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Abstract. We consider a model of weakly interacting, close-packed,
dimers on the two-dimensional square lattice. In a previous paper,
we computed both the multipoint dimer correlations, which display
non-trivial critical exponents, continuously varying with the interaction
strength; and the height fluctuations, which, after proper coarse grain-
ing and rescaling, converge to the massless Gaussian field with a suitable
interaction-dependent pre-factor (‘amplitude’). In this paper, we prove
the identity between the critical exponent of the two-point dimer corre-
lation and the amplitude of this massless Gaussian field. This identity
is the restatement, in the context of interacting dimers, of one of the
Haldane universality relations, part of his Luttinger liquid conjecture,
originally formulated in the context of one-dimensional interacting Fermi
systems. Its validity is a strong confirmation of the effective massless
Gaussian field description of the interacting dimer model, which was
guessed on the basis of formal bosonization arguments. We also con-
jecture that a certain discrete curve defined at the lattice level via the
Temperley bijection converges in the scaling limit to an SLEκ process,
with κ depending non-trivially on the interaction and related in a simple
way to the amplitude of the limiting Gaussian field.

1. Introduction

In recent years, there has been an increasing interest of the mathemat-
ical community on the conformal invariance properties of two-dimensional
(2D) statistical systems at the critical point, and on their connections with
the massless Gaussian field. The introduction of novel techniques, ranging
from discrete holomorphicity [12, 38, 39, 58] to Schramm-Loewner Evolu-
tion (SLE) [44] and percolation techniques [62], finally allowed, after more
than 50 years of intense research, to fully characterize the structure and the
conformal invariance of dimer [19, 40] and Ising models [14, 31], as well as
to rigorously confirm some predictions, based on Conformal Field Theory
(CFT) arguments, concerning crossing probabilities in critical percolation
[59]. This exciting advances are still ongoing and, as they develop, they
are revealing a closer and closer connection between the lattice integrability
properties of dimer and Ising models, and certain CFT structures and ob-
jects, such as the Virasoro algebra, the Operator Product Expansion, and
the stress-energy tensor [32].

A big limitation of these methods is that they are mostly limited to models
at the free fermion point, and it is a major challenge to develop techniques for
rigorously controlling the scaling limit of general interacting, non-integrable,
theories, and for proving their conformal covariance properties. A standard
method used in the Quantum Field Theory (QFT) and condensed matter
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communities for characterizing quantitatively the scaling limit of 2D inter-
acting theories at the critical point is the so-called ‘Coulomb gas formalism’,
which is based on an effective description of several 2D critical theories in
terms of a massless Gaussian field (‘bosonization method’) [46, 54]. In this
approach, the conformal invariance of the interacting theory translates into
the well-known conformal invariance of the Gaussian model. Most of the
applications of this method are quite heuristic, and we are still missing a
full comprehension of the emergence of the massless Gaussian field in the
scaling limit.

In this paper, we prove a rigorous instance of this emergent correspon-
dence in the context of interacting dimer models, giving a strong justifica-
tion of the use of the Coulomb gas description outside the free fermion point.
Our new result complements our previous findings in [25], where we showed
that the critical exponent of the dimer-dimer correlations is an analytic
function of the interaction strength, and proved the convergence, at large
distances, of the height function to the massless Gaussian field, with a suit-
able interaction-dependent pre-factor. In short, our new result is a rigorous
proof of the identity between such pre-factor (the ‘stiffness’ or ‘amplitude’
of the massless Gaussian field) and the dimer-dimer critical exponent. This
identity, very surprising at first sight, can be guessed on the basis of the
aforementioned representation of the interacting dimer model in terms of a
massless Gaussian field. It is an instance of the so-called Haldane relations,
originally formulated in the context of one-dimensional interacting Fermi
systems, as parts of the famous Haldane’s Luttinger liquid picture [28, 29].

Before formulating the model and the result precisely (see Section 2), we
first make a historical digression on the concept of Luttinger liquid universal-
ity class and on the bosonization method, which may be useful for clarifying
the motivations behind the emergence of an effective ‘massless Gaussian
Field’ behavior and the Haldane relation. We also explain the connection
between these concepts and 2D dimer models.

1.1. Luttinger liquids. Kadanoff [34] and Haldane [28, 29] (see also [16,
35, 36, 46, 56]) conjectured the existence of a universality class, called 8-
vertex universality class or Luttinger liquids, of models whose low energy
behavior is described by a 2D massless Gaussian field (i.e., a free massless
boson field) φ with covariance

E(φ(x)φ(y)) = − A

2π2
log |x− y|, (1.1)

for a suitable constant A, which is model dependent. In particular, the
correlation functions of models in this class are the same, asymptotically
at large distances, as those of suitable functions of φ. Models in this class
include two-dimensional classical systems, like: the 6 and 8-vertex models,
the Ashkin-Teller model, and interacting dimer models at close-packing; and
one-dimensional quantum systems, like: Heisenberg spin chains, the Lut-
tinger model and the spinless Hubbard models (see [4, 28, 34, 46, 56]). This
conjecture implies, in particular, that the critical exponents are connected
by scaling relations such that, once a single exponent is known, all the oth-
ers are determined, and that there are simple relations between the critical
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exponents and the amplitudes (i.e., the pre-factors in front of the power-
law decay) of suitable correlations. These predictions have been checked
mostly in exactly solvable models, but they are expected to hold also for
non solvable ones.

1.2. Bosonization. The models in the Luttinger liquid universality class
that we mentioned describe interacting spins or particles: therefore, the
mapping of all these systems into such a simple model as the massless
Gaussian field is at first sight surprising. The simplest way to understand
this correspondence is via the concept of bosonization, which is a crucial
notion in 2D QFT and in condensed matter physics. The starting point
is the observation that all the lattice models in the Luttinger liquid uni-
versality class (vertex models, spin chains, dimers, Ashkin-Teller) admit an
exact description in terms of lattice fermions, i.e., a family of Grassmann
variables ψσx,ω, indexed by lattice vertices x = (x1, x2), as well as by two
indices σ, ω = ±. For instance, the 8-vertex and the Ashkin-Teller models
can be represented as a pair of 2D Ising models coupled via a quartic in-
teraction [4], and the fermionic representation is inherited from the Pfaffian
description of the 2D Ising model. For special values of the model param-
eters (free-fermion point) such fermions are non-interacting and then the
system is exactly solvable. However, for generic values of the parameters
the fermions are interacting, i.e., their action contains terms at least quartic
in the Grassmann variables, so that the partition function and the corre-
lations are given by non-Gaussian Grassmann integrals. If one performs a
formal continuum limit, such fermions becomes Dirac fermions in d = 1 + 1
dimensions, which are massless at criticality.

There is a well known correspondence in d = 1 + 1 Quantum Field The-
ory between bosons and fermions [15]. Take non-interacting massless Dirac
fermions ψσx,ω, σ, ω = ±, x ∈ R2, with propagator that is diagonal in the
index ω, anti-diagonal in σ, translation-invariant in x and such that

〈ψ−x,ωψ+
0,ω〉 =

Cω
x1 + iωx2

, (1.2)

with Cω constants such that1 C− = C∗+. Then bosonization consists in the
following two identities (see e.g. [17]):

• the “fermionic density” ψ+
x,ωψ

−
x,ω has the same multi-point correla-

tions as the derivative of a boson field:

ψ+
x,ωψ

−
x,ω ←→ 2iπCω∂ωφ , (1.3)

where ∂ω := 1
2(∂x1−iω∂x2), and φ is the massless Gaussian field with

covariance (1.1) with A = 1. In particular, correlations of ψ+
x,ωψ

−
x,ω

of odd order and truncated correlations of order larger than 2 vanish.
• the “fermionic mass” ψ+

x,ωψ
−
x,−ω has the same correlations as a normal-

order exponential of the boson field:

ψ+
x,ωψ

−
x,−ω ←→ Cω : e2πiωφ(x) : , (1.4)

1A standard choice is Cω = 1/(2π). However, for the interacting dimer model we
consider below a natural choice of coordinates leads to Cω depending on ω. We could
reduce to the standard case via a suitable rotation of space coordinates, but then many
formulas would look more cumbersome.
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where : · · · : denotes Wick ordering, see e.g. [17].

Remarkably, a similar correspondence remains valid [15] also for interact-
ing massless Dirac fermions. In particular, in the presence of a local, delta,
interaction (Thirring model) the multi-point correlations of the fermionic
density and fermionic mass operators are known explicitly [33, 43, 60] and
the bosonization identities are still true, provided that the left side of (1.4) is
divided by a suitable renormalization constant, diverging in the ultraviolet
limit. Moreover, the pre-factor A in (1.1) is changed into an interaction-
dependent constant, A = A(λ) 6= 1, where λ is the strength of the delta
interaction. Note that the density and mass operators in the Thirring model
are naturally defined up to multiplicative renormalization constants, whose
specific choices are part of the definition of the model. In this sense, the
‘amplitudes’ of the fermionic operators (which play a role in the Haldane
relations we are interested in) are somewhat ambiguous: therefore, it would
be desirable to have at disposal a solvable model, similar to Thirring, but
free of ultraviolet divergences, to be used to test unambiguously the desired
universality relations between amplitudes and critical exponents.

The simplest such model is a model of interacting massless Dirac fermions,
whose interaction is local, delta-like, only in one of the two directions, say
horizontal (Luttinger model): also in this case the correlations can be com-
puted exactly [49] and, for a proper choice of the bare Fermi velocity (chosen
in such a way that the interacting Fermi velocity is 1), their asymptotic ex-
pression at large distances reads:∑

ω

〈ψ+
x,ωψ

−
x,ω;ψ+

0,ωψ
−
0,ω〉 '

A

2π2

x2
1 − x2

2

|x|4 , (1.5)

and ∑
ω

〈ψ+
x,ωψ

−
x,−ω;ψ+

0,−ωψ
−
0,ω〉 '

B

2π2

1

|x|2A (1.6)

where the semicolon indicates truncated expectation, and A and B are
suitable interaction-dependent constants. Eq.(1.5)-(1.6) are the same that
one would obtain by using (1.3)-(1.4), with φ normalized as in (1.1) and

Cω = 1/(2π), provided the right side of (1.4) is multiplied by
√
B. Note

that the constant A in (1.5) is the same as the one appearing in the critical
exponent in (1.6). The same identity between the amplitude of the density-
density correlations and the critical exponent of the mass-mass correlations
has been verified for other exactly solvable models in the same universality
class, in particular for the XXZ spin chain [28]. The conjecture is that it
should remain valid also for non-exactly solvable models in the same uni-
versality class, including lattice models, for which an exact mapping into a
massless Gaussian field is not possible.

1.3. Previous results. In the absence of exact solutions or of bosonization
identities, the computation of the asymptotic behavior of correlations at
criticality, not to mention the verification of the Kadanoff-Haldane relations,
is a major mathematical challenge. Constructive QFT and Renormalization
Group (RG) techniques provide powerful mathematical tools to attack these
problems. These methods allowed one of us [48] to prove that the critical
exponents of the 8-vertex and the Ashkin-Teller model, close to the free
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fermion point, are analytic functions of the interaction strength λ. Benfatto,
Falco and Mastropietro [6] later extended the analysis of [48], proving the
validity of some of the Kadanoff relations between the critical exponents
of several non-integrable models in the 8-vertex universality class, as well
as two Haldane relations between exponents and amplitudes for a quantum
spin chain [9, 10]. These results provide relations only between correlations
of quantities that are local in the fermionic variables. An important open
problem is to analyze observables that are, instead, non-local, such as the
spin in coupled Ising layers and the height function in dimer models. The
analysis of these observables is already very non-trivial at the free-fermion
point [14, 19, 20, 39, 40].

1.4. Interacting dimers. Motivated by these issues, in [25, 26] we con-
sidered a non-integrable dimer model at close packing on Z2, where dimers
interact via a short-range potential of strength λ. We studied two natural
observables: the dimer occupation variable 1e, indexed by edges e of the
square lattice, and the height function h(η), indexed by faces η. The model
can be rewritten (see Section 3.3 below) as a system of two-dimensional in-
teracting lattice Dirac fermions with propagator behaving at large distances
as in (1.2) with Cω = 1/(2π(1−iω)) (see (3.24)). When the coupling param-
eter λ is set to zero the fermion-fermion interaction vanishes, corresponding
to the Pfaffian nature of Kasteleyn’s solution of the non-interacting dimer
model. The observable 1e has a local expression Ie in the fermionic rep-
resentation, containing both a “density term” ψ+

x,ωψ
−
x,ω and a “mass term”

ψ+
x,ωψ

−
x,−ω, the latter multiplied by a prefactor that oscillates with distance.

If, e.g., e is horizontal, then (if x = (x1, x2) is the coordinate of the edge e
and (−1)x = (−1)x1+x2)

Ie = ±
∑
ω

[ψ+
x,ωψ

−
x,ω + (−1)xψ+

x,ωψ
−
x,−ω] + h.o., (1.7)

where the sign in front depends on the parity of the edge, and h.o. indicates
subdominant terms2; see below for the full expression (see in particular
Remark 4). The height function h(η) is defined as the sum over a lattice
path η0, η1, . . . , ηk = η, from a reference face η0 to η, of σe(1e − 1/4), with
σe a suitable sign (see (2.6) and following lines), and, therefore, by (1.7), it
is non-local in the fermionic variables.

Using (1.7), one finds that the dimer-dimer correlation 〈1e;1e′〉λ is the
sum of two terms, the first corresponding to a density-density correlation,∑

ω

〈ψ+
x,ωψ

−
x,ω;ψ+

x′,ωψ
−
x′,ω〉 (1.8)

and the second to a mass-mass correlation with oscillating prefactor:

(−1)x+x′
∑
ω

〈ψ+
x,ωψ

−
x,−ω;ψ+

x′,−ωψ
−
x′,ω〉. (1.9)

2By ‘subdominant’ here we mean contributions that produce faster decaying terms
at large distances in the computation of 〈Ie;Ae′〉, where Ae′ is an observable localized
around the bond e′, and |e− e′| � 1.
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By heuristically using the bosonization identities (1.3)-(1.4), one guesses
that (1.8) should behave asymptotically as

A

2π2
Re

(
1

(1− i)2(z − z′)2

)
, (1.10)

with z = x1 + ix2, z
′ = x′1 + ix′2, while (1.9) should be asymptotically

proportional to

(−1)x+x′ 1

|z − z′|2ν , (1.11)

with ν = A. Similarly, by using the fermionic representation of the height
function and the first bosonization identity (1.3), one predicts that h(η)
tends to a massless Gaussian field with covariance (1.1), and the same A as
in (1.10).

