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Abstract. We consider a non-integrable model for interacting dimers on the two-dimensional square lattice. Configurations are
perfect matchings of Z2, i.e. subsets of edges such that each vertex is covered exactly once (“close-packing” condition). Dimer
configurations are in bijection with discrete height functions, defined on faces ξ of Z2. The non-interacting model is “integrable”
and solvable via Kasteleyn theory; it is known that all the moments of the height difference hξ − hη converge to those of the
massless Gaussian Free Field (GFF), asymptotically as |ξ −η| →∞. We prove that the same holds for small non-zero interactions,
as was conjectured in the theoretical physics literature. Remarkably, dimer-dimer correlation functions are instead not universal
and decay with a critical exponent that depends on the interaction strength. Our proof is based on an exact representation of the
model in terms of lattice interacting fermions, which are studied by constructive field theory methods. In the fermionic language,
the height difference hξ − hη takes the form of a non-local operator, consisting of a sum of monomials along an arbitrary path
connecting ξ and η. As in the non-interacting case, this path-independence plays a crucial role in the proof.

Résumé. Nous étudions un modèle non integrable de dimères en interaction sur le réseau carré bidimensionnel. Les configurations
sont des appariements parfaits de Z2, i.e. des sous-ensembles d’arêtes tels que tout sommet est contenu dans une et une seule arête
(condition de “close-packing”). Les configurations de dimères sont en bijection avec une fonction de hauteur discrète, définie sur les
faces ξ de Z2. Le modèle sans interaction est “integrable” et resoluble par la théorie de Kasteleyn; il est connu que tous les moments
de la différence de hauteur hξ − hη convergent vers ceux du champ Gaussien libre (GFF), dans la limite où |ξ − η| →∞. Nous
démontrons que le même résultat est valable quand le paramètre d’interaction est non nul et petit, comme il avait été conjecturé
dans la littérature physique. Il est remarquable que, d’autre côté, les fonctions de correlation dimère-dimère ne sont pas universelles
et décroissent avec un exposant critique qui dépend de la force de l’interaction. Notre preuve se base sur une representation exacte
du modèle en termes de fermions en interaction su réseau, que nous étudions par des outils de la théorie constructive des champs.
Dans le language fermionique, la différence de hauteur hξ − hη est un opérateur non local, qui s’écrit comme une somme de
monômes le long d’un chemin arbitraire qui relie ξ et η. Tout comme dans le cas sans interaction, l’indépendance par rapport au
choix du chemin joue un rôle crucial dans la preuve.
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1. Introduction and main results

Two-dimensional dimer models were studied extensively in the 1960s for their equivalence with various statistical
physics models such as the Ising model. At close packing, dimer models are critical (correlations decay polynomially
with distance) and, as was later discovered, enjoy conformal invariance properties [42]. Their early study culminated
in the exact solution of non-interacting dimers by Kasteleyn, Temperley and Fisher [27,40,61] and the related compu-
tation of the correlations [28]. However, even in the presence of a solution, a number of properties used in the physical
literature were left for decades without a mathematical justification. In particular, the height field (see Section 1.1)
was believed to be effectively described in terms of a continuum Gaussian field theory. The difficulty in substantiat-
ing mathematically such belief is due to the ultraviolet divergences that arise in the continuum limit. They produce
ambiguities in the final formulas for the moments of the height function, which require ad hoc regularizations, see
e.g. [3,21,64] for an analogous discussion in the context of the critical Ising model. It is fair to say that not only a
mathematical proof, but even a solid, convincing, non-rigorous argument, proving the correctness of the scaling limit
for the height function, was missing until very recent. The progress came from the mathematical community: in the
last 15 years, radically new ideas and methods have been introduced [41–45], which provided a firm basis for the
continuum field picture in the non-interacting dimer model. These works take advantage of the underlying discrete
holomorphicity properties of the model, which arise from its integrability, and can be used to prove the emergence of
conformal symmetry in the scaling limit [42,43]. Similar ideas also appeared and developed in the context of percola-
tion and of the Ising model [59,60]. However, these methods fail as soon as integrability is lost, and the very natural
question of whether the Gaussian Free Field (GFF) description survives for the interacting case requires radically new
ideas. It was proposed in [24] to apply the methods of constructive Renormalization Group (RG) theory to interacting
dimers, and in this way the large-distance asymptotics of the dimer-dimer correlations were derived, as well as certain
universality relations between critical exponents. In this paper we extend the approach of [24] to the computation of
all the moments of the height function, and we succeed in proving their convergence to those of the massless GFF.
The control of the height fluctuations, as compared to that of the dimer correlations, poses new non-trivial problems,
due to the non-local nature of the height function, as opposed to the local nature of single-dimer observables.

Constructive RG methods have proven, along the decades, to be an invaluable tool to control rigorously some non-
integrable critical models and their universality properties, see references below. On the other hand, these methods
seem to be very little known in the probability/combinatorics/discrete complex analysis communities, despite the fact
that they are interested in very similar mathematical questions for the Ising model, percolation, etc. One of the aims
of the present work is to make these methods accessible to a wider audience. For this reason, we make an effort to
present the main ideas and steps in a pedagogical way (within reasonable limits: for the technical details of some
constructive RG estimates we refer to the relevant literature), which (partly) explains the length of the article.

1.1. The model

To be definite, we study the model of interacting classical dimers proposed in [2] and [55]. We consider a periodic box
� of side L (with L even), whose sites are labelled as follows: � = {x= (x1, x2) ∈ Z2 : xi =−L/2+ 1, . . . ,L/2}.
“Periodic,” as usual, means that if êi are the two unit coordinate vectors, then (L/2, x2)+ ê1 should be identified with
(−L/2+ 1, x2), and (x1,L/2)+ ê2 with (x1,−L/2+ 1). The partition function of interest is

Z�(λ,m)=
∑

M∈M�

[∏
b∈M

t
(m)
b

]
eλW�(M) ≡

∑
M∈M�

μ�;λ,m(M) : (1.1)
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• M� is the set of dimer coverings (or perfect matchings) of �. We recall that a dimer covering is a subset of edges
such that each vertex of � is contained in exactly one edge in M . We choose L even, otherwise M� would be
empty.

• m > 0 is the amplitude of a periodic modulation of the horizontal bond weights, playing the role of an “infrared
regularization” (see later), to be eventually removed after performing the thermodynamic limit, by sending m→ 0.
The modulation is defined as follows: t

(m)

(x,x+êj )
= 1+ δj,1m(−1)x1 . Note that limm→0 t

(m)
b = 1.

• W�(M)=∑P⊂� NP (M), where P is a plaquette (face of Z2) and NP (M)= 1 if the plaquette P is occupied by
two parallel dimers in M , and NP (M)= 0 otherwise.

If one sets λ=m= 0, one recovers the usual integrable, translation invariant, dimer model studied e.g. in [40,42,44].
Since � is bipartite we can paint white and black the sites of the two sublattices; with no loss of generality we

can assume that the coordinates of the white sites are either (even, even) or (odd, odd). The expectation w.r.t. the
measure corresponding to the partition function Z�(λ,m) will be denoted 〈·〉�;λ,m: if O(M) is a function of the
dimer configuration, we define

〈O〉�;λ,m = 1

Z�(λ,m)

∑
M

μ�;λ,m(M)O(M). (1.2)

Truncated expectations are denoted by a semicolon: e.g., 〈O;O ′〉�;λ,m := 〈OO ′〉�;λ,m − 〈O〉�;λ,m〈O ′〉�;λ,m. The
massless infinite volume measure is defined via the following weak limit (existence of the limit for local observables
is part of our results):

〈·〉λ := lim
m→0

lim
�↗Z2

〈·〉�;λ,m. (1.3)

The name “massless” refers to the fact that 〈·〉λ exhibits algebraic decay of correlations, irrespective of the value of λ,
see Theorem 2 below. If, instead of sending m→ 0 in (1.3), we keep m > 0 fixed in the thermodynamic limit, then the
truncated correlations decay exponentially to zero at large distances, with rate proportional to m itself. In this sense,
m plays the role of a mass (infrared regularization).

Given a dimer covering M and two faces of � centered at ξ and η, one defines the height difference between ξ and
η as

hξ − hη =
∑

b∈Cξ→η

(
1b(M)− 〈1b〉�;λ,m

)
σb, (1.4)

where 1b(M) denotes the dimer occupancy, i.e., the observable that is equal to 1 if b is occupied by a dimer in M ,
and 0 otherwise, while Cξ→η is a nearest-neighbor path on the dual lattice of � (i.e. a path on faces of �). The sum
runs over the edges crossed by the path and σb =+1/− 1 depending on whether the oriented path Cξ→η from ξ to η

crosses b with the white site on the right/left. See Figure 1.
We have centered the height function to have gradients with zero average; remark that, for m= 0, 〈1b〉�;λ,m = 1/4

by symmetry. A priori, the definition (1.4) depends on the choice of the path. The remarkable fact is that it is actually
independent of it, provided the path “does not wind around the torus”: more precisely, the r.h.s. of (1.4) computed
along two different paths is the same, provided the loop obtained by taking the union of the two paths does not wind
around the torus1

 [44]. We shall say that two such paths are equivalent. In particular, if ||ξ − η||∞ < L/2, then all
the shortest lattice paths are equivalent, and we uniquely define the height difference between ξ and η as the r.h.s.
of (1.4), computed along any path equivalent to one of the shortest lattice paths. In this way, given two faces with
fixed (i.e., L-independent) coordinates ξ and η, their height difference is uniquely defined, for sufficiently large L. If
we arbitrarily assign height zero to the “central” plaquette (the one centered at (1/2,1/2)), then the height profile is

1In general, if a path wraps n1 times horizontally and n2 times vertically over the torus, the r.h.s. of (1.4) picks up an additive term n1T1(M)+
n2T2(M), for suitable constants, called periods. In this sense, the height on the torus is additively multi-valued. The example in Figure 1 is special,
in that T1(M)= T2(M)= 0 for the configuration M depicted there; however, it is easy to exhibit other configurations for which these periods are
non-zero.
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Fig. 1. A dimer configuration for L= 4 and the height function computed according to (1.4). In this picture we assume that 〈1b〉 = 1/4 for every
b, which is the case on the torus for m= 0. Moreover, we conventionally set the value of the height in the central plaquette equal to 0.

Fig. 2. A dimer covering of a domain of the honeycomb lattice and the corresponding discrete height function. The correspondence is established
by drawing a segment along the main diagonal of each lozenge in the figure on the right: these segments are the same as the dimers in the figure on
the left, and they make apparent the fact that dimer configurations are in one-to-one correspondence with lozenge tilings of planar domains. The
vertices of the lozenges correspond to the centers of the hexagonal cells in the figure on the left.

uniquely determined everywhere, asymptotically as L→∞. In conclusion, each plaquette is associated with a value
of the height function, and one can view each plaquette as the basis of a block which extends out of the page by
an amount given by the height function. From this perspective, dimer covering may be viewed as a two-dimensional
representation of the surface of a three-dimensional crystal.

Let us mention that the bijection between discrete interfaces and perfect matchings of planar bipartite graphs is a
general fact: see for instance Figure 2 for the (visually more obvious) case of the honeycomb lattice.

1.2. Correlations and expected behavior

Among the physically interesting correlations are the dimer correlations 〈1b1; . . . ;1bn〉λ, the height moments 〈(hξ −
hη)

n〉λ and the so-called electric correlator〈
eiα(hξ−hη)

〉
λ
. (1.5)

For λ = 0 (non-interacting dimers) the partition function was exactly computed in [27,40,61], where it was shown
that it can be expressed in terms of the Pfaffian of the Kasteleyn matrix (see below); such a Pfaffian can be rewritten
exactly as a Gaussian Grassmann integral, so that the case λ = 0 is also called free fermion point (see e.g. [34,54]
for a definition and an illustration of the basic properties of Grassmann integrals). The dimer correlations are easily
computable from their Grassmann representation (the dimer occupancy 1b becomes a local quadratic monomial in
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the language of Grassmann variables), by using the fermionic Wick theorem, see for instance [26]: one finds that if
m= 0, the dimer correlations decay as a power law modulated by an oscillating factor; in particular, the decay of the
two-point dimer correlation is proportional to the inverse distance squared (see Proposition 3 below).

The computation of the height or electric correlations is a completely different matter: the height and electric
observables take the form of non-local expressions in the Grassmann variables (as can be guessed from (1.4)) and
their computation is much harder. Indeed, the proof (for λ = 0) of GFF-like behavior for the height function [43,
45] and the computation of the large-distance behavior of the electric correlator [22,56] are very recent. The dimer
model with λ = 0 strongly resembles the two-dimensional Ising model at the critical temperature, which admits a
similar fermionic representation in terms of Gaussian Grassmann integrals [31,57]. The dimer correlations are the
analogues of the Ising energy density correlations (i.e. the correlation between σxσx′ and σyσy′ , if (x, x′) and (y, y′)
are two lattice bonds) and the electric correlator at α = π is the analogue of the square of the spin-spin correlation
at criticality. The analogy is not just formal, but also quantitative: it was recently shown in [23] that there is an exact
identity, valid at the lattice level and at finite volume, between the energy correlations of the critical Ising model and
the dimer correlations, as well as between the (square of the) two-point spin correlation of critical Ising and the electric
correlator at α = π . These identities play the role of lattice bosonization identities, see [23], and imply in particular
that the critical exponents of the corresponding Ising and dimer observables are the same.

If λ �= 0 the model is not solvable anymore. The Grassmann representation, reviewed below, shows that the inter-
acting model can be expressed exactly in terms of a non-Gaussian Grassmann integral. That is, the interacting dimer
model is equivalent to a model of interacting lattice fermions in two dimensions [24]. The critical exponents of the
dimer observables change, as apparent from Theorem 2 below, where a non-trivial critical exponent 2κ appears. Nev-
ertheless, a heuristic mapping of the theory into a sine-Gordon model [2] predicts that the height function, at least for
small λ, still behaves in the continuum limit as a massless GFF:

hu − hv ∼
√

K

π
(ϕu − ϕv), u, v ∈R2, (1.6)

where ϕ is the massless GFF with covariance −1/(2π) log |u− v|, and K =K(λ) is an analytic function of λ such
that K(0)= 1.

As already noticed, the identification (1.6) in the scaling limit has been rigorously proved in the non-interacting
case only [42,43]. In the presence of interactions, (1.6) was until now a phenomenological assumption, not derived
from the microscopic Hamiltonian but confirmed by numerical simulations, see [2] and [55]. From simulations, K

appears to be a non-trivial function of λ, which suggest that the model should be in the same universality class of the
Ashkin–Teller model, see [2,55]. On the basis of a universality relation [39,55], the amplitude K is expected to be
computable in terms of the exponent κ of the two-point dimer correlation.

Our Theorems 1 and 3 are the first rigorous confirmations of (1.6) in the interacting case λ �= 0. Let us mention that,
in the same spirit, convergence of Ginzburg–Landau type ∇φ interface models to a GFF was obtained for instance in
[20,35,52,53].

