

RDCs are µ = 8 and µ = 9 respectively and ∆λ = 0.5. In Figure S3 and S4 the sampling

of the scaling factor for N-H and Cα-Hα RDCs is shown. The sampling converges quickly

after a few steps, of notice is that the average value for the scaling factor found is different

depending on the force field used as a prior, this is due to the differences in the bond lengths

of those bonds in the two force fields. In CHARMM22* an N-H bond is 0.0997 nm long

and a Cα-Hα is 0.1080 nm long , while in AMBER99SB the same bonds are 0.1010 and

0.1090 nm long.

3. M&M using the EEF1-SB implicit solvent model.

Simulations in implicit solvent are performed using the EEF1 model originally developed

by Lazaridis and Karplus23 and subsequently optimised by Bottaro et al. (EEF1-SB)24

in combination with CHARMM3622. EEF1-SB is a solvent-accessible surface area based

model, where the free energy of solvation is computed using a pairwise interaction term for

non-hydrogen atoms:

∆Gsolv
i = ∆Gref

i −
∑
j ̸=i

fi(rij)Vj (9)

where ∆Gsolv
i is the free energy of solvation, ∆Gref

i is the reference solvation free energy, Vj

is the volume of atom j and

fi(r)4πr
2 =

2√
π

∆Gfree
i

λi
exp

{
−(r −Ri)

2

λ2i

}
(10)

where ∆Gfree
i is the solvation free energy of the isolated group, λi is the correlation length

equal to the width of the first solvation shell andRi is the van der Waals radius of atom i. The

implicit solvation model is implemented in PLUMED. In our implementation interactions are

cut off after a range of 3λi. In addition, electrostatic interactions are further screened with a
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position dependent dielectric constant of the form ϵ = 1/(αr). Bottaro et al. optimised α to

15 nm−1 and added an energy correction for backbone dihedrals on the N−C ′−Cα−Cβ. All

these parameters and corrections are designed to be used with the CHARMM36 force field22.

Charged amino acids are neutralised by adjusting the partial charges, leaving a completely

neutral molecule. Minimization is performed as for the explicit solvent simulations. The

system is evolved by a Langevin dynamic integrator with a friction coefficient of 1 ps−1 at

T = 300 K. Coulomb interactions are tabulated with a distance dependent dielectric constant

of ϵ = 15r and a cut off at 0.9 nm, while van der Waals interactions are switched off smoothly

between 0.7 and 0.9 nm. All pairwise interactions are computed using a neighbourlist

with a buffer of 0.2 nm with respect to the cut-off, which is updated every 10 simulation

steps. Constraints are applied on all bonds with the LINCS algorithm, as described above.

Metadynamics and M&M simulations are performed as already mentioned for explicit solvent

simulations using the same collective variables, parameters and experimental data.

4. Analysis.

In well-tempered Metadynamics the time-dependent bias converges to a quasi-static dis-

tribution, as a consequence a signature of convergence can be obtained by a block comparison

of the sampling after a transient time. If the simulations are converged, the histograms ob-

tained for non-overlapping blocks of simulations should result in comparable effective free

energies.

In the present case convergence is assessed by comparing the free energies calculated

from the histograms of each biased collective variable for the last two 45 ns segments of the

simulation (i.e. from 10 to 55 ns and from 55 to 100 ns). The free energies represent the

effective potential felt by the system as a sum of the force field, the Metainference potential

if present, and Metadynamics. In Figure S5 to S12 the comparisons of the effective free

energies obtained along the 21 collective variables employed are shown, with differences

that are limited to few high-energy regions and an average root-mean-square deviation of

0.50 kJ/mol. The converged free energies for all the collective variables are shown in Figure

S13 to S18.

Equilibrium distributions are then recovered by reweighting the ensembles according to

the final deposited Metadynamics bias53. The weight of each sampled conformation is given
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by wi = exp (+V MetaD(CV(X))/kBT )/Z, where V
MetaD(CV(X)) is the Metadynamics bias

calculated for conformation X at the end of the simulation and Z is the normalisation.

Chemical shifts are backcalculated using CamShift46, residual dipolar couplings are com-

puted using the single-value-decomposition method. 3J-couplings are back-calculated using

the Karplus equation. All experimental observables are calculated as weighted ensemble

averages.

In addition to the conformational ensemble, the result of a Metainference calculation also

includes an estimate of the errors, σB
r,i, for all the experimental data added13. These errors

incorporate in a single number an independent estimate of the experimental random and

systematic errors as well as the errors in the forward-model. Indeed, while σSEM
i is an error

that accounts for the use of a limited number of replicas on the fly, σB
r,i is a useful additional

source of information that results from the use of Metainference.