In [25, 26], we developed a Renormalization Group analysis for the inter-
acting dimer model, which allowed us to prove most of these predictions,
in particular the convergence of the height field to the massless Gaussian
field, the validity of (1.10) and (1.11) and their multipoint generalization.
However, the important question of the identity A = ν was not addressed,
and we prove it here, by combining the ideas of [25, 26], together with a
comparison of exact lattice Ward identities with those of a relativistic ref-
erence model, in the spirit of [9, 10]. The remarkable identity A = ν is a
strong confirmation of the validity of the massless Gaussian field description
of the interacting dimer model. It is a restatement of the Haldane relation
between the ‘compressibility’ and the ‘density-density critical index’, in a
context different from the one originally proposed by Haldane, who consid-
ered interacting fermions in one dimension and quantum spin chains: in this
sense, it is the first example of such a universality relation in a classical
statistical mechanics model.

1.5. Summary. The rest of the paper is organized as follows. In Section 2
we define the model precisely and state our main results. We also comment
about possible generalizations to related models, and about the possible
emergence, in the scaling limit, of an SLEκ process with λ-dependent dif-
fusion constant κ, underlying the interacting dimer model. The following
sections contain the technical aspects of the proof of our main theorem, in
particular:
– in Section 3 we discuss the Grassmannian formulation of the model;
– in Section 4 we derive a lattice Ward Identity for the dimer model, which
plays an important role in the proof of the Haldane relation;
– in Section 5 we introduce a relativistic continuum model (the ‘reference
model’), which plays the role of the infrared fixed point of the dimer model,
and review some of the properties of its correlations;
– in Section 6 we put together the ingredients of the previous sections and
complete the proof of the Haldane relation; in Section 7 we compare the
notations and conventions of the present paper with those of [25].

In the appendices we collect a few more technical issues: in Appendix A
we discuss the structure of the singularities of the Fourier transform of the
dimer-dimer correlations; in Appendix B we verify the Haldane relation at
first order in perturbation theory; in Appendix C we review the derivation
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~e1

~e2

Figure 1. The sublattices VB and VW of black and white
sites, and the basis vectors ~e1, ~e2, oriented at an angle ∓π/4
with respect to the horizontal axis. The figure also shows
an admissible close-packed dimer configuration, periodic of
period L = 6 in the directions ~e1, ~e2.

of the Ward Identities for the relativistic reference model, as well as the
exact computation of its two- and four-point functions.

2. Model and result

Let us now define our model more precisely. We consider the bipartite
graph Z2, and we decompose it into two sublattices (black/white sublattices
VB/VW ) such that all neighbors of a vertex v ∈ VB belong to VW and
viceversa. Each vertex is assigned a coordinate x = (x1, x2) and a white
vertex has the same coordinates as the black vertex just at its left. Both
VB and VW will be thought of as Bravais lattices with basis vectors ~e1 and
~e2, where ~e1 is the vector of length

√
2 and angle −π/4 w.r.t. the horizontal

axis, while ~e2 is the one of length
√

2 and angle +π/4. See Figure 1.
Given an edge e, we let b(e), w(e) denote the black/white vertex of e.

Edges are of four different types r = 1, 2, 3, 4: we say that e is of type r if
the vector from b(e) to w(e) forms an anti-clockwise angle (r − 1)π/2 with
respect to the horizontal axis. An edge e is unambiguously identified by its
type r(e) and by the coordinates x(e) = (x1(e), x2(e)) of its black site.

We consider the dimer model in a periodic box: we let TL be the graph
Z2 periodized (with period L) in both directions ~e1, ~e2. See Figure 1. With
abuse of notation, we still denote by VW , VB the set of white/black sites
of TL, without making the L dependence explicit. Black/white sites are
therefore indexed by coordinates x ∈ Λ = ΛL = {(x1, x2), 1 ≤ xi ≤ L}.

The partition function of the interacting dimer model we study is

ZL(λ,m) =
∑

M∈ML

(
∏
e∈M

t(m)
e )eλHL(M) =:

∑
M∈ML

pΛ;λ,m(M) (2.1)

where:

• ML is the set of perfect matchings of TL;
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• HL(M) is the number of square plaquettes of TL containing two
parallel dimers;
• λ is a real parameter (coupling constant);
• m > 0 and

t(m)
e = 1 +m(−1)x1(e)+x2(e)

(
δr(e)=1 − δr(e)=3

)
. (2.2)

As discussed in [25], the parameter m ≥ 0 (the mass) plays the role of
an infrared cut-off, to be eventually sent to zero: it has the effect that
correlations decay exponentially with distance (uniformly in L) as long as
m > 0, and it is sent to zero after the thermodynamic limit L → ∞. This
model, in the limit m→ 0, describes polar crystals [30] and it was recently
reconsidered in [2, 55] in connection with quantum dimer models.

The Boltzmann-Gibbs measure associated with the model is denoted by
〈·〉Λ;λ,m: if O(M) is a function of the dimer configuration,

〈O〉Λ;λ,m :=
1

ZΛ(λ,m)

∑
M∈ML

pΛ;λ,m(M)O(M). (2.3)

Remark 1. This model is the same studied in [25, 26]. However, here we
use a different convention for the coordinates on the lattice, which respects
the bipartite structure and turns out to be convenient for the derivation of the
Ward Identities. In order to restate the results derived here in the notations
of [25], one needs to properly redefine the coordinates: with the conventions
of [25, 26], the black (resp. white) site of coordinate x = (x1, x2) have
coordinates x̃(x) (resp. x̃(x) + (1, 0)), where

x̃(x) = (x1 + x2, x2 − x1). (2.4)

As discussed in [25], whenever O is a bounded local function, the following
limit exists:

〈O〉λ := lim
m→0

lim
L→∞

〈O〉Λ;λ,m, (2.5)

and defines a translationally invariant infinite volume Gibbs state 〈·〉λ.
When λ = 0 (non-interacting model) the model is well-known to be ex-

actly solvable via Kasteley’s theory [37], in the sense that n-point correla-
tions can be computed explicitly as determinants. When both λ and m are
zero (non-interacting and massless model) the partition function reduces to
the cardinality of ML.

Before stating our main result, let us review briefly what was proven in
[25]. Recall that the height function is defined by fixing it to zero at some
reference face η0, and by establishing that

h(η)− h(ξ) =
∑

e∈Cξ→η

σe(1e − 1/4), (2.6)

with Cξ→η any nearest-neighbor path from ξ to η, the sum running over the
edges crossed by the path, 1e the indicator function that an edge of Z2 is
occupied by a dimer and σe being +1 or −1 according to whether the edge
is traversed with the white vertex on the right or left. The content of [25,
Th. 1 and 3] is that there exists λ0 > 0 such that, if |λ| < λ0 then the height
field associated to the dimer configuration converges in distribution (in the
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limit limm→0 limL→∞) to a massless Gaussian field φ(·) on the plane, with
covariance

E(φ(x)φ(y)) = −A(λ)

2π2
log |x− y|, (2.7)

where3 A(λ) is an analytic function of λ satisfying A(0) = 1. Moreover the
n-th cumulant of h(η)− h(ξ), n ≥ 3, is bounded uniformly in η, ξ.

A crucial ingredient in the proof was a sharp asymptotic expression for
dimer-dimer correlations. The rewriting of [25, Th. 2] with the present
convention is the following: There exist real analytic functions B(·), ν(·),
defined in a neighborhood |λ| ≤ λ0 of the origin, satisfying B(0) = ν(0) = 1,
such that the following holds. Let e, e′ be edges of type r, r′, with b(e) =
x = (x1, x2) 6= 0 and b(e′) = 0. Then, for |λ| ≤ λ0,

〈1e;1e′〉λ = −A(λ)

2π2
Re

[
ei
π
2

(r+r′)

(1− i)2(x1 + ix2)2

]
(2.8)

+tr,r′
B(λ)

4π2
(−1)x1+x2

1

|x|2ν(λ)
+Rr,r′(x)

where

|Rr,r′(x)| ≤ Cθ(1 + |x|)−2−θ (2.9)

for some 1/2 ≤ θ < 1, Cθ > 0, and tr,r′ is 1 if r = r′, 0 if the two edges
are not parallel, and −1 if they are parallel but not of the same type. The
function A(·) is the same as in (2.7). The first line of (2.8) coincides with
the right side of (1.10) for r = r′ = 1 and z′ = 0.

Note that the large-scale behavior of the height field depends only on A(·)
and not on B(·), ν(·). Observe also that the decay at large distances of the
dimer-dimer correlation is controlled by the critical exponent min(2, 2ν(λ)).

The main result of the present work is an identity between the limit
variance A(λ) of the height field and the dimer-dimer critical exponent ν(λ).

Theorem 1. There exists λ0 such that, if |λ| ≤ λ0, then (2.8) holds with

A(λ) = ν(λ) (2.10)

This result confirms the predictions of the universality conjecture of Kadanoff
and Haldane for this model, as discussed in the Introduction. It would be
interesting to apply the methods of its proof to the computation of other
universality relations, such as the relation between the sub-leading correc-
tions to the free energy of the interacting dimer model and the central charge
[1, 11], in the spirit of [24].

Remark 2 (First order computation). While the non-perturbative proof
of Theorem 1 (Sections 4 to 7) requires the use of lattice Ward identities
and a comparison with a continuum model, one can check directly (2.10)
at low orders in perturbation theory. In Appendix B we check the equality
at first order in λ, via an explicit computation of the lowest-order Feynman
diagrams. Remarkably, even at lowest order, this equality requires non-trivial

3The constant A(λ) was called K(λ) in [25]. Here we change notation, in order to
avoid confusion with the elements of the Kasteleyn matrix, which is traditionally denoted
K.
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cancellations between Feynman diagrams. As a byproduct of Appendix B, we
find that

A(λ) = ν(λ) = 1− 4

π
λ+O(λ2). (2.11)

In view of (1.1), this shows that when the dimer-dimer interaction λHL is
attractive (λ > 0), the variance height fluctuations decreases (the interface is
more rigid) and dimer-dimer correlations decay slower. This is compatible
with the fact that at large enough λ the model is known to have a rigid,
crystalline, phase, characterized by long-range order of ‘columnar’ type and
O(1) height fluctuations [30].

2.1. Outlook and conjectures.

Extensions to other models. As discussed in [25], the specific form of the
interaction in (2.1) is unimportant for the validity of the massless Gauss-
ian behavior of the height function, see Remark 3 after Theorem 3 in [25].
Similarly, it is unimportant for the validity of the Haldane relation (2.10):
the same identity holds true for a wide class of interacting dimer models,
whose interaction is weak, finite range, and symmetric under the natural
lattice symmetries of Z2 (translations, reflections, discrete rotations). Both
the results of [25] and those of the present paper are presumably valid also
for other closely related models, in particular for the 6 vertex (6V) model,
which is known to be equivalent to an interacting dimer model on Z2 with
a plaquette interaction proportional to the number of even faces of Z2 with
two parallel dimers, see [3, 22]. Note that the mapping of the 6V model
into such an interacting dimer model preserves the height function, up to a
factor 1/2: the height function of the 6V model (defined as in [61]) equals
half the height function of the dimer model, restricted to faces of odd par-
ity, see the comment after Eq.(7) of [22]. The plaquette interaction of the
effective dimer representation of the 6V model, acting only on even faces, is
not invariant under the full group of translations; therefore, it has a slightly
different symmetry than the one of the model considered in the present pa-
per and in [25]. It is likely that such a change is unimportant for the proofs
in [25]. The explicit verification that such a modified symmetry neither
changes the structure of the effective infrared theory, nor the structure of
the Ward Identities, will be discussed elsewhere.

Emergent SLE. The emergent description of the interacting dimer model
in terms of a massless Gaussian field calls for the emergence of an SLE
process, dual to the Gaussian field: in fact, at the continuum level, there
are several known connections, or ‘couplings’, between these two types of
stochastic processes [13, 18, 50, 51, 52, 53, 57]. Inspired by these results,
we conjecture that a microscopic geometric curve, associated with the Tem-
perley spanning forest, defined below, converges in the scaling limit to a
variant4 of the space-filling SLEκ′ process, with κ′ > 4 the largest root of

A(λ) =
2κ′

(4− κ′)2
. (2.12)

4Given the speculative nature of the discussion, we are on purpose a bit sloppy on
the precise nature of the limiting SLE, as well as on the role played by the boundary
conditions. The ‘variant’ of SLE we refer to is described in detail in [50, 51, 52, 53].
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H
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Figure 2. The primary and dual CRSF (in red and blue)
and the curve Γ, associated with the dimer configuration of
Fig.1. To help the reader follow the curve, we have indicated
with the same letter points that are identified on the torus.

Note that, if λ = 0 (in which case A = A(0) = 1), then κ′ = 8.
Here we give some support to this conjecture. The starting point is the

Temperley bijection, see for instance [21, 42]. Given a dimer configuration
on TL, for every white vertex w of even parity draw an oriented edge of
length 2 from w, that goes along the unique dimer with endpoint at w
(such edge of course ends at another white vertex w′ of the same parity).
The collection of edges thus drawn forms a cycle-rooted spanning forest
(CRSF): every connected component contains an oriented cycle and the
other edges in the same component form trees oriented toward the cycle,
to which they are rooted. This CRSF spans the sub-graph of TL induced
by white vertices of even parity. See Fig.2, where the CRSF, that in this
example has a single connected component, is drawn in red. Repeating
the same construction with white edges of odd parity one obtains a “dual”
CRSF (drawn in blue in Fig.2). Finally, one can draw an oriented wiggly
curve Γ that runs between the primary and dual CRSF (in Fig.2 this curve
has two connected components, drawn in different colors). Note that the
curve Γ passes once through every face of TL. We use the convention that,
at the center of each face, Γ is tangent to one of the two main diagonals of
the square lattice.

There is a simple correspondence between the height function and the
curve Γ: as the reader may verify by comparing Figure 2 and 3, if η1 and
η2 are two faces, which the same connected component of Γ passes through,
the combination 2π[h(η2)−h(η1)] is the net amount of winding of Γ between
η1 and η2. Moreover, such condition on the winding determines the curve Γ
uniquely.

