Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries

GlobalSurg Collaborative

ABSTRACT

Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.

Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation’s Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.

Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.

Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low- and middle-income countries compared with high-income countries.

INTRODUCTION

Little data are available addressing the safety profile and risk factors affecting morbidity and mortality in children undergoing surgery globally. Most studies have been in adults and almost invariably were performed in high-resource countries. Although it is estimated that about 234 million surgical procedures are performed annually worldwide, the percentage of these involving children remains unknown. Studies from low- and middle-income countries (LMICs) have shown that in the neonatal period, mortality is associated with sepsis, multiple exposures to anaesthesia (reoperation), postoperative bleeding and complex congenital anomalies. Other risk factors include non-availability of trained personnel, delayed presentation, childbirth outside a hospital and financial constraints of the caregivers.

Emergency surgery generally carries a higher morbidity and mortality compared with elective procedures. An estimated 33 000 emergency laparotomies in all ages are performed annually in the UK with a 15–20%
mortality, which is 10-fold higher than that of elective cardiac surgery. Reasons for this high mortality are multifactorial; as well as patient-related factors, these may include staffing issues, access to operating theatres or access to diagnostic investigations. Unfortunately, most of these evidences have been derived from adult populations.

To date, no prospective, multicentre, international investigation has evaluated the determinants of morbidity or mortality after emergency abdominal surgery in children on a global scale. The aim of the current study was to evaluate the mortality and morbidity of emergency abdominal surgery in children across countries of different human development indices (HDIs).

METHODS
Study design
This was a cohort study of children under the age of 16 years recruited from multiple hospitals performing emergency abdominal surgery. Predefined data items were collected according to a previously published protocol (ClinicalTrials.gov identifier: NCT02179112) using the Research Electronic Data Capture (REDCap) which is an online data capture system. While the UK National Health Service Research Ethics review considered this study exempt from formal research registration (South East Scotland Research Ethics Service, reference: NR/1404AB12), individual centres obtained their own audit, ethical or institutional approval as appropriate.

The collaborative model used has previously been described elsewhere. Investigators from self-selected surgical units identified consecutive patients within 2-week time intervals between 1 July 2014 and 31 December 2014. An open invitation for participation was disseminated through social media, personal contacts, email to authors of published emergency surgery studies and national/international surgical organisations. Short intensive data collection allowed surgical teams within these units to contribute meaningful numbers of patients without requiring additional resources. Multiple 2-week data collection periods within institutions was allowed.

Patients and procedures
Any hospital performing emergency abdominal surgery, which included paediatric patients, could choose to be included (self-selecting). Consecutive patients under age of 16 years undergoing emergency abdominal surgery during a chosen 2-week period between 1 July 2014 and 31 December 2014 were included. Emergency abdominal surgery was defined as any unplanned, non-elective operation, including reoperation after a previous procedure. Abdominal surgery was defined as any open, laparoscopic or laparoscopy-converted procedure that entered the peritoneal cavity. Elective (planned) or semielective procedures (where a patient initially admitted as an emergency was then discharged from hospital and readmitted at a later time for surgery) were excluded.

Data
Data were selected to be objective, standardised, easily transcribed and internationally relevant, in order to maximise record completion and accuracy. Recruited patients were followed up to day 30 after surgery or for the length of their inpatient stay where follow-up was not feasible. Records were uploaded by local investigators to the secure online REDCap website. The lead investigator at each site validated all cases prior to data submission. The submitted data were then checked centrally and where missing data were identified, the local lead investigator was contacted and requested to complete the record. Once vetted, the record was accepted into the data set for analysis.

![World map showing participating countries and number of enrolled patients.](image)
Outcome measures
The primary outcome measure was 30-day postoperative mortality, defined as the number of patients in the cohort who died within 30 days of surgery. In the event where 30-day follow-up was unavailable, outcome status at the point of discharge from hospital was recorded. A ‘30-day postoperative mortality/death during hospital stay’ is shortened to ‘30-day mortality’ to aid readability.

The secondary outcome measures were 24-hour mortality, major and minor complication, and surgical site infection (SSI). Complications were defined on the Clavien-Dindo scale: minor complications as grade I/II (any deviation from the normal postoperative course with or without a need for pharmacological treatment but without requirement for surgical, endoscopic and radiological interventions or critical care admission); reinsertion as grade III (surgical, endoscopic or radiological reinsertion, without requirement for critical care admission); and major complication as grade IV (complication requiring critical care admission).