Finally, in order to further compare the ensembles not only in terms of their agree-

ment with experimental data but also with respect to finer properties, similarities between

probability distributions are computed using the Jensen-Shannon divergence. Given two

probability distributions P and Q obtained by two ensembles, their difference is

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) (11)

whereM = 1
2
(P+Q) andDKL is the Kullback-Leibler divergence: DKL =

∑
i P (i) ln(P (i)/Q(i)).

III. RESULTS

In the following we present the results of eight ensembles for the EGAAWAASS17 peptide

(cf. Table I) obtained by running for each case 14 replicas for 100 ns per replica, either using

only Metadynamics15, i.e. without the addition of any experimental restraint, or by coupling

the replicas using Metadynamic Metainference14 and multiple experimental data. We have

tested two state-of-the-art force fields in explicit solvent, CHARMM22* in TIP3P18 and

AMBER99SB in TIP4P-D19, and the CHARMM36 EEF1-SB24 implicit solvent force field

recently optimised to study disordered systems. The addition of experimental data modifies

the ensembles towards a result where both local and non-local properties are comparable,

irrespective of the original force field employed. The implicit solvent scheme supplemented

by the experimental data allows us to obtain results comparable to those obtained in explicit
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solvent at a fraction of the computational cost. A PLUMED29 input file is provided in the

Supporting Information to reproduce all the simulations.

A. Comparison with the experimental data.

First, we assessed the quality of the force fields and the ability of Metainference to

successfully improve them through the weighted incorporation of experimental informations.

Root-mean-square deviations (RMSDs) from the experimental data, shown in Figure 1, show

a clear decrease, and hence an increase in the agreement with experimental data, with the

addition of more information into the system. Both force fields, CHARMM22* in blue

and AMBER99SB in red show a comparably good agreement with chemical shifts, with

comparable trends in the per-residue deviations of NH, Hα, Cα and Cβ and more marked

differences in the case of C’ and HN chemical shifts (cf. Figures S21-S22). Both force fields

show a very good agreement with 3JHα−N, CHARMM22* describes the χ2 angle of W5 well,

(i.e 3JC−Cγ), while both agree less well with the χ1 angle of the same residue as well as the

3JHα−HN and the RDCs. For the case of chemical shifts, the per-residue comparison shows

comparable trends for some observables (i.e. 3JC−Cγ,
3JN−Cγ and N-H RDCs) and more

marked differences for others (i.e. 3JHα−N,
3JHα−HN and Cα-Hα RDCs). These differences

suggest that the two force fields are not giving an equivalent description of the peptide and

that the addition of experimental information could actually improve them.

M&M ensembles including chemical shifts (that are not expected to contribute particu-

larly given the already good agreement) and 3J-couplings have indeed a positive effect on

the RMSDs of all data, including in particular RDCs (cf. Fig. 1), where the improvement is

more pronounced for AMBER99SB than for CHARMM22*. Interestingly, the per-residue

trends are now also more comparable, with AMBER99SB showing an overall better agree-

ment with all the available data (cf. Figures S23-S24). Finally, the M&M ensembles also

including the RDCs showed comparable, good, agreements (Fig. 1), and comparable trends

for all data (cf. Figures S25-S26). This suggests that while the original force fields were

providing two alternative and not completely satisfactory descriptions of the dynamics of

the peptide under study, the M&M ensembles could instead provide ensembles that are

indistinguishable from the point of view of the available experimental observables.

The effect of Metainference on the experimental data can be also observed at finer detail in
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FIG. 1. Root-mean-square deviations between simulated and experimental data for all simu-

lations performed in explicit solvent. Transparent blue bars represent ensembles based on the

CHARMM22* prior, while transparent red bars represent ensembles based on the AMBER99SB in

TIP4P-D water prior. Each row indicates successive addition of data to the simulation, A) Unre-

strained, B) addition of Chemical shifts and 3J-couplings, C) further addition of RDCs. Fully re-

strained simulations (C) show consistent improvement when compared to unrestrained simulations

(A). Addition of RDC restraints has little additional impact on the quality of other experimental

observables, while addition of chemical shifts and 3J-couplings has a positive impact on the quality

of the RDCs. Per residue comparisons for all data and ensembles can be found in Figures S21-S26.
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Figure 2 where the distributions of the Cα-Hα RDCs and those for the Cα carbon chemical

shifts are compared. In the case of chemical shifts the distributions were already similar

between the two unrestrained force fields, with the exception of A6. Upon restraining the

chemical shifts and 3J-couplings, the distributions are translated closer to the reference

experimental values but their overall shape is unchanged. The further addition of RDCs

does not have any additional effect on the chemical shifts. For RDCs the unrestrained

simulations show very broad distributions with average values far from the experimental

data. Furthermore, the overall shape of the distribution can be very different for the two

force fields as is the case for W5, A6 and A7. Upon restraining with chemical shifts and 3J-

couplings the RDCs for W5, A6 and A7 showed an improvement in the agreement with the

experimental data and an improved similarity between the two ensembles. The final addition

of RDCs restraints shrunk the distributions and translated them closer to the reference

experimental values making the overall shape comparable between the two ensembles as

visible from the quartiles. Once again the final distributions are not only similar in the

average value but also in their quartiles, suggesting that the two final ensembles obtained by

restraining CHARMM22* and AMBER99SB in TIP4P-D are not only in good agreement

with the experimental values but also very similar to each other.

