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The face of Glut1-DS patients: a 3D craniofacial morphometric analysis 

Abstract 

Introduction - Glut1 deficiency syndrome (Glut1-DS) is a neurological and metabolic disorder 

caused by impaired transport of glucose across the blood brain barrier (BBB). Mutations on the 

SCL2A1 gene encoding the glucose transporter protein in the BBB cause the syndrome, which 

encompasses epilepsy, movement disorders and mental delay. Such variability of symptoms 

presents an obstacle to early diagnosis. The patients seem to share some craniofacial features, and 

identification and quantification of these could help in prompt diagnosis and clinical management. 

Materials and method - We performed a three-dimensional morphometric analysis of the faces of 

11 female Glut1-DS patients using a stereophotogrammetric system. Data were analyzed using both 

inter-landmark distances and Principal Component Analysis (PCA). 

Results - Compared to data collected from age-, sex- and ethnicity-matched control subjects, 

common and homogenous facial features were identified among patients, which were mainly 

located in the mandible and the eyes. Glut1-DS patients had a more anterior chin; their mandibular 

body was longer but the rami were shorter, with a reduced gonial angle; they had smaller and down-

slanted eyes with a reduced intercanthal distance. 

Conclusions - This study highlights the importance of morphometric analysis for defining the facial 

anatomical characteristics of the syndrome better, potentially helping clinicians to diagnose Glut1-

DS. Imnproved knowledge of the facial anatomy of these patients can provide insights into their 

facial and cerebral embryological development, perhaps further clarifying the molecular basis of the 

syndrome. 

Key words: Glut1 deficiency syndrome; stereophotogrammetry; face; principal component analysis 
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Introduction 

Described in 1991 as an epileptic encephalopathy with an early childhood onset, Glut1 deficiency 

syndrome (Glut1-DS, OMIM #606777; ORPHA:21772) is a neurological and metabolic disorder 

caused by impaired transport of glucose across the blood brain barrier (BBB) (De Vivo et al., 1991; 

Brockmann et al., 2001; Klepper, 2015; De Giorgis et al., 2016).  

Despite the earlier classification of the disease as “classical” and “non-classical”, depending on the 

type of epileptic seizures and other associated features, Glut1-DS is now considered a spectrum 

encompassing different conditions such as epilepsy, movement disorders, ataxia, dystonia, 

spasticity, speech problems, delayed mental development, and other paroxysmal events 

(Brockmann et al., 2001; De Giorgis et al., 2015; Leen et al., 2010). Isolated cases of hemolytic 

anemia and cryohydrocytosis have also been described, but they are not currently included in the 

clinical picture, which nevertheless could also be completed by acquired microcephaly and 

prognathism (Weber et al., 2008; Flatt et al., 2017; Fe 2008; Valentina De Giorgis et al., 2015).  

Glucose is the main fuel for the human brain, but being hydrophilic it needs a transporter to cross 

the hydrophobic BBB and the other tissues in order to be used as an energy source (Todor, 2016). 

Mutations on the gene SCL2A1 (1p35-31.3), which encodes glucose transporter type 1, lead to 

impaired glucose transport into the brain and cause the syndrome (De Vivo et al., 2002). They can 

arise de novo or be transmitted in an autosomal dominant manner, although some sporadic cases 

have been described (De Giorgis et al., 2015; Klepper et al., 2003).   

Impaired glucose transport to the brain leads to reduced levels of glucose in the cerebral spinal fluid 

(CSF) in the presence of normal glycemia. For this reason, diagnosis of this syndrome is currently 

based on lumbar puncture, which permits the cerebral glucose levels to be measured. This can be 
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followed by mutational analysis of the gene SCL2A1. More than 100 mutations have been 

associated with deletion or loss of function of the transporter protein, causing an insufficient 

cerebral glucose supply (Klepper, 2015; Leen et al., 2010; Nakken et al., 2013). 

To date, this condition has been treated using a ketogenic diet (Lepper et al., 2002; Voit, 2004). 

Ketones provide an alternative fuel for the brain when glucose type 1 transporters are not available, 

and the ketogenic diet showed good results in terms of reducing epileptic seizures and paroxysm 

(De Giorgis and Veggiotti, 2013). These observations led Schoeler et al. to question whether  a 

positive response to such a dietetic plan among patients affected by generalized epilepsy, but with 

negative genetic testing, could be associated with undiagnosed Glut1-DS (Schoeler et al., 2015). 