1.3. Results and perspectives

In the last years methods based on constructive Renormalization Group (RG) have been applied to various classical
and quantum statistical mechanics models, starting from [48]. In contrast with field theoretic RG, they can be applied
in the presence of a lattice, they allow for a mathematically rigorous control of the effects of momentum cut-offs, of the
irrelevant terms, and of the convergence of perturbation theory. These methods have already been successfully applied
to the computation of the critical exponents associated with several different observables that, once re-expressed in
the language of Grassmann variables, are local or quasi-local operators: examples include the energy and crossover
observables in the eight vertex [7,48] and anisotropic Ashkin–Teller models [37], energy density correlations in non-
integrable Ising models [38], the correlations of Sz (the z-component of the spin) in the XXZ model [12] and, more
recently, the already mentioned dimer correlation of the interacting dimer model [24].

In this paper, we combine this approach with the methods used in the λ = 0 case in [45], thus applying for the
first time constructive RG methods to the study of a non-local observable such as the height. Our main result is the
following:
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Theorem 1. There exist:

(1) a positive constant λ0 and a real analytic function K(λ) on |λ|< λ0 satisfying K(0)= 1,
(2) positive constants Cn, with n≥ 2, and a bounded function R(ξ) satisfying |R(ξ)| ≤ C2, ∀ξ �= 0,

such that the following is true: if ξ �= η, then〈
(hξ − hη)

2〉
λ
= K(λ)

π2
log |ξ − η| +R(ξ − η). (1.7)

Moreover, if n > 2, the nth cumulant of (hξ − hη) is bounded uniformly in |ξ − η| as∣∣〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉λ
∣∣≤ Cn. (1.8)

In the non-interacting case λ=m= 0, the result is a refinement of previously known estimates: in fact, in that case
(1.7) is proven in [41] and in [45, Theorem 4.5] (in a much more general setting of bipartite planar graphs), see also
[47] for the height moments of order n > 2. Neither in [45] nor in [47] there is a sharp control of the error terms: for
instance, for the variance the error term in [45] is o(log |ξ − η|) instead of O(1).

Let us also mention that the logarithmic growth of the height variance (without sharp control of the constant in front
of the log) for some discrete (2+ 1)-dimensional interface models (Solid-on-Solid and discrete Gaussian model) was
obtained in [30]. Moreover, an asymptotic computation of the height variance in the six-vertex model was recently
presented in [25].

For the proof of (1.7) the crucial estimate is provided by the following:

Theorem 2. Let |λ| ≤ λ0. There exists K(λ) as in Theorem 1, and two real analytic functions K̃(λ), κ(λ) with K̃(0)=
κ(0)= 1 such that the following holds. Given two bonds b= (x,x+ êj ) and b′ = (y,y+ êj ′), then

〈1b;1b′ 〉λ = 1x�=y

[
−K(λ)

2π2
(−1)x−y Re

(i)j+j ′

((x1 − y1)+ i(x2 − y2))2

+ δj,j ′
K̃(λ)

2π2
(−1)xj−yj

1

|x− y|2κ(λ)

]
+Rj,j ′(x− y), (1.9)

with |Rj,j ′(x− y)| ≤ Cθ(1+ |x− y|)−2−θ , for some 1
2 ≤ θ < 1 and Cθ > 0.

This result appears in [24] together with a sketchy derivation, and its proof is reproduced in this paper, see Sec-
tion 6.4 below (it builds on the tools introduced in Sections 6.1–6.3).

The estimates behind the proof of Theorem 1 are strong enough to actually prove that the height field converges in
law, in the scaling limit, to the massless Gaussian Free Field X on the plane [58] with covariance〈

X(x)X(y)
〉=Gλ(x − y) := −K(λ)

2π2
log |x − y|. (1.10)

More precisely:

Theorem 3. Recall that the height is set to zero at the central face, h(0)= 0. For every C∞ compactly supported test
function φ :R2 �→R satisfying

∫
φ(x)dx = 0, and ε > 0, define

hε(φ)= ε2
∑
η

hηφ(εη), (1.11)

where the sum runs over the faces of �. Then, for every α ∈R,

lim
ε→0

〈
eiαhε(φ)

〉
λ
= exp

(
−α2

2

∫
φ(x)φ(y)Gλ(x − y)dx dy

)
. (1.12)
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Remark 1. Let us emphasise that the condition
∫

φ(x)dx = 0 is not technical: if
∫

φ(x)dx �= 0 the variance of hε(φ)

diverges logarithmically as ε→ 0. Recall also that the definition of the average 〈·〉λ includes the thermodynamic
and massless limit: in particular, the sum in (1.11) is unambiguously defined since the support of φ(ε·) is of order
1/ε� L. For the same reason, the limit GFF does not keep trace of the periodic boundary conditions.

Remark 2 (Electric correlator). Take χ a smooth, positive, compactly supported function on R
2 centered around the

origin and of average 1. Then, if χx(·) := χ(· − x) for x ∈R2, from Theorem 3 we obtain

lim
ε→0

〈
eiα(hε(χx)−hε(χy))

〉
λ
∼ const× |x − y|−Kα2/(2π2) (1.13)

asymptotically as |x − y| →∞. This suggests that, at least for α small,〈
eiα(hξ−hη)

〉
λ
∼ const× |ξ − η|−Kα2/(2π2), (1.14)

asymptotically at large distances. Indeed, (1.13) can be seen as a coarse-grained version of (1.14) and actually (1.14)
would follow from Theorem 1 if we could prove that Cn = O(n!). We hope to come back to this issue in a future
publication, possibly by combining the methods of constructive RG with the (strong) discrete holomorphicity used
in [22], where (1.14) is proven for λ= 0 (see also [56]).

Remark 3 (Generalizations and extensions). The above theorems can be straightforwardly extended to the case
where the nearest neighbor interaction W� in (1.1) is replaced by a general finite range interaction that respects the
symmetries of the lattice. Another possible generalization (in the spirit of [45]), that we did not work out in detail
but we believe would not entail new conceptual difficulties, is to work on different planar bipartite lattices, like the
honeycomb lattice.

The proof of Theorem 1 also implies analyticity of the free energy per unit volume for λ small, uniformly in the
volume. Since the free energy can be seen as the Legendre transform of the large deviation functional of W�, one can
deduce a central limit theorem for the fluctuations of W�/

√|�| around its mean, and similarly for space averages of
other local observables.

In principle, the proof of Theorem 1 provides estimates on the convergence radius λ0, as well as on the constants
Cn. However, since we do not expect them to be optimal, we do not spell them explicitly here (e.g., our estimates on
Cn grow proportionally to (n!)β with n, for some β > 1). The proof is based on precise asymptotics on multipoint
dimer correlations, which requires the identification of remarkable cancellations in the (renormalized, convergent)
expansion for the correlations, which follow from hidden Ward Identities [12] (i.e., asymptotic identities among
correlation functions). The name “hidden” refers to the fact that these identities are not exact in the model at hand,
while they are so in a continuum reference model (Section 6.3.2), which displays the same large-distance behavior as
the interacting dimer model but on the other hand has more symmetries.

Note that in the above theorem no continuum limit is performed. Therefore, the n ≥ 3 cumulants are not exactly
vanishing, but are finite, while the 2-point function is log-divergent as |ξ − η| →∞.

Let us also remark that our result is not just a corollary of the estimates on the dimer correlations, which can be
inferred from (the methods of) [24]. In fact, a naive substitution of these estimates into the expression of the nth
cumulant of (hξ − hη) obtained by plugging (1.4) into the l.h.s.s of (1.7)–(1.8) leads to very poor bounds, growing
faster than (log |ξ − η|)n/2 at large distances. A key fact that we need to implement is the path-independence of the
r.h.s. of (1.4), which is a (weak) instance of the underlying discrete holomorphicity of the model, and relies crucially on
the presence of the oscillatory factor σb: these oscillatory factors produce remarkable cancellations in the perturbation
series, which we keep track of within our constructive multi-scale computation of the height correlations.

Finally let us mention that, for λ= 0, height correlations in finite domains exhibit conformal covariance properties
in the scaling limit where the lattice spacing tends to zero; this was proven for instance by Kenyon [42,43] for some
suitably chosen boundary conditions. It would be extremely interesting to prove that conformal invariance survives
for λ �= 0, where integrability is lost. While we believe that constructive RG is again the right approach to attack
this problem, new difficulties will need to be overcome with respect to the present work, notably due to the loss of
translation invariance arising from non-periodic boundary conditions.
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1.4. Organization of the paper

In Section 2 we show how to represent the partition function and the multi-dimer correlations for λ= 0 (resp. λ �= 0)
as a Gaussian (resp. non-Gaussian) Grassmann integral. In Section 3, as a warm-up, we prove Theorem 1 for λ= 0. In
Section 4 we prove (1.7), conditionally on Theorem 2. In Sections 5 and 6 we discuss respectively formal perturbation
expansion in λ and the “renormalized expansion.” The latter is convergent for λ small and allows to get the large-
distance behavior of multi-dimer correlations of the interacting model, thereby completing the proof of Theorem 2.
Finally, in Section 7 we use the results of Section 6 to prove Theorems 1 and 3 for λ �= 0.

2. Grassmann representation of partition function and correlations

In this section we explain how to derive a representation of the interacting partition function Z�(λ,m) and dimer
correlation functions in terms of non-Gaussian Grassmann integrals. This representation is exact and valid as an
algebraic identity for every finite lattice �. For the reader who is not used to Grassmann variables, we refer for instance
to [34, Section 4] for some of their basic properties. The key points to keep in mind are the following: Grassmann
variables anti-commute, in particular ψ2

x = 0. Gaussian Grassmann integrals are just an alternative way of writing
determinants (or Pfaffians); non-Gaussian Grassmann integrals are just an alternative, compact, way of writing certain
series of determinants (or of Pfaffians); the rewriting of Z�(λ,m) in terms of a non-Gaussian Grassmann integral is
very convenient for its subsequent computation via the methods of constructive field theory, which makes the analogy
with the rigorous multi-scale analysis of perturbed Gaussian measures as apparent as possible.

2.1. The non-interacting model

2.1.1. Partition function and dimer correlations
Kasteleyn’s theory [40] gives an explicit formula for the dimer partition function with bond-dependent activities
t= {tb}b⊂�,

Z�(t)=
∑

M∈M�

∏
b∈M

tb. (2.1)

Introduce the Kasteleyn matrix2 Kt, which is a |�| × |�| antisymmetric matrix indexed by vertices in �, such that its
elements (Kt)x,y are non-zero if and only if x and y are nearest neighbors; in this case (Kt)x,x+ê1 =−(Kt)x+ê1,x =
t(x,x+ê1), and (Kt)x,x+ê2 = −(Kt)x+ê2,x = it(x,x+ê2). Also, for θ, τ ∈ {0,1} let K

(θτ)
t be the antisymmetric matrix

obtained from Kt by multiplying the matrix elements (Kt)x,x+ê1 =−(Kt)x+ê1,x by (−1)θ if x belongs to the rightmost

column of � and (Kt)x,x+ê2 = −(Kt)x+ê2,x by (−1)τ if x is in the top row of �. Of course, K
(00)
t =Kt. Then one

has (cf. [44] and [45, Section 3.1.2])

Z�(t) = 1

2

(−PfK(00)
t + PfK(01)

t + PfK(10)
t + PfK(11)

t

)
:= 1

2

∑
θ,τ=0,1

Cθ,τ PfK(θτ)
t . (2.2)

Here, Pf(A) indicates the Pfaffian of A. [We recall that the Pfaffian of a 2n× 2n antisymmetric matrix A is defined as

PfA := 1

2nn!
∑
π

(−1)πAπ(1),π(2) · · ·Aπ(2n−1),π(2n); (2.3)

2There is a certain amount of freedom in choosing the Kasteleyn matrix. For instance, in [40] matrix elements are all chosen to be real. Two
Kasteleyn matrices are gauge equivalent if there exists a function c :� �→ C such that K ′x,y =Kx,ycxcy. See [44, Section 3.3] for a discussion of
this point.
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π is a permutation of (1, . . . ,2n), (−1)π is its signature. One of the properties of the Pfaffian is that (PfA)2 = detA.]
Since the ordering of the labels (1, . . . ,2n) matters in the definition of Pfaffian (changing the ordering, the sign of the
Pfaffian can change), in (2.2) we use the convention that the sites x ∈� that label the elements of Kt are ordered from
left to right on every row, starting from the bottom and going upwards to the top row. Using (2.2) we immediately
obtain:∑

M∈M�

[∏
b∈M

t
(m)
b

]
1b1 · · ·1bk

= 1

2

∑
θ,τ=0,1

Cθ,τ tb1∂tb1
· · · tbk

∂tbk
PfK(θτ)

t

∣∣∣∣
t=t(m)

, (2.4)

where t= t(m) means tb = t
(m)
b for every b. The r.h.s. of (2.4) is itself a sum over Pfaffians, and can be conveniently

represented in terms of Gaussian Grassmann integrals. In fact, given any 2n× 2n antisymmetric matrix A,

PfA=
∫ [ 2n∏

i=1

dψi

]
e−1/2(ψ,Aψ), (2.5)

where the Grassmann integration is normalized in such a way that∫ [ 2n∏
i=1

dψi

]
ψ2n · · ·ψ1 = 1.

For later purposes, it is also useful to recall that the averages of Grassmann monomials with respect to the Grassmann
Gaussian integration can be computed in terms of the fermionic Wick rule:

〈ψk1 · · ·ψkm〉A :=
1

PfA

∫ [ 2n∏
i=1

dψi

]
ψk1 · · ·ψkme−1/2(ψ,Aψ) = PfG, (2.6)

where, if m is even, G is the m×m matrix with entries

Gij = 〈ψki
ψkj
〉
A
= [A−1]

ki ,kj
(2.7)

(if m is odd, the r.h.s. of (2.6) should be interpreted as 0).
Specializing these formulas to the case A=K

(θτ)
t we find:

PfK(θτ)
t =

∫
(θτ)

[∏
x∈�

dψx

]
eSt(ψ), (2.8)

St(ψ)=−1

2

∑
x,y∈�

ψx
(
K

(θτ)
t

)
x,yψy (2.9)

=−
∑
x∈�
[t(x,x+ê1)E(x,x+ê1) + t(x,x+ê2)E(x,x+ê2)], (2.10)

where E(x,x+ê1) = ψxψx+ê1 while E(x,x+ê2) = iψxψx+ê2 and the index (θτ ) under the integral means that we have
to identify ψ(L/2+1,y) ≡ ψ(−L/2+1,y)(−1)θ and similarly ψ(x,L/2+1) ≡ ψ(x,−L/2+1)(−1)τ . The choice θ = 0 (resp.
θ = 1) means periodic (resp. antiperiodic) boundary conditions for the Grassmann field in the horizontal direction,
and similarly τ determines periodic/antiperiodic boundary conditions in the vertical direction.