Statistical analysis
The lack of pre-existing literature data in this subject meant that an a priori sample size determination was rendered difficult by unknown factors such as the effect of clustering and variation in mortality by diagnosis.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Patient characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HDI tertile</td>
</tr>
<tr>
<td></td>
<td>High</td>
</tr>
<tr>
<td>Age in completed years</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
</tr>
<tr>
<td></td>
<td>Female</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>ASA grade</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Surgical safety checklist used</td>
<td>No, not available in this hospital</td>
</tr>
<tr>
<td></td>
<td>No, but available in this hospital</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Perforated viscus</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Prophylactic antibiotics</td>
<td>No, not available</td>
</tr>
<tr>
<td></td>
<td>No, but available</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
<tr>
<td>Whole blood/products</td>
<td>No, but available in this hospital</td>
</tr>
<tr>
<td></td>
<td>No, not available in this hospital</td>
</tr>
<tr>
<td></td>
<td>Yes, whole blood</td>
</tr>
<tr>
<td></td>
<td>Yes, blood products</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
</tr>
</tbody>
</table>

*\(\chi^2\) test is for yes versus no.
ASA, American Society of Anesthesiologists; HDI, Human Development Index.
Variation across different international health settings was assessed by stratifying participating centres by country into three tertiles according to the Human Development Index (HDI) rank. This is a composite statistic of life expectancy, education and income indices published by the United Nations (http://hdr.undp.org/en/statistics). Differences between HDI tertiles were tested with the Pearson χ^2 test and Kruskal-Wallis test for categorical and continuous variables, respectively.

Fixed effect binary logistic regression models were explored, and the variables determined to be statistically and clinically important were entered into full multivariable models. Final full model choice was guided by the Akaike information criterion (AIC). Hierarchical multivariable logistic regression models (random intercept) were constructed with country as the first level and patients as the second level. HDI tertile and other explanatory variables were included as fixed effects. Other than HDI tertile, all fixed effects were considered at the level of the patient. Coefficients are expressed as ORs with CIs and p values derived from percentiles of 10 000 bootstrap replications. Level 1 and 2 model residuals were checked and first-order interactions were tested. Goodness of model fit is reported with the Hosmer and Lemeshow test, and predictive ability described by area under the receiver operating characteristic (ROC) curve (c-statistic). All analyses were undertaken using the R Foundation Statistical Programme (R 3.1.1).

RESULTS

Patients

A total of 1409 patients aged under 16 years, from 253 centres in 43 countries, were included in this study (figure 1). At the time of operation, 282 (20.0%) were under the age of 2 years. Of all children, 694 (49.3%) were from high-HDI, 450 (31.9%) from middle-HDI and 265 (18.8%) from low-HDI groups. There were slightly more males than females in all HDI groups (55.9% in high-HDI, 61.1% in middle-HDI and 58.1% in low-HDI groups). Missing data rates were low, with one missing outcome for 24-hour mortality and one missing outcome for 30-day mortality. In 1140/1409 patients, 30-day outcomes, which otherwise represent status at discharge, were confirmed by direct patient contact (80.9%; high 572/694, 82.4%; middle 358/450, 79.6%; low 210/265, 79.2%; χ^2 test, $p=0.361$).

Demographics

Children undergoing emergency abdominal surgery in low-HDI countries had higher American Society of Anaesthesiologists (ASA) grades than children in middle-HDI or high-HDI groups (table 1). Furthermore, the WHO surgical safety checklist was employed prior to surgery in less than half of children undergoing emergency abdominal surgery from the low-HDI and middle-HDI groups compared with over 90% in the high-HDI group. At operation, 214/1406 (15.2%) of the children were found to have a perforated viscus, and this varied with HDI group (high 97/694, 14.0%; middle 49/450, 10.9%; low 68/265, 25.7%). Use of laparoscopy was widespread in high-HDI nations (341/694, 49.1%), whereas in middle-HDI (30/450, 6.7%) and low-HDI (8/257, 3.0%) settings, rates were much lower ($p<0.001$).

Appendicitis was the most common indication for undergoing surgery across all groups, followed by congenital abnormalities, intussusception and hernia (figure 2A and online supplementary table S1). Emergency abdominal surgery for congenital abnormalities was significantly higher in low-HDI groups compared with middle-HDI and high-HDI groups (14.3% cf. 1.8% and 3.2%, respectively).
Overall, 30-day mortality following surgery was 2.9% (n=41/1409) (figure 3). Of these deaths, 29.3% (n=12/41) occurred within 24 hours and 70.7% (n=29/41) between 24 hours and 30 days. Mortality varied significantly with HDI, with significantly higher proportions in low-HDI countries at 24 hours (0.3% in high-HDI, 0.7% in middle-HDI and 2.6% in low-HDI groups, p=0.005) and 30 days (0.9% in high-HDI, 2.9% in middle-HDI and 8.3% in low-HDI groups, p<0.001). Other associations with 24-hour and 30-day mortality in univariable analyses included neonatal age, >1 ASA grade and non-appendicitis procedures. Perforated viscus was significantly associated with 30-day mortality. An inversely proportional relationship is seen between 30-day mortality and age in all HDI groups even after adjustment in models (figure 2C).