For example, a recent Japanese study showed that in a group of 32 patients, 12.5% had those 

features (Ito et al., 2015). 

Since the symptoms associated with this condition are variable, diagnosis is usually challenging 

(Diomedi et al., 2016). Clinical observations include craniofacial alterations such as microcephaly 

(Voit, 2004) and prognathism. In particular, a recent clinical report on Italian Glut1-DS patients 

found prognathism in 18% of the subjects analyzed, a Gestalt sign of the disease that was confirmed 

by a pilot morphometric study (De Giorgis et al., 2015; Pucciarelli et al., 2015). 

Indeed, different syndromes are characterized by a typical facial phenotype that can guide clinicians 

towards the diagnosis (Pucciarelli et al., 2015), and quantitative three-dimensional (3D) facial 

assessments can better define phenotypical subgroups or highlight features that can be lost in a 

simple clinical inspection (Hammond et al., 2013; Inglese et al., 2016; Pucciarelli et al., 2016; 

Hurren and Flack, 2016; Sachdeva et al., 2016). 

The use of optical, contact-less instruments such as stereophotogrammetry or laser scans has greatly 

improved and facilitated craniofacial quantification. These instruments are non-invasive, easy to use 
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and fast, making them suitable for the 3D acquisition of facial images from syndromic patients, 

even in cases of more or less serious mental delay, as in Glut1-DS patients (Sforza et al., 2013).  

The aim of this study is to perform a 3D stereophotogrammetric assessment of the Glut1-DS facial 

phenotype in order to quantify facial shape and size variations through multivariate statistical 

techniques (De Giorgis et al., 2015; Goodwin et al., 2014; Hennekam 2005; Dolci et al., 2016). 
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Materials and Methods 

This study was performed according to the tenets of the Declaration of Helsinki and after approval 

by the ethics committee of UniversitàdegliStudi di Milano, 27 June 2014, no.266 230 92/2014. 

Before data acquisition, each subject or the parents/legal guardians read and signed an informed 

consent. Verbal consent was also obtained from all subjects. None of the procedures was invasive or 

dangerous and all were performed with minimal discomfort for the subjects.  

In total, 216 subjects were analyzed: 11 females, aged 3-32 years, with genetically ascertained 

diagnosis of Glut1-DS, and 205 control subjects. The control subjects were selected to be paired for 

age and sex to the Glut1-DS patients. Each reference group comprised a minimum of 13 subjects. 

All subjects were Caucasian and had no previous history of facial trauma or surgery. The patients 

included one mother/daughter pair, while the rest were unrelated. Table 1 gives details of the 

mutations identified in the patient group. 

Facial images of the patients and reference subjects were acquired using a stereophotogrammetric 

system (VECTRA M3, Canfield Scientific Inc. Fairfield, NJ, USA), an optical instrument that 

captures facial images simultaneously from different points of view and merges them to generate a 

3D surface facial reconstruction. The system is fast, non-invasive and suitable for subjects who are 

not completely cooperative (Sforza et al., 2013). Before the acquisitions, the faces of the patients 

and control subjects were marked with a set of 42 anthropometric landmarks using a black liquid 

eye-liner. Landmarks were identified by an expert operator through gentle palpation or visual 

inspection, using a standardized procedure (Ferrario et al., 2003). All subjects were asked to 

maintain a neutral facial expression during the acquisition, with lips and teeth in loose contact. An 

example of stereophotogrammetric reconstruction of the face of a young patient is shown in figure 
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1, where the landmarks examined are indicated by their acronyms. A detailed description of the 

landmarks used has been published (Ferrario et al., 2003). 

After the 3D facial reconstruction, the landmarks of interest were identified and digitized on the 

facial surfaces and their x, y, and z coordinates were extracted. These coordinates were used, 

together with those obtained from the reference subjects, to perform two different analyses: the 

calculation of landmark-to-landmark anthropometric distances, ratios, angles and areas (and their 

corresponding z-scores), and a Principal Components Analysis (PCA). 