Inserting (2.10) into (2.4) we find that, if the bonds b1, . . . , bk are all different [here we say that two bonds are
different if they are not identical; their geometrical supports may overlap], then∑

M∈M�

[∏
b∈M

t
(m)
b

]
1b1 · · ·1bk

=
∑
θτ

Cθ,τ

2

∫
(θτ)

∏
x∈�

dψx(−1)kE
(m)
b1
· · ·E(m)

bk
eS(ψ), (2.11)

where S(ψ)= St(m) (ψ), see (2.10), E
(m)
b = t

(m)
b Eb and the r.h.s. can be computed via (2.6).
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2.1.2. Gaussian Grassmann measures and the free propagator

Definition 1. Given an anti-symmetric matrix M we define the Gaussian Grassmann measure with “propagator” M ,
denoted PM(dψ), which maps a polynomial f of the ψ variables into a complex number denoted∫

PM(dψ)f (ψ) or 〈f 〉M. (2.12)

To fix the map, we require:

• linearity: 〈af1 + bf2〉M = a〈f1〉M + b〈f1〉M if a, b ∈C.
• 〈1〉M = 1.
• 〈ψk1 · · ·ψkm〉M = Pf[M(ki, kj )i,j≤m].

if M is invertible, then we can write more explicitly (cf. (2.6))∫
PM(dψ)f (ψ)= 1

Pf(M−1)

∫ [∏
x

dψx

]
e−1/2(ψ,M−1ψ)f (ψ). (2.13)

We emphasize that PM(dψ) is not a measure in the usual probabilistic sense. We list two useful properties of Grass-
mann Gaussian measures, that are analogous to properties of usual Gaussian measures:

Proposition 1. The following identities hold:

(1) Addition formula: If g1, g2 are two propagators and g := g1 + g2, then Pg(dψ) = Pg1(dψ1)Pg2(dψ2), in the
sense that for every polynomial f∫

Pg(dψ)f (ψ)=
∫

Pg1(dψ1)

∫
Pg2(dψ2)f (ψ1 +ψ2). (2.14)

(2) Change of measure: Given anti-symmetric matrices M and V such that det(1− μMV ) > 0 for every μ ∈ [0,1],
we have∫

PM(dψ)e1/2(ψ,V ψ)f (ψ)=√det(1−MV )

∫
PM ′(dψ)f (ψ) (2.15)

with M ′ = (1−MV )−1M .

For (2.14) see [34, Eq. (4.21)]; for (2.15) see the analogous [34, Eq. (4.29)] and use the property Pf(A)2 = det(A).
With this language, and recalling formulas (2.8)–(2.11), we see that dimer observables can be expressed as averages

of suitable fermionic polynomials under the linear combination

∑
θ,τ

Cθ,τ Pf(K(θτ)

t(m) )∑
θ,τ Cθ,τ Pf(K(θτ)

t(m) )
P

(θτ)
� (dψ)

of Grassmann Gaussian measures

P
(θτ)
� (dψ) := P[K(θτ)

t(m)
]−1 .

It is understood that boundary conditions on ψ are (θ, τ ), as above. The propagator [K(θτ)

t(m) ]−1 can be computed
exactly: we have (cf. Appendix A)

Lemma 1.

g
(θτ)
� (x,y) :=

∫
(θτ)

P
(θτ)
� (dψ)ψxψy =

[(
K

(θτ)

t(m)

)−1]
x,y =

1

L2

∑
k∈D(θτ )

�

e−ik(x−y) N(k,m,y1)

2D(k,m)
, (2.16)
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where

N(k,m,y1)= i sin k1 + sink2 +m(−1)y1 cosk1,

D(k,m)=m2 + (1−m2)(sin k1)
2 + (sin k2)

2

and

D(θτ)
� = {(2π/L)

(
n+ (θ, τ )/2

)
,n ∈�

}
. (2.17)

Note that g
(θτ)
� (x,y) is zero whenever x and y have the same parity (this can be seen by observing that the ratio in

(2.16) changes sign if k is changed to k+ (π,π), while e−ik(x−y) remains unchanged if x has the same parity as y).
The propagator is not translation invariant, but is invariant under translations in 2Z × Z (because of the horizontal
periodic modulation of the bond weights). Of course, when m= 0 full translation invariance is recovered.

In the following we will need to evaluate the propagator for fixed x,y ∈ Z2, as �↗ Z
2. In this limit, the propagator

takes a particularly simple form, independent of (θτ ):

g(x,y)= lim
�↗Z2

g
(θτ)
� (x,y)=

∫
T2

dk
(2π)2

e−ik(x−y) N(k,m,y1)

2D(k,m)
, (2.18)

where the torus T2 =R
2/2πZ2 is also called the Brillouin zone. In analogy with its finite volume counterpart, g(x,y)

is zero whenever x and y have the same parity. We will see in Appendix A.2 that the finite-volume corrections to g
(θτ)
�

are exponentially small in L, if m > 0.

Remark 4. At this point the role of the regularization parameter m > 0 should be apparent. If m= 0 then the integrand
in g(x,y) has poles whenever sin k1 = sin k2 = 0. As we will see in next section, the propagator then decays slowly at
large distances (like 1/|x− y|), signalling that the system is critical (or massless). When instead m > 0 the integrand
is analytic on the Brillouin zone and therefore g(x,y) (that is its Fourier transform) decays exponentially fast and the
system is off-critical (or massive). The exponential decay however kicks in only when |x− y|� 1/m, and for m→ 0
the critical decay is recovered. In the language of [45], one says that the non-interacting (λ = 0) system is in the
“liquid phase” when m= 0 and in the “gaseous phase” when m > 0.

2.1.3. Majorana fermions
In this section we discuss the large-distance behavior of the non-interacting propagator g(x,y) introduced above.
Similar estimates (with different notations) are obtained in [45]. The fall-off properties of g play a key role in the
computation of the dimer correlations, as well as of the height fluctuations, to be discussed in the next sections. As
we will see, it is convenient to split ψx as the sum of oscillating functions times four new Grassmann variables ψx,γ ,
γ = 1, . . . ,4, each of which has a propagator with well-defined limiting behavior for large distances,

〈ψx,γ ψy,γ 〉 ∼ 1

4π

1

(x1 − y1)+ i(−1)γ+1(x2 − y2)
, (2.19)

when |x − y| is large (but |x − y| � 1/m). For m = 0, the four fields ψγ are independent (i.e. their propagator is
diagonal in the γ index) and are the lattice analogues of “real,” massless, Majorana fermions, see [31, Section 2.3.1].
These lattice Majorana fields can be also combined in pairs, to form two “complex,” massless, Dirac fields, ψ±ω ,
ω=±1, see next section. Besides the terminology, which is borrowed from high energy physics, the transformations
from the original Grassmann field, to the Majorana, and then the Dirac fields, are just restatements of a couple of
simple, and convenient, algebraic manipulations of the propagator, which are discussed in the following.

Consider (2.18). The large distance asymptotics of g(x,y) is dominated by the contributions from the momenta
close to the singularity points where the denominator is small (for m small), which are p1 = (0,0), p2 = (π,0),
p3 = (π,π), p4 = (0,π). Therefore, g(x,y) can be naturally written as the superposition of four terms:

g(x,y)=
4∑

γ=1

∫
T2

dk
(2π)2

χγ (k)e−ik(x−y) N(k,m,y1)

2D(k,m)
, (2.20)
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where χγ (k) are suitable smooth (say, C∞) functions over the torus, centered at pγ , and defining a partition of the
identity:

∑4
γ=1 χγ (k)= 1. We assume that the functions χγ (k) satisfy the following: first of all,

χγ (k)= χ̄ (k− pγ ), (2.21)

for a nonnegative compactly supported smooth function χ̄ (k), centered at the origin and even in k. We also require
that the support of χ̄ (·) does not include p2,p3,p4. For definiteness, one should think of χ̄ (·) as a suitably smoothed
version of 1‖·‖∞≤π/2. In Appendix C we make an explicit choice for χ̄ (·), satisfying further smoothness properties.

The decomposition (2.20) with χγ (k) as in (2.21) induces the following decomposition on the Grassmann fields:

ψx = eip1xψx,1 − ieip2xψx,2 + ieip3xψx,3 + eip4xψx,4, (2.22)

with ψx,γ Grassmann variables with propagator

〈ψx,γ ψy,γ ′ 〉 =
∫

P(dψ)ψx,γ ψy,γ ′ =
(

G(x− y) 0
0 G(x− y)

)
γ,γ ′

, (2.23)

where G(x)= {G(x)ωω′ }, ω,ω′ = ±1, is the 2× 2 matrix

G(x)=
∫
T2

dk
(2π)2

χ̄ (k)
e−ikx

2D(k,m)

(
i sin k1 + sin k2 im cos k1
−im cosk1 i sin k1 − sin k2

)
. (2.24)

[The reader should simply check that with this definition the field ψx has the correct propagator g(x,y) as in (2.20).
Keep in mind that for x integer one has exp(iπx)= exp(−iπx).] Note the symmetry properties

G++(x)=G∗−−(x), G+−(x)=G∗−+(x)=−G−+(x), (2.25)

Gωω′(x)=−ωω′Gωω′(−x). (2.26)

At m= 0, the large-distance behavior of G(x) is given by (cf. Appendix A.1):

Proposition 2. If x �= 0 and m= 0,

G(x)= g(x)+R(x), (2.27)

where both g and R are diagonal matrices. The diagonal elements of g are:

gωω(x)=
∫

dk
(2π)2

e−ikx

2(−ik1 +ωk2)
= 1

4π

1

x1 + iωx2
, ω=±. (2.28)

The matrix R is a remainder such that∣∣Rωω(x)
∣∣≤ C

|x|2 , (2.29)

for a suitable C > 0.

Remark 5. Using (2.27), we see that 〈ψx,γ ψy,γ 〉 behaves asymptotically as the propagator of a real massless Majo-
rana field, in the sense of [31, Section 2.3.1]. Similarly, if m �= 0, G behaves asymptotically as a massive Majorana
field. Therefore, the fields ψx,γ are referred to as lattice Majorana fields.

From the above discussion we see that the propagator G decays as the inverse of the distance, without any oscillat-
ing factor. The discrete derivatives of G decay as the inverse distance squared, while the same is not true for g, due to
oscillatory factors in (2.22).

The decomposition of the field ψ in terms of four Majorana fields ψγ can be done analogously in finite volume
and for the boundary conditions (θτ ). In this case, one should simply interpret, e.g. in (2.24), integrals as sums for k ∈
D(θτ)

� , the estimates in Proposition 2 still hold and the Grassmann integration w.r.t. ψγ will be denoted P
(θτ)
� (dψγ ).
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2.1.4. Dirac fermions
Since the propagator of ψγ depends only on the parity of γ , it can be convenient to group the two pairs of so-called
“real fields” (ψ1,ψ3) and (ψ2,ψ4) into “complex fields” ψ±ω :

ψ±x,1 :=
1√
2
(ψx,1 ∓ iψx,3); ψ±x,−1 := ±

i√
2
(ψx,2 ∓ iψx,4), (2.30)

which is inverted (recall (2.22)) as

ψx =
√

2 ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ψ−x,1 +ψ−x,−1 if (x1, x2)= (even, even),

ψ+x,1 −ψ+x,−1 if (x1, x2)= (even,odd),

ψ+x,1 +ψ+x,−1 if (x1, x2)= (odd, even),

ψ−x,1 −ψ−x,−1 if (x1, x2)= (odd,odd).

(2.31)

Here ψ+x,ω formally plays the role of complex conjugate of ψ−x,ω . Using its definition we see that 〈ψ+x,ωψ+y,ω′ 〉 =
〈ψ−x,ωψ−y,ω′ 〉 = 0, while( 〈ψ−x,1ψ

+
y,1〉 〈ψ−x,1ψ

+
y,−1〉

〈ψ−x,−1ψ
+
y,1〉 〈ψ−x,−1ψ

+
y,−1〉

)
=
(

G++(x− y) iG+−(x− y)

−iG−+(x− y) G−−(x− y)

)
. (2.32)

The “complex” nature of the field ψ±ω justifies the name “lattice Dirac field,” which is used for it. In the following, it
will be sometimes convenient to work with Majorana variables and sometimes with Dirac variables.

2.2. Dimer-dimer correlations

Applying formula (2.11) together with the Wick rule (2.6), one can easily express the dimer-dimer correlations of the
non-interacting model in terms of the free propagator g

(θτ)
� . In the infinite volume L→∞ and massless limit m→ 0,

using the asymptotics in Proposition 2, one recovers the well-known result:

Proposition 3. Let λ= 0. Given two bonds b= (x,x+ êj ) and b′ = (y,y+ êj ′), we have

〈1b;1b′ 〉λ=0 = 1x�=y

[
− 1

2π2
(−1)x−y Re

(i)j+j ′

((x1 − y1)+ i(x2 − y2))2

+ δj,j ′
1

2π2
(−1)xj−yj

1

|x− y|2
]
+Rj,j ′(x− y), (2.33)

with |Rj,j ′(x− y)| ≤ C(1+ |x− y|)−3.

(This is re-derived, as a by-product, also in Section 3.2 below.)

2.2.1. Multi-scale decomposition of the free propagator
An important tool in constructive RG is a multi-scale decomposition of the free propagator G as a sum of terms G(h),
h≤ 0, each one collecting contributions at a given distance � 2h (in Fourier space) from the singularities p1, . . . ,p4.

We start from G(x) defined in (2.24) or, better, defined as the finite volume counterpart of (2.24) with boundary
conditions (θ, τ ), in which case the integrals over k are sums3 in D(11)

� . Let h∗ = �log2 m� and recall that L−1 �
m� 1. Recall that χ̄(·) is the cut-off function appearing in (2.24), that should be thought of as a smoothed version
of 1‖k‖∞≤π/2, see the explicit definition (C.2) in Appendix C. Let χ(·) be another positive, C∞ cut-off function, that

3From now on, unless explicitly stated, we shall write integrals over k just as shorthands for the corresponding finite volume sums. All the equations
and estimates written formally in the thermodynamic limit are valid at finite volume as well, uniformly in �.
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we require to be rotationally invariant as a function on the Brillouin zone [−π,π]2, see explicit definition (C.3). One
should think of χ(·) as a smoothed version of 1‖k‖≤π/2, with ‖ · ‖ the Euclidean norm.