In multilevel models, the association between low-HDI country, and 24-hour (OR 7.08, 95% CI 1.39 to 36.10, p=0.018) (table 2) and 30-day mortality (OR 7.79, 95% CI 2.96 to 20.48, p<0.001) (table 3) persisted. Middle-HDI country was associated with a 30-day mortality (OR 5.57, 95% CI 1.90 to 16.39, p=0.002) but not 24-hour mortality. A perforated viscus was significantly associated with increased 30-day mortality, whereas appendicitis was associated with lower 24-hour and 30-day mortality compared with other indications.

An analysis of predicted excess deaths was performed using the final multilevel 30-day mortality model. Based on this model, if all children in low-HDI and middle-HDI

![Figure 3](http://gh.bmj.com/)

Figure 3 Patient complications and mortality profile according to Human Development Index. HDI, Human Developmental Index; SSI, surgical site infection.
countries were considered to have been in high-HDI countries but otherwise had the same characteristics, 29 lesser deaths are predicted (40 per 1000 procedures).

Major complications and reintervention

The overall rate of major complications following emergency abdominal surgery was 7.2% (n=102/1409) (figure 2B and online supplementary table S2). Major complications were significantly more common in low-HDI countries (11.3%, 30/265) compared with middle-HDI and high-HDI countries (6.4%, 29/450 and 6.2% 43/694, respectively, p=0.017). The rate of reintervention across the HDI groups mirrors these complications rates (low 6.8%, middle 4.4%, high 4.2%, p=0.222; online supplementary table S3).

Minor complications

Across all HDI groups, the minor complication rate (Clavien-Dindo I-II) was 14.8% (n=208). This varied across HDI groups, with higher rates in low-HDI countries (20.9%) compared with middle-HDI and high-HDI countries (18.1% and 13.8% respectively, p=0.010), but these differences did not persist in multivariable analysis (see online supplementary table S4).

Surgical site infection

The overall SSI rate was 9.3% (n=131). This varied significantly across HDI groups (low 21.1%, middle 9.6%, high 4.6%, p<0.001, online supplementary table S5).

Discussion

The main findings of this study are sevenfold and fourfold higher 30-day mortalities in low-HDI and middle-HDI countries, respectively, compared with high-HDI countries. These rates are considerably greater than the threefold higher mortality previously reported among adult patients in low-HDI countries and account for an excess 40 deaths per thousand procedures in low-HDI and middle-HDI compared with high-HDI countries in this study alone. The risk factors for this excess mortality are necessarily multifactorial, including a higher intestinal perforation rate, which may reflect delayed access to surgery and different patterns of disease.

The twofold higher rate of major and minor postoperative complications and the fivefold difference in SSIs are also noteworthy. Our study does not allow us to identify the main factors responsible for these differences, but other studies in the literature point out a variety of aetiological factors including sepsis, multiple exposure to anaesthesia in the neonatal period,
postoperative bleeding, as well as complexity of congenital anomaly, delayed presentation, non-availability of trained personnel and financial constraints on the part of the caregivers. While the overall commonest surgical procedure in children remains appendicectomy, other complex procedures for congenital anomalies and intestinal obstruction are commonly performed in children in resource-limited settings. The similarity in procedures performed across resource settings was not expected, but it does demonstrate the depth of training required by surgical personnel to be able to handle such complex cases. Minimal access surgery was infrequently used in low-HDI and middle-HDI countries, showing inequality in access to contemporary technology through lack of resources including training in use of such technology.

The study was able to draw from a large and diverse patient population, spanning wide geographical and resource areas globally. Despite the convenience sampling employed, it offers a snapshot of essential paediatric surgery across the globe. The main body of data from the study highlights the differences in pathology, patient premorbid status, operative findings and outcomes based on HDI grouping. The higher ASA status of children requiring emergency abdominal surgery in low-HDI and middle-HDI countries settings is concerning, and it potentially reflects delayed access to care with the consequent negative impact on postoperative outcomes. Similarly, the percentage of perforated viscus encountered at surgery was also significantly higher in low-HDI and middle-HDI countries. The delay in access to care has been previously reported by studies from LMICs. This may account for the poor survival of neonates with severe congenital anomalies in these settings, such as intestinal atresia, abdominal wall defects and oesophageal atresia. A study from Nigeria indicated that delayed intervention time >72 hours, neonatal age and severe postoperative complications are associated with higher mortality in paediatric surgical emergencies.

This study has some limitations. Being based on convenience sampling of hospitals, the data collected may not be truly representative of other sites which may be more poorly resourced. Collection bias, however, may result in the true outcomes being even worse in LMICs, as the lowest resource sites would be less likely to participate. In addition, other factors such as availability of personnel, availability of complex anaesthetic and intensive care support, and delay time before surgery were not analysed in this study but may significantly impact on postoperative mortality. The current study has documented differences in surgical outcomes in children based on HDI groups, but has not explored in depth the reasons for these differences. This will form the agenda for future research.