Anthropometric measurements  

A series of linear distances, angles, areas, and ratios was calculated for both the patients and control 

subjects, starting from their three-dimensional coordinates (Table 2). Details of the measurements 

used were published previously (Sforza and Ferrario, 2006; Sforza et al., 2009). The measured 

values for the patients were transformed into z-scores using, for each measurement, the 

corresponding means and standard deviations of the reference group (Leiser et al., 2017). The 

average z-scores of the patients were subsequently compared with those of the controls using an 

unpaired Student’s t test. The criterion for statistical significance was p<0.05. 

Principal Components Analysis 

In order to compare the facial morphologies of the Glut1-DS and control subjects, a PCA shape 

analysis was performed using Matlab (Mathworks, Natick, USA). To quantify the facial differences 

between the two groups, all the point clouds composed by the 42 analyzed anatomical landmarks 

were spatially superimposed using the procrustes registration method, which allows the 

translational, rotational and isometric scaling components to be adjusted optimally. 
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Once registered, the point clouds were used as input for a PCA, a multivariate approach that allows 

morphological variations within a face sample to be analyzed. In particular, PCA enables data 

dimensionality to be reduced, calculating a series of derived variables called principal components 

(PCs), which are linear combinations of the original variables and describe the axes of shape 

variation (Zelditch et al., 2012). 

After the PC calculations, stepwise regression was used as a systematic method to identify a subset 

of predictors, in our case PCs, of the morphological differences between the faces of Glut1-DS and 

control subjects. The PCs included in the regression model were then assessed to identify the 

specific facial morphology of Glut1-DS subjects. The criterion for statistical significance was set at 

p<0.05. 
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Results 

Anthropometric measurements  

Table 3 shows the mean z-scores, their standard deviations (SD) and the corresponding p-values for 

the anthropometric measurements in the current study. Figures 2 and 3 are graphical representations 

of the statistically significant z-scores of the patients, arranged by anatomical region. 

The distinctive characteristics of the patients’ faces were mainly located in the eye and mandibular 

regions. In particular, patients had closer, smaller and more down-slanted eyes than control subjects 

because of the shorter intercanthal distance, ocular width in both right and left eyes, and soft-tissue 

ocular area. The deviation of the eye fissure from true horizontal was also less than control values 

on both sides. 

Other features distinguishing Glut1-DS patients from controls were located in the middle and lower 

third of the face (maxilla and mandible). Both the middle and lower parts of the face were lower in 

patients; the difference from controls was greatest in the mandibular area. In contrast, their 

mandibular body was longer than in controls, with a lower sn-t/ pg-go ratio and a shorter 

mandibular ramus. Consequently, the ratio between the posterior and anterior facial heights was 

lower in patients. Furthermore, the patients had greater mandibular convexity, less convex lower 

faces, and more facial divergence than control subjects. Their gonial angles were smaller than those 

of the controls. 

Principal components analysis 

The analyzed sample included 216 point clouds (205 control and 11 Glut1-DS subjects) composed 

of 42 anatomical landmarks, defined in the 3D space. After PCA analysis, 126 PCs were calculated. 
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The first 22 of these allowed 90% of face variability within the sample to be described, while the 

first 71 described 99% of it.  

Among the calculated PCs, only 23 were retained after stepwise regression. Table 3 shows the 

coefficient values and the corresponding p-values for these 23. Finally, to establish how these 

components affected facial morphology, we selected the three most significant: PC1, PC2, and PC9. 

Figure 4 shows how these three PCs affected facial morphology in the analyzed sample.  

In the 3D space defined by PC1, PC2 and PC9, Glut1-DS patients all clustered in the negative parts 

of the three dimensions, with a more homogeneous distribution than control subjects (Figure 5). 

PC1 explained 44% of the total variance. The main variations were seen in the upper and lower 

parts of the face. Glut1-DS patients (average configuration minus [should this be ±?] 1.96 SD, 

Figure 4a) were characterized by a high forehead, smaller eyes and a prominent nose, a short 

mandibular ramus with a long mandibular body, small gonial angles, and a less prominent chin. 

PC2 explained 9% of the total variance, and again depicted Glut1-DS patients with a high forehead, 

smaller eyes, and low chin prominence (average configuration minus [should this be ±?] 1.96 SD, 

Figure 4b). Also, the face was less deep and more divergent.  