B. Convergence towards a common ensemble.

While the comparison with the experimental data suggests that it is possible to use M&M

to generate ensembles, starting from two alternative priors encoded in the two employed force

fields – which are in remarkable good and similar agreement with the experimental data – it

is still possible at least in principle that the ensembles could give different results if observed

through other techniques. In order to test the hypothesis that M&M can provide at least in

principle a unique ensemble, we analyzed the similarities of the ensembles with respect to

other independent properties.

In Figure 3 the ensembles are compared using two alternative similarity metrics. In the

left panel the probability distributions of the radius of gyration for all the pairs of ensembles

are compared, their dissimilarity is measured by the Jensen-Shannon divergence (see Anal-

ysis). None of the employed experimental data is a direct measure of the radius of gyration,

which makes this a good candidate for an observable that can reveal differences between the
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FIG. 2. Violinplots showing the probability distributions of the restrained experimental data per

residue without the addition of data (top row, A and D) and with addition of chemical shifts,

3J-couplings (middle row, B and E) and chemical shifts, 3J-couplings and RDCs (bottom row,

C and F). Transparent blue distributions represent ensembles based on the CHARMM22* prior,

while transparent red distributions represent ensembles based on the AMBER99SB in TIP4P-D

water prior. Means and quartiles are indicated by full and dashed lines respectively, while the true

experimental value is shown as a dot. Left panels (A, B, C) show the comparison of Cα carbons

chemical shifts, right panels (D, E, F) show the comparison of Cα-Hα RDCs .
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restrained ensembles. With the addition of information into the system, convergence towards

a common distribution is remarkably visible (bottom right). While the unrestrained simula-

tions show a remarkably different behaviour, with the CHARMM22* ensemble being more

compact than the AMBER99SB one, both start developing a pronounced peak at about

0.85 nm with the introduction of additional information. This is visible in the form of an

increased overlap between the two distributions. The Jensen-Shannon divergence confirms

the visual suggestion. Of notice is that the probability distribution for the AMBER99SB en-

semble, once updated with chemical shifts and 3J-couplings, seems to be already converged,

in line with the good agreement of this ensemble with RDCs (cf. Fig. 1). A posteriori one

can speculate that the experimental data employed, even if reporting about local quantities,

includes indirect information about the extended state of the peptide. Since AMBER99SB

with TIP4P-D prior already provides an extended ensemble, less data is needed to converge

the distribution overall.

The distance matrices (Figure 3B) also support the notion of convergence of the ensembles

towards a unique indistinguishable one. In this case we compared the average distances

among all residues calculated using the centre of mass of the residues. Again none of the

experimental data report on such high-resolution information. Here the deviation decreases

in a fashion corresponding with the Jensen-Shannon divergence in the left panel. To further

stress the differences between the original ensembles with respect to the similarities of the

final ensemble, the distributions for the overall backbone dihedral similarities and the end-

to-end distance are shown in the Supporting Information (Fig. S29).

It is of notice that unrestrained CHARMM22* and fully restrained AMBER99SB are

closer in similarity than the two unrestrained simulations and vice versa, as shown by both

analysis reported in Figure 3. This again supports the notion of a funnelled picture towards

a common unique ensemble that is independent from the prior knowledge, and also suggests

how state-of-the-art force fields seem to be converging to such a unique ensemble from

different starting points.

C. Ensemble determination in implicit solvent.

While the simulations discussed above show strong differences when not restrained, both

use priors of similar quality with respect to experimental measures. An interesting question
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FIG. 3. Convergence towards a unique ensemble. The two panels show two measures of ensembles-

dissimilarity. A) Ensemble convergence shown as Jensen-Shannon divergences between the prob-

ability distributions of the radius of gyration for all pairs of simulations in explicit solvent given

in nat (natural unit of information entropy). Transparent blue distributions represent ensembles

based on the CHARMM22* prior, while transparent red distributions represent ensembles based

on the AMBER99SB in TIP4P-D water prior. Lighter backgrounds indicate a lower divergence and

thus higher similarity. The improvement is subjectively noticeable by comparing the underlying

probability distributions. B) Squared-deviation inter-residue distance matrices between each pair

of simulations. Lower distance deviations correspond to a higher degree of similarity.