Table 3 Factors associated with 30-day mortality

<table>
<thead>
<tr>
<th></th>
<th>Alive</th>
<th>Died</th>
<th>Univariate logistic regression OR (95% CI, p value)</th>
<th>Multilevel logistic regression OR (95% CI, p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDI tertile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>688 (99.1)</td>
<td>6 (0.9)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Middle</td>
<td>436 (97.1)</td>
<td>13 (2.9)</td>
<td>3.42 (1.34 to 9.79, p=0.013)</td>
<td>5.57 (1.90 to 16.39, p=0.002)</td>
</tr>
<tr>
<td>Low</td>
<td>243 (91.7)</td>
<td>22 (8.3)</td>
<td>10.38 (4.42 to 28.46, p<0.001)</td>
<td>7.79 (2.96 to 20.48, p<0.001)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child (>2 years <16 years)</td>
<td>1095 (98.6)</td>
<td>16 (1.4)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Infant (>1 month<2 years)</td>
<td>140 (94.0)</td>
<td>9 (6.0)</td>
<td>4.40 (1.83 to 9.95, p=0.001)</td>
<td>0.91 (0.35 to 2.38, p=0.849)</td>
</tr>
<tr>
<td>Neonate (≤1 month)</td>
<td>131 (89.1)</td>
<td>16 (10.9)</td>
<td>8.36 (4.06 to 17.22, p<0.001)</td>
<td>2.27 (0.92 to 5.62, p=0.075)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>794 (97.4)</td>
<td>21 (2.6)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Female</td>
<td>573 (96.6)</td>
<td>20 (3.4)</td>
<td>1.32 (0.70 to 2.47, p=0.382)</td>
<td>1.98 (1.00 to 3.94, p=0.051)</td>
</tr>
<tr>
<td>ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>964 (98.7)</td>
<td>13 (1.3)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>>1</td>
<td>403 (93.5)</td>
<td>28 (6.5)</td>
<td>5.15 (2.69 to 10.37, p<0.001)</td>
<td>1.47 (0.67 to 3.25, p=0.337)</td>
</tr>
<tr>
<td>Perforated viscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1157 (97.6)</td>
<td>28 (2.4)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Yes</td>
<td>200 (93.9)</td>
<td>13 (6.1)</td>
<td>2.69 (1.33 to 5.17, p=0.004)</td>
<td>2.63 (1.21 to 5.73, p=0.015)</td>
</tr>
<tr>
<td>Primary operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-appendicectomy</td>
<td>447 (92.0)</td>
<td>39 (8.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Appendicectomy</td>
<td>920 (99.8)</td>
<td>2 (0.2)</td>
<td>0.02 (0.00 to 0.08, p<0.001)</td>
<td>0.04 (0.01 to 0.18, p<0.001)</td>
</tr>
</tbody>
</table>

n=1398, AIC=282.7, c-statistic=0.902. H&L GOF=χ²=6.418, df=8, p value=0.601.

AIC, Akaike information criterion; ASA, American Society of Anesthesiologists; df, degree of freedom; H and L, Hosmer-Lemeshow Goodness of fit; HDI, Human Development Index.
for future studies, together with outcome studies, focusing on elective essential surgical procedures in children.

The main conclusion of this study is that emergency abdominal surgery in children is associated with significantly worse outcomes in LMICs. The documentation provided by this study is essential to the process of scaling up surgical services for children in low-resource settings. Good surgical outcomes require a multitude of factors, including trained personnel, good facilities and surgical supplies, as well as prompt access to surgical care. Thus, any single intervention in this multifaceted system has a high likelihood of failing to fully address these complex issues. This relates to many well-meaning efforts from high-income countries (HICs) to assist surgically in resource-limited settings. For instance, temporary platforms in the form of ‘surgical safaris’, the provision of surgical equipment alone, or short-term training courses outside one’s normal work setting will likely have little long-term impact. The likeliest context in which broad systematic change can occur is likely that of a long-lasting institutional partnership. In such a context of relationship with mutual understanding and trust, appropriate change can be implemented in whichever areas are most needed, and progress can be monitored and evaluated.

The recent global recognition of surgery as an essential healthcare component has provided a unique impetus for provision of essential surgical services, especially in LMICs. The task ahead is a huge one, in terms of access to and quality of care. The current study has documented relatively poor outcomes of emergency abdominal surgery in children in low-HDI and middle-HDI countries. Such data are essential in guiding efforts to improve the surgical care of children globally and prioritise it in the global health agenda.