Modifications included in PC9 (2% of total variance) were focused in the oral region, Glut1-DS 

patients being characterized by more prominent lips and a less prominent chin (average 

configuration minus [should this be ±?] 1.96 SD, Figure 4c). 

 

Discussion 
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Clinical manifestations of Glut1-DS are heterogeneous so it is not always easy to diagnose the 

condition. Indeed, the diagnosis can be very challenging, as in cases of familiar epilepsies with 

cognitive and motor function impairment (Diomedi et al., 2016). Nevertheless, early recognition of 

the syndrome could be very advantageous, facilitating correct treatment and prompt introduction of 

the ketogenic diet, which should be started as soon as possible and maintained at least until 

adolescence (Akman et al., 2016). 

Despite the clinical variability of this syndrome, previous qualitative observations, corroborated by 

clinical practice, identified a typical facial aspect of the patients, with a tendency to a more 

prominent mandible and a retrognathic maxilla, as confirmed by a pilot morphometric study (De 

Giorgis et al., 2015; Pucciarelli et al., 2015). Such results underlined the need for the more detailed 

morphometric analysis performed in the current study, which again revealed a common set of 

craniofacial features among Glut1-DS patients. 

Two morphometric techniques were used: a set of conventional anthropometric measurements, and 

PCA. Both offer benefits (Sforza et al., 2013): z-scores are widely used clinically, for example in 

fetal ultrasonography and to predict the presence of chromosomal aberrations (Chitkara et al., 

2002); PCA is a strong statistical method that allows the main components of variability in spatial 

data to be identified. It has already been applied to morphometric analysis of the face, and it has 

been suggested as a future instrument for early recognition of the syndromes (Demšar et al., 2017; 

Goodwin et al., 2014). Moreover, morphometric analysis has already been proposed as a valid 

instrument to address other syndromes that have wide clinical manifestations or require early 

diagnosis (Dolci et al. 2016; Goodwin et al., 2014).  

In general, the results of the conventional anthropometric measurements were confirmed and 

extended by the PCA, revealing a more homogeneous face in patients than controls, most of the 
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anomalies being located on the forehead (increased), eyes (decreased), nose (prominent), middle 

and lower facial width and depth (decreased), and the mandible. In particular, Glut1-DS patients 

seem to possess a long mandibular body with a short ramus and small gonial angles, reduced chin 

prominence and increased lip prominence, and increased facial divergence. It has to be mentioned 

that the facial configurations shown in Figure 4 do not necessarily represent actual faces; they are 

mathematical tools that allow the major characteristics of the patients to be highlighted. 

The determination of precise facial features shared among Glut1-DS patients could be important for 

increasing understanding of the pathology and of its cellular and molecular bases. Jensen et al. 

demonstrated that abrogation of the glut1 orthologue in zebra fish leads to impaired cerebral 

organogenesis, restored by expression of the human transporter mRNA (Jensen et al., 2006). Even if 

this experimental model is not ideally suited to describing exactly what happens in patients, since 

humans maintain a functional copy of the transporter, it is important to remember that, 

embryologically, the face and the brain are interlinked (Pucciarelli et al., 2016; Petryk et al., 2015). 

Therefore, alterations in brain development due to underlying genetic mechanisms and occurring at 

any level could be reflected in abnormal facial features (Sperber, 2001). Studies dedicated to 

clarifying these aspects are mandatory. For instance, the modifications seen in the upper part of the 

face of the current group of Glut1-DS patients (increased forehead and reduced soft-tissue eye 

dimensions) could somehow be related to altered brain development, as found macroscopically in 

forebrain pathologies such as holoprosencephaly (Pucciarelli et al., 2016). 

The alterations seen in the mandibular area corroborated the clinical picture of prognathism 

described for these patients. Recent studies on subjects with mandibular prognathism, in most cases 

candidates for orthognathic surgery, revealed a set of genes related to the excess mandibular 

prominence. The locations of some of these genes on chromosome 1 (1p36; 1p22.3; 1p22.1; 
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1q32.2) seem to be adjacent to those identified as the basis of disease in Glut1-DS patients (1p35-

31.3), possibly explaining the association between the two disorders by genetic linkage (Ikuno et al. 