We decompose G(x) as

G(x)=
0∑

h=h∗+1

G(h)(x)+G(≤h∗)(x), (2.34)

where G(h) (resp. G(≤h∗)) is as in (2.24), except that χ̄ (k) is replaced by

fh(k) := χh(k)− χh−1(k) (2.35)

(resp. by χh∗(k)); here χ0(k) := χ̄(k), while

χh(k) := χ
(
2−hk

)
, ∀h < 0. (2.36)

Observe that fh (resp. χh∗ ) has compact support contained in

Sh :=
{
k ∈ T2 : c2h ≤ ‖k‖2 = k2

1 + k2
2 ≤ C2h

}
, (2.37)

(resp. in
⋃

h≤h∗ Sh) for suitable constants c,C > 0, and that
∑0

h=h∗+1 fh(k)+χh∗(k)= χ̄(k). One easily checks that,
if ε in (C.3) is small enough, then

fh1(k)fh2(k)= 0, if |h1 − h2|> 1. (2.38)

At m = 0, the decomposition (2.29) induces a similar decomposition for the single-scale propagator: G(h)(x) =
g(h)(x)+R(h)(x). Finally we have:

Lemma 2. For h∗ < h≤ 0 and n1, n2 ≥ 0, the matrix G(h)(x) satisfies, for a suitable Cn1,n2 > 0,∥∥∂n1
1 ∂

n2
2 G(h)(x)

∥∥≤ Cn1,n2 2h(1+n1+n2)e−c
√

2h|x| (2.39)

with ∂j the right discrete derivative in the j direction. The off-diagonal elements of G(h) satisfy a better estimate:∣∣∂n1
1 ∂

n2
2 G

(h)
+−(x)

∣∣≤ Cn1,n2m2h(n1+n2)e−c
√

2h|x| ≤C′2h∗+h(n1+n2)e−c
√

2h|x|. (2.40)

The propagator G(≤h∗) satisfies the same estimates, with h replaced by h∗. If m= 0, the propagator g(h) satisfies the
same estimates as G(h) in (2.39), while R(h) satisfies an improved estimate:∥∥∂n1

1 ∂
n2
2 R(h)(x)

∥∥≤ Cn1,n2 2h(2+n1+n2)e−c
√

2h|x|. (2.41)

See Appendix C for a sketch of proof.

2.3. The interacting model

2.3.1. Partition function and dimer correlations
Our goal here is to rewrite the partition function (1.1) and the correlation functions of the interacting model as a
Grassmann integral. For the partition function we have:

Proposition 4. Let α = eλ − 1. We have

Z�(λ,m)= 1

2

∑
θ,τ

Cθ,τ

∫
(θτ)

[∏
x∈�

dψx

]
eS(ψ)+V�(ψ), (2.42)
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with

V�(ψ)=
∑
γ⊂�

ξ(γ ), (2.43)

where, if b1, . . . , bk are adjacent parallel bonds (with k ≥ 2) and γ = {b1, . . . , bk}, then

ξ(γ )= ξ
({b1, . . . , bk}

)= (−1)kαk−1E
(m)
b1
· · ·E(m)

bk
(2.44)

and ξ(γ )= 0 otherwise. Recall that E
(m)
b was defined just after (2.11).

Proof of Proposition 4. We re-write

Z�(λ,m) =
∑

M∈M�

[∏
b∈M

t
(m)
b

] ∏
P⊂�

(
1+ αNP (M)

)
=
∑

M∈M�

[∏
b∈M

t
(m)
b

] ∏
〈b,b′〉⊂�

(
1+ α1b(M)1b′(M)

)
, (2.45)

where the product
∏
〈b,b′〉⊂� runs over pairs of neighboring parallel bonds b, b′ (i.e., such that the union of the four

vertices of b and b′ are the four vertices of a plaquette in �). In the second identity we used the fact that, if P is the
plaquette with sites x, x+ ê1, x+ ê2, x+ ê1 + ê2, then

NP = 1(x,x+ê1)1(x+ê2,x+ê1+ê2) + 1(x,x+ê2)1(x+ê1,x+ê1+ê2)

and

1(x,x+ê1)1(x+ê2,x+ê1+ê2)1(x,x+ê2)1(x+ê1,x+ê1+ê2) = 0

as an observable over dimer configurations; therefore,

1+ αNP = (1+ α1(x,x+ê1)1(x+ê2,x+ê1+ê2))(1+ α1(x,x+ê2)1(x+ê1,x+ê1+ê2)). (2.46)

We now rewrite the last product in (2.45) as

∏
〈b,b′〉⊂�

(1+ α1b1b′)=
∑
n≥0

∗∑
{γ1,...,γn}⊂�

ζ(γ1) · · · ζ(γn), (2.47)

where γi are “contours,” each consisting of a sequence of 2 or more adjacent parallel bonds
∑∗
{γ1,...,γn} runs over

unordered compatible n-ples of contours (here we say that {γ1, . . . , γn} is compatible if γi∩γj =∅, ∀i �= j , where γi∩
γj =∅ means that the bonds in γi are all different from those in γj ; note that the geometric supports of two compatible
contours may overlap). Moreover, if b1, . . . , bk are adjacent parallel bonds (with k ≥ 2) and γ = {b1, . . . , bk}, then

ζ(γ )= ζ
({b1, . . . , bk}

)= αk−11b1 · · ·1bk
. (2.48)

Finally, the term with n= 0 in the r.h.s. of (2.47) should be interpreted as 1. By inserting (2.47) into (2.45) we find:

Z�(λ,m)=
∑
n≥0

∗∑
{γ1,...,γn}⊂�

∑
M∈M�

[∏
b∈M

t
(m)
b

]
ζ(γ1) · · · ζ(γn). (2.49)

Note that each term ζ(γ1) · · · ζ(γn) in the r.h.s. of (2.49) is proportional to a product of operators 1b over different
bonds: actually, having a representation involving only products of 1b over different bonds was the very purpose
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of grouping the bonds into contours and of rewriting the product in the l.h.s. of (2.47) as a sum over compatible
collections of contours. Therefore, we can evaluate the sum

∑
M∈M�

[∏b∈M t
(m)
b ]ζ(γ1) · · · ζ(γn) by using (2.11):

Z�(λ,m)= 1

2

∑
θ,τ

Cθ,τ

∑
n≥0

∗∑
{γ1,...,γn}⊂�

∫
(θτ)

[∏
x∈�

dψx

]
ξ(γ1) · · · ξ(γn)e

S(ψ). (2.50)

Finally note that, by the Grassmann anti-commutation rules,

∑
n≥0

∗∑
{γ1,...,γn}⊂�

ξ(γ1) · · · ξ(γn)= e
∑

γ⊂� ξ(γ )
, (2.51)

(in the expansion of the exponential, terms containing incompatible contours vanish since E2
b = 0) so that (2.50)

simplifies into (2.42). �

Remark 6. It is worth noting that V� can be written as

V�(ψ)= α
∑
x∈�

(
2+ 2m(−1)x1 +m2)ψxψx+ê1ψx+ê2ψx+ê1+ê2 +W≥6(ψ), (2.52)

where W≥6(ψ) is a sum over Grassmann monomials of order larger or equal than 6, whose kernels decay exponen-
tially in space if λ < log 2 (with rate κ =− log |α|> 0).

Besides the partition function Z�(λ,m), we are interested in computing truncated multipoint dimer correlations
(cumulants) of the form

〈1b1; . . . ;1bk
〉�;λ,m =

∂k

∂Ab1 · · ·∂Abk

logZ�(λ,m,A)

∣∣∣∣
A=0

, (2.53)

with

Z�(λ,m,A) :=
∑

M∈M�

[∏
b∈M

t
(m)
b

]
eλW�(M)+∑b⊂� Ab1b (2.54)

and b1, . . . , bk a k-ple of bonds. Moreover, A = {Ab}b⊂�. The modified partition function Z�(λ,m,A) can be ex-
pressed in the form of a Grassmann integral, by proceeding in the same way that we followed for Z�(λ,m). The result
is:

Proposition 5.

Z�(λ,m,A)= 1

2

∑
θ,τ=0,1

Cθτ

∫
(θτ)

[∏
x∈�

dψx

]
eS(ψ)+V�(ψ)+B�(ψ,J), (2.55)

where J= J(A)= {Jb(Ab)}b⊂� with Jb = eAb − 1, and

B�(ψ,J)=
∑
k≥1

∑
γ={b1,...,bk}⊂�

∑
∅ �=R⊂γ

ξ̃ (γ ;R), (2.56)

ξ̃ (γ ;R)= (−1)kαk−1
∏
b∈γ

E
(m)
b

∏
b∈R

Jb. (2.57)

Here, as above, b1, . . . , bk are adjacent parallel bonds.
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The proof is analogous to that of Proposition 4, details are left to the reader. Note that once the truncated correlations
are known, the standard correlations can be reconstructed via the inversion formula:

〈1b1 · · ·1bk
〉�;λ,m

=
∑

{i(1),...,i(s)}∈P[1,...,k]
〈1b

i
(1)
1

; . . . ;1b
i
(1)
k1

〉�;λ,m · · · 〈1b
i
(s)
1

; . . . ;1b
i
(s)
ks

〉�;λ,m, (2.58)

where i(j) = {i(j)

1 , . . . , i
(j)
kj
} ⊂ {1, . . . , k}, with kj ≥ 1, is a non-empty set of indices, and P[1, . . . , k] is the set of

partitions of {1, . . . , k}. In (2.58), the single-bond average 〈1b〉�;�′ , b⊂�, is given by

〈1b〉�;λ,m =
∂

∂Ab

logZ�(λ,m,A)

∣∣∣∣
A=0

. (2.59)

2.3.2. Rewriting the partition function in terms of Majorana or Dirac fields
The partition function (and, similarly, the generating function Z�(λ,m,A) for dimer correlations) can be rewritten in
terms of the Majorana or Dirac fields: going back to (2.42) and (2.55) we get for instance

Z�(λ,m)= 1

2

∑
θτ

Cθτ PfK(θτ)
�

∫
(θτ)

∏
γ=1,...,4

P
(θτ)
� (dψγ ) exp

{
V�(ψ)

}
, (2.60)

with ψ = {ψx}x∈� as in (2.22). We used the addition formula for normalized Grassmann Gaussian integrations, cf.
(2.14).

2.4. Reduction to a single Pfaffian

We have seen in (2.18) that the propagator g
(θτ)
� loses dependence on (θ, τ ) in the limit �↗ Z

2. This holds also for

PfK(θτ)
� , the normalization of the measure P

(θτ)
� . More precisely, while each Pfaffian grows exponentially in L2, for

m > 0 one has (cf. Appendix A.2)

lim
�↗Z2

PfK(11)
�

PfK(θτ)
�

= 1 (2.61)

and the limit is reached exponentially fast in L. This is a consequence of the fact that at very large distances the prop-
agator decays exponentially (actually this is the main technical reason why we introduced the infrared regularization
m > 0).

The observation (2.61) implies important simplifications in the thermodynamic limit. Suppose that we want to
compute the average of a dimer observable, say 1b1 · · ·1bk

, with b1, . . . , bk distinct bonds, for the non-interacting
system (λ= 0). From (2.11) we get

〈1b1 · · ·1bk
〉�;0,m =

∑
θτ Cθ,τ [PfK(θτ)

� ] ∫
(θτ)

P
(θτ)
� (dψ)(−1)kE

(m)
b1
· · ·E(m)

bk∑
θτ Cθ,τ [PfK(θτ)

� ]
.

We have seen above that the free propagator, and therefore the integrals in the numerator, become independent of (θτ )

when �↗ Z2. Together with (2.61), this implies that

lim
�↗Z2

〈1b1 · · ·1bk
〉�;0,m = lim

�↗Z2

∫
(11)

P
(11)
� (dψ)(−1)kE

(m)
b1
· · ·E(m)

bk
(2.62)

=
∫

P(dψ)(−1)kE
(m)
b1
· · ·E(m)

bk
, (2.63)
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with P(dψ) the Gaussian Grassmann measure with propagator g(x,y). That is, it is sufficient to consider (11) bound-
ary conditions in the Grassmann integrations (these are more convenient than (00) conditions since even for m = 0
the denominator in (2.16) is never singular for k ∈D(11)

� ).
An analogous fact holds also for the interacting model (λ �= 0), as a consequence of the fact that the interact-

ing propagator also decays exponentially as long as m > 0 (the model remains off-critical even in the presence of
interactions, see Remark 13 below). More precisely, for m > 0 the following holds: given n≥ 1 distinct x1, . . . ,xn,

lim
�↗Z2

∫
(θτ)

P
(θτ)
� eV�(ψ)ψx1 · · ·ψxn∫

(11)
P

(11)
� eV�(ψ)ψx1 · · ·ψxn

= 1 (2.64)

and actually the limit is reached exponentially fast in L. The proof is a corollary of the multiscale construction
described in Section 5 below, and goes along the same lines as [48, Appendix G].

As a consequence of (2.64) and (2.61), using (2.55), we see that

lim
�↗Z2

∂n

∂Ab1 · · ·∂Abn

logZ�(λ,m,A)

∣∣∣∣
A=0

(2.65)

= lim
�↗Z2

∂n

∂Ab1 · · ·∂Abn

logZ(11)
� (λ,m,A)

∣∣∣∣
A=0

(2.66)

with

Z(11)
� (λ,m,A)=

∫
(11)

P
(11)
� (dψ)eV�(ψ)+B�(ψ,J). (2.67)

3. Height fluctuations in the non-interacting model: Proof of Theorem 1 for λ = 0

As a warm-up, and in order to introduce some basic ideas that will be important later, here we prove Theorem 1
in the special but important non-interacting case, λ = α = 0. The strategy we use is convenient for the subsequent
generalization to the interacting case.

3.1. Grassmann representation for height function fluctuations

Let us start with some considerations that hold both for λ= 0 and λ �= 0. We are interested in computing the height
fluctuations, i.e., the n-point truncated self-correlations, n≥ 2:

lim
m→0

lim
�↗Z2

〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉�;λ,m. (3.1)

For lightness we will write here 〈·〉� instead of 〈·〉�;λ,m. The definition (1.4) allows us to re-express (3.1) in terms of
sums of multipoint dimer correlations:

〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉� =
∑

b1∈C(1)
ξ→η

· · ·
∑

bn∈C(n)
ξ→η

σb1 · · ·σbn〈1b1; . . . ;1bn〉�, (3.2)

where C(j)

ξ→η are paths on (Z2)∗ from ξ to η, which we assume not to wind around the torus and to be independent of
L. The n-point dimer correlation in the r.h.s. of (3.2) can be computed via (2.53), so that

〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉�

=
∑

b1∈C(1)
ξ→η

· · ·
∑

bn∈C(n)
ξ→η

σb1 · · ·σbn

∂n

∂Ab1 · · · ∂Abn

logZ�(λ,m,A)|A=0. (3.3)
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Finally, one takes the limit limm→0 lim�↗Z2 of the expression thus obtained. Since the limit �↗ Z2 is taken keeping
ξ , η fixed, in view of (2.65) we are allowed to replace Z�(λ,m,A) in the r.h.s. of (3.3) by Z(11)

� (λ,m,A), modulo an
error term that is negligible in the thermodynamic limit and that we will simply forget in the following formulas.