Handling editor Seye Abimbola

Twitter Follow GlobalSurg at @GlobalSurg

Acknowledgements The authors would like to acknowledge Jacky Hong Chieh Chen, Lawani Ismail, Dylan Roi, Eugenio Grasset Escobar for protocol translation. Organisations assisting in dissemination (alphabetical) are as follows: Asian Medical Students’ Association (AMSA), Association of Surgeons in Training (AST), College of Surgeons of East, Central and Southern Africa (COSECSA), Cutting Edge Manipal, Egyptian Medical Student Research Association (EMRA), International Collaboration For Essential Surgery (ICES), International Federation of Medical Student Associations (IFMSA), Lifebox Foundation, School of Surgery, Student Audit and Research in Surgery (STARSurg), The Electives Network, UK National Research Collaborative, World Korean Medical Students Association (WKMSA), World Society of Emergency Surgery (WSES), World Surgical Association (WSA). Individuals assisting in dissemination (alphabetical) are as follows: Douglas Bowley, Vimal Gokani, Jaymie Ang Henry, Chia Kong, Chris Lavy, Jane Lim, Laura Luque, Mahiben Manthumpoo, Praveen Mogan, Dimitri Negopotiev, Raza Sayeed, Joseph Shalhoub, Ravi Vohra.

Statistical analysis was carried out by Thomas M Drake, Ewen M Harrison. National leads were involved in recruitment of multiple centres (in some cases all centres) from the countries listed. Chetan Khatri (Lead Coordinator for GlobalSurg), Neel Gobin (Australia), Ana Vega Freitas (Brazil), Nigel Hall (Canada), Sung-Hee Kim (Hong Kong, China), Ahmed Negeida, Hosni Khairy (Egypt), Zahra Jaffry, Stephen J Chapman (England), Alexis P Arnaud (France), Stephen Tabiri (Ghana), Gustavo Recinos (Guatemala), Midhun Mohan (India), Radhian Amandito (Indonesia), Marvan Shavki (Iraq), Michael Hanrahan (Ireland), Francesco Pata (Italy), Justas Zilinskas (Lithuania), April Camilla Roslani, Cheng Chun Goh (Malaysia), Adesoji O Ademuyiwa (Nigeria), Gareth Irwin (Northern Ireland), Sebastian Shu, Laura Luque (Peru), Hunain Shiwani, Afnan Altamimi, Mohammed Ubaid Alsagagf (Saudi Arabia), Stuart Ferguson (Scotland), Richard Spence, Sarah Rayne (South Africa), Jennifer Jeyakumar (Sri Lanka), Yuceil Cengiz (Sweden), Dimitri A Raptis (Switzerland), James C Glasbeay (Wales). Patient enrolment and data collection

Argentina: Claudio Fermaini, Ruben Balmaceda, Maria Marta Modolo (Hospital Luis Lagonaggiore);

Australia: Ewan Macdermid, Neel Gobin, Roxanne Chen, Cheryl Ou Yong, Michael Edey (Blacktown Hospital), Martin Jinarin, Scott K D’Amours, Dushyant Iyer (Liverpool Hospital, The University Of New South Wales), Daniel Youssif, Nicholas Phillips, Jason Brown (Royal Brisbane & Women’s Hospital), Isaac Hanley (The Tweed Hospital), Mark Dickos (Toowoomba Hospital);

Bangladesh: Ashrarman Rahman Mitul, Khalid Mahmud (Dhaka Shishu Children Hospital), Amitество Oosterkamp (Lamb Hospital);

Benin: Mamphile A Assounto, Ismail Lawani, Yacoubou Imorou Souaihou (Centre National Hospitalier Et Universitaire Hubert Koutoukou Maga);

Brunei: Giridhar D Devadasar, Chien Leung Chong, Muhammad Rashid Minhas Qadir, (Ssb Hospital), Kyaw Phyo Aung, Lee Shi Yen, Chean Leung Chong (RIPAS Hospital);

Brazil: Vanessa Dina Palomino Castillo, Monique Moran Munhoz, Gisele Moreira (Conjunto Hospitalar De Sorocaba), Luiz Carlos Barros De Castro Segundo, Salim Anderson Khouri Ferreira, Maia Cassa Careta (Hospital Da Santa Casa De Misericórdia De Vitória), Rafael Araujo, Juliane Menegussi, Marisa Leal, Caio Vinicius Barros de Lima, Luiza Sarmento Tatagiba, Antônio Leal (Hospital Infantil Nossa Senhora Da Gloria);

Cameroon: Samuel Nigo, Juana Kabba, Tagang Ebogo Ngwa, James Brown (Mbingo Baptist Hospital);

Canada: Sebastian King, Augusto Zani, Georges Azzie, Mohammed Firdouse, Sameer Kushwaha, Arnav Agarwal (The Hospital For Sick Children, Toronto), Karen Bailey, Brian Cameron, Michael Livingston (McMaster Children’s Hospital), Alexandre Horobovsky, Dan L Deckelbaum, Tarek Razek (Centre for Global Surgery, McGill University Health Centre);