is therefore how a restrained simplified prior fares with respect to more conventional and

more accurate priors. To this end, we performed M&M simulations using the computation-

ally very efficient implicit solvent model EEF1-SB (cf. Table I). The combined results can

be seen in Figure 4. The unrestrained ensemble is in relative good agreement with RDCs

while showing a worse agreement with the other data than the explicit solvent unrestrained

ensembles, suggesting that RDCs are better captured by the extended description of the

peptide resulting from this prior (cf. Figure 4B). As expected the root-mean-square devi-

ations showed a marked decrease with the addition of experimental data. The restrained

ensemble is then, when compared with Figure 1, at least on par with the unrestrained ex-

plicit solvent simulations. The probability distribution of the radius of gyration (Figure 4B)
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FIG. 4. Results of M&M simulations using the EEF1-SB implicit solvent model. A) Root-mean-

square deviations of the unrestrained and fully restrained implicit solvent simulations. B) Proba-

bility distributions of the radius of gyration for unrestrained and restrained implicit solvent as well

as fully restrained CHARMM22* simulations. The Jensen-Shannon divergences of the probability

distributions of the radius of gyration between CHARMM36 and CHARMM22* with full restraints

and CHARMM36 with restraint and unrestrained CHARMM36 are 0.015 nat and 0.203 nat (nat-

ural unit of information entropy) respectively. C) Squared-deviation inter-residue distance matrix

between fully restrained CHARMM22* and fully restrained CHARMM36 EEF1-SB simulations.

shows the dramatic effect of the restraint. The prior is clearly biased towards very open

states while the explicit solvent simulations show a more balanced picture (Figure 3A). This

bias is not surprising given that EEF1-SB was explicitly optimised for disordered systems24.

The restrained implicit solvent simulation is able to alleviate the over-extended description

provided by the prior even if without reproducing quantitatively the pronounced peak at

0.8 nm present in CHARMM22*. Nonetheless, the Jensen-Shannon divergence of 0.015
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between fully restrained CHARMM22* and fully restrained CHARMM36 with EEF1-SB

support their overall similarity, indeed this divergence is very similar to the one observed

between the partially restrained explicit solvent simulations. Finally we compared the al-

ternative similarity metric in the form of inter-residue distances (Figure 4C), which are

practically indistinguishable.

Disordered systems are often characterised by transient secondary structures and elon-

gated conformations. In order to further test the similarity of the ensembles in explicit

and implicit solvent we calculated the secondary structure populations over the ensembles

using STRIDE54 with errors estimated using the block standard error approach55. While

all ensembles show poor helical and hairpin content (cf. Fig. S30-S31), a convergence of

the conformational space as a function of the addition of experimental information towards

a common ensemble for both the explicit and implicit solvent simulations can be appreci-

ated for the turn and coil content (cf. Fig. S32 and S33, respectively). The unrestrained

AMBER99SB as well as the unrestrained CHARMM36 EEF1-SB ensembles show a lower

turn content than the CHARMM22* unrestrained ensemble and an opposite behavior for

the coil content. The successive addition of experimental data brings the AMBER99SB,

CHARMM22* and CHARMM36 EEF1-SB fully restrained ensembles to show essentially

the same turn content and the same coil content.

These results further enforce the notion that M&M allows a radical reshaping of the prior

ensemble to a common solution that is consistent across vastly different priors.

IV. CONCLUSIONS

The last few years have seen a large increase in the assessment of force fields. While

there is a clear trend in the improvement of force field quality, their transferability between

disordered and ordered systems and the robustness of the resulting structural ensembles

for disordered systems is often questioned21,56–59. To circumvent force field limitations as

well as limitations in the resolution of experimental techniques, hybrid methods based on

the integration of experimental data and molecular dynamics simulations have seen a huge

growth1,11. Here, we first simplified the setup of Metadynamic Metainference simulations

to make them essentially parameter free, and extended the formalism to account for exper-

imental data that are defined modulo a constant. Then we studied a disordered peptide
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to understand two concepts: First, to which extent, given enough experimental data, it is

possible to obtain ensembles of structures that do not depend explicitly on the molecular me-

chanics force field employed, and second if it possible to obtain results of comparable quality

at a fraction of the computational cost. By comparing two state-of-the-art explicit-solvent

force fields and integrating them with multiple sources of experimental data we determined

two ensembles that are essentially indistinguishable from each other and different from those

obtained using the force fields alone. Furthermore, results of comparable quality have been

obtained using M&M, the same data and a very inexpensive implicit solvent force field.

SUPPLEMENTARY MATERIALS

See supplementary material for convergence tests, the free energy profiles as a function of

the collective variables employed in metadynamics and more comparisons with experimental

data.
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57F. Mart́ın-Garćıa, E. Papaleo, P. Gomez-Puertas, W. Boomsma, and K. Lindorff-Larsen,

PLoS ONE 10, e0121114 (2015).
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