Using the Grassmann representation discussed in Section 2, we can rewrite the r.h.s. of (3.3) in terms of expecta-
tions of Grassmann variables. Let ET indicate the truncated expectation with respect to P

(11)
� (dψ), i.e.,

ET
(
X1(ψ); . . . ;Xs(ψ)

)= ∂s

∂λ1 · · ·∂λs

log
∫

(11)

P
(11)
� (dψ)eλ1X1(ψ)+···+λsXs(ψ)

∣∣∣∣
λi=0

. (3.4)

In particular,

log
∫

(11)

P
(11)
� (dψ)eX(ψ) =

∑
s≥1

1

s!E
T
(
X(ψ); . . . ;X(ψ)︸ ︷︷ ︸

s times

)
. (3.5)

Therefore, recalling (2.67), we get

logZ(11)
� (λ,m,A)

=
∑
s≥1

1

s!E
T
(
V�(ψ)+B�(ψ,J); . . . ;V�(ψ)+B�(ψ,J)︸ ︷︷ ︸

s times

)

=E�(λ,m)+
∑
k≥1

∑
{b1,...,bk}⊂�

[
k∏

j=1

Jbj

]
S�,k(b1, . . . , bk), (3.6)

where the third line is the definition of E�(λ,m) and of S�,k(b1, . . . , bk), i.e., E�(λ,m) (resp. S�,k(b1, . . . , bk)×
Jb1 · · ·Jbk

) collects all the terms in the second line that are independent of J (resp. are proportional to Jb1 · · ·Jbk
but

are independent of the other Jb’s). In the last line, the sum over {b1, . . . , bk} does not run just over k-ples of different
bonds. Rather, {b1, . . . , bk} =: B is a bond configuration in which some bonds are allowed to coincide. Formally, one
such configuration is a function b→ B(b) with nonnegative integer values such that

∑
b B(b)= N(B) <+∞. The

number B(b) has the meaning of multiplicity of b in B . Given B , we denote by B̃ the set of bonds b such that B(b) > 0;
hence B̃ is the support of B , and it consists of the bonds that are in B , each counted without taking multiplicity into
account.

Let us remark that the fermionic truncated expectations in the previous equations can be computed explicitly, by
using the definition (3.4) and the fermionic Wick rule (2.6). In order to understand how to evaluate (3.4), assume
that the functions Xi(ψ) are Grassmann monomials (which is not a restrictive assumption, since the operator ET is
multilinear in its arguments), i.e.,

Xi(ψ)= ciψx(i)
1

. . .ψx(i)
ni

. (3.7)

Then Eq. (3.4) admits the following diagrammatical representation:

(1) draw s vertices, each representing one of the monomials Xi , with a number of “legs” equal to the order ni of the
corresponding monomial; each leg is associated with a label x(i)

j , which we will think of as the point which the
leg exits from (or is anchored to);

(2) contract in all possible connected ways the legs, by pairing them two by two and by graphically representing every
such pair by a line (here a contraction, or pairing, is called connected if the s vertices are geometrically connected
by the contracted lines).

In this way, each pairing is in one-to-one correspondence with its diagrammatical representation, called Feynman
diagram, and (3.4) can be computed as follows (see e.g. [34, Appendix A3.1]):

Proposition 6 (Wick rule for truncated expectations). If the functions Xi are as in (3.7), the truncated expectation
(3.4) is equal to the sum over connected Feynman diagrams of their values, where the value of a diagram is: the



Height fluctuations in interacting dimers 117

product
∏s

i=1 ci of the “kernels” c1, . . . , cs of X1, . . . ,Xs , times the product of the propagators associated with the
contracted lines, times a sign, which is equal to the sign of the permutation required for placing next to each other the
contracted Grassmann fields, starting from their original ordering in X1(ψ) · · ·Xs(ψ), times a combinatorial factor
1/s!.

For instance, if s = 2 and Xi(ψ) = ψx2i−1ψx2i
, i = 1,2, and we contract the leg associated with x1 with x3 and

x2 with x4, the value of the corresponding Feynman diagram is (−1/2)g
(11)
� (x1,x3)g

(11)
� (x2,x4), where −1 is the

signature of the permutation that transforms 1234 into 1324. This diagrammatical representation, if applied to (3.6),
leads to the Feynman diagram expansion for the height fluctuations, discussed in Section 5.1 below.

If λ = 0, then (3.3)–(3.6) lead to the following explicit representation (observe that in this case V�(ψ) = 0 and
B�(ψ,J)=−∑b JbE

(m)
b ):

〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉�;λ=0,m

=
∑

b1∈C(1)
ξ→η

· · ·
∑

bn∈C(n)
ξ→η

σb1 · · ·σbn

B(b′1)∑
m1=1

· · ·
B(b′s )∑
ms=1

(−1)m1+···+ms

× Pm1

(
B
(
b′1
)) · · ·Pms

(
B
(
b′s
))
ET
(
E

(m)

b′1
; . . . ;E(m)

b′1︸ ︷︷ ︸
m1 times

; . . . ;E(m)

b′s
; . . . ;E(m)

b′s︸ ︷︷ ︸
ms times

)
, (3.8)

where {b1, . . . , bn} =: B should be thought of as a bond configuration (possibly with repetitions), B̃ = {b′1, . . . , b′s} as
the support of B and B(b′i ) as the multiplicity of b′i , see the discussion after (3.6). Moreover,

Pk(N) := ∂N

∂AN

(eA − 1)k

k!
∣∣∣∣
A=0

. (3.9)

Then, we take the limit limm→0 lim�↗Z2 : this simply means that in the computations of the averages ET (· · ·) all

propagators g
(11)
� (x,y) are replaced by limm→0 g(x,y) and E

(m)
b = t

(m)
b Eb is replaced by Eb.

Let us now discuss how to evaluate (3.8), separately for the cases n= 2 (the variance) and n > 2.

3.2. The height variance

In this section we prove:

Theorem 4. Let λ= 0. There exists a uniformly bounded function R(ξ) such that

〈
(hξ − hη)

2〉
λ=0 =

1

π2
log |ξ − η| +R(ξ − η). (3.10)

Proof. We assume for simplicity that ξ and η have the same parity. We choose the two paths C(1)

ξ→η , C(2)

ξ→η in such a

way that: (1) they are completely distinct, i.e., the bonds in C(1)

ξ→η are all different from those in C(2)

ξ→η; (2) they are both
of length comparable with |ξ − η|; (3) they consist of a union of straight portions (i.e. horizontal or vertical portions),
each of which is of even length. Moreover, we assume that C(1)

ξ→η , C(2)

ξ→η are “well-separated,” in the following sense.
Fix c, c′ > 0. Inside balls of radius c|ξ − η| around ξ and η, the two paths are portions of length c|ξ − η| of infinite
periodic paths (that is, they are portions of straight paths – apart from lattice discretization – see [47, Definition 2.1])
and have mutually different asymptotic directions, say opposite. Outside of these balls the paths stay at distance at



118 A. Giuliani, V. Mastropietro and F. L. Toninelli

Fig. 3. A schematic view of the paths C(i)
ξ→η

for n= 3. Near ξ and η, paths are essentially linear for a length proportional to |ξ − η|, with non-zero
mutual angles.

least c′|ξ − η| of each other and their length is of order |ξ − η|. See Figure 3. Using (3.8) for n = 2 and the above
assumptions on the paths, we can rewrite the variance as

lim
m→0

lim
�↗Z2

〈
(hξ − hη)

2〉
�;λ=0,m

=
∑

b1∈C(1)
ξ→η

∑
b2∈C(2)

ξ→η

σb1σb2ET (Eb1;Eb2), (3.11)

where the expectation ET has propagator limm→0 g(x,y). Let b = (x,x + êj ) be a bond crossed say by C(1)

ξ→η and
observe that, since we assumed that the white sites are on the even-even and odd-odd sub-lattice (and letting (−1)x :=
(−1)x1+x2 ),

σb = αb(−1)x(−1)j , (3.12)

where αb is +1/− 1, depending on whether the bond b is crossed by the oriented path C(1)

ξ→η in the positive/negative
direction (the positive direction is upwards for vertical portions of the paths, and rightwards for horizontal portions).

Next, we have to rewrite ET (Eb1;Eb2) and we start by expressing Ex,x+êj
= i(j−1)ψxψx+êj

in terms of Dirac
variables:

(1) we replace each of the two fields by a combination of Dirac fields using (2.31);
(2) whenever ψ±x+êj ,ω

appears we replace it by ψ±x,ω+ ∂jψ
±
x,ω with ∂j the (right) discrete derivative in the j direction.

In this way we obtain (we skip lengthy but straightforward computations):

Ex,x+ê1 =Ax,x+ê1 +Rx,x+ê1 (3.13)

:= −2(−1)x
∑
ω

ψ+x,ωψ−x,ω − 2(−1)x1
∑
ω

ψ+x,ωψ−x,−ω +Rx,x+ê1 , (3.14)

Ex,x+ê2 =Ax,x+ê2 +Rx,x+ê2 (3.15)

:= −2i(−1)x
∑
ω

ωψ+x,ωψ−x,ω − 2i(−1)x2
∑
ω

ωψ+x,ωψ−x,−ω +Rx,x+ê2 , (3.16)

where R is a linear combinations of terms of the type ψε
x,ω∂jψ

ε′
x,ω′ , with ε, ε′ = ±. Let us consider first the “local

parts” Ax,x+êi
, i.e. let us neglect for the moment R. When the path crosses the bond b, the change of position �zb in

the complex plane is iαb if b is horizontal and αb is b is vertical. Therefore,

σbAb =−2i�zb

[∑
ω

ψ+x,ωψ−x,ω + (−1)x2
∑
ω

ψ+x,ωψ−x,−ω

]
(3.17)
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if b is horizontal, and

σbAb =−2i�zb

[∑
ω

ωψ+x,ωψ−x,ω + (−1)x1
∑
ω

ωψ+x,ωψ−x,−ω

]
(3.18)

if b is vertical. At this point we can write, assuming for the moment that both b1 and b2 are horizontal bonds, i.e.,
b1 = (x,x+ ê1) and b2 = (y,y+ ê1),

σb1σb2ET (Ab1;Ab2) = −8 Re
[
�zb1�zb2ET

(
ψ+x,+ψ−x,+;ψ+y,+ψ−y,+

)]
(3.19)

− 8(−1)x2+y2 Re
[
�zb1�zb2ET

(
ψ+x,+ψ−x,−;ψ+y,−ψ−y,+

)]
. (3.20)

Here we used the fact that �zb1�zb2 is real, that

ET
(
ψ+x,ωψ−x,ω;ψ+y,ω′ψ

−
y,−ω′

)= 0

(because 〈ψ−x,−ψ+y,+〉 = −iG−+(x− y) vanishes when the mass m is zero as is the case here: recall in fact that we
already sent m→ 0, see the l.h.s of (3.11)) and that

ET
(
ψ+x1,−1ψ

−
x1,−1;ψ+x2,−1ψ

−
x2,−1

)= ET
(
ψ+x1,1

ψ−x1,1
;ψ+x2,1

ψ−x2,1

)∗
(cf. (2.32) and the first of (2.25)). Using the Wick rule (Proposition 6) and the first and third of (2.26) we have,
assuming that b1 = (x,x+ ê1) and b2 = (y,y+ ê1),

σb1σb2ET (Ab1;Ab2) = −8 Re
[
�zb1�zb2

(
G++(x− y)

)2] (3.21)

− 8(−1)x2+y2�zb1�zb2

∣∣G++(x− y)
∣∣2. (3.22)

In the general case b1 = (x,x+ êj1), b2 = (y,y+ êj2) one finds with similar computations

σb1σb2ET (Ab1;Ab2) = −8 Re
[
�zb1�zb2

(
G++(x− y)

)2] (3.23)

+ 8δj1=j2(−1)j1(−1)x3−j1+y3−j1 �zb1�zb2

∣∣G++(x− y)
∣∣2. (3.24)

Using Proposition 2 to express G at m= 0 as g plus a fast decaying remainder, we have

σb1σb2ET (Ab1;Ab2) = −Re

[
�zb1�zb2

1

2π2

1x�=y

(zy − zx)2

]
(3.25)

+ δj1=j2(−1)j1(−1)x3−j1+y3−j1 �zb1�zb2

1

2π2

1x�=y

|zy − zx|2 +Rj1,j2(x− y), (3.26)

where zx = x1 + ix2 and |Rj1,j2(x − y)| ≤ (const.)(1 + |x − y|)−3. Now we can sum over bi in the paths C(i)

ξ→η ,
i = 1,2. The contribution from Rj1,j2 is of order 1 uniformly in ξ , η: to see this, use the properties of the paths spelled
out at the beginning of this subsection. The same holds for the second term, this time because of the oscillating factor
(−1)x3−j1+y3−j1 , that in the sum has the effect of a discrete derivative in the direction 3− j1: in fact, recall that the
paths are assumed to consist of unions of straight portions of even length; on each such portion, the sum over x and
y of (−1)x3−j1+y3−j1 |zx − zy|−2 is of the same order as the sum of ∂x3−j1

∂y3−j1
|zx − zy|−2, which decays at large

distances like |x− y|−4. As for the first term, it produces the Riemann approximation to the integral

− 1

2π2
Re
∫ zη

zξ

dz

∫ z′η

z′ξ
dw

1

(z−w)2
(3.27)
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(here z′ξ and z′η are points at a distance O(1) from zξ and zη , respectively), and differs from it by a constant, inde-
pendent of ξ and η. This integral is the same found in [45] (see the second equation at p. 1043); it can be explicitly
evaluated and gives (see the third and fourth equation at p. 1043 of [45]):

1

2π2
Re log

(z′η − zξ )(z
′
ξ − zη)

(z′η − zη)(z
′
ξ − zξ )

= 1

π2
log |zξ − zη| +O(1). (3.28)

It remains to study the contribution coming from the error terms Rb in (3.13), (3.15), that we disregarded so far.

Remark 7. Each remainder Rbi
is a linear combination of terms like ψε

ω∂ψε′
ω′ , all localized in the vicinity of xi , where

xi is such that bi = (xi ,xi + êji
). Therefore, we can symbolically write the contribution to the height variance from

all the terms containing at least one term Rbi
as

R̃(ξ − η)=
∑

b1∈C(1)
ξ→η,

b2∈C(2)
ξ→η

∑
ω1,...,ω

′
2

ε1,...,ε
′
2

∑
α1,α2∈{0,1}:
α1+α2≥1

ET
((

ψε1
ω1

∂α1ψ
ε′1
ω′1

)
(x1);

(
ψε2

ω2
∂α2ψ

ε′2
ω′2

)
(x2)
)
. (3.29)

The writing is symbolical, in the sense that the terms in the sum should in general be multiplied by extra factors,
depending on all the indices we are summing over, which are not written explicitly just for lightness of notation.
Moreover, the discrete derivatives have an index depending on the orientation of the bonds b1, b2, which is not written
explicitly, again for lightness.

Using (2.32) to express the propagator of the Dirac fields ψ±ω in terms of the propagator G(x) of the Majorana
fields ψγ and the decay properties of G(x) stated in Proposition 2, we can bound the expression in square brackets
by a constant times (1 + |x1 − x2|)−3 (the discrete derivative of G decays like 1/|x|2), so that, recalling that bi =
(xi ,xi + êji

),

∣∣R̃(ξ − η)
∣∣≤ ∑

b1∈C(1)
ξ→η,

b2∈C(2)
ξ→η

C

(1+ |x1 − x2|)3
≤C′, (3.30)

for suitable constants C,C′ > 0. Putting all together, we find∣∣∣∣〈hξ − hη;hξ − hη〉λ=0 −
1

π2
log |zξ − zη|

∣∣∣∣≤C′′, (3.31)

as desired, since |zξ − zη| = |ξ − η|. �

To get Proposition 3, just recall (3.25), (3.12) plus the discussion above on the contribution of the R terms appearing
in (3.13) and (3.15).