Colombia: Irene Montes, Sebastián Sierra, Manuela Mendez (Clínica CES), María Isabel Villegas, María Clara Mendoza Arango, Ivan Mendoza, (Clínica Las Vegas), Fred Alexander Naranjo Aristizábal, Jaime Andres Montoya Botero, Victor Manuel Quintero Ríaz (El Hospital Pablo Tobón Uribe), Jakeline Restrepo, Carlos Morales, María Clara Mendoza Arango (Hospital Universitario San Vicente Fundación), Herman Cruz, Alejandro Munera, María Clara Mendoza Arango (ips Universitaria Clinica León Xiii);

Croatia: Robert Karlo, Edgar Domini, Jakov Mihanovic (Zadar General Hospital), Mihael Radic, Krešimir Zamarin, Nikica Pezelj (General Hospital Sibenik);

Lasheen, Salma Said Elkoly, Nehal Yosri Elsayed Abdel-Wahab, Mahmoud Ahmed Fathi Abozayed, Ahmed Adel, Ahmed Moustafa Saeed, Gehad Samir El Sayed, Jehad Hassan Yousif (Banha University Hospital); Soliman Magdy Ahmed, Nermene Soubhy El-Shabat, Abd El-Rahman Hegazy Khdre (Belbeis Central Hospital); Abdelrahman Osama Elsebaye, Mohamed Elzayat, Mohamed Abdelraheim, Ibrahim Elzayat, Mahmoud Warda, Khaled Naser El Deen, Abdelrahman Essam, Omar Salah, Mohamed Abbas, Mona Rashad, Ibrahim Elzayat, Dalja Hemed, Gehad Tafvik, Mai Salama, Hazem Khalid, Mohamed Selica, (El Dawly Hospital—Mansoura); Karem Elshaer, Abdel fattah Hussein, Mahmoud Elkhadrawi (El Mahalia General Hospital); Ahmed Mohamed Affif, Osama Saadeldine Ebrahim, Mahmoud Mohamed Metwally (El Matara Educational Hospital); Rowida Elmegluye, Diaa Mostafa Elbendary Elsayedawy, Hisham Safa, Eman Nofal, Mohamed Elbarmawy, Metwally Abo Raya, Ayman Abdelmotaleb Ghaz, Hisham Samih, Asmaa Abouelliel, Sarah Abdelrahman.

Ahmed El Kholy, Fatma Elkady, Mahmoud Salma, Sarah Sammy, Reem Fakher, Ayaa Aboarah, Ahmed Samir, Ahmed Sakr, Abdelrahman Hanoum, Asmaa Abdel Rahman Al-Araaq, Ahmed Elkholy, Sally Elshanyawy (El-Menshawy General Hospital); Eesha Ghanem (El-Shohada Central Hospital); Ahmed Tammam, Ali Mohamed Hammad, Yousra El Shoura, Gehad El Ashal, Hosni Khairy (Ksar Al-Ainy School Of Medicine); Sarah Antar, Sara Mehrz, Mahmoud Abdelshafy, Maha Gamal Hamoud Hamad, Mona Hosh, Emad Abdelsalam, Basma Momdouh, Thurya Aitayat, Elsayed Gamaly, Hossam Elfeke, Amany Abouzhahra, Shereen Elsheikhi, Fatimah I I Eldedgey (Mansoura University Hospitals); Fatiba Abd El-Salam, Osama Seifelsharaf, Mohamed Ammar, Athar Elyaa, Alaa Sadek, Aliaa Gamal Toema, Ayaa Nsr, Mohamed Abiusef, Hagar Zidan, Sara Abd Elmagede Barakat, Nadin Elsayedy, Yasmine Abd El-saoud, Ahmed El-Kelany, Mohamed Sabry Ammar, Mennat-Al-Nah Mustafa, Yasmine Makhlouf, Mohamed Eltman, Samar Saad, Mahmoud Alahawy, Ahmed Raslan, Mahmoud Morsi, Ahmed Sabry, Hagar El Wakhbi, Helia Shaker, Hagar Zidan, Ahmed Elkellyy (Mentsoufia University Hospitals); Hussein El-Kashf, Mohamed Shaalan, Areeq Tarek (Minia University Hospitals); Ayman Elwan, Ahmed Ragab Nael, Mostafa Seif, Doaa Emadeldin Shafik, Mohamed Ali Ghoname, Ahmed Almalm, Ahmed Fouad, Ayman Elwan, Eman Adel Sayma (New Damietta University Hospital); Ahmed Elbataghly, Aghan Solaimani El-Ma’doul, Ahmed Mosad, Hagar Tolba, Daiid Eldin Abdelazeem Amin Elsorogy, Hassan All Mostafa, Amira Afte Omar, Ola Sherief Abd El Hameed, Ahmed Lasheen (Quepisina Central Hospital, Quepisina); Yasser Abd El Salam, Ashraf Morsi, Mosamn Maimam (Ras El Tin General Hospital); Hagar Ahmed A Aamer, Ahmed Elkelani, Mahmoud Sabry El-Hamouly, Nooraa Atshalla, Omnia Mosaliam, Ahmed Atfandy, Ahmed Mohktar, Alaa Abouelinar, Sara Ayed, Ramdan Shaker, Rokiae Saik, Mahmoud Amirea, Abdoa Elsayed, Mohamed Mustafa, Ahmed Abu El Magd, Abeer Marey, Amr Tarek, Mohamed Fadel (Shebin El Korn Teaching Hospital, Menoufia). Mohamed Moamen Mohamed, Amin Fadel, Emad Ali Ahmed (Shag University Hospital); Ahmed Ali, Mohamed Ghassan Alkawy, Ehab Abdulkader Hemedia Ghazy Alnawam, Abdulah Dwydar, Sara Kharsa, Emad Elshin, Iyman Aliyuosssef, Abouelatella Khairly Ay, Ahmad Aldalag, Caroline Alnawam, Dalia Alkhabbazz (Saoud Kafei University Hospital); Mahmoud Saad, Shady Hussein, Ahmed Abo Elazayer, Ahmed Meshret, Marwa Elshemyi, Mohamed Moussa, Ahmed Nasaht, Sara Ghaneen, Zaynab M Elsayed, Aya Elwaeyy, Iyman Elkaed (Suez Canal University Hospitals); Marwen Daveseeg, Ahmed Mohameden, Mennaalhah Hafez (Suez General Hospital); Ahmed Badr, Assmaa Badwry, Mohamed Abd El Slam (Talla Qq Central Hospital); Mohamed Elzaiow, Salwat Al-Harawy, Lotfy Eldamayt, Fathe Nada, Mohamed Ameen, Aya Hagar, Mohamed Elshehmy, Mohamed Abo-ryia, Hossam Dawoud, Shorouk El Mesery, Abeer El Gendi, Ahmed Abdelkareem, Ahmed Saffen Marey, Mostafa Allam, Sherif Shehata, Khaled Abozied, Marwa Elshohary, Ahmed Faham, Sameh Sarsik, Amen Hasheem, Mohamed Zidan, Mohamed Hashish, Shaimaa Aqil, Abdelaziz Osman Abdelaziz Elshenawy (Tanta University Hospital); Mohamed Hussein, Omer Khater, Essra Abdalmaged Kaseem, Ahmed Gheit, Yasmine Elfouly, Ahmed Ragab Soliman, Yaseen Hani, Nesa Elfouly, Ahmed Fawzy, Ahmed Hassan, Mohamed Rashid, Abbadaa Salah Elshebiny, Basem Sieda, Nermien Mohamed Badwi, Mohammed Mustafa Hassan Mohammed, Osama Mohamed, Mohammad Abdulkhalque Habeeb (Zagazig University Hospital).