2014; Tassopoulou-Fishell et al., 2013; Chen et al. 2015). 

Facial morphometric analysis, however elaborated, will obviously never replace clinical diagnosis 

coupled with recognized biochemical and genetic tests, but, given its safety and low cost, it can 

serve as an initial screening test or a valid supplement to genetic testing. It could also be used 

effectively for longitudinal assessments.  

Knowledge of the specific facial morphology of the patients, aside from its anatomical importance, 

is a good starting point for predicting, planning, and evaluating the outcome of orthodontic and 

orthopedic treatments for patients. Indeed, facial scans are widely used in orthodontic assessment, 

because of the benefits provided from the 3D technology, but also because of the deeper anatomical 

characterization achievable through morphometric analysis (Kau et al., 2010).  

 

Conclusion 

The present study highlighted the importance of recognizing typical and common facial features 

among Glut1-DS patients through a non-invasive, 3D, morphometric approach. This will open the 

way to morphometric analysis of the face as an ancillary tool for early diagnosis of this syndrome 

and other medical conditions in which a more or less evident facial dysmorphism can be involved. 

Considering the limited number of patients in this study, and the fact that they were all female, it 

will be mandatory to increase the sample size and to investigate the facial features of male patients 

too.   
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Figure legends 

Figure 1. Anthropometric landmarks identified on a patient’s face. Acronyms indicate the reference 

points actually used in this study. 

Figure 2. Statistically significant z-scores of the eye region (mean ± 1 SD). The continuous line 

indicates the reference z-score of the controls, which by definition is 0. 

Figure 3. Statistically significant z-scores of the mandibular region (mean ± 1 SD). The continuous 

line indicates the reference z-score of the controls, which by definition is 0. 

Figure 4 a, b, c. Effect of the variation of the three most significant PCs included in the regression 

model. For each PC, the average configuration, and those differing ± 1.96 SD, are depicted. 

Figure 5. Comparison of Glut1-DS and control subjects in the principal component space, defined 

by the three more significant components included in the regression model. The ellipse highlights 

how the Glut1-DS subjects are distributed. 
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Table 1. Glut1-DS patients involved in the study and their mutations. Patients #1 and 2 are related 

Patient# sex Age (years) Protein Mutation Type of mutation 

1 female 11 V165I missense 

2 female 32 V165I missense 

3 female 29 R126C missense 

4 female 14 p.Thr295Met /pT295M9 missense 

5 female 27 W48X nonsense 

6 female 18 c.457C>T missense 

7 female 8 p.N34S missense 

8 female 3 R249Afs131X nonsense 

9 female 17 p.Arg 400 cys missense 

10 female 8 p.Leu124TrpfsX12 deletion 

11 female 10 R153C missense 
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Table 2. Anthropometric measurements performed in this study 

Distances [mm]  Angles [°]  

Intercanthal distance ex-ex Sagittal convexity (excluding nose) n-sn-pg 

Middle facial width t-t Sagittal facial convexity (including nose) n-prn-pg 

Lower facial width go-go Midfacial to mandibular plane (t-n)-(pg-go) 

Ocular width (right and 

left) 

en-ex Inclination of the eye fissure versus the true 

horizontal 

en-ex^THR 

Mouth width ch-ch Maxillary prominence sl-n-sn 

Forehead height tr-n Mandibular convexity go-pg-go 

Height of the nose n-sn Gonial angle (right and left) t-go-pg 

Lower facial height sn-pg Lower facial convexity t-pg-t 

Total facial height n-pg   

Upper facial depth n-t   

Middle facial depth sn-t   

Lower facial depth pg-t   

Mandibular corpus length pg-go   

Mandibluar ramus length t-go   

Width of the face zy-zy   

    

Areas [cm2]  Ratios [%]  

Soft-tissue ocular area 

(right and left) 