In the non-interacting case (λ = 0), it has been proven [45] that the curve
Γ tends in the scaling limit to a variant of SLE8. In the interacting case,
we conjecture that Γ converges to (a variant of) SLEκ′ , with κ′ the largest
root of (2.12). The conjecture is based on the series of works [50, 51, 52, 53]
(see notably [53]), where the authors, directly at the continuum level, give
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Figure 3. The height function, h(η) ∈ Z/4, corresponding
to the dimer configuration of Fig.1. On the torus, the height
function is additively multi-valued: it can change by an in-
teger along a cycle with non-trivial winding. In general, if
a cycle wraps over the torus n1 times in direction ~e1 and n2

times in direction ~e2, the height function picks up an additive
term n1T1 + n2T2, for suitable constants, called periods. In
the figure, T1 = +2 and T2 = −1.

a meaning to the notion of solution of the differential equation

γ̇(t) = ei(2πφ(γ(t))+θ), (2.13)

where φ is a massless Gaussian field with covariance (2.7), and θ a real
constant. Note that the flow line γ(t), solution of (2.13), is such that
2π
[
φ(γ(t)) − φ(γ(0))

]
describes the net amount of winding of γ̇(t) around

the circle between times 0 and t. In [50, 51, 52, 53] the authors define: a con-
tinuous tree whose branches, roughly speaking, are the solutions of (2.13)
starting from any point on the plane; and a space-filling curve that traces the
tree in the natural order. They prove5 that the latter defines a space-filling
SLEκ′ process, with κ′ the largest root of (2.12): this space-filling curve is
the continuous analogue of our space-filling discrete curve Γ, which leads
to our conjecture. In [53], it is also proved that the flow lines γ define a
branched version of an SLEκ process, with κ the diffusion constant ‘dual’ to
κ′, i.e., κ = 16/κ′ < 4: this branched process is the continuous analogue of
the Temperley’s CRSF; therefore, we also conjecture that the Temperley’s
CRSF tends in the scaling limit to the variant of SLEκ described in [53].

Let us mention that recently a similar conjecture has been formulated
(and successfully tested numerically) in [41] for the 6V model that, as re-
called above, can be equivalently described in the form of an interacting

5In [53] the authors use a different convention, namely, they study the solution of

γ̇(t) = ei(ϕ(γ(t))/χ+θ), with ϕ the massless Gaussian field with covariance − log |x − y|,
and they prove that it defines a space-filling SLEκ′ process, with κ′ and χ related by
χ =
√
κ′/2− 2/

√
κ′. Using the fact that ϕ =

√
(2π2/A(λ))φ, we find that χ = 1/

√
2A(λ)

and we see that the relation between χ and κ′ implies (2.12).
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dimer model. However, the discrete ‘space-filling’ curve considered in [41] is
different from Γ. In particular, at the free-fermion point (that corresponds
to λ = 0 for dimers) the curve of [41] converges to SLE8+4

√
3 rather than

SLE8.

3. Generating function and fermionic representation

In this section, we discuss the fermionic representation of the dimer model,
which is the basis of the multiscale expansion used in the proof of Theorem
1.

The generating function of dimer correlations is defined as

eWΛ(A) = 〈
∏
e∈Λ

eAe1e〉Λ;λ,m, (3.1)

where for each edge e, Ae is a real number. In particular, the dimer-dimer
correlation function in the thermodynamic and zero mass limits is

G
(0,2)
r,r′ (x, y) := lim

m→0
lim
L→∞

∂2
Ae,Ae′

WΛ(A)|A=0 (3.2)

where e, e′ are the bonds of type r, r′ with b(e) = x, b(e′) = y. Note that

G
(0,2)
r,r′ (x, y) depends only on x− y and its Fourier transform is defined via

G
(0,2)
r,r′ (x, 0) =

∫
[−π,π]2

dp

(2π)2
eipxĜ

(0,2)
r,r′ (p). (3.3)

As discussed in [25, Sec. 2], since we are working on the torus, the
generating function at finite volume can be rewritten as the sum of four
Grassmann integrals (the same way as the partition function of the non-
interacting model on the torus is written in Kasteleyn’s theory as the sum
of four determinants or Pfaffians [37]). However (cf. [25, Sec. 2.4]) since the
mass m is removed after the thermodynamic limit is taken, one can reduce
to a single Grassmann integral, the structure of which is discussed in the
following subsections.

3.1. Kasteleyn matrix and non-interacting model. Let us start by
defining the Kasteleyn matrix K: this is a square matrix with rows/columns
indexed by elements of Λ. If the black site bx of coordinate x is not a neighbor
of the white site wy of coordinate y, then we set K(x, y) = 0. Otherwise, if
bx, wy are the endpoints of an edge of type r, we set

K(x, y) := Kr t
(m)
(bx,wy), Kr = ei

π
2

(r−1) (3.4)

where t
(m)
e was defined in (2.2). Given an edge e such that b(e) = x,w(e) =

y, we will write
K(e) := K(x, y).

The matrix K is invertible as long as m > 0 and can be explicitly inverted
in the Fourier basis. One has the following properties (these properties were
discussed in detail in [25, Sec. 2 and App. A], except that there we used a
different coordinate system on Z2 (cf. Remark 1), which explains why e.g.
(3.5) below looks at first sight different from the m → 0 limit of [25, Eq.
(2.18)]):
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• if m > 0 is fixed, then K−1(x, y) decays exponentially in |x− y| on
a characteristic length of order 1/m, uniformly in L.
• for x, y fixed one has

lim
m→0

lim
L→∞

K−1(x, y) = g(x− y) :=

∫
[−π,π]2

dk

(2π)2

e−ik(x−y)

µ(k)
(3.5)

where

µ(k) = 1− ei(k1+k2) + ieik1 − ieik2 . (3.6)

• g(x− y) has the following long-distance behavior:

g(x− y)
|x−y|→∞

=
1

2π

[
1

a(x− y)
+

(−1)x−y

a∗(x− y)

]
+O(|x− y|−2) (3.7)

where

a(z) = (1− i)z1 + (1 + i)z2. (3.8)

The only zeros of µ(·) on [−π, π]2 are (k1, k2) = (0, 0) =: p+ and (k1, k2) =
(π, π) =: p− and these are simple zeros:

µ(k) = Dω(k − pω) +O(|k − pω|2), ω = ±, (3.9)

Dω(k) = (−i− ω)k1 + (−i+ ω)k2. (3.10)

In order to represent the generating functionWΛ(A, 0) as a Grassmann in-
tegral, we associate a Grassmann variable ψ+

x with the black vertex indexed
x ∈ Λ, and a Grassmann variable ψ−x with the white vertex indexed x. Let
for brevity ψ denote the collection of Grassmann variables (ψ+

x , ψ
−
x )x∈Λ with

anti-periodic boundary conditions on TL, i.e., ψ±x+L~ej
= −ψ±x , for all x ∈ Λ

and j = 1, 2. Let also E0,Λ(·) be the Grassmann Gaussian ‘measure’ with
propagator

E0,Λ(ψ−x ψ
+
y ) :=

∫
[
∏
x∈Λ dψ

+
x dψ

−
x ]e−(ψ+,K0ψ−)ψ−x ψ

+
y

det(K0)
= gΛ(x− y),(3.11)

E0,Λ(ψ−x ψ
−
y ) = E0,Λ(ψ+

x ψ
+
y ) = 0. (3.12)

where K0 is the Kasteleyn matrix with m = 0 and anti-periodic boundary
conditions,

gΛ(x) = K−1
0 (x, 0) =

1

L2

∑
k∈DΛ

e−ikx

µ(k)
, (3.13)

and

DΛ = {k = (k1, k2) : ki =
2π

L
(ni + 1/2), 0 ≤ ni ≤ L− 1}. (3.14)

We refer to [23, Section 4] for a few basic facts on Grassmann integration.
Here let us just recall the fermionic Wick rule:

E0,Λ(ψ−x1
ψ+
y1
· · ·ψ−xnψ+

yn) = detGn(x, y), (3.15)

where Gn(x, y) is the n×n matrix with elements [Gn(x, y)]ij = gΛ(xi− yj),
i, j = 1, . . . , n. In the following, we shall denote by E0 the weak limit of E0,Λ

as L→∞.
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Given a bond e = (b, w), we let Ee = K0(e)ψ+
b ψ
−
w , so that

(ψ+,K0ψ
−) =

∑
x,y∈Λ

ψ+
xK0(x, y)ψ−y =

∑
e

Ee. (3.16)

The non-interacting generating function, in the thermodynamic and zero
mass limits, can be rewritten as

lim
m→0

lim
L→∞

WΛ(A)
∣∣
λ=0

= lim
L→∞

WΛ(A)
∣∣
λ=0

, (3.17)

where

WΛ(A)
∣∣
λ=0

= log

∫
[
∏
x∈Λ dψ

+
x dψ

−
x ]e−

∑
e Eee

Ae∫
[
∏
x∈Λ dψ

+
x dψ

−
x ]e−

∑
e Ee

(3.18)

is the Grassmann generating function. By differentiating with respect to
Ae1 , . . . , Aek and then setting A = 0, and by using (3.15), it is apparent
that the multipoint dimer correlations can be all computed explicitly in
terms of a suitable fermionic Wick rule.

For later reference, let us also set our conventions for the Fourier transform
of Grassmann fields: we let

ψ̂±k =
∑
x∈Λ

e∓ikxψ±x , k ∈ DΛ, (3.19)

so that

ψ±x =
1

L2

∑
k∈DΛ

e±ikxψ̂±k . (3.20)

3.2. Decomposition of Dirac fields. It is convenient, for the comparison
with the relativistic model of Section 5, to decompose the Grassmann fields
ψ±x into sums of so-called Dirac fields. First of all, we let χ+(·) be a non-
negative ‘cut-off function’, i.e. a smooth function on [−π, π]2 satisfying the
following:

• letting χ−(k) = χ+(k − (π, π)), one has χ+(k) + χ−(k) = 1;
• χ+(·) is centered at the origin, is even in k and its support does not

include p− = (π, π).

As discussed in [25, App. C], it is technically convenient to assume that χ+

is in the Gevrey class of order 2 (which in particular implies that it is C∞).
For definiteness, one should think of χ+(·) as of a suitably smoothed version
of the indicator 1{|k1|+|k2|≤π}.

By using the addition principle for Grassmann integrals, see [25, Prop.1],
we rewrite the field ψ as the combination of two independent Grassmann
fields ψω, ω ∈ {±}, via the following

ψ±x =
∑
ω=±

eip
ωxψ±x,ω = ψ±x,+ + (−1)xψ±x,− (3.21)

(here and in the following, whenever x = (x1, x2) ∈ Z2, we let (−1)x :=
(−1)x1+x2). The rewriting (3.21) should be meant as the statement that,
for every function f of the Grassmann field ψ,

E0,Λ(f(ψ)) = Ẽ0,Λ(f̃({ψ±x,+, ψ±x,−}x∈Λ)), (3.22)
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where f̃({ψ±x,+, ψ±x,−}x∈Λ) = f({ψ±x,+ + (−1)xψ±x,−}x∈Λ), and Ẽ0,Λ is the
Grassmann Gaussian integration on the ψω fields with propagator

Ẽ0,Λ(ψ−x,ωψ
+
y,ω) =

1

L2

∑
k∈DΛ

e−i(k−p
ω)(x−y)

µ(k)
χω(k) (3.23)

and Ẽ0,Λ(ψ−x,ωψ
+
x,−ω) = 0.

Remark 3. Note that the effect of the cut-off function χω is to restrict the
integration close to the singularity pω; at large distances, one has therefore

Ẽ0,Λ(ψ−x,ωψ
+
y,ω) ' 1

L2

∑
k∈DΛ

e−ik(x−y)

Dω(k)
χ+(k)

' 1

2π

1

(1− iω)(x1 − y1) + (1 + iω)(x2 − y2)

=
1

2π(1− iω)

1

(x1 − y1) + iω(x2 − y2)
, (3.24)

with Dω(k) defined in (3.9). This will be used in the comparison between
the dimer model and the continuum fermionic model of Section 5.

3.3. Interacting model. As discussed in [25, Sec. 2.3 and 2.4], Eq. (3.17)
admits the following natural generalization to the interacting case:

lim
m→0

lim
L→∞

WΛ(A) = lim
L→∞

WΛ(A), (3.25)

where

WΛ(A) = log

∫
[
∏
x∈Λ dψ

+
x dψ

−
x ]eV (ψ,A)∫

[
∏
x∈Λ dψ

+
x dψ

−
x ]eV (ψ,0)

(3.26)

and

V (ψ,A) =
∑
γ

(−1)|γ|α|γ|−1
∏
e∈γ

Eee
Ae . (3.27)

Here, α = exp(λ)− 1, γ are collections of parallel bonds in TL belonging to
the same horizontal or vertical strip: γ = (e1, . . . , ek), with k ≥ 1. In Section
4, in order to derive the lattice Ward identities, we will generalize WΛ(A)
to a generating function WΛ(A, φ), with φ being a “Grassmann external
source”, with respect to which we will take derivatives.

Note that, at zero external source, and at lowest non-trivial order in λ,
the Grassmann action takes the form

V (ψ, 0) = −(ψ+,K0ψ
−) + λV4(ψ) +O(λ2), where

V4(ψ) = −2
∑
x∈Λ

[
ψ+
x ψ
−
x ψ

+
x+(0,1)ψ

−
x−(1,0) + ψ+

x ψ
−
x ψ

+
x+(1,0)ψ

−
x−(0,1)

]
. (3.28)

For later reference, we introduce the symbol Eλ,Λ(·) for the ‘interacting mea-
sure’

Eλ,Λ(f(ψ)) =

∫ [∏
x∈Λ dψ

+
x dψ

−
x

]
eV (ψ,0)f(ψ)∫ [∏

x∈Λ dψ
+
x dψ

−
x

]
eV (ψ,0)

(3.29)

and we let Eλ be the weak limit of Eλ,Λ as L→∞.
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We also define

Ie =
∑
γ:γ3e

(−1)|γ|α|γ|−1
∏
e′∈γ

Ee′ , (3.30)

which is the fermionic counterpart of the dimer operator 1e, in the sense
that for instance

lim
m→0

lim
L→∞

〈1e〉λ;Λ,m = Eλ(Ie), (3.31)

and

lim
m→0

lim
L→∞

〈1e1e′〉λ;Λ,m = Eλ(IeIe′), (3.32)

provided e, e′ have different orientations, or they have the same orientation
but there is no γ made of parallel adjacent bonds that contains both. In order
to prove (3.31) and (3.32), it is enough to differentiate (3.25) with respect
to Ae and (Ae, Ae′), and then set A ≡ 0 (the possibility of exchanging the
limits limm→0 limL→∞ with the derivatives with respect to A follows from
the uniform bounds on the generating function proved in [25]).

Remark 4. For future reference, it is useful to re-express the Grassmann
action, V (ψ, 0), and the Grassmann counterpart of the dimer observable, Ie,
in terms of Dirac fields: for this purpose, it is enough to plug (3.21) into
the definition of Ee, and then use (3.27) and (3.30). If we denote by Erx,
r ∈ {1, 2, 3, 4}, the operator Ee with e the edge of type r with black vertex at
x, we find:

Erx = Kr

[∑
ω

ωr−1ψ+
x,ωψ

−
x+vr,ω + (−1)x

∑
ω

(−ω)r−1ψ+
x,ωψ

−
x+vr,−ω

]
(3.33)

where v1 = 0, v2 = −(1, 0), v3 = −(1, 1), v4 = −(0, 1). Using this expression,
we see that the quadratic part of the action, −(ψ+,K0ψ

−), reads

−(ψ+,K0ψ
−) =

∑
x,r,ω

Krω
r−1
[
ψ+
x,ωψ

−
x+vr,ω + (−1)x+r−1ψ+

x,ωψ
−
x+vr,−ω

]
,

(3.34)
while the ‘interaction’ Vint(ψ) := V (ψ, 0) + (ψ+,K0ψ

−) can be re-expressed,
at dominant order, as

Vint(ψ) = −16α
∑
x

ψ+
x,+ψ

−
x,+ψ

+
x,−ψ

−
x,− + h.o., (3.35)

Here ‘h.o.’ denotes higher order terms, namely ‘non-local quartic terms6’,
or terms of order 6 or higher in the Grassmann fields. All these higher order
terms are irrelevant in the RG sense, see [25, Sect.5 and 6].