Ethiopia: Mengistu Worku, Nichole Starr (Dessie Referral Hospital), Semay Desta, Solawa Wardimin, Nebuyo Seyoum Abebe (Menelik III Hospital), Efeson Thomas, Frehen Ayele Asele, Daniel Dabessa (Mungungsing Christian Medical Center), Nebuyo Seyoum Abebe, Abebe Bekele Zerihun (Tikur Anbessa Hospital; France: Aurelien Scalabr, Fernanda Frade, Sabine Irtan (Tousseau Hospital, Sorbonnes Universitats, UPMC Univ Paris), Valentine Parent, Amandine Martin, Alex P Arnaud, Vivien Graffie, Elodie Gaignard, Quentin Alim (Rennes University Hospital), Olivier Abbo, Sofia Mouttaib, Oudria Bouali (Hopitau des Enfants, Toulouse), Erik Herveux, Yves Aigrain, Nathalie Botto (Hopital Necker-Enfants Malades, Paris), Alice Faure, Lucile Fievet, Nicoleta Panait (Hopital Nord, Marseille), Emilie Eysartier, Françoise Schmitt, Guillaume Podevin (Pediatric Surgery Department, University Hospital, Angers), Cecile Muller, Arnaud Bonnard, Matthieu Peycouton (Robert Debré Children University Hospital);

Ghana: Francis Abantang, Kwaku Boakye-Yiadom, Mohammed Bukare (Komfo Anoyke Teaching Hospital). Frank Owusu (Offisso District Hospital), Joseph Awuku-Asabe, Stephen Tabiri, Lemuil Davies Bray (University For Development Studies, School Of Medicine And Health Sciences, General Surgery Department, Tamale Teaching Hospital);

Greece: Dimitrios Lytras, Kyriakos Pearinos, Anastasia Barnich (Achilliopegio University Hospital), Christos Anthoulakis, Nikolas Nikoloudis, Nikolas Mitroudis (Neris General Hospital);

Guatemala: Gustavo Recinos, Sergio Estupiñan, Walter Forno (Hospital De Accidentes Ceibal), Romeo Guevara, Maria Aguila, Napoleon Mendez, Cesar Augusto Aznilinda Mendizabal, Pablo Ramazzini, Maria Contras Orquiz (Hospital General San Juan De Dios), Daniel Eusturo Marroquin Rodriguez, Carlos Ivan Perez Velasquez, Saraha Maria Contras Mirida (Hospital Regional de Retalhuleu), Francisco Regalado, Mario Lopez, Miguel Siguientary (Hospital Real, Guatemala);