3.3. The nth cumulant

Here we prove:

Theorem 5. Let λ= 0. For every n≥ 3 there exists a constant Cn such that, uniformly in ξ , η,∣∣〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉λ=0
∣∣≤ Cn. (3.32)
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Proof. Again, we assume for simplicity that ξ and η have the same parity. As in the case of the variance, we fix
cn, c

′
n > 0, and we assume that the n paths satisfy the following: (i) inside balls of radius cn|ξ −η| around ξ and η, the

n paths are portions of length cn|ξ − η| of infinite periodic paths and have mutually different asymptotic directions,
say (cos θj , sin θj ), with θj = 2πj/n, and j = 0, . . . , n − 1; (ii) outside of these balls they stay at distance at least
c′n|ξ − η| of each other and their length is of order |ξ − η|. See Figure 3.

Moreover, we require that the n paths consist of unions of straight portions of even length. Note that if bi = bj with
i �= j in (3.8), then bi is at a distance smaller than rn from ξ , or from η. Here and below Cn,C

′
n, . . . , and cn, c

′
n, . . .

denote n-dependent constants, which might change from line to line. If we drop the index n, it means that the constants
can be chosen independent of n.

We rewrite (3.8) as the contribution from the bonds b1, . . . , bn that are all outside the balls Brn(ξ) and Brn(η) of
radius rn around ξ and η, plus a rest (and the limit limm→0 lim�↗Z2 has been already taken):

〈hξ − hη; . . . ;hξ − hη︸ ︷︷ ︸
n times

〉λ=0 = Dn(ξ ,η)+Rn(ξ ,η)

:=
∗∑

b1∈C(1)
ξ→η

· · ·
∗∑

bn∈C(n)
ξ→η

σb1 · · ·σbn(−1)nET (Eb1;Eb2; . . . ;Ebn)+Rn(ξ ,η), (3.33)

where the ∗ on the sums indicate the constraints that the bi ’s are at a distance larger than rn from ξ and from η, and we
used the fact that such constrained sums involve n-ples of bonds that are all distinct from each other. The rest Rn(ξ ,η)

contains all the remaining contributions, including those where some of the bonds are coinciding.
We start by analyzing the dominant term, namely Dn(ξ ,η). With the notations of (3.13), we write

Dn(ξ ,η)=
∗∑

b1∈C(1)
ξ→η

· · ·
∗∑

bn∈C(n)
ξ→η

(−1)nσb1 · · ·σbnET (Ab1; . . . ;Abn)+D′n(ξ ,η), (3.34)

where D′n(ξ ,η) collects all the terms containing at least one remainder term Rbi
and can be symbolically written (in

the sense of Remark 7) as

D′n(ξ ,η)=
∗∑

b1∈C(1)
ξ→η

· · ·
∗∑

bn∈C(n)
ξ→η

∑
ω1,...,ω

′
n

ε1,...,ε
′
n

∑
α1,...,αn:∑

i αi>0

ET
((

ψε1
ω1

∂α1ψ
ε′1
ω′1

)
(x1); . . . ;

(
ψεn

ωn
∂αnψ

ε′n
ω′n
)
(xn)
)
, (3.35)

where in the last sum αi ∈ {0,1} and, once again, xi is one of the sites of bond bi . In the spirit of the diagrammatical

rules explained after (3.7), we can graphically represent every monomial (ψ
εi
ωi

∂αi ψ
ε′i
ω′i

)(xi ) by a two-legged vertex vi ,

consisting of two solid half-lines (indexed by εi , ωi and ε′i ,ω′i , respectively) exiting from the point xi , one of which
has a derivative ∂αi on top. It is customary to draw an extra dotted line (external field) exiting from the vertex vi ,
thus representing it as in Figure 4(a). Using the rules explained after (3.7), we find that the truncated expectation in
the r.h.s. of (3.35) is equal to the sum of “sun diagrams,” as in Figure 4(b). Since m = 0, the allowed contractions
involve pairs of legs with opposite ε indices and equal ω indices, see (2.32) (recall that, if m= 0, G+− =G−+ = 0).
Therefore, the value of every allowed sun diagram is equal (up to a sign) to

∂ᾱ1Gω̄1ω̄1(x1 − xπ(2)) · · ·∂ᾱnGω̄π(n)ω̄π(n)
(xπ(n) − x1), (3.36)

for suitable indices ᾱi ∈ {0,1,2} (such that
∑

i ᾱi =∑i αi ), ω̄i ∈ {±} and a suitable permutation π of {2, . . . , n}.
As for ET (σb1Ab1; . . . ;σbnAbn), going back to (3.17)–(3.18) we see that we can distinguish two contributions:

one that collects all terms without oscillating pre-factors (−1)xi , i = 1,2 and one that contains at least one term with
oscillating factor.

Let us look at the latter first. When we sum over b1, . . . , bn, we remarked in Section 3.2 that the effect of an
oscillating factor (−1)xj is the same as a discrete derivative ∂j acting on a propagator. Therefore, the contribution to
the nth cumulant, to be called D′′n(ξ ,η), can be symbolically written exactly like D′n(ξ ,η) in (3.35).
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Fig. 4. (a) A vertex of type ψ∂αψ . (b) A sun diagram obtained by contracting n vertices of type ψ∂αψ .

Next, we look at the term without oscillating factors. In analogy with the derivation of the first term in the r.h.s. of
(3.19), one can check that we get

2n · 2 ·Re
[
(−i)n�zb1 · · ·�zbnET

(
ψ+x1,1

ψ−x1,1
; . . . ;ψ+xn,1ψ

−
xn,1

)]
. (3.37)

The truncated expectation in (3.37) can be evaluated via Wick’s rule (Proposition 6) as:

ET
(
ψ+x1,1

ψ−x1,1
; . . . ;ψ+xn,1ψ

−
xn,1

)
=−

∑
π on {2,...,n}

G++(x1 − xπ(2)) · · ·G++(xπ(n) − x1). (3.38)

Plugging the decomposition (2.27) into (3.38) gives

−
∑

π on {2,...,n}
g++(x1 − xπ(2)) · · ·g++(xπ(n) − x1)+R′(x1, . . . ,xn),

where R′ collects all the terms involving at least one factor R(x− x′) from (2.27). Now, a well known combinatorial
identity (see e.g. [29, Eq. (D.29)]) states that, if n≥ 3 and x1, . . . ,xn are all distinct, then∑

π on {2,...,n}
g++(x1 − xπ(2)) · · ·g++(xπ(n) − x1)= 0. (3.39)

Therefore, the only non-vanishing contributions to the expression in (3.37) come from the terms involving at least one
factor R(x− x′). These terms can be represented by sun diagrams similar to those in Figure 4(b), with the difference
that the lines can be either associated with a propagator g or with R, and there must be at least one propagator of type
R. They give a contribution to the nth cumulant of the height that we denote by D′′′n (ξ ,η).

In order to evaluate D′n(ξ ,η), D′′n(ξ ,η), D′′′n (ξ ,η), we resort to a multiscale decomposition and a tree expansion
that are typical of constructive quantum field theory. While in the non-interacting case λ = 0 this could be avoided,
this is the right approach that can be generalized to the interacting case. Let us focus on D′n(ξ ,η) first, the discussion
for D′′n(ξ ,η) and D′′′n (ξ ,η) being completely analogous. We expand the value of every sun diagram (3.36) by using
the multiscale decomposition for G in (2.34) (recall that m= 0, so that h∗ = −∞ in that formula), so that (3.36) is
replaced by∑

h1,...,hn≤0

∂ᾱ1G
(h1)
ω̄1ω̄1

(x1 − xπ(2)) · · · ∂ᾱnG
(hn)
ω̄π(n)ω̄π(n)

(xπ(n) − x1). (3.40)
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Diagrammatically, every such contribution is associated with a labelled sun diagram, similar to the one in Figure 4(b),
with extra scale labels hi attached to every solid line. Using (2.39), we can bound every factor in (3.40) as∣∣∂ᾱkG

(hk)
ω̄π(k)ω̄π(k+1)

(xπ(k) − xπ(k+1))
∣∣≤ C2ᾱkhk 2hk e−c

√
2hk |xπ(k)−xπ(k+1)|

which implies the following bound on D′n(ξ ,η):

∣∣D′n(ξ ,η)
∣∣≤ Cn

∑
b1∈C(1)

ξ→η

· · ·
∑

bn∈C(n)
ξ→η

∑
π on {2,...,n}

∑
h1,...,hn≤0

2h̄

[
n∏

k=1

2hk e−c
√

2hk |xπ(k)−xπ(k+1)|
]
. (3.41)

Here: (i) Cn is a suitable positive constant, (ii) h̄= maxi=1,...,n hj , and 2h̄ is an upper bound on
∏

i 2ᾱihi , (iii) π(1)

and π(n+ 1) should be interpreted as being equal to 1.
Now we can sum over b1, . . . , bn (which is the same as summing over x1, . . . ,xn), observing that each sum is

one-dimensional (bi and, therefore, xi runs along the path C(i)

ξ→η) and that, thanks to the way the paths were chosen,

|xi − xj | ≥ cn(di + dj ), with di =min{d(xi , ξ), d(xi ,η)} and e.g. d(xi , ξ) the distance between ξ and xi along C(i)

ξ→η .
Then,

n∏
k=1

e−c
√

2hk |xπ(k)−xπ(k+1)| ≤
n∏

k=1

e
−c′n
√

dπ(k)(2hk+2hk−1 )
, (3.42)

where h0 should be interpreted as being equal to hn. The kth factor can now be easily summed over bπ(k) and gives:

∑
bπ(k)∈C(π(k))

ξ→η

e
−c′n
√

dπ(k)(2hk+2hk−1 ) ≤ 2
∞∑

d=0

e−c′n
√

d·(2hk+2hk−1 ) ≤C′n2−max{hk,hk−1}. (3.43)

Plugging these bounds into (3.41) gives

∣∣D′n(ξ ,η)
∣∣≤ C′′n

∑
h1,...,hn≤0

2h̄

[
n∏

k=1

2hk 2−max{hk,hk−1}
]
. (3.44)

The sum over the hi ’s in the r.h.s. of (3.44) can be performed in various ways. We follow a specific strategy (possibly
not the most straightforward), which admits a natural generalization to the interacting case. We think, once again,
of the scale labels as being associated with the propagators of a labelled sun diagram. Every choice of (h1, . . . , hn)

produces a hierarchical organization of the vertices of the sun diagram into clusters, defined as follows. We say that a
group of vertices forms a cluster on scale h if:

• the vertices are connected in the sub-graph where only lines on scale h′ ≥ h are drawn;
• the group of vertices is maximal (i.e. no other vertex can be added while keeping the first property).

With this definition, every cluster contains at least 2 vertices. Note that the same group of vertices can be a cluster
on various different scales. Every choice of (h1, . . . , hn) defines a set of clusters, which are partially ordered in the
natural sense induced by the subset relation: if a cluster v on scale h strictly contains a cluster v′ on scale h′, then
h′ > h. If v on scale h contains a cluster v′ on scale h′ > h, we say that v′ follows v. In this sense, every choice of
(h1, . . . , hn) defines a cluster structure. An example is shown in Figure 5.

The partial ordering introduced above allows to represent a cluster structure as a tree, see Figure 6. The tree can be
drawn on a grid of vertical lines, each associated with its scale label, and ordered from left to right, from the scale of
the root (which is by convention one unit smaller than minj hj ) to 1. Vertices vi correspond to endpoints (leaves) of
the tree, which are all drawn by convention on the vertical line of scale 1. The intersections between the vertical lines
and the tree are called nodes. All the nodes followed by at least two endpoints correspond to clusters: the cluster of
scale hv associated with such a node v is the set of endpoints following v on τ ; in terms of this definition, it is natural
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Fig. 5. An example of a labelled sun diagram with (part of) its cluster structure. In the picture it is assumed that h6 < h2 < h1 and
h2 < h5 < h3 < h4. The cluster on scale h2 is not indicated explicitly.

Fig. 6. The tree representing the hierarchical cluster structure of the labelled graph in Figure 5. Dots are nodes, squares are endpoints.

to think of the endpoints, as well as of the nodes followed by just one endpoint, as (trivial) clusters. Given the tree,
the cluster structure can be reconstructed unambiguously. If we identify trees obtained from each other by pivoting
the branches on the branching points, then the trees are in one-to-one correspondence with the cluster structures.

In Section 5, when analyzing the interacting model, we will need a more general class of trees.
Every labelled tree can be naturally thought of as a “topological” (i.e., unlabeled) tree, together with its scale labels.

The idea is to reinterpret the sum over (h1, . . . , hn) in (3.44) as a sum over trees, to be performed by first summing
over the scale labels at fixed topological tree, and then over the topological trees. This can be done very easily: calling
T 0

h;n the family of labelled trees with n endpoints and root on scale h that we just introduced, (3.44) implies∣∣D′n(ξ ,η)
∣∣≤ C′′′n

∑
h<0

∑
τ∈T 0

h;n

2h̄τ
∏

v∈V (τ)

2hvñv
∏

v∈Vnt (τ )

2−hvm̄J
v , (3.45)

where: (i) V (τ) is the set of nodes of τ that are neither endpoints nor the root; (ii) Vnt (τ ) is the set of branching points
of τ ; (iii) h̄τ = maxv∈Vnt (τ ) hv ; (iv) ñv is the number of propagators contained in the cluster v but not in any other
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cluster v′ > v [we say that a propagator is contained in a cluster v of scale hv if it connects two endpoints in v, and if
its scale is ≥ hv]; (v) if v ∈ Vnt (τ ), then m̄J

v is the number of endpoints contained in the cluster v but not in any other
cluster v′ ∈ Vnt (τ ) such that v′ > v. The exponent in the last product can be rewritten as follows. First note that, given
a function fv on V (τ) one has∑

v∈V (τ)

hvfv = h
∑

v∈V (τ)

fv +
∑

v∈V (τ)

∑
w∈V (τ):

w≥v

fw (3.46)

with h as usual the scale of the root. Similarly,∑
v∈Vnt (τ )

hvfv = h
∑

v∈Vnt (τ )

fv +
∑

v∈Vnt (τ )

(hv − hv′)
∑

w∈Vnt (τ ):
w≥v

fw, (3.47)

where, given v ∈ Vnt (τ ), we denoted by v′ the rightmost node in Vnt (τ ) preceding v on τ (if v is the leftmost node
in Vnt (τ ), then we let hv′ = h). On the other hand, if ne

v is the number of solid lines exiting from the cluster v in the
Feynman diagram, see Figure 5, and mJ

v is the number of endpoints following v, one has∑
v∈V (τ):

v≥w

ñv =mJ
w −

ne
w

2
, (3.48)

which can be easily proved by induction. Similarly, if w ∈ Vnt (τ ), then
∑

v∈Vnt (τ ):
v≥w

m̄J
v =mJ

w . Then, one deduces

∑
v∈V (τ)

hvñv −
∑

v∈Vnt (τ )

hvm̄
J
v =−

∑
w∈V ∗(τ )

ne
w/2, (3.49)

where V ∗(τ ) = {v ∈ V (τ) : mJ
v > 1} and we used the fact that

∑
v∈V (τ) ñv =∑v∈Vnt (τ ) m̄

J
v . Moreover, ne

v = 2 for
every cluster except the one at scale h+ 1 (just look at Figure 5). Therefore, plugging (3.49) back into (3.45) gives∣∣D′n(ξ ,η)

∣∣≤ 2C′′′n
∑
h<0

∑
τ∈T 0

h;n

2h̄τ
∏

v∈V ∗(τ )

2−1, (3.50)

which readily shows that the sum over the scale labels is convergent (first sum over the scale labels hv at fixed h∗τ ,
and then over h∗τ ≤ 0): finally, we multiply by the number of topological trees with n endpoints, which is a constant
depending only on n, so that∣∣D′n(ξ ,η)

∣∣≤ C′′′′n , (3.51)

as desired. The bounds on D′′n(ξ ,η) and D′′′n (ξ ,η) are completely analogous, because both quantities can be bounded
as in (3.41). This is obvious for D′′n(ξ ,η), for what already observed a few lines above (3.37). For what concerns
D′′′n (ξ ,η), recall that every contribution to it comes from a sun diagram whose lines are either of type g or R, and
there is at least one rest propagator R. After a multiscale decomposition of the propagators, we use the dimensional
estimates on g(h) and R(h) stated in Lemma 2, and note that dimensionally R(h) behaves exactly like ∂G(h). This
implies the analogue of (3.41) for D′′′n (ξ ,η).