Similarly, if e is the edge of type r with black vertex at e, the operator Ie
can be rewritten as

Ie = −Kr

[∑
ω

ωr−1ψ+
x,ωψ

−
x,ω + (−1)x

∑
ω

(−ω)r−1ψ+
x,ωψ

−
x,−ω

]
+ h.o.,

(3.36)

6These are the terms quartic in the Grassmann fields, where one or more fields
are replaced by their discrete derivatives: they result from rewriting ψ−x+vr,ω

= ψ−x,ω +

(∇vrψ−)x,ω in (3.33), where ∇vr is by definition the discrete derivative in direction vr.
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where the higher order terms are either non-local quadratic terms, or terms
of order 4 or higher in the Grassmann fields.

4. Ward Identities

A crucial role in the proof of Theorem 1 is played by lattice conservation
laws, which induce exact relations (Ward Identities) among the correlation
functions. The basic microscopic conservation law inducing the Ward iden-
tities is the fact that the number of dimers incident to a given vertex of
VB/VW is identically equal to 1.

In order to derive these identities, we need to generalize the generating
function (3.26), since the identities will involve correlation functions that
cannot be obtained as derivatives of WΛ(A) with respect to the variables
Ae. Namely, given a set of Grassmann variables {φ+

x , φ
−
x }x∈Λ and (as before)

a set of real numbers Ae associated to edges e, we define

WΛ(A, φ) = log

∫
[
∏
x∈Λ dψ

+
x dψ

−
x ]eV (ψ,A)+(ψ+,φ−)+(φ+,ψ−)∫

[
∏
x∈Λ dψ

+
x dψ

−
x ]eV (ψ,0)

. (4.1)

Here, (ψ+, φ−) :=
∑

x∈Λ ψ
+
x φ
−
x , and similarly for (φ+, ψ−).

Remark 5. As any function of a finite number of Grassmann variables,
the function WΛ(A, φ) is a polynomial in {φ+

x , φ
−
x }x∈Λ. If WΛ(A, 0) is the

monomial that contains none of the φ variables, then we have

WΛ(A, 0) = WΛ(A), (4.2)

with WΛ(A) defined in (3.26).
We will also need to take derivatives of WΛ(A, φ) w.r.t. φ±x . By this

we simply mean the following: if the sum of monomials of WΛ(A, φ) that
contains φσx is written as φσxf(φ) (with f a polynomial not containing φσx)
then ∂φσxWΛ(A, φ) := f(φ). Note that ∂φσx and ∂

φσ
′
x′

anti-commute.

The following identities hold:

Proposition 1. For every x, y, z ∈ Λ we have∑
e:b(e)=x

∂Ae∂φ−z ∂φ+
y
WΛ(0, 0) + δx=z∂φ−x ∂φ+

y
WΛ(0, 0) = 0 (4.3)

∑
e:w(e)=x

∂Ae∂φ−z ∂φ+
y
WΛ(0, 0) + δx=y∂φ−z ∂φ+

x
WΛ(0, 0) = 0. (4.4)

Proof. The starting point in the derivation of (4.3) is a “local gauge co-
variance property” of the Grassmann generating function WΛ(A, φ), i.e. an
identity satisfied by WΛ(A, φ) when the Grassmann variables ψσx are multi-
plied by a phase depending on x and σ.

Grassmann integrals are known to satisfy the following: if ψ1, . . . , ψn are
Grassmann variables and ψ̄i(ψ) =

∑
j≤n aijψj are linear combinations of the

ψ variables, then∫ ∏
j

dψjf(ψ) = (det a)−1

∫ ∏
j

dψjf(ψ̄(ψ)). (4.5)
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In our case, consider the phase transformation ψ±x → ψ̄±x = eiα
±
x ψ±x , with

α±x ∈ R. Note that the combination Eee
Ae appearing in the definition of

V (ψ,A), see (3.27), transforms as follows under the phase transformation:
Eee

Ae → Eee
iαe+Ae , where αe = α+

b(e) +α−w(e). Therefore Eq. (4.5), together

with the fact that in our case

det a = ei
∑
x∈Λ(α+

x +α−x ),

implies

WΛ(A, φ) = −i
∑
x∈Λ

(α+
x + α−x ) +WΛ(A+ iα, φeiα) (4.6)

with (φeiα)σx = φσxe
iα−σx , σ = ±. By repeatedly deriving this identity with

respect to A and φ, and then setting A = φ = 0, we obtain a sequence of
exact identities among the correlation functions, known as Ward Identities.

We are particularly interested in (4.3), relating the “vertex function”,
∂Ae∂φ−z ∂φ+

y
WΛ(0, 0) with the “dressed propagator” ∂φ−x ∂φ+

y
WΛ(0, 0). In or-

der to get that, we start by deriving (4.6) once with respect to α+
x and then

set α = 0, thus obtaining:∑
e:b(e)=x

∂AeWΛ(A, φ) + φ−x ∂φ−xWΛ(A, φ) = 1 . (4.7)

Similarly, deriving with respect to α−x and setting α = 0, we obtain:∑
e:w(e)=x

∂AeWΛ(A, φ) + φ+
x ∂φ+

x
WΛ(A, φ) = 1 . (4.8)

Next, we derive (4.7), (4.8) w.r.t. φ+
y and φ−z and we set φ = A = 0, thereby

finding (4.3).

Equations (4.3) can be rewritten as∑
e:b(e)=x

Eλ,Λ(Ie;ψ−y ψ+
z ) + δx=zEλ,Λ(ψ−y ψ

+
x ) = 0 (4.9)

∑
e:w(e)=x

Eλ,Λ(Ie;ψ−y ψ+
z ) + δx=yEλ,Λ(ψ−x ψ

+
z ) = 0, (4.10)

where the semicolon indicates truncated expectation (i.e., Eλ,Λ(A;B) =
Eλ,Λ(AB)− Eλ,Λ(A)Eλ,Λ(B)).

Remark 6. If λ = 0, one can check that (4.9) reduces to the statement that
E0,Λ(ψ−x ψ

+
y ) = K−1

0 (x, y) satisfies K0K
−1
0 = I, i.e. the non-homogeneous

discrete Cauchy-Riemann equation.

If e is the edge of type r ∈ {1, 2, 3, 4} with b(e) = x, we let

G(2,1)
r (x, y, z) := Eλ(Ie;ψ−y ψ+

z ) (4.11)

(recall that Eλ is the L→∞ limit of Eλ,Λ). Similarly, we define

G(2)(x, y) := Eλ(ψ−x ψ
+
y ). (4.12)
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Note that both G
(2,1)
r and G(2) are translationally invariant. Their Fourier

transform is defined by

Ĝ(2)(p) =
∑
x

G(2)(x, 0)eipx (4.13)

Ĝ(2,1)
r (k, p) =

∑
x,z

e−ipx−ikzG(2,1)
r (x, 0, z) (4.14)

so that ∫
[−π,π]2

dp

(2π)2
e−ipxĜ(2)(p) = G(2)(x, 0) (4.15)

∫
[−π,π]2

dp

(2π)2

∫
[−π,π]2

dk

(2π)2
eipx+ikzĜ(2,1)

r (k, p) = G(2,1)
r (x, 0, z). (4.16)

From (4.9)-(4.10) we finally deduce our exact lattice Ward identity of
interest:

Proposition 2 (Lattice Ward Identities). For every x, y, z,

δx=yG
(2)(x, z)− δx=zG

(2)(y, x) = −
4∑
r=2

∇−vrG(2,1)
r (x, y, z), (4.17)

where (∇nf)(x, y, z) := f(x + n, y, z) − f(x, y, z) is the (un-normalized)
discrete derivative acting on the x variable.

After Fourier transform, this identity reads

Ĝ(2)(k + p)− Ĝ(2)(k) =

4∑
r=2

(e−ipvr − 1)Ĝ(2,1)
r (k, p), (4.18)

5. The reference model

In order to prove Theorem 1, we intend to follow a logic analogous to
[9, 10]. The general scheme is as follows: we introduce a relativistic refer-
ence model whose correlation functions have the same long distance behavior
as our lattice model, provided the bare parameters entering the definition of
its action are properly chosen. The relativistic model satisfies Ward Iden-
tities corresponding to local chiral gauge invariance, which guarantees the
validity of exact scaling relations among the critical exponents of its cor-
relation functions (and, therefore, a posteriori, of the correlation functions
of the dimer model). In addition to the relations between critical expo-
nents, we can get exact relations among the exponents and the amplitudes
of the correlations, by comparing the relativistic Ward Identities with the
lattice ones, which are the same at dominant order (asymptotically at large
distances, or for momenta close to the Fermi points).

In this section, we introduce the reference relativistic model and recall
its Ward Identities. The reference model is nothing but the formal scaling
limit of the Grassmann integral of our dimer model, properly regularized,
thanks to the presence of: (1) a smooth non-local density-density potential
v0, decaying on a fixed scale, which sets the unit length (the smooth, rather
than delta-like potential, provides an ultraviolet cut-off on the fermionic
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interaction), (2) an infrared regularization on the propagator, induced by
the presence of a finite box of side L and by the anti-periodic boundary
conditions enforced on the Grassmann fields, (3) an ultraviolet regularization
on the propagator, which cuts off the momenta larger than 2N , with N � 1,
and (4) an underlying lattice of mesh a, which guarantees that the number
of Grassmann variables is finite. The limit a → 0, followed by N → ∞
and then L → ∞, is called the limit of removed cut-offs. Note that in this
limit the decay scale of v0 is kept fixed: therefore, even the limiting theory
has an ultraviolet regularization, which guarantees the finiteness of the bare
parameters to be fixed.

Given L > 0 and an integer M , we let a = L/M and we define Λ =
aZ2/LZ2 to be the discrete torus of side L and lattice mesh a. The reference
model is defined in terms of a generating functional WΛ

N (J, φ) parametrized
by

• four real constants Z,Z(1), Z(2), λ∞;

• external sources J , where J = {J (j)
x,ω}j=1,2

ω=±, x∈Λ and J
(j)
x,ω ∈ R;

• external Grassmann sources φ, where φ = {φσx,ω}σ,ω=±
x∈Λ and φσx,ω is a

Grassmann variable.

The generating function is defined by

eW
Λ
N (J,φ) =

∫
P

[≤N ]
Z (dψ)eV(

√
Zψ)+

∑2
j=1 Z

(j)(J(j), ρ(j))+Z[(ψ+,φ−)+(φ+,ψ−)]∫
P

[≤N ]
Z (dψ)eV(

√
Zψ)

,

(5.1)

where, letting
∫

Λ dx := a2
∑

x∈Λ, we defined (J (j), ρ(j)) :=
∑

ω

∫
Λ dx J

(j)
x,ωρ

(j)
x,ω,

with

ρ(1)
x,ω = ψ+

x,ωψ
−
x,ω , ρ(2)

x,ω = ψ+
x,ωψ

−
x,−ω . (5.2)

and

(ψ+, φ−) :=
∑
ω=±

∫
Λ
dxψ+

x,ωφ
−
x,ω, (φ+, ψ−) :=

∑
ω=±

∫
Λ
dxφ+

x,ωψ
−
x,ω ,

Moreover, P
[≤N ]
Z (dψ) is the fermionic measure with propagator (satisfying

anti-periodic boundary conditions over Λ)

1

Z
g

[≤N ]
R,ω (x− y) =

1

Z

1

L2

∑
k∈D

e−ik(x−y) χN (k)

(−i− ω)k1 + (−i+ ω)k2
, (5.3)

where χN (k) = χ(2−N |k|), with χ : R+ → R a C∞ cutoff function that is
equal to 1, if its argument is smaller than 1, and equal to 0, if its argument
is larger than 2, and D = (2π/L)(Z/MZ + 1/2)2 (we recall that M = L/a).

Remark 7. Note that, in the limit of removed cut-offs, the cut-off function
χN tends to 1, the Riemann sum over k ∈ D tends to the corresponding
integral, so that (5.3) reduces to 1/Z times the inverse of the Dirac operator

Dx
ω := (1− iω)∂x1 + (1 + iω)∂x2 . (5.4)

Also, compare (5.3) with (3.24): asymptotically at large distances, the lattice
Grassmann fields ψ±x,ω and the ones of the continuous model have the same
propagator (apart from the constant pre-factor 1/Z).
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Finally, the interaction is

V(ψ) =
λ∞
2

∑
ω=±

∫
Λ
dx

∫
Λ
dy v0(x− y)ψ+

x,ωψ
−
x,ωψ

+
y,−ωψ

−
y,−ω , (5.5)

where v0 is a smooth rotationally invariant potential, exponentially decaying
to zero at large distances, of the form

v0(x) =
1

L2

∑
p∈(2π/L)Z2

v̂0(p)eipx , (5.6)

with |v̂0(p)| ≤ Ce−c|p|, for some constants C, c, and v̂0(0) = 1. Note the
similarity between (5.5) and the dominant, ‘local’, quartic interaction of the
interacting dimer model, (3.35).

We shall use the following definitions7:

G
(2,1)
R,ω′,ω(x, y, z) = lim

L→∞
lim
N→∞

lim
a→0

∂3

∂J
(1)
x,ω′∂φ

−
z,ω∂φ

+
y,ω

WΛ
N (J, φ)|J=φ=0 ,

G
(2)
R,ω(x, y) = lim

L→∞
lim
N→∞

lim
a→0

∂2

∂φ−y,ω∂φ
+
x,ω
WΛ
N (J, φ)|J=φ=0 , (5.7)

S
(j,j)
R,ω,ω′(x, y) = lim

L→∞
lim
N→∞

lim
a→0

∂2

∂J
(j)
x,ω∂J

(j)
y,ω′

WΛ
N (J, φ)|J=φ=0 .

The very existence of the limits in the right sides follows from the construc-
tion of the correlation functions of the reference model, performed, e.g., in
[6, Sect. 3 and 4]. The Fourier transforms of the correlations in (5.7) are
defined as follows:

G
(2,1)
R,ω′,ω(x, y, z) =

∫
R2

dk

(2π)2

∫
R2

dp

(2π)2
eipx−i(k+p)y+ikzĜ

(2,1)
R,ω′,ω(k, p) ,

G
(2)
R,ω(x, y) =

∫
R2

dk

(2π)2
e−ik(x−y)Ĝ

(2)
R,ω(k) , (5.8)

S
(j,j)
R,ω,ω′(x, y) =

∫
R2

dp

(2π)2
eip(x−y)Ŝ

(j,j)
R,ω,ω′(p) .