India: SS Prasad, Anand Kirishnan, Nidhi Gyanchandani (KMC Hospital), Shriram Bhat, Anjania Sreedharan, S.V. Kannara (Kasturba Medical College), Shrvan Nadkarni, Harish Neeamranj Lakshmi, Puneet Malik (Sawan Man Singh Medical College And Hospital, Jaipur, Rajasthan), Abd Bin Mahamoud (Trak University College Hospital, Monty Khajanchi, Savin Satochar, Srin擔 Satochar (Seth Gorthandhas Sundersand Medical College And King Edward Memorial Hospital), Yella Reddy, Caranji Venugopal, Sunil Kumar (PES Institute Of Medical Sciences and Research); Indonesia: Elaida Prinsa Reifian Suntanto, Daniel Ariondo, Yohanie Suto, Chinta Tendjatmadja (Atmajaya Hospital), Fitriana Nur Rahmatwi, Radhian Amando, Maria Mayasari (Dr Cipto Mangunkusumo General University, Jakarta);

Iraq: Ruayqah Kadhim Mohammad Jawad Al-Hasani, Hasan Ismael Ibraheem Al-Hameedi, Israa Abdullah Aziz Al-Araqui (Al Sader Medical City), Lubna Sabeeh, Rahma Kamil, Marwan Shawk (Baghdad Medical City).

Ireland: Amouthda Rashendran, Jacqueline Sheehan, Robert Kerley, Caomh Nomrlie, Richard William Gilbert, Jiehren Song, Linneao Mauro, Mohammed Osman Dabloud, Michael Hanahran, Paul Keilty, Eleanor Marks (Cork University Hospital), Simon Gosling, Michelle McCarthy, Amouthda Rashendran (Cork University Hospital and University College Cork), Dya Mhraphi, Syed Afta Nqvi, Chee Sung Wong (Limerick University Hospital), Simon George Gosling, Michelle McCarthy, Amouthda Rashendran, Ciara Fahy, Jiehren Song, Michael Hanahran, Diana Duarte Cagdon, Anna Powell, Richard Gilbert, Caroline Clifford, Caomh Nomrlie, Aofe Driscoll (Mercy University Hospital), Stassen Paul, Chris Lee, Ross Bowe (Midlands Regional Hospital Mullingar), William Hutch, Michael Hanahran (University College Cork), Helen Mohan, Maeve O’Neill, Kenneth Mealy (Wexford General Hospital);

Italy: Piergiorgio Danelli, Andreia Bondurri, Anna Maffioli (Azienda Ospedalire Luigi Sacco—Polo Universitario), Luigi Bonavina, Yuri Macchitella, Chiera Ceriani (University of Milan, IRCCS Policlinico San Donato), Ezio Veronese, Luca Bontolas, Alireza Hezheminia (San Bonifacio Hospital), Francesco Pata, Angelo Benevento, Gaetano Tessera (Sant’Antonio Abate Hospital, Gallarate), Luca Turati, Giovanni Gsori, Emanuele Rausa (Treviso Hospital), Lithunia: Donatas Venskutonis, Saulius Budraskis, Linas Urbanavicius, Aiste Austrate, Romualdas Alekna, Justas Zilinskas, Zilvinas Dambruskas (Lithuanian University Of Health Sciences);

Malawi: Ross Coomber, Kenneth Johnson, Jennifer Novers (Queen Elizabeth Hospital);

Malaysia: Dineshwyj Periasamy, Atifah Salleh, Andie Das (Hospital Kajang), Reuben Goh Ern Tze, Milakoo Nirmal Kumar, Nik Azim Nik Abdullah (Sarawak General Hospital), Hooy Chin Yong, April Camila Rosiani, Cheng Chun Goh (University Malaya Medical Centre);

Matthew J Aquilis, Elaine Babz, Roernag Bugeja, Martinique Veela-Baldacchino, Andrew Spina, Josephine Psala (Mater Dei Hospital, Malta);

Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries

GlobalSurg Collaborative

BMJ Glob Health 2016 1:
doi: 10.1136/bmjgh-2016-000091

Updated information and services can be found at:
http://gh.bmj.com/content/1/4/e000091

These include:

Supplementary Material
Supplementary material can be found at:
http://gh.bmj.com/content/suppl/2016/12/09/bmjgh-2016-000091.DC1.html
http://gh.bmj.com/content/suppl/2016/12/09/bmjgh-2016-000091.DC2.html

References
This article cites 25 articles, 2 of which you can access for free at:
http://gh.bmj.com/content/1/4/e000091#BIBL

Open Access
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
http://creativecommons.org/licenses/by/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (123)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/