We are left with the rest Rn(ξ ,η) in (3.33), which is easier to analyze. In order to estimate it, we do not even need
to use the cancellation (3.39). Proceeding as above,4 we find the analogue of (3.41):

∣∣Rn(ξ ,η)
∣∣≤ Cn

◦∑
bi∈C(i)

ξ→η

i=1,...,n

∑
π on {2,...,n}

∑
h1,...,hn≤0

[
n∏

k=1

2hk e−c
√

2hk |xπ(k)−xπ(k+1)|
]
, (3.52)

4To be precise, when applying (3.8) one should take into account the multiplicity of the coinciding bonds. Since these multiplicities are bounded
by n, this only changes the constants Cn below.
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where the ◦ on the sum indicates the constraint that at least one coordinate belongs to Brn(ξ) ∪ Brn(η). Note that, as
compared to (3.41), the (good) factor 2maxi hi is now absent. After summing over b1, . . . , bn, we get

∣∣Rn(ξ ,η)
∣∣≤ C′′n

∑
h1,...,hn≤0

2maxj hj

[
n∏

k=1

2hk 2−max{hk,hk−1}
]
, (3.53)

where the gain factor 2maxj hj arises from the fact that at least one of the coordinates xi is not summed over (or, more
precisely, is summed over a region of size rn) and, therefore, at least one of the factors 2−max{hk,hk−1} in the r.h.s. of
(3.53) in reality should not be there (in fact, recall that these factors come from (3.43); if the sum over d from 0 to∞
in (3.43) is replaced by a sum over a finite set of nonnegative integers, then the r.h.s. of (3.43) can be replaced by a
constant C′n). The r.h.s. of (3.53) is the same as (3.44) and, therefore, leads to the analogue of (3.51): |Rn(ξ ,η)| ≤Cn.
This concludes the proof of (3.32) and of Theorem 1 in the case λ= 0. �

4. The height variance in the interacting case

In the proof of Theorem 1 for λ= 0, a crucial role was the sharp asymptotic behavior of multi-dimer correlations, see
in particular Proposition 3 for the two-point function. We need analogous estimates for λ �= 0. In particular, for the
proof of (1.7) (logarithmic divergence of the height variance) we need the sharp asymptotic estimate on the two-point
dimer correlation, provided by Theorem 2 (which is proved in Section 6.4). Given this, the proof of (1.7) is immediate
and is presented here. The height variance can be written as

〈hξ − hη;hξ − hη〉 =
∑

b1∈C(1)
ξ→η

∑
b2∈C(2)

ξ→η

σb1σb2〈1b1;1b2〉λ, (4.1)

with C(1)

ξ→η , C(2)

ξ→η chosen as explained after (3.10). Plugging (1.9) into (4.1), we obtain

〈hξ − hη;hξ − hη〉 =
∑

b1∈C(1)
ξ→η

b2∈C(2)
ξ→η

σb1σb2

{
1x1 �=x2

[
− K

2π2
(−1)x1−x2 Re

(i)j1+j2

(zx1 − zx2)
2

+ δj1,j2

K̃

2π2

(−1)(x1−x2)j1

|x1 − x2|2κ

]
+Rj1,j2(x1 − x2)

}
, (4.2)

where x1, x2, j1, j2 are such that b1 = (x1,x1 + êj1) and b2 = (x2,x2 + êj2), and zx = x1 + ix2 is the complex
number associated with x. Recall now that σbi

= αbi
(−1)xi (−1)ji , with αb defined just after (3.12). Using this explicit

expression for σb into (4.2), we can rewrite the term proportional to K as:

− K

2π2

∑
b1∈C(1)

ξ→η

b2∈C(2)
ξ→η

σb1σb2 Re
(−1)x1−x2(i)j1+j2

(zx1 − zx2)
2

=− K

2π2

∑
b1∈C(1)

ξ→η

b2∈C(2)
ξ→η

Re
�zb1�zb2

(zx1 − zx2)
2
, (4.3)

where �zbi
is the displacement associated with the elementary portion of the path C(i) crossing bi , thought of as a

complex vector of modulus 1. This term is the λ �= 0 analog of the first term in the r.h.s. of (3.25), which referred to
the case λ= 0. Exactly like in the λ= 0 situation, the r.h.s. of (4.3) is equal to K times the integral in (3.27) (which
is the desired dominant contribution to the variance of the height), plus a rest that is uniformly bounded in |ξ − η|.
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Let us now estimate the contributions to the variance coming from the other two terms in the r.h.s. of (4.2). The
last term, i.e., the sum over b1, b2 of σb1σb2Rj1,j2(x1 − x2), leads to a contribution that is uniformly bounded in
|ξ −η|, thanks to the decay estimate on Rj1,j2 : |Rj,j ′(x− y)| ≤Cθ(1+|x− y|)−2−θ , for some 1

2 ≤ θ < 1 and Cθ > 0.
Regarding the term proportional to K̃ , note that

σb1σb2(−1)(x1−x2)j1 = αb1αb2(−1)(x1−x2)3−j1 .

Namely, the oscillatory factor σb1σb2 does not compensate the oscillatory factor (−1)(x1−x2)j1 . Once summed over the

path, and using the fact that the paths C(i)

ξ→η consist of union of straight portions, each of which is formed by an even

number of bonds, we see that the oscillatory factor (−1)(x1−x2)3−j1 has the same effect as a discrete derivative (we are
sketchy here, but the very same argument was used in the non-interacting model just after (3.25)):∣∣∣∣ ∑

b1∈C(1)
ξ→η

b2∈C(2)
ξ→η

αb1αb2δj1,j2

(−1)(x1−x2)3−j1

|x1 − x2|2+2η′2

∣∣∣∣≤ c
∑

b1∈C(1)
ξ→η

b2∈C(2)
ξ→η

∣∣∣∣∂3−j1

1

|x1 − x2|2+2η′2

∣∣∣∣, (4.4)

which shows that also this term is bounded uniformly in |ξ − η|. This concludes the proof of (1.7), i.e., of Theorem 1
for n= 2. �

The proof of Theorem 2, which is, as we just saw, the crucial ingredient behind the proof of (1.7), is very hard. It is
based on a renormalized, convergent, perturbative expansion for the generating function Z�(λ,m,A) to be discussed
in Section 6 below. The renormalized expansion Z�(λ,m,A) induces a convergent expansion for the multi-point
dimer correlations, which is the key ingredient in the computation of the cumulants of the height fluctuations of order
3 or higher, to be discussed in Section 7.

5. The interacting case: Formal perturbation theory

Before explaining the renormalized, convergent, expansion for the generating function for dimer correlations, we make
a digression to explain why naive perturbation theory in λ does not work to get results like (1.9). This discussion will
help the non-expert reader understand the meaning of the renormalized perturbation expansion of Section 6, which is
behind e.g. Theorem 2. Since strictly speaking the present section is not necessary for the proof, our exposition here
is more informal than in the rest of the article.

Remark 8 (Warning on the literature). Here and in Section 6 we will often appeal to results from the literature on
constructive RG, notably [8,12–15,34]. These works do not study exactly the same model as ours: however, they all
study models that can be written as two-dimensional interacting Majorana or Dirac fermions, with potentials having
the same symmetry and decay properties as ours. The results we refer to can be easily extended to our context.

5.1. The Feynman diagrams expansion of the height fluctuations

We restart from (3.6). We emphasize that, since Z�(λ,m,A) is a polynomial in λ for finite � and it equals 1 when
λ = 0, A = 0, the sums in the second and third lines of (3.6) are convergent for sufficiently small λ, A. However,
proving that the radius of convergence in λ does not shrink to zero as �↗ Z

2 is a highly non-trivial task. Of course,
before even attempting to prove uniform convergence, we need at least to understand how to compute the r.h.s. of (3.6)
formally, i.e., order by order in λ. A possible way of computing the perturbation series in λ for the generating function
is in terms of Feynman diagrams, as explained after (3.7), see Proposition 6. In particular, E�(λ,m) equals the sum
of all possible connected Feynman diagrams obtained by contracting vertices of type ξ(γ ) (coming from V�(ψ), see
(2.43)), where γ = {b1, . . . , bk} ⊂� is a collection of k ≥ 2 parallel adjacent bonds, see (2.44); in order to graphically
represent ξ(γ ), we imagine to represent E

(m)

(x,x+êj )
= (i)j−1(1+ δj,1m(−1)x1)ψxψx+êj

as a pair of solid half-lines,

each of which can be contracted with another solid half-line to form a solid line (a propagator), while the α’s can be
thought of as wiggly lines from b1 to b2, etc., to bk , see Figure 7.



128 A. Giuliani, V. Mastropietro and F. L. Toninelli

Moreover, [∏k
j=1 Jbj

]S�,k(b1, . . . , bk) is the sum of all possible connected Feynman diagrams obtained by con-

tracting vertices of type ξ(γ ) and of type ξ̃ (γ ;R) (coming from B�(ψ,J)), with the obvious constraint that the
product of the Jb factors involved produces exactly

∏k
j=1 Jbj

. See Figure 8. For example, one of the diagrams con-
tributing to S�,4(b1, . . . , b4) is shown in Figure 9. The diagram in Figure 9 is obtained from a contraction of the
vertices depicted in Figure 10.

Fig. 7. Graphical representation of a vertex of type ξ({b1, . . . , bk}).

Fig. 8. Graphical representation of a vertex of type ξ̃ ({b1, . . . , bk};R), with R = {b2, b4, bk}. The dotted lines represent the external fields Jbi
. If

|γ | = |R| = 1 the vertex is said to be of type −JbE
(m)
b

(see also Figure 4(a)).

Fig. 9. A diagram contributing to S�,4(b1, . . . , b4).

Fig. 10. The vertex elements producing the diagram in Figure 9, after a suitable contraction of the solid half-lines.
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5.2. Failure of the Feynman diagram expansion

In order to bound the Feynman diagram expansion for the kernels S�,n(b1, . . . , bn) in (3.6), we can try to proceed as
follows (the strategy is similar to the one used in Section 3.3). We decompose each of the propagators G appearing in
the values of the Feynman diagrams as in (2.34) and in this way we obtain labelled Feynman graphs with solid lines
(propagators) each carrying a scale label h∗ ≤ h ≤ 0, the label h= h∗ corresponding to G(≤h∗). Any labelled graph
has a corresponding cluster structure, in the sense explained after (3.44), which can be conveniently represented by a
tree analogous to those in Figure 6; in the interacting case, these trees are known as Gallavotti–Nicolò (GN) trees, first
introduced in [33] for studying the renormalization theory of the ϕ4

4 Quantum Field Theory (QFT), and later applied
to several other problems in statistical mechanics and field theory (for a detailed derivation of the tree expansion,
see e.g. [32] and the more recent reviews [34,36,50]; a description of its main features is summarized below, for
completeness). It is now tempting to bound the value of every labelled Feynman diagram by using Lemma 2, then
sum the resulting bound over the scale labels at fixed cluster structure, and then sum over the cluster structures, exactly
as we did in Section 3.3. Natural as it appears, this strategy does not work, and actually perturbation expansion in
Feynman diagrams does not provide any information on the interacting dimer correlations. As this is a key point
in order to understand the motivations of the more elaborate analysis in the following sections, it is convenient to
explain why the power series expansion in Feynman diagrams does not work, i.e., it cannot be proved directly to be
convergent.

5.2.1. The tree and the labelled Feynman diagram expansions
In contrast with the trees we introduced for the non-interacting model, GN trees have endpoins of different type,
depending on whether they are associated with a vertex of type V�(ψ) (i.e., of type ξ(γ ), see (2.43)), in which case
the endpoints will be called “normal,” or of type B�(ψ,J) (i.e., of type −JbE

(m)
b or of type ξ̃ (γ ;R) with |γ | ≥ 2, see

(2.57)), in which case they will be called “special.” Note that in the non-interacting case α = 0 we had V�(ψ) = 0
and B�(ψ,J)=−∑b⊂� JbE

(m)
b , so that all the endpoints were special. It is important to realize that, given a labeled

tree (including possibly the labels that specify the order in α of the endpoints), there may be many Feynman diagrams
compatible with it, see e.g. Figure 11.

To explain precisely how to express E�(λ,m) and S�,k(b1, . . . , bk) as a sum over trees and over Feynman diagrams
compatible with the trees, we need to make a small detour about the main features and definitions of the GN trees.
The trees introduced in this section are called “non-renormalized trees,” as opposed to the “renormalized trees” that
will be introduced in Section 6. Let us also remark that some of the conventions introduced here are slightly different
from those used in Section 3, such as the rule for identifying trees, and the meaning of the word “vertex.”

(1) Consider the family of all trees which can be constructed by joining a point r , the root, with an ordered set of
N + n ≥ 1 points, the endpoints of the unlabeled tree, so that r is not a branching point. The endpoints can be

Fig. 11. Two different labelled Feynman graphs, coming from the contractions of two vertices of type ξ(γi ), i = 1,2 with |γi | = 2, giving the same
tree. Here, h4 < h3 < h2 < h1.
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Fig. 12. A tree τ ∈ T̃ (h)
N,n

with N = 6 and n= 3: the root is on scale h and the endpoints are all on scale 1.

of two types, either normal or special, the former drawn as dots, the latter as squares, see Figure 12; N and n

are the number of normal and special endpoints, respectively. The branching points will be called the non-trivial
vertices. The unlabeled trees are partially ordered from the root to the endpoints in the natural way; we shall use
the symbol < to denote the partial order. Two unlabeled trees are identified if they can be superposed by a suitable
continuous deformation, so that the endpoints with the same index coincide. We shall also consider the labelled
trees (to be called simply trees in the following); they are defined by associating some labels with the unlabeled
trees, as explained in the following items.

(2) We associate a label h∗ − 1≤ h < 0 with the root and we denote by T̃ (h)
N,n the corresponding set of labelled trees

with N normal and n special endpoints (the tilde in T̃ (h)
N,n reminds that the trees are non-renormalized). Moreover,

we introduce a family of vertical lines, labeled by an integer taking values in [h,1], and we represent any tree
τ ∈ T̃ (h)

N,n so that, if v is an endpoint, it is contained in the vertical line with index hv = 1, while if it is a non-trivial
vertex, it is contained in a vertical line with index h < hv ≤ 0, to be called the scale of v; the root r is on the
line with index h. In general, the tree will intersect the vertical lines in set of points different from the root, the
endpoints and the branching points; these points will be called trivial vertices. The set of the vertices will be the
union of the endpoints, of the trivial vertices and of the non-trivial vertices; note that the root is not a vertex. Every
vertex v of a tree will be associated to its scale label hv , defined, as above, as the label of the vertical line whom
v belongs to. Note that, if v1 and v2 are two vertices and v1 < v2, then hv1 < hv2 .

(3) There is only one vertex immediately following the root, called v0 and with scale label equal to h+ 1.
(4) Given a vertex v of τ ∈ T̃ (h)

N,n that is not an endpoint, we can consider the subtrees of τ with root v, which
correspond to the connected components of the restriction of τ to the vertices w ≥ v. If a subtree with root v

contains only v and one endpoint on scale hv + 1, it will be called a trivial subtree (and in this case hv = 0).
(5) If v is not and endpoint, the cluster associated with it is the set of endpoints following v on τ ; if v is an endpoint,

it is itself a (trivial) cluster. The tree provides an organization of endpoints into a labelled hierarchy of clusters
(the cluster structure).

(6) Normal endpoints are associated with (one of the monomials contributing to) V�(ψ), while special endpoints are
associated with (one of the monomials contributing to) B�(ψ,J), both thought of as functions of the Majorana
fields ψx,γ , with x ∈� and γ = 1, . . . ,4.

In order to distinguish the various contributions arising from the choices of the monomials in the factors V�(ψ) and
B�(ψ,J) associated with the endpoints, as well as the scale at which each field in these monomials is contracted,5 we
need a few more definitions. We introduce a field label f to distinguish the field variables appearing in the monomials
associated with the endpoints; the set of field labels associated with the endpoint v will be called Iv ; if v is not an
endpoint, we shall call Iv the set of field labels associated with the endpoints following the vertex v. Note that every

5A remark on nomenclature: we refer to both Majorana variables ψx,γ and to Jx,j as “fields” (ψ fields and J fields respectively).
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field can be either of type J or ψ : correspondingly, we denote by IJ
v and I

ψ
v the set of field labels of type J and ψ ,

respectively, associated with v. Furthermore, we denote by x(f ) the spatial coordinate of the field variable with label
f ; if f ∈ IJ

v , we denote by b(f ) the bond label of the corresponding J field, and we let x(f ) and j (f ) be such that
b(f )= (x(f ),x(f )+ êj (f )); if f ∈ I

ψ
v , we denote by γ (f ) the Majorana label of the corresponding Grassmann field.

Similarly, we let xv :=⋃f∈Iv
x(f ), etc.

Remark 9 (Kernels of endpoints). Given an endpoint v and the labels Iv , xv , etc., the value of the endpoint is
uniquely specified, and we denote it by Kv(xv, Iv)J (IJ

v )ψ(I
ψ
v ), where Kv is the kernel of v, while J (I)=∏f∈I Jb(f )

and ψ(I)=∏f∈I ψx(f ),γ (f ). For instance, if v is an endpoint of type ξ(γ ) with γ a collection of k adjacent vertical

bonds then Kv = (−1)kikαk−1, see (2.44).

We associate with any vertex v of the tree a subset P
ψ
v of I

ψ
v , the set of external fermionic fields of v. They cor-

respond to the lines exiting from the cluster v, in the same sense discussed after (3.47); in particular, their cardinality
is the analogue of the quantity ne

v introduced there. These subsets must satisfy various constraints. First of all, if v is
not an endpoint and v1, . . . , vsv are the sv ≥ 1 vertices immediately following it on τ , then P

ψ
v ⊂⋃i P

ψ
vi

; if v is an

endpoint, P
ψ
v = I

ψ
v . If v is not an endpoint, we shall denote by Q

ψ
vi

the intersection of P
ψ
v and P

ψ
vi

; this definition

implies that P
ψ
v =⋃i Q

ψ
vi

. The union of the subsets P
ψ
vi
\Q

ψ
vi

is, by definition, the set of the internal fields of v,

and is non-empty if sv > 1. For convenience, in the following we shall also indicate P J
v := IJ

v , Pv := P
ψ
v ∪ P J

v and
Qv :=Q

ψ
v ∪ P J

v . Given τ ∈ T̃ (h)
N,n, there are many possible choices of the subsets Pv , v ∈ τ , compatible with all the

constraints. We shall denote by Pτ the family of all these choices and by P the elements of Pτ . For every τ and
P ∈ Pτ , we let �(P, τ ) be the set of labelled Feynman diagrams compatible with the tree and the choice of the field
labels.

In terms of these trees and labels, the generating function for correlations in (3.6) can be written as (see e.g. [34,
Section 6])

logZ(11)
� (λ,m,A) =

∑
N,n≥0:
N+n≥1

−1∑
h=h∗−1

∑
τ∈T̃ (h)

N,n

∗∑
P∈Pτ :
P

ψ
v0=∅

∑
xv0

J
(
P J

v0

)

×
[ ∏

v∈E(τ)

Kv(xv,Pv)

][ ∏
v∈V (τ)

1

sv!E
T
hv

(
ψ(Pv1 \Qv1), . . . ,ψ(Pvsv

\Qvsv
)
)]

, (5.1)

where the ∗ on the sum over P indicates the constraint that P
ψ
v0 =∅ and the set of internal fields of v0 is non-empty.

Moreover, ET
h indicates truncated expectation with respect to the propagator G(h), if h > h∗, or G(≤h∗), if h = h∗.

Finally, E(τ) is the set of endpoints of τ , V (τ) is the set of vertices of τ that are not in E(τ); for each v ∈ V (τ), we
indicated by v1, . . . , vsv the vertices immediately following v on τ . After re-expressing the truncated expectations in
the r.h.s. as a sum over Feynman diagrams, we obtain the desired representation of the generating function in terms of
a double sum over trees and labelled Feynman diagrams:

logZ(11)
� (λ,m,A)=

∑
N,n≥0:
N+n≥1

−1∑
h=h∗−1

∑
τ∈T̃ (h)

N,n

∗∑
P∈Pτ :
P

ψ
v0=∅

∑
xv0

∑
G∈�(τ,P)

J
(
P J

v0

)
Val(G) (5.2)

with Val(G) the value of the graph G, including the combinatorial factor
∏

1/(sv!). To obtain the multiscale expansion
for E�(λ,m) it is enough to compute this expression for J= 0, so that n= 0. Similarly, to obtain S�,k(b1, . . . , bk) it
is enough to derive with respect to Jb1, . . . , Jbk

and then take J= 0.

5.2.2. Dimensional estimates
At this point we can discuss how to obtain estimates on the generic term of the non-renormalized expansion just
introduced, and see whether the resulting upper bound is summable or not over all the labels and the trees.
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Let us consider for simplicity a contribution to E�(λ,m). That is, consider G ∈ �(τ,P), where τ ∈ T̃ (h)
N,0 and

Pv0 =∅; note that Pv = P
ψ
v , because n= 0. In order to estimate Val(G) we use that, from Lemma 2,∥∥G(h)(·)∥∥1 :=

∑
x∈�

∥∥G(h)(x)
∥∥≤ C2−h,

∥∥G(h)(·)∥∥∞ ≤ C2h. (5.3)

Moreover, given v ∈E(τ) and an arbitrary field label f ∗ ∈ Pv ,∑
xv\x(f ∗)

∣∣Kv(xv,Pv)
∣∣≤C|Pv |α|Pv |/2−1, (5.4)

as it follows from the very definition (2.44) of the kernel v. Therefore,

∑
xv0

∣∣Val(G)
∣∣≤ |�|[ ∏

v∈E(τ)

(
C′
)|Pv |α|Pv |/2−1

][ ∏
v∈V (τ)

1

sv!2
hvñv−2hv(sv−1)

]
, (5.5)

where ñv = (
∑sv

i=1 |Pvi
| − |Pv|)/2 was already introduced after (3.45), i.e., it is the number of propagators contained

in v but not in any v′ > v or, equivalently, the number of propagators obtained by contracting the internal fields of v.
We also recall that sv is the number of vertices immediately following v on τ (i.e., the number of clusters contained
in v but not in any other cluster w > v). To understand (5.5) note that the factor |�| in (5.5) comes from translation
invariance (i.e. from the sum over the location of the cluster at scale h+ 1) and that the factor associated with the
product over the endpoints comes from (5.4). Moreover, the factor associated with the product over V (τ) comes from
the following argument: for any vertex v ∈ V (τ) with sv descendants v1, . . . , vsv , we select a minimal number, sv − 1,
of propagators at scale hv connecting them; all the non-selected lines are estimated in the �∞ norm and give C2hv

each, by the second of (5.3); when the relative positions of v1, . . . , vsv are summed over, each selected line gives
instead C2−hv by the first of (5.3).

Then we proceed as in (3.49), and in particular we use (3.46) for fv = ñv − 2(sv − 1) and the analogues of (3.48),
namely

∑
v∈V (τ):

v≥w

ñv = 1

2

∑
v∈V (τ):

v≥w

(
sv∑

i=1

|Pvi
| − |Pv|

)
= 1

2

(|Iw| − |Pw|
)
,

(5.6)∑
v∈V (τ):

v≥w

(sv − 1)=mw − 1,

where mw is the number of normal endpoints following w on τ , and we get∑
xv0

∣∣Val(G)
∣∣≤ |�|(C′)|Iv0 |α|Iv0 |/2−N 2h(2+|Iv0 |/2−2mv0 )

∏
v∈V (τ)

1

sv!2
2−|Pv |/2+|Iv |/2−2mv ,

where we used the fact that Pv0 is empty. Next we note that

hmv0 +
∑

v∈V (τ)

mv = h|Iv0 | +
∑

v∈V (τ)

|Iv| = 0, (5.7)

thanks to the fact that the vertices immediately preceding the endpoints on τ are all on scale 0 (otherwise, we would
have e.g. hmv0 +

∑
v∈V (τ) mv =∑v∈E(τ) hv′ with v′ the vertex immediately preceding v on τ ). Therefore,

∑
xv0

∣∣Val(G)
∣∣≤ |�|(C′)|Iψ

v0 |α|I
ψ
v0 |/2−N 22h

[ ∏
v∈V (τ)

1

sv!2
2−|Pψ

v |/2
]
, (5.8)
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where the apex ψ on Iv and Pv is inserted to recall that in the case considered so far Pv = P
ψ
v . A similar estimate

is valid for the contributions to S�,k(b1, . . . , bk) from the graphs � ∈ G(τ,P) with τ ∈ T̃ (h)
N,n, with the only important

difference that the scaling dimension 2− |P ψ
v |/2 is replaced by 2− |P ψ

v |/2− |P J
v |, to be denoted by dv .

If we could assume that the scaling dimensions dv = 2 − |P ψ
v |/2 − |P J

v | are ≤ 0 for all v ∈ V (τ) and strictly
negative for v ∈ V ∗(τ ) (here V ∗(τ ) is the subset of vertices of V (τ) that are followed by at least two endpoints), then

(5.8) would be summable over the scale labels, and after summation we would get a bound proportional to α|I
ψ
v0 |/2−N .

However, there are trees τ and graphs � ∈ G(τ,P) with vertices v ∈ V (τ) such that dv is either 0 or 1: this happens for
(|P ψ

v |, |P J
v |)= (2,0), (4,0), (2,1), in which case (5.8) is not summable, uniformly in L, over the trees in T̃ (h)

N,0 and on
the scale label h < 0. In the Renormalization Group language, clusters with scaling dimension 0 are called marginal,
and those with scaling dimension 1 are called (linearly) relevant. Note that in the non-interacting case there were
neither marginal, nor relevant clusters in V ∗(τ ), simply because |P J

v | ≥ 2 for such vertices; moreover, all vertices v

followed by exactly one endpoint had (|P ψ
v |, |P J

v |) = (2,1), so that dv = 0; as a consequence we could safely sum
over the scale labels. In the interacting case the presence of trees and graphs containing marginal or relevant clusters is
inevitable, and this makes the Feynman diagram expansion useless, because it leads to bounds on e.g. |E�(λ,m)| that
diverge as m→ 0 and L→∞ (recall that, in the sums on scales, |hv| ranges from 0 to |h∗| ∝ − logm − logL). In
other words, the Feynman graph expansion is not sufficient for gaining control on the perturbative expansion at α �= 0,
not even order by order in α.

On top of the problem of divergence of Feynman diagrams outlined above, there is also a combinatorial issue to be
faced: even if we could sum every single Feynman diagram over the scale labels, we should still sum over the Feynman
diagrams. However, assuming for definiteness that n= 0, the number of Feynman diagrams is at least (const.)N (N !)2,
where N is the total number of normal endpoints and we used the fact that every endpoint is associated with a vertex
with 4 or more fermionic fields (i.e. half-lines), as well as the fact that the number of Feynman diagrams is equal to
the number of possible Wick contractions of such fields (it is easy to see that the number of possible contractions of
the half-lines exiting from N vertices, each with 4 external half-lines, scales like (const.)N (N !)2, and even faster if we
allow vertices with more than 4 external half-lines). On the other hand, the factor

∏
v∈V (τ) 1/sv! in (5.8) behaves like

1/N ! at large N , which means that the bound on the total contribution of order N grows like (assuming for simplicity
that all endpoints have 4 external lines) αNN !, which is not summable in N , even for α small.

These two problems are the counterparts of analogous difficulties emerging in QFT. The divergence of Feynman
diagrams with m as m→ 0 is called the infrared problem, and it signals that an expansion in α is not suitable
for treating the interacting system at hand. Rather, we need to introduce scale-dependent parameters λh, Zh which
measure the effective strength of the interaction and of the propagator at scale h (in the language of field theory,
Zh is called “wave function renormalization”). The theory depends analytically on λh, Zh, so that all the potential
divergences of the theory are “absorbed” into the definition of the running coupling constants λh, Zh, whose behavior
can be studied in terms of a finite-dimensional discrete flow equation. For example, the iterative equation for λh leads
a priori (i.e., on the basis of dimensional estimates of the contributions to βλ

h := λh − λh−1, which are also expressed
as a perturbation series in λh, Zh) to a