In the limit of removed cut-offs, Ĝ
(2,1)
R,ω′,ω and Ĝ

(2)
R,ω satisfy the following

remarkable identities: for small λ∞, if k and k + p are different from 0,

Z

Z(1)

∑
ω′=±

Dω′(p)Ĝ
(2,1)
R,ω′,ω(k, p) = F̂ (p)[Ĝ

(2)
R,ω(k)− Ĝ(2)

R,ω(k + p)] , (5.9)

where Dω(p) was defined in (3.10), and

F̂ (p) =
1

1− τ v̂0(p)
, τ = −λ∞

8π
. (5.10)

Equations (5.9) is a Ward Identity, derived by a local chiral gauge trans-
formation of the Grassmann field ψ, i.e., by the ω-dependent phase trans-
formation ψ±x,ω → e±iαω(x)ψ±x,ω. The fact that F̂ (p) is not equal to 1 is a
manifestation of the anomalies in quantum field theory. Finally, the linearity

7In the right sides of (5.7), the space label x, y, z of the external fields J
(j)
ω , φ±ω

should be actually interpreted as the points xa, ya, za in Λ closest to x, y, z. Clearly,
lima→0 xa = x, etc. In the formulas, we drop the label a just for lightness of notation.
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of 1/F̂ (p) in terms of λ∞ is a property called anomaly non-renormalization.
Eq.(5.9) was proved in [47], see also [6] and the comments after Prop.12 in
[25]. A sketch of its proof is also discussed, for completeness, in Appendix
C.

Similarly, the density-density correlations S
(1,1)
R,ω,ω′(x, y) satisfy the follow-

ing identities (see, again, Appendix C):

Dω(p)Ŝ
(1,1)
R,ω,ω(p)− τ v̂0(p)D−ω(p)Ŝ

(1,1)
R,−ω,ω(p) +

(Z(1))2

8πZ2
D−ω(p) = 0 ,

D−ω(p)Ŝ
(1,1)
R,−ω,ω(p)− τ v̂0(p)Dω(p)Ŝ

(1,1)
R,ω,ω(p) = 0 , (5.11)

which imply:

Ŝ
(1,1)
R,ω,ω(p) = − 1

Z2

(Z(1))2

8π(1− τ2v̂0(p)2)

D−ω(p)

Dω(p)
. (5.12)

6. Proof of Theorem 1

In order to transfer the information encoded in the Ward Identities of
the reference model to the correlation functions of the dimer model, we
choose the parameters Z,Z(1), Z(2), λ∞ of the reference model so that its
correlations are asymptotically the same as those associated with the lattice
Grassmann generating function (3.26), in the limit of small momenta/large
distances. More precisely, the parameters of the reference model can be fixed
so that the following asymptotic relation among the correlation functions of
the two models is valid.

Lemma 1. Given λ small enough, there are constants Z, Z(1), Z(2), λ∞,
depending analytically on λ, such that, if |p| ≤ 1,

Ĝ
(0,2)
r,r′ (p) = KrKr′

∑
ω=±

ωr+r
′
Ŝ

(1,1)
R,ω,ω(p) +R′r,r′(p) , (6.1)

Ĝ
(0,2)
r,r′ (p− + p) = KrKr′

∑
ω=±

(−1)r
′−1ωr+r

′
Ŝ

(2,2)
R,ω,−ω(p) +R′′r,r′(p) , (6.2)

where R′r,r′(p) and R′′r,r′(p) are continuous in p, notably at p = 0. Moreover,

supposing that 0 < c ≤ |p|, |k|, |k + p| ≤ 2c for some c < 1, then for any
0 < θ < 1 one has

Ĝ(2,1)
r (k + pω, p) = −Kr

∑
ω′=±

(ω′)r−1Ĝ
(2,1)
R,ω′,ω(k, p)[1 +O(cθ)] , (6.3)

Ĝ(2)(k + pω) = Ĝ
(2)
R,ω(k)[1 +O(cθ)] . (6.4)

Remark 8. At lowest non-trivial order in λ, the parameters of the reference
model are: Z = 1 + O(λ), Z(1) = 1 + O(λ), Z(2) = 1 + O(λ), and λ∞ =
−16λ + O(λ2). In order to obtain these values, at lowest non-trivial order,
it is enough to fix the parameters in the bare Grassmann actions of the
reference and dimer models, so that the corresponding expressions match at
dominant order: compare, e.g., (5.3) with (3.24) and (5.5) with (3.35).

Lemma 1 is a restatement (using new notations) and a slight extension of
[25, Prop.12]. The comparison between Lemma 1 and [25, Prop.12] is dis-
cussed in the next section. Let us now discuss its implications, in particular
let us show how to use it in order to prove Theorem 1.



24 ALESSANDRO GIULIANI, VIERI MASTROPIETRO, AND FABIO LUCIO TONINELLI

By combining (6.3)-(6.4) with (4.18), and using the fact that
∑4

r=2Kr(ip·
vr)(ω

′)r−1 = −Dω′(p), we obtain:∑
ω′=±

Dω′(p)Ĝ
(2,1)
R,ω′,ω(k, p) =

[
Ĝ

(2)
R,ω(k)− Ĝ(2)

R,ω(k + p)
]

[1 +O(cθ)], (6.5)

that, if compared with (5.9) and recalling that v̂0(p) = 1 +O(p), gives

Z(1)

(1− τ)Z
= 1 . (6.6)

Moreover, by combining (5.12) with (6.1) we obtain:

Ĝ
(0,2)
r,r′ (p) = −KrKr′(Z

(1))2

8πZ2(1− τ2)

∑
ω=±

ωr+r
′D−ω(p)

Dω(p)
+ R̃r,r′(p) , (6.7)

where R̃r,r′ is continuous in p, in particular at p = 0. By using (6.6), we can
rewrite this equation as

Ĝ
(0,2)
r,r′ (p) = −KrKr′

8π

1− τ
1 + τ

∑
ω=±

ωr+r
′D−ω(p)

Dω(p)
+ R̃r,r′(p) . (6.8)

Taking for instance r = r′ = 1 this implies that

Ĝ
(0,2)
1,1 (p) = − 1

2π

1− τ
1 + τ

p1p2

p2
1 + p2

2

+ R̃1,1(p). (6.9)

This should be compared with the Fourier transform of (2.8). Indeed, recall
from the definition (3.2) that

G
(0,2)
1,1 (x) = 〈1e;1e′〉λ,

with e, e′ two horizontal edges of type 1, with black sites b(e), b(e′) of coor-
dinates x and 0 respectively, and white sites of coordinates w(e), w(e′) also
of coordinates x and 0. Therefore, (6.9) must also equal∑

x∈Z2

e−ipx〈1e;1e′〉λ. (6.10)

In the computation of the Fourier transform for small values of p, both the
error term R1,1(x) in (2.8) as well as the oscillating term proportional to
B(λ) give a contribution that is continuous in p for p in a neighborhood of
0. In contrast, the term proportional to A(λ) has a Fourier transform that
is not continuous at p = 0. Namely,∑

x∈Z2

e−ipx〈1e;1e′〉λ = (6.11)

=
A(λ)

2π2

∑
x 6=0

e−ipxRe

[
1

((x1 + x2) + i(x2 − x1))2

]
+ R̄(p)

= −A(λ)

2π

p1p2

p2
1 + p2

2

+ ¯̄R(p) (6.12)

where R̄(p) and ¯̄R(p) are continuous in p, notably at p = 0 (for a proof of
the second identity, see, e.g., Appendix A). By comparing this expression
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with (6.9) we get

A(λ) =
1− τ
1 + τ

. (6.13)

On the other hand, the right side of this equation, (1−τ)/(1+τ), coincides

with the critical exponent of the correlation S
(2,2)
R,ω,−ω. In fact, it was proved

in [6, Section 4.2], see in particular [6, Eqs.(4.24),(4.26)], that

S
(2,2)
R,ω,ω′(x, y) = C

δω,−ω′

|x− y|2ν + R̄ω,ω′(x, y), (6.14)

where: (i) for some 0 < θ < 1/2 and a suitable constant cθ > 0, |R̄ω,ω′(x, y)| ≤
cθ|x− y|−3+θ; (ii) C and ν are analytic functions of λ∞ and

ν =
1− τ
1 + τ

. (6.15)

For completeness, we reproduce a sketch of the proof of this identity in
Appendix C.

By comparing (2.8) with (6.2),(6.14), we recognize that the critical expo-
nent in (6.14) is the same as the one in the second line of (2.8). Therefore,
by combining (6.13) with (6.15), we obtain the statement of Theorem 1, as
desired.

7. Comparison of Lemma 1 with [25, Prop.12]

As discussed after its statement, Lemma 1 is essentially a restatement
[25, Prop.12] in the notation of this paper. More precisely, (6.1) and (6.2)
are obtained by Fourier transforming [25, Eqs.(6.91),(6.93)] with respect to
x− y and then by using [25, Eq.(6.90)], see below for more details. On the
contrary, (6.3) and (6.4) are not part of [25, Prop.12], however, their proof
follows by the same discussion as the one after [25, Prop.12].

In order to help the reader recognizing that (6.1) and (6.2) are direct
consequences of [25, Eqs.(6.90),(6.91),(6.93)], let us discuss more precisely
the connection between the notations used here and in [25]. In order to
avoid confusion, the parameters, fields and coordinates of the models in [25]
will be referred here by adding an extra tilde on the symbols: we denote

by J̃
(j)
ω (x̃) its source terms, by ṽ(x̃) its potential, by ψ̃±x̃,ω its Grassmann

fields, etc. The coordinates x used in this paper are related to those of [25],
denoted by x̃, by the formulas: x̃(x) = (x1 + x2, x2 − x1) and its inverse
x(x̃) = 1/2(x̃1 − x̃2, x̃1 + x̃2).

The connection between the reference model in this paper and the one in
[25, Sect.6.3.2] is established by fixing:

ψ±x,ω =
√

2ψ̃±x̃(x),ω, J (j)
x,ω = J̃ (j)

ω (x̃(x)), v0(x) = ṽ(x̃(x)), (7.1)

and taking the same values for the parameters λ∞, Z, Z
(j). By fixing the pa-

rameters in this way, then the two relativistic models, in the limit of removed
cut-offs, are exactly the same. The proof of this fact is straightforward, it
is just a matter of tracking the normalization constants in the two cases
correctly, and it is left to the reader. Note that, due to the factor

√
2 in the



26 ALESSANDRO GIULIANI, VIERI MASTROPIETRO, AND FABIO LUCIO TONINELLI

first of (7.1), the relativistic correlations S
(j,j)
R,ω,ω′(x, y) defined in this paper

are related to their analogues in [25] via the following:

S
(j,j)
R,ω,ω′(x, y) = 4S̃

(j,j)
R,ω,ω′(x̃(x), x̃(y)). (7.2)

Now, by using this equation and the definition of dimer-dimer correla-
tions, we immediately get (6.1)-(6.2). In fact, by direct inspection of [25,
Eq.(6.95)], one sees that the dimer-dimer correlation in the notations of this
paper is related to the one in [25] via

G
(0,2)
r,r′ (x, y) =

∂2

∂J̃x̂(x,r),j(r)∂J̃ŷ(0,r′),j(r′)

S̃(J̃)

∣∣∣∣∣
J̃=0

, (7.3)

where, given a coordinate x and r = 1, 2, 3, 4, we let: j(r) = 1 if r = 1, 3
(i.e. if the edge of type r is horizontal), j(r) = 2 if r = 2, 4 (i.e. if the edge
is vertical), and

x̂(x, r) =

 x̃(x) if r = 1, 2
x̃(x)− (1, 0) if r = 3
x̃(x)− (0, 1) if r = 4.

(7.4)

Moreover, by using [25, Eqs.(6.27)-(6.28), (6.91)–(6.93), (6.96)-(6.97)], we
can rewrite

G
(0,2)
r,r′ (x, y) = 4KrKr′

2∑
j=1

∑
ω=±

[
ωr+r

′
S̃

(1,1)
R;ω,ω(x̃(x), x̃(y)) (7.5)

+ (−1)x−yωr−1(−ω)r
′−1S̃

(2,2)
R;ω,−ω(x̃(x), x̃(y))

]
.

By using (7.2) and [25, Eq.(6.90)], and by taking Fourier transform at both
sides, we finally get (6.1) and (6.2). The proof of (6.3) and (6.4) goes along
the same lines outlined after the statement of [25, Prop.12] and we shall not
belabor the details here.

Appendix A. Fourier singularities of the dimer-dimer
correlation

In this section, we compute the dominant behavior of the Fourier trans-

form Ĝ
(0,2)
r,r′ (p) of the dimer-dimer correlation (2.8) close to the Fermi points,

p = 0 and p = (π, π). The formulas derived here will be useful in the first
order computation of A(λ) and ν(λ), discussed in the next appendix.

More precisely, we prove that, if |p| ≤ 1,

Ĝ
(0,2)
r,r′ (p) = −A(λ)

4π
Re

[
KrKr′

D−(p)

D+(p)

]
+ F+

r,r′(p) (A.1)

Ĝ
(0,2)
r,r′ ((π, π) + p) =

tr,r′

2π

B(λ)

2(ν − 1)

[
1−

( |p|
2

)2(ν−1) Γ(2− ν)

Γ(ν)

]
+ F−r,r′(p),

where ν = ν(λ), and F±r,r′ are functions that are continuous in p in a neigh-

borhood of p = 0, uniformly in λ, for λ small.
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A.1. Singularity at p = 0. In order to prove the first of (A.1), we note

that the discontinuous part of Ĝ
(0,2)
r,r′ (p) at p = 0 comes from the first term

in the right side of (2.8), that is, if |p| ≤ 1,

Ĝ
(0,2)
r,r′ (p) = −A(λ)

2π2

∑
x 6=0

e−ipxRe

[
eiπ/2(r+r′)

((x1 + x2) + i(x2 − x1))2

]
+ F̃+

r,r′(p),

(A.2)

where F̃+
r,r′ is continuous in p in the region |p| ≤ 1, uniformly in λ. One can

first rewrite, recalling (3.7)-(3.8) and the fact that Kr = exp(iπ/2(r − 1)),

− 1

2π2
Re

[
eiπ/2(r+r′)

((x1 + x2) + i(x2 − x1))2

]
= −KrKr′g(vr′ − x)g(x+ vr)

−KrKr′((−1)vr + (−1)vr′ )
(−1)x1+x2

8π2|x|2 +O(|x|−3). (A.3)

where we used also the fact that (−1)vr+vr′ = +1, if KrKr′ ∈ R, and
(−1)vr+vr′ = −1, if KrKr′ ∈ iR. By plugging (A.3) into (A.2), we get

Ĝ
(0,2)
r,r′ (p) = −A(λ)KrKr′

∫
[−π,π]2

dk

(2π)2

e−ik(vr+vr′ )

µ(k)µ(k + p)
+ F̄+

r,r′(p), (A.4)

where F̄+
r,r′ is continuous in p in the region |p| ≤ 1, uniformly in λ.

Now, the desired result follows from the explicit computation of the in-
tegral over k, which is summarized in the following proposition, formulated
here in greater generality, for later convenience (the first of (A.1) follows by
an application of this proposition, with (a, b) = −vr − vr′).
Proposition 3. Let a, b ∈ Z. Let

I(a,b)(p) =

∫
[−π,π]2

dk

(2π)2

eik1a+ik2b

µ(k)µ(k + p)
. (A.5)

Then, one has

I(a,b)(p) =
1

8π

[
D−(p)

D+(p)
+ (−1)a+bD+(p)

D−(p)

]
+

i

8π

[
1− (−1)a+b

]
+

(1− b)
2π

∫ 2π

0
dk1e

ik1a (1 + ieik1)b−2

(eik1 + i)b
[
1{b≤0}1{π≤k1≤2π} − 1{b≥1}1{0≤k1≤π}

]
+Ra,b(p) (A.6)

where Ra,b(p) vanishes continuously for p→ 0. Moreover,

I(a,b)(−p) = (−1)a+bI(a,b)(p)
∗, I(a,b)(−p) = I(a,b)(p) +R′(a,b)(p) (A.7)

where R′a,b(p) vanishes continuously for p→ 0.

Checking (A.7) is a simple exercise. The proof of (A.6) is lengthy but
straightforward; we do not give details but only a few hints. One starts by
rewriting, via the change of variables zj = eikj , j = 1, 2,

I(a,b)(p) = − 1

(2π)2

∮
dz1

z1

∮
dz2

z2

za1z
b
2

µ̂(z1, z2)µ̂(z1eip1 , z2eip2)
, (A.8)
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with µ̂(z1, z2) = 1 − z1z2 + iz1 − iz2 and the integrals running over |z1| =
|z2| = 1. The denominator, as a function of z2, is a polynomial with three
distinct zeros (as long as p 6= 0). The integral w.r.t. z2 is performed via the
residue theorem and the remaining integral over z1 = eik1 produces (A.6).
The only point that requires attention is that according to the value of p,
some zeros can be inside or outside the integration curve |z2| = 1.

A.2. Singularity at p = (π, π). Let us now prove the second of (A.1).
From (2.8) we see that

Ĝ
(0,2)
r,r′ ((π, π) + p) = tr,r′

B(λ)

4π2

∑
x 6=0

e−ixp

|x|2ν + F̃−r,r′(p) (A.9)

where F̃−r,r′ is continuous in p in the region |p| ≤ 1, uniformly in λ. We have∑
x 6=0

e−ixp

|x|2ν =

∫
|x|≥1

e−ixp

|x|2ν dx+B1(p) (A.10)

= 2π|p|2(ν−1)

∫ ∞
|p|

J0(ρ)

ρ2ν−1
dρ+B1(p)

where J0 is the Bessel function with index n = 0 and B1(p) is continuous in
a neighborhood of p = 0, uniformly in ν, for ν−1 small. Now, by integration
by parts, and recalling that J ′0(ρ) = −J1(ρ) and J0(0) = 1, we find∫ ∞

|p|
ρ1−2νJ0(ρ)dρ =

1

2(ν − 1)

[
J0(|p|)|p|2(1−ν) −

∫ ∞
|p|
J1(ρ)ρ2(1−ν)

]
(A.11)

=
1

2(ν − 1)

[
|p|2(1−ν) −

∫ ∞
0

J1(ρ)ρ2(1−ν)
]

+

∫ |p|
0
dρJ1(ρ)

∫ |p|
ρ
dxx1−2ν .

Recalling that J1(x) vanishes linearly at x = 0, we find that the last term is
of order O(|p|4−2ν), as p→ 0, uniformly in ν for ν − 1 small. Moreover, the

integral
∫∞

0 J1(ρ)ρ2(1−ν) is explicitly known, see [27, formula 6.561(14)]:∫ ∞
0

J1(ρ)ρ2(1−ν) = 22(1−ν) Γ(2− ν)

Γ(ν)
. (A.12)

By plugging this formula in (A.9)-(A.10) we obtain, as desired, the second
of (A.1) .

Appendix B. First-order calculation

Here we check that A(λ) = ν(λ) at first order in λ and, more precisely,
that (2.11) holds. From (3.2) and (3.25)–(3.27) we have that, at first order
in λ, if e and e′ are two edges such that r(e) = r, b(e) = x, and r(e′) = r′,
b(e′) = y,

G
(0,2)
r,r′ (x, y) = E0(Ee;Ee′)− λE0(I(1)

e ;Ee′)− λE0(Ee; I(1)
e′ )

+ λE0(Ee;Ee′ ;V4) +O(λ2) (B.1)

where E0 is the Gaussian Grassmann integration with propagator (3.11),
in the limit L → ∞, and the semicolon indicates truncated expectation.

Moreover, given an edge e0, we defined I(1)
e0 := Ee0(Ee1 + Ee2), with e1, e2

the two edges parallel to e0 and at a distance 1 from it, while V4 was defined
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in (3.28). By computing all the contributions to (B.1) and by taking Fourier
transform, we obtain (see below for the details of the computation):

Ĝ
(0,2)
r,r′ (p) = −(1− 2λ)KrKr′

∫
dk

(2π)2

e−ikvr−i(k+p)vr′

µ(k)µ(k + p)

−2λKrKr′

∫
dk

(2π)2

∫
dk′

(2π)2

W (k, k′, p)e−ivr(k
′−p)−ivr′ (k+p)

µ(k)µ(k + p)µ(k′)µ(k′ − p) (B.2)

+
λ

4

∫
dk

(2π)2

Kr′e
−ivr′ (k+p)fr(k, p) +Kre

−ivr(k+p)fr′(k, p)

µ(k)µ(k + p)
+O(λ2),

where the integrals over k and k′ are taken over the Brillouin zone [−π, π]2,
and we recall that v1 = (0, 0), v2 = −(1, 0), v3 = −(1, 1), v4 = −(0, 1), while
µ(k) was defined in (3.6). Moreover,

W (k, k′, p) = ei(k
′
1+k′2−p2) + ei(k

′
1+k′2−p1) + ei(k1+k2+p2) + ei(k1+k2+p1)

−ei(k2+k′1+p2) − ei(k1+k′2+p1) − ei(k′2+k1−p2) − ei(k′1+k2−p1), (B.3)

while fr(k, p), for r = 1, . . . , 4, is defined by

f1(k, p) = ei(k1+k2)(eip1 + eip2)− 2 + ieik2(1 + eip2)− ieik1(eip1 + 1),

f2(k, p) = 2ei(k1+k2) − (e−ip1 + e−ip2) + ieik2(e−ip1 + 1)− ieik1(1 + e−ip2),

f3(k, p) = ei(k1+k2)(1 + eip2)− (e−ip1 + 1) + ieik2(e−ip1 + eip2)− 2ieik1 ,

f4(k, p) = ei(k1+k2)(eip1 + 1)− (1 + e−ip2) + 2ieik2 − ieik1(eip1 + e−ip2).

Observe for later convenience that

W (k, k′, 0) = 2(eik1 − eik′1)(eik2 − eik′2), (B.4)

and that

fr(k, 0) = −2µ(k). (B.5)

In the following, we shall first explain how to obtain (B.2), and then we will
analyze its behavior close to p = 0 and p = (π, π), so that, by using (A.1),
we will be able to identify the values of A(λ) and of ν(λ), at first non-trivial
order in λ.

B.1. Proof of (B.2). We start from (B.1). Let us first look at the term

E0(I(1)
e ;Ee′). Given a quartic polynomial of the Grassmann variables, of the

form

W (ψ) =
∑

x1,...,x4

a(x1, . . . , x4)ψ+
x1
ψ−x2

ψ+
x3
ψ−x4

,

we define its “linearization” W as:

W (ψ) =
∑

x1,...,x4

a(x1, . . . , x4)[−ψ+
x1
ψ−x2

g(x4 − x3)− ψ+
x3
ψ−x4

g(x2 − x1)

+ ψ+
x3
ψ−x2

g(x4 − x1) + ψ+
x1
ψ−x4

g(x2 − x3)]. (B.6)

Note that W is obtained from W by ‘contracting’ in all possible ways two out
of the four Grassmann fields, the contraction corresponding to the selection
of a pair of ψ+ψ− fields, and by the replacement of the selected pair by its
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average with respect to E0(·). Due to the truncated expectation, one has
then

E0(I(1)
e ;Ee′) = E0(I(1)

e ;Ee′). (B.7)

If, e.g., e is of type 1,

I(1)
e = g(v1)(ψ+

x+(1,0)ψ
−
x−(0,1) + ψ+

x+(0,1)ψ
−
x−(1,0)) + 2g(v3)ψ+

x ψ
−
x (B.8)

− g(v2)(ψ+
x+(0,1)ψ

−
x + ψ+

x ψ
−
x−(0,1))− g(v4)(ψ+

x+(1,0)ψ
−
x + ψ+

x ψ
−
x−(1,0)).

Since by symmetry all the edges e have the same probability, 1/4, of being
occupied by a dimer, (3.31) for λ = 0 gives 1/4 = −E0(Ee), so that

g(vr) = E0(ψ−x+vrψ
+
x ) =

1

4Kr
. (B.9)

Therefore, if e is of type 1,

I(1)
e =

1

4
(ψ+

x+(1,0)ψ
−
x−(0,1) + ψ+

x+(0,1)ψ
−
x−(1,0) − 2ψ+

x ψ
−
x ) (B.10)

+
i

4
(ψ+

x+(0,1)ψ
−
x + ψ+

x ψ
−
x−(0,1) − ψ

+
x+(1,0)ψ

−
x − ψ+

x ψ
−
x−(1,0))

=
1

4

∫
dp

(2π)2
eipx

∫
dk

(2π)2
ψ̂+
k+pψ̂

−
k f1(k, p)

where in the last line we used the fact that ψ±x =
∫

dk
(2π)2 ψ̂

±
k e
±ikx, as well as

the definition of f1(k, p), see the equation after (B.3). A similar computation
(details left to the reader) shows that, if e is of type r ∈ {1, 2, 3, 4},

I(1)
e =

1

4

∫
dp

(2π)2
eipx

∫
dk

(2π)2
ψ̂+
k+pψ̂

−
k fr(k, p). (B.11)

Now, recall that

Ee′ = −Kr′ψ
+
y ψ
−
y+vr′

= −Kr′

∫
dp

(2π)2
e−ipy

∫
dk

(2π)2
ψ̂+
k ψ̂
−
k+pe

−ivr′ (k+p).

(B.12)

By using (B.11)-(B.12), the Wick rule and the fact that E0(ψ̂−k ψ̂
+
k′) = (2π)2

δ(k − k′)/µ(k), we find that the Fourier transform of −λE0(I(1)
e ;Ee′), com-

puted at p, equals

−λ
∑
x

e−ipxE0(I(1)
e ;Ee′) = λ

Kr′

4

∫
dk

(2π)2

1

µ(k)µ(k + p)
e−ivr′ (k+p)fr(k, p).

(B.13)

Next, we compute λE0(Ee;Ee′ ;V4). Among the different ways of contract-
ing the fields in the application of the fermionic Wick rule to form connected
diagrams, either two of the four fields in a monomial of V4 are contracted
among themselves, or they are all contracted with fields in Ee, Ee′ . One
can check that the contributions of the former type, combined with the
zero-order diagram E0(Ee;Ee′), altogether give

Ē0(Ee;Ee′) +O(λ2) (B.14)
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where Ē0 is the Grassmann Gaussian expectation defined in a way analogous
to (3.11), with the difference that−(ψ+,K0ψ

−) is replaced by−(ψ+,K0ψ
−)+

λV 4(ψ). Using (B.9) we find that

V 4(ψ) =
∑
x∈Λ

[
ψ+
x ψ
−
x−(1,1) + iψ+

x ψ
−
x−(0,1) − ψ

+
x ψ
−
x − iψ+

x ψ
−
x−(1,0)

]
(B.15)

which is nothing but −(ψ+,K0ψ
−) itself. Therefore,

Ē0(Ee;Ee′) = KrKr′ Ē0(ψ+
x ψ
−
x+vr ;ψ

+
y ψ
−
y+vr′

). (B.16)

= −KrKr′g(vr′ − x+ y)g(vr + x− y)

(1 + λ)2
(B.17)

Taking the Fourier transform, this gives

−(1− 2λ)KrKr′

∫
dk

(2π)2

e−ikvr−i(k+p)vr′

µ(k)µ(k + p)
+O(λ2). (B.18)

Finally, we consider the contributions to λE0(Ee;Ee′ ;V4) from the dia-
grams where two fields in V4 are contracted with the two fields of Ee and
the remaining two are contracted with Ee′ . It is convenient to symmetrize
V4 by rewriting, after taking Fourier transform,

V4(ψ) = −1

2

∫
dp

(2π)2

∫
dk

(2π)2

∫
dk′

(2π)2
ψ̂+
k+pψ̂

−
k ψ̂

+
k′−pψ̂

−
k′W (k, k′, p), (B.19)

with W as in (B.3). Now, by using (B.19), (B.12), and the analogous expres-
sion for Ee, we find that the Fourier transform of the sum of the contributions
to λE0(Ee;Ee′ ;V4) from connected diagrams, such that none of the fields of
V4 are contracted among themselves, is equal to

−2λKrKr′

∫
dk

(2π)2

∫
dk′

(2π)2

W (k, k′, p)e−ivr(k
′−p)−ivr′ (k+p)

µ(k)µ(k + p)µ(k′)µ(k′ − p) . (B.20)

Now, recall that, from (B.1), Ĝ
(0,2)
r,r′ (p) at first order in λ is given by the

sum of (B.18), (B.20), (B.13), plus the term as in (B.13) but with e, e′

interchanged, which gives (B.2), as desired.

B.2. Behavior for p ∼ 0. We want to identify the discontinuity of Ĝ
(0,2)
r,r′ (p)

at p = 0 and, by using (A.1), identify the pre-factor A(λ) at lowest non-
trivial order in λ. We consider the case r = r′ = 1: any choice of (r, r′) is
equally good for computing A(λ), and the case r = r′ = 1 is, possibly, the
simplest.

Let us first look at the first term in the right side of (B.2), which, for
r = r′ = 1, is equal to

−(1− 2λ)

∫
dk

(2π)2

1

µ(k)µ(k + p)
, (B.21)

plus an error term that vanishes as p → 0. The integral in (B.21) can be
evaluated by Proposition 3, and equals

−1− 2λ

4π
Re

[
D−(p)

D+(p)

]
(B.22)

plus terms that are continuous at p = 0.
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Next we look at the term in the second line of (B.2). We can can set
p = 0 in W (k, k′, p), up to an error term that vanishes for p → 0. This
is because the integral diverges at like (log |p|)2, so that the error term is
O(|p|(log |p|)2). Then, by using Proposition 3, the second line of (B.2) for
r = r′ = 1 reduces to

−8λ(I(1,1)(p)I(0,0)(p)− I(1,0)(p)I(0,1)(p)) (B.23)

plus terms that vanish as p → 0. In order to evaluate this expression, we
use (A.6), which we rewrite as

I(a,b)(p) =
1

8π

[
D−(p)

D+(p)
+ (−1)a+bD+(p)

D−(p)

]
+ U(a,b) +R(a,b)(p).

and we recall that R(a,b) vanishes continuously at p = 0. Omitting terms
that are continuous at p = 0, (B.23) equals

−2λ

π
Re

[
D−(p)

D+(p)
(U(0,0) + U(1,1) − U(0,1) − U(1,0))

]
. (B.24)

A simple computation shows that

U(0,0) =
1

4

(
1− 2

π

)
, U(1,1) = 0, U(0,1) =

i

4π
, U(1,0) = − i

4π

so that (B.24) reduces to

− λ

2π

(
1− 2

π

)
Re

[
D−(p)

D+(p)

]
(B.25)

Finally, it is easy to see that the term in the last line of (B.2) is continuous
at p = 0. Indeed, as above, we can replace f1(k, p) by f1(k, 0), up to an
error term of order O(|p| log |p|). Now, recalling that f1(k, 0) = −2µ(k), we
see that this term simplifies with the factor µ(k) in the denominator: after
the simplification, we are left with an absolutely convergent integral.

Altogether, from (B.22) and (B.25)

Ĝ
(0,2)
r,r′ (p) = − 1

4π

(
1− 4λ

π

)
Re

[
D−(p)

D+(p)

]
(B.26)

where we omitted terms that are either continuous at p = 0 or are O(λ2).
In view of (A.1), we have

A(λ) = 1− 4

π
λ+O(λ2). (B.27)

B.3. Behavior for p ∼ (π, π). In order to compute ν = ν(λ) at first
order, we use the second of (A.1) that, if expanded at first order in λ,
and defining the coefficients ν1 and b1 via ν(λ) = 1 + ν1λ + O(λ2) and
B(λ)Γ(2− ν(λ))/Γ(ν(λ)) = 1 + b1λ+O(λ2), reads:

Ĝ
(0,2)
r,r′ ((π, π) + q) =

tr,r′

2π

[
− (1 + b1λ) log

( |q|
2

)
− ν1λ log2

( |q|
2

)]
, (B.28)

up to terms that are continuous at q = 0, and/or of the order O(λ2). From
this equation, it is apparent that ν1 can be read from the most divergent

contribution at order O(λ), i.e., from the contribution to Ĝ
(0,2)
r,r′ ((π, π) + q)

that diverges as log2 |q|, as q → 0, at first order in λ.
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For simplicity, we consider again the case r = r′ = 1, in which case
tr,r′ = t1,1 = 1. We start from (B.2) computed at p = (π, π) + q, and we
observe that neither the term in the first line nor the one in the third line
give contribution to ν1, since they diverge as log |q|, as q → 0.

It remains to consider the second line of (B.2), which can be rewritten,
up to terms that vanish as q → 0, as

4λ

∫
dk

(2π)2

∫
dk′

(2π)2

(eik1 − eik′1)(eik2 − eik′2)

µ(k)µ(k + (π, π) + q)µ(k′)µ(k′ − (π, π)− q) , (B.29)

where we used that

W (k, k′, (π, π)) = −W (k, k′, 0) = −2(eik1 − eik′1)(eik2 − eik′2).

The denominator has zeros when k and k′ are close either to (0, 0) or to
(π, π). However, when k, k′ are both close to (0, 0) or both close to (π, π),
the singularity is partially cancelled by the fact that the numerator in (B.29)
vanishes there: as a consequence, the contributions to the integral in (B.29)
from the regions where k, k′ are both close to (0, 0) or both close to (π, π)
diverge less severely than log2 |q|, as q → 0.

Therefore, the relevant contribution is from the region k ∼ 0, k′ ∼ (π, π),

or vice-versa, in which case the numerator (eik1 − eik′1)(eik2 − eik′2) in (B.29)
is equal to 4, up to terms that, once integrated in k, k′, give a contribution
that is more regular than (log |q|)2. We make a similar replacement in the
denominator: consider, e.g., the case k ∼ 0, k′ ∼ (π, π), and rewrite k′ =
(π, π) +k′′, so that both k and k′′ are in a neighborhood of the origin. Then
we can rewrite the denominator µ(k)µ(k+ (π, π) + q)µ(k′)µ(k′ − (π, π)− q)
in (B.29) as its linearization, D+(k)D−(k + q)D−(k′′)D+(k′′ − q), plus a
rest that, once integrated in k, k′, give a contribution that is more regular
than (log |q|)2. We recall that D±(k) was defined in (3.10) and in particular
D−(k) = −D+(k)∗. A similar argument can be repeated in the case that
k ∼ (π, π), k′ ∼ 0, which gives exactly the same dominant contribution (and,
therefore, can be accounted for by multiplying the result of the first case by
an overall factor 2).

In conclusion, the dominant contribution (for q small) to (B.29) is

32λ

∣∣∣∣∣
∫
|k|<1

dk

(2π)2

1

D+(k)D−(k + q)

∣∣∣∣∣
2

. (B.30)

Always at dominant order, we can restrict the integration to |k| > 2|q| (the
contribution from the complementary set is O(1)) and replace D+(k)D−(k+
q) by −|D+(k)|2 = −2|k|2 there. Then, the integral (B.30) gives, at domi-
nant order,

32λ

(∫
2|q|<|k|<1

dk

2(2π)2

1

|k|2

)2

=
2

π2
λ
[

log(2|q|)
]2
. (B.31)

By comparing this expression with the term of order log2 |q| in (B.28), and
recalling that t1,1 = 1, we conclude that ν1 = −4/π, that is

ν(λ) = 1− 4

π
λ+O(λ2), (B.32)

as desired.
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Appendix C. Ward Identities for the reference model

In this section we sketch the proof of the Ward Identities (5.9) and (5.11),
and of the identity (6.15) for the critical exponent ν. A full proof can be
found in [6] and references therein.

C.1. Ward Identities. The starting point in the derivation of the Ward
Identities is a ‘chiral gauge transformation’ of the Grassmann fields in the
reference model’s generating functional: that is, given ω̄ ∈ {±}, we perform
the following change of variables:

ψ±x,ω̄ → e±iαx,ω̄ψ±x,ω̄ , ψ±x,−ω̄ → ψ±x,−ω̄ , (C.1)

in the numerator of the right side of (5.1). The generating functional is
invariant under this change of variables: therefore, the variation of the right
side of (5.1) with respect to αω̄ := {αx,ω̄}x∈Λ is zero. In the following, we
intend to compute this variation, take its derivative with respect to αω̄, and
set αω̄ ≡ 0. The resulting identity can be thought of as the generating
function for a hierarchy of Ward Identities.

Note that the interaction V(
√
Z ψ) in the right side of (5.1) is invariant

under the transformation (C.1), and so is the source term Z(1)(J (1), ρ(1)).
Moreover,

Z(2)(J (2), ρ(2))→ Z(2)
∑
ω=±

∫
Λ
dx J (2)

x,ωρ
(2)
x,ω e

iωω̄αx,ω̄ , (C.2)

Z(ψ+, φ−)→ Z

∫
Λ
dx
(
ψ+
x,ω̄φ

−
x,ω̄e

+iαx,ω̄ + ψ+
x,−ω̄φ

−
x,−ω̄

)
, (C.3)

Z(φ+, ψ−)→ Z

∫
Λ
dx
(
φ+
x,ω̄ψ

−
x,ω̄e

−iαx,ω̄ + φ+
x,−ω̄ψ

−
x,−ω̄

)
. (C.4)

Finally, and most importantly, the Gaussian integration is also affected by

the chiral gauge transformation: in fact, P
[≤N ]
Z (dψ) can be formally8 written

as

P
[≤N ]
Z (dψ) =

1

N exp
{
− Z

∑
ω

∫
Λ
dxψ+

x,ω

(
DNψ

−
ω

)
(x)
} ∏
ω=±

∏
x∈Λ

dψ+
x,ωdψ

−
x,ω ,

(C.5)
where N is a normalization constant and

(DNψ
±
ω )(x) := ∓ 1

L2

∑
k∈D

e±ikx(χN (k))−1Dω(k)ψ̂±k,ω . (C.6)

Under the chiral gauge transformation, the ‘Grassmann measure’∏
ω=±

∏
x∈Λ

dψ+
x,ωdψ

−
x,ω

8The reason why (C.5)-(C.6) are formal is that (χN (k))−1 is infinite if k is outside the
support of χN . In order to make sense of these and the following formulas, one should
introduce a function χεN of full support, such that limε→0 χ

ε
N (k) = χN (k). One should

perform all computations keeping ε fixed, and then send ε→ 0 first, before the removal of
all the other cut-off parameters. In this appendix, we neglect this issue: for more details,
see [7].



HALDANE RELATION FOR INTERACTING DIMERS 35

in the right side of (C.5) is invariant, and so is the term
∫

Λ dxψ
+
x,−ω̄

(
DNψ

−
−ω̄
)
(x)

at exponent, while∫
Λ
dxψ+

x,ω̄

(
DNψ

−
ω̄

)
(x)→

∫
Λ
dx e+iαx,ω̄ψ+

x,ω̄(DNe
−iαω̄ψ−ω̄ )(x) (C.7)

=

∫
Λ
dxψ+

x,ω̄

(
DNψ

−
ω̄

)
(x) + i

∫
Λ
dxαx,ω̄

[
(Dρ

(1)
ω̄ )(x) + δTω̄(x)

]
+O(α2

ω̄),

where

(Dρ
(1)
ω̄ )(x) = − 1

L4

∑
k,p∈D

eipxDω̄(p)ψ̂+
k+p,ω̄ψ̂

−
k,ω̄ , (C.8)

δTω̄(x) =
1

L4

∑
k,p∈D

eipxψ̂+
k+p,ω̄Cω̄(k + p, k)ψ̂−k,ω̄ , (C.9)

and

Cω̄(k + p, k) := [χ−1
N (k)− 1]Dω̄(k)− [χ−1

N (k + p)− 1]Dω̄(k + p). (C.10)

Putting things together, and imposing that the variation of (5.1) vanishes
at first order in αω̄, we find, letting

V(ψ, J, φ) := V(
√
Zψ)+

∑
j

Z(j)(J (j), ρ(j))+Z[(ψ+, φ−)+(φ+, ψ−)], (C.11)

that ∫
P

[≤N ]
Z (dψ)eV(ψ,J,φ)

[
Z(2)

∑
ω

ωω̄J (2)
x,ωρ

(2)
x,ω + (C.12)

+Zψ+
x,ω̄φ

−
x,ω̄ − Zφ+

x,ω̄ψ
−
x,ω̄ − Z(Dρ

(1)
ω̄ )(x)− ZδTω̄(x)

]
= 0.

By taking derivatives w.r.t. J and φ, and then setting the external sources
to zero, we generate a hierarchy of Ward Identities: for example, by deriving
w.r.t. φ−z,ω and φ+

y,ω, and then setting the external sources to zero, we find

δω,ω̄δx,zZ
2〈ψ−y,ωψ+

x,ω〉L,N,a − δω,ω̄δx,yZ
2〈ψ−x,ωψ+

z,ω〉L,N,a (C.13)

−Z3〈(Dρ(1)
ω̄ )(x);ψ−y,ωψ

+
z,ω〉L,N,a − Z

3〈δTω̄(x);ψ−y,ωψ
+
z,ω〉L,N,a = 0,

where 〈A(ψ)〉L,N,a :=
∫
P

[≤N ]
Z (dψ)eV(

√
Zψ)A(ψ)/

∫
P

[≤N ]
Z (dψ)eV(

√
Zψ), and

the semicolon indicates truncated expectation (note that in the second line
the truncated expectations are equal to the un-truncated ones, simply be-

cause 〈(Dρ(1)
ω̄ )(x)〉L,N,a = 〈δTω̄(x)〉L,N,a = 0). After taking the Fourier

transform and sending L,N, a−1 →∞, we get

δω,ω̄[Ĝ
(2)
R,ω(k + p)− Ĝ(2)

R,ω(k)] +
Z

Z(1)
Dω̄(p)Ĝ

(2,1)
R,ω̄,ω(k, p)− Z

Z(1)
Âω̄,ω(k, p) = 0,

(C.14)
where

Âω̄,ω(k, p) = lim
L,N,a−1→∞

Z(1)Z2

L4

∑
q∈D

Cω̄(q+p, q)〈ψ̂+
q+p,ω̄ψ̂

−
q,ω̄; ψ̂−k+p,ωψ̂

+
k,ω〉L,N,a,

(C.15)
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and the limit in the right side is meant as the limit a→ 0 first, then N →∞,
then L → ∞. By summing (C.14) over ω̄, we will eventually get (5.9): of

course, the subtle issue is to compute Âω̄,ω(k, p) (see below).

Remark 9. The term Âω̄,ω(k, p) is referred to as an anomaly term: for-
mally, it would be zero if we replaced the cut-off function χN appearing in
the definition of Cω(k+ p, k) by 1. Of course, there is an exchange of limits
involved: we first need to compute the expression in the right side of (C.15)
under the limit sign, and then take the limit of removed cut-offs. In order
to compute the right side of (C.15), we can use a multi-scale analysis simi-
lar to the one used in the computation of the free energy and the correlation
functions of the interacting dimer model (see [25]) and of the reference model
(see, e.g., [7] or [6]). Under RG iterations, the operator δTω appears to be
marginal [7, 8], with a non-trivial flow from the ultraviolet scale, down to
the deep infrared: this induces a non trivial flow of the anomaly term, which
converges to a finite value (its ‘infrared fixed point’), non-vanishing in the
limit of removed cut-offs. The fact that the anomaly term does not vanish
in this limit is visible already at first order in perturbation theory.

In addition to the Ward Identity (C.14) for the vertex function, we can
get another identity for the density-density correlations, by deriving (C.12)

with respect to J
(1)
y,ω and then setting the external sources to zero. In this

case, after taking Fourier transform and the limit of removed cut-offs, we
obtain

Dω̄(p)Ŝ
(1,1)
R,ω̄,ω(p) = B̂ω̄,ω(p), (C.16)

where

B̂ω̄,ω(p) = lim
L,N,a−1→∞

(Z(1))2

L6

∑
q,k∈D

Cω̄(q + p, q)〈ψ̂+
q+p,ω̄ψ̂

−
q,ω̄; ψ̂+

k,ωψ̂
−
k−p,ω〉L,N,a

(C.17)
is an anomaly term. Its computation, sketched below, leads to (5.11).

C.2. The anomaly terms. The anomaly terms have been computed in
a series of previous works, starting from [7, 8]. In the presence of a non-
local interaction potential, as the one considered here (recall (5.5)), it has a

very explicit form: for instance, Âω′,ω(k, p) is equal to an explicit pre-factor,

linear in λ∞, times Ĝ
(2,1)
R,−ω′,ω(k, p), see (C.23) below. The fact that the pre-

factor is exactly linear in λ∞, i.e., that all its contributions beyond first order
perturbation theory vanish in the removed cut-offs limit, is a phenomenon
known as the anomaly non-renormalization, first proved in our context in
[47], see also [6]. Here, we informally discuss the main ideas of the proof
and explain how to compute the anomaly terms.

For definiteness, let us consider the anomaly Âω′,ω(k, p) first: the expres-
sion in the right side of (C.15), under the limit sign, can be computed by a
multi-scale analysis, similar to the one discussed in [25], see [6] for details.

The outcome is that, if k, p, k + p 6= 0, then Âω′,ω(k, p) is analytic in λ∞,
uniformly in N,L, a. Note that, by the support properties of Cω̄(q + p, q),
in order for the summand not to vanish, both q and q+ p must be ‘on scale
N ’: that is, for any fixed p and N large enough, 2N−1 ≤ |q|, |q + p| ≤ 2N+2;
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therefore, the sum over q in the right side of (C.15) can be performed under
this constraint.

Thanks to the analyticity in λ∞, we can expand Âω′,ω(k, p) in series, thus
finding

Âω′,ω(k, p) = lim
L,N,a−1→∞

Z(1)Z2

L4

∑
q∈D

∑
n≥0

1

n!
Cω̄(q + p, q)×

×〈ψ̂+
q+p,ω̄ψ̂

−
q,ω̄; ψ̂−k+p,ωψ̂

+
k,ω;

[
V(
√
Zψ)

];n〉0L,N,a (C.18)

where
[
V
];n

is a shorthand notation for V;V; · · · ;V︸ ︷︷ ︸
n times

, and 〈(·)〉0L,N,a is the

unperturbed integration, i.e., 〈(·)〉0L,N,a :=
∫
P

[≤N ]
Z (dψ)(·), whose expecta-

tions can be computed by the fermionic Wick rule. Now, one can easily
check that the 0-th order term, i.e., the term with n = 0 in the right side of
(C.18), vanishes in the removed cut-off limit. The higher order terms can

be of two types: either the two Grassmann fields ψ̂+
q+p,ω̄ψ̂

−
q,ω̄ are contracted

with (two of the four fields of) the same interaction term V, or with (the
fields of) two different interaction terms. Correspondingly we can write:

Âω′,ω(k, p) = (I) + (II), where, recalling that v̂0(p) is the Fourier transform
of the interaction potential, which is rotationally invariant and such that
v̂0(0) = 1,

(I) = (C.19)

= lim
L,N,a−1→∞

λ∞v̂0(p)

L6

∑
q∈D

Cω̄(q + p, q)Z2〈ψ̂+
q+p,ω̄ψ̂

−
q,ω̄; ψ̂+

q,ω̄ψ̂
−
q+p,ω̄〉0L,N,a

× 1

L4

∑
q′∈D

∑
n≥1

Z(1)Z2

(n− 1)!
〈ψ̂+

q′+p,−ω̄ψ̂
−
q′,−ω̄; ψ̂−k+p,ωψ̂

+
k,ω;

[
V(
√
Zψ)

];n−1〉0L,N,a

and

(II) = (C.20)

= lim
L,N,a−1→∞

1

L4

∑
q∈D

Cω̄(q + p, q)〈ψ̂+
q+p,ω̄ψ̂

−
q,ω̄; ψ̂+

q,ω̄ψ̂
−
q+p,ω̄〉0L,N,a ×

×
∑
n≥2

Z(1)Z2

(n− 2)!
〈∂V(

√
Zψ)

∂ψ̂−q+p,ω̄
;
∂V(
√
Zψ)

∂ψ̂+
q,ω̄

; ψ̂−k+p,ωψ̂
+
k,ω;

[
V(
√
Zψ)

];n−2〉0L,N,a

Let us focus on (I) first. After summation over n, the third line of (C.19)
can be explicitly re-written as

1

L4

∑
q′∈D

Z(1)Z2〈ψ̂+
q′+p,−ω̄ψ̂

−
q′,−ω̄; ψ̂−k+p,ωψ̂

+
k,ω〉L,N,a,

whose removed cut-off limit equals Ĝ
(2,1)
R,−ω̄,ω(k, p). Therefore,

(I) = λ∞v̂0(p)Ĥω(p)Ĝ
(2,1)
−ω′,ω(k, p), (C.21)

where

Ĥω(p) = − lim
N→∞

∫
R2

dq

(2π)2
Cω(q + p, q)

χN (q)χN (q + p)

Dω(q)Dω(q + p)
.
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Recall that the integrand is non vanishing only if q and q+p are on scale N .
Therefore, the integrand vanishes pointwise in the limit N →∞. However,
the limit of the integral is not zero: a straightforward, but very instructive,
computation shows that

Ĥω(p) = − 1

8π
D−ω(p), (C.22)

from which we infer that (I) = −λ∞
8π D−ω′(p)v̂0(p)Ĝ

(2,1)
−ω′,ω(k, p).

Let us now turn to (II): the key fact is that all its contributions vanish
in the removed cut-off limit. At a perturbative level, this can be checked
by looking at the Feynman diagram expansion of the right side of (C.20):
the constraint that the momenta q, q + p are on scale N , while the external
momenta k, k + p are fixed, induces a ‘dimensional gain’ in the dimensional
estimate of the values of the diagrams, which makes them vanish in the
removed cut-off limit, at a speed at least 2−θN , for a suitable θ ∈ (0, 1).
The reader can easily check this fact for the lowest order diagrams. For a
general, non-perturbative, proof, see [6, 47].

In conclusion,

Âω′,ω(k, p) = −λ∞
8π

D−ω′(p)v̂0(p)Ĝ
(2,1)
−ω′,ω(k, p). (C.23)

Plugging this back into (C.14) we get

Z

Z(1)

[
Dω(p)Ĝ

(2,1)
R,ω,ω(k, p) +

λ∞
8π

v̂0(p)D−ω(p)Ĝ
(2,1)
−ω,ω(k, p)

]
=

= Ĝ
(2)
R,ω(k)− Ĝ(2)

R,ω(k + p), (C.24)

Z

Z(1)

[
D−ω(p)Ĝ

(2,1)
R,−ω,ω(k, p) +

λ∞
8π

v̂0(p)Dω(p)Ĝ(2,1)
ω,ω (k, p)

]
= 0.

and summing the two equations we get (5.9), as desired.

Similarly, we find that the anomaly term B̂ω′,ω(p) in (C.17) is

B̂ω′,ω(p) = Ĥω′(p)
[(Z(1))2

Z2
δω′,ω + λ∞v̂0(p)Ŝ

(1,1)
R,−ω′,ω(p)

]
, (C.25)

with Ĥω(p) as in (C.22). By plugging (C.25) into (C.16), we immediately
get (5.11).

C.3. The critical exponent ν. In this subsection, we give a sketch of the
proof of the identity (6.15). We proceed as in [6, Sect.4.2]. The explicit form
of the critical exponent follows from an exact computation of the ‘mass-mass’

correlation function S
(2,2)
R,ω,ω′(x, y), which goes as follows. We let

G
(4)
R,ω(x, y, u, v) := Z4 lim

L,N,a−1→∞
〈ψ−x,ωψ−y,−ωψ+

u,−ωψ
+
v,ω〉L,N,a. (C.26)

Note that G
(4)
R,ω is related to S

(2,2)
R,ω,ω′ via the identity

G
(4)
R,ω(x, y, x, y) =

Z4

(Z(2))2
S

(2,2)
R,−ω,ω(x, y). (C.27)
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The key observation is that G
(4)
ω and the dressed propagator G

(2)
ω satisfy a

system of two equations, obtained by combining the Ward Identities with
the Schwinger-Dyson equation (see below for details):

Dx
ωG

(2)
R,ω(x, 0) = Zδ(x)− λ∞Fω,−(x)G

(2)
R,ω(x, 0), (C.28)

Dx
ωG

(4)
R,ω(x, y, u, v) = Zδ(x− v)G

(2)
R,−ω(y, u) + (C.29)

+λ∞
[
Fω,+(x− y)− Fω,+(x− u)− Fω,−(x− v)

]
G

(4)
R,ω(x, y, u, v),

where Dx
ω was defined in (5.4), and Fω,ε(x) =

∫
R2

dp
(2π)2 e

ipxF̂ω,ε(p), with

F̂ω,ε(p) :=
v̂0(p)Aε(p)

D−ω(p)
, Aε(p) :=

1

2

( 1

1− τ v̂0(p)
+ε

1

1 + τ v̂0(p)

)
. (C.30)

The solution of (C.28)-(C.29) decaying to zero at infinity, as one can easily
check by substitution, is

G
(2)
R,ω(x, y) = Ze−λ∞∆−(x−y,0)gR,ω(x− y), (C.31)

G
(4)
R,ω(x, y, u, v) = eλ∞[∆+(x−y,v−y)−∆+(x−u,v−u)]G

(2)
R,ω(x, v)G

(2)
R,−ω(y, u),

where

gR,ω(x) =

∫
R2

dk

(2π)2

e−ik(x−y)

(−i− ω)k1 + (−i+ ω)k2
,

and

∆ε(x, z) :=

∫
R2

dp

(2π)2

eipz − eipx
Dω(p)

F̂ω,ε(p). (C.32)

By using the fact that, asymptotically for large |x|,

∆ε(x, 0) '
|x|→∞

−Aε(0)

4π
log |x|, (C.33)

we find from (C.27) and (C.31) that

S
(2,2)
R,−ω,ω(x, y) '

|x|→∞
(const.)|x− y|−2(1−τ)/(1+τ), (C.34)

where we recall that τ = −λ∞/(8π). This proves (6.15).

We are left with giving a sketch of the proof of (C.28)-(C.29). Let us
start with (C.28). The idea is to combine the Ward Identities (C.24) with
the so-called Schwinger-Dyson equation for the propagator, which reads

Ĝ
(2)
R,ω(k) =

Z

Dω(k)

[
1 +

λ∞

Z(1)

∫
R2

dp

(2π)2
v̂0(p)Ĝ

(2,1)
R,−ω,ω(k, p)

]
. (C.35)

For an elementary proof of this identity, see [5, Appendix A.1].
On the other hand, the two Ward Identities (C.24) imply a second, in-

dependent, relation between Ĝ
(2,1)
R,−ω,ω(k, p) and the dressed propagator: in

fact, by solving (C.24) for Ĝ
(2,1)
R,−ω,ω(k, p) we find

Z

Z(1)
D̂−ω(p)Ĝ

(2,1)
R,−ω,ω(k, p) = A−(p)

[
Ĝ

(2)
R,ω(k)− Ĝ(2)

R,ω(k + p)
]
. (C.36)

By plugging this equation into (C.35), taking Fourier transform, and using

the fact that
∫
F̂ω,ε(p) dp = 0, we get (C.28), as desired.
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In order to prove (C.29) we proceed analogously. The required analogue
of the Ward Identity (C.14) is obtained by deriving (C.12) w.r.t. φ−z,ω, φ−v,−ω,

φ+
u,−ω and φ+

y,ω, then setting the external sources to zero, and finally taking
the removed cut-offs limit. The result is[

δω,ω̄
(
δ(x− z)− δ(x− y)

)
+ δω,−ω̄

(
δ(x− v)− δ(x− u)

)]
G(4)
ω (y, u, v, z)

− Z

Z(1)
Dx
ω̄G

(4,1)
R,ω̄,ω(x, y, u, v, z)− Z

Z(1)
Iω̄,ω(x, y, u, v, z) = 0, (C.37)

where

G
(4,1)
R,ω′,ω(x, y, u, v, z) := Z(1)Z4 lim

L,N,a−1→∞
〈ρ(1)
x,ω′ ;ψ

−
y,ωψ

−
u,−ωψ

+
v,−ωψ

+
z,ω〉L,N,a,

Iω̄,ω(x, y, u, v, z) := Z(1)Z4 lim
L,N,a−1→∞

〈δTω̄(x);ψ−y,ωψ
−
u,−ωψ

+
v,−ωψ

+
z,ω〉L,N,a.

We now take Fourier transform, with the conventions

G
(4,1)
R,ω′,ω(x, y, u, v, z) =

∫
R2

dp

(2π)2

∫
R2

dk1

(2π)2

∫
R2

dk2

(2π)2

∫
R2

dq

(2π)2
×

×eipx−i(k1+p)y−ik2u+i(k2−q)v+i(k1+q)zĜ
(4,1)
R,ω′,ω(p, k1, k2, q) ,

G
(4)
R,ω(y, u, v, z) =

∫
R2

dk1

(2π)2

∫
R2

dk2

(2π)2

∫
R2

dq

(2π)2
× (C.38)

×e−ik1y−ik2u+i(k2−q)v+i(k1+q)zĜ
(4)
R,ω(k1, k2, q) ,

and similarly for Iω′,ω. If we combine the two equations obtained from (C.37)
by setting ω̄ = ω and ω̄ = −ω, and we use the fact that the anomaly term
Îω′,ω has an expression completely analogous to (C.23), namely

Îω′,ω(p, k1, k2, q) = −λ∞
8π

D−ω′(p)v̂0(p)Ĝ
(4,1)
−ω′,ω(p, k1, k2, q), (C.39)

we get

Z

Z(1)
D−ω(p)Ĝ

(4,1)
R,−ω,ω(p, k1, k2, q) (C.40)

= A−(p)
[
Ĝ

(4)
R,ω(k1, k2, q)− Ĝ(4)

R,ω(k1 + p, k2, q)
]

+ A+(p)
[
Ĝ

(4)
R,ω(k1 + p, k2 − p, q − p)− Ĝ(4)

R,ω(k1 + p, k2, q − p)
]
,

which is the analogue of (C.36).
In addition to this Ward Identity, we need the analogue of (C.35), that

is the Schwinger-Dyson equation for the four-point function, which reads

Ĝ
(4)
R,ω(k1, k2, q) =

Z

Dω(k1)

[
(2π)2δ(q)Ĝ

(2)
R,−ω(k2)

+
λ∞

Z(1)

∫
R2

dp

(2π)2
v̂0(p)Ĝ

(4,1)
R,−ω,ω(p, k1, k2, q)

]
. (C.41)

If we now plug (C.40) into (C.41) we finally obtain (C.29), as desired.
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