 Facial width/ total facial height ratio t-t/n-pg 

  Middle/lower facial depth ratio sn-t/pg-t 

  Middle facial depth/ mandibular corpus length 

ratio 

sn-t/pg-go 

  Posterior/anterior facial height ratio t-go/sn-pg 
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Table 3. Mean, standard deviations (SD) and p-values of the anthropometric measurements 

performed 

  
Mean SD p-value 

  
Mean SD p-value 

D
is

ta
n

ce
s 

[m
m

] 

ex-ex -1.712 1.013 < 0.01 

A
n

g
le

s 
[°

] 

n-sn-pg -0.694 0.646 < 0.01 

t-t -0.633 0.939 0.05 n-prn-pg -0.224 0.544 0.201 

go-go 0.360 0.803 0.168 
(t-n)-(pg-

go) 
1.143 0.856 < 0.01 

en-ex -1.407 0.777 < 0.01 
en-

ex^THR 
-1.453 0.801 < 0.01 

en-ex -1.291 0.721 < 0.01 
en-

ex^THR 
-0.984 0.740 < 0.01 

ch-ch -0.506 1.427 0.267 sl-n-sn 0.483 0.798 0.072 

tr-n -0.129 1.651 0.801 go-pg-go -1.300 0.479 < 0.01 

n-sn 0.686 1.156 0.077 t-go-pg -1.439 0.878 < 0.01 

sn-pg 0.186 1.591 0.707 t-pg-t 1.372 0.968 < 0.01 

n-pg 0.478 0.907 0.111 

R
a

ti
o

s 
[%

]     

n-t -0.650 0.941 0.045 t-t/n-pg -0.822 0.923 0.014 

sn-t -1.333 0.969 < 0.01 sn-t/pg-t 1.376 0.909 < 0.01 

pg-t -1.986 1.096 < 0.01 sn-t/pg-go -1.427 1.485 0.01 

pg-go 1.225 0.764 < 0.01 t-go/sn-pg -1.522 1.103 < 0.01 

t-go -1.764 0.945 < 0.01 

A
re

a
s 

[c
m

2
] 

Soft-tissue 

ocular 

area right 

-1.019 0.477 < 0.01 

 zy-zy -0.649 1.242 0.113 

Soft-tissue 

ocular 

area 

left 

-1.063 0.564 < 0.01 
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Table 4. Coefficient values of the PCs included in the regression model and the corresponding t and 

p-values 

 Coefficients t-value p-value 

PC 1 -0.002 -5.921 1.5٠10
-8 

PC 2 -0.005 -7.277 8.5٠10
-12

 

PC 3 -0.002 -2.635 9.1٠10
-3

 

PC 6 0.006 5.150 6.4٠10
-7

 

PC 9 -0.009 -5.695 4.6٠10
-8

 

PC 11 0.004 2.532 0.012 

PC 13 -0.006 -2.876 0.005 

PC 14 -0.005 -2.595 0.012 

PC 21 -0.011 -4.062 7.1٠10
-5

 

PC 22 0.008 2.856 0.005 

PC 23 -0.007 -2.208 0.028 

PC 34 -0.009 -2.234 0.027 

PC 36 -0.016 -3.637 3.5٠10
-4

 

PC 41 -0.013 -2.539 0.012 

PC 47 -0.012 -2.004 0.046 

PC 59 -0.018 -2.383 0.018 

PC 66 0.019 2.117 0.036 

PC 71 0.026 2.606 0.009 

PC 86 -0.039 -2.754 0.007 

PC 95 -0.055 -3.027 0.003 

PC 100 0.051 2.430 0.016 

PC 113 -0.105 -2.856 0.005 
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Figure 1. Anthropometric landmarks identified on a patient’s face. Acronyms indicate the reference points 
actually used in this study.  
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Statistically significant z-score values of the eye region (mean ± 1 SD). Continuous line indicates the 
reference z-score of the controls, that by definition is 0.  
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Statistically significant z-scores values of the mandibular region (mean ± 1 SD). Continuous line indicates 
the reference z-score of the controls, that by definition is 0.  
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Effect of the variation of the three most significant PCs included in the regression model.  For each PC, the 
average configuration, and those differing ± 1.96 SD, are depicted.  
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Effect of the variation of the three most significant PCs included in the regression model.  For each PC, the 
average configuration, and those differing ± 1.96 SD, are depicted.  
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Effect of the variation of the three most significant PCs included in the regression model.  For each PC, the 
average configuration, and those differing ± 1.96 SD, are depicted.  
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Comparison of Glut1-DS and control subjects in the principal component space, defined by the three more 
significant components included in the regression model. The ellipse highlights how the Glut1-DS subjects 

are distributed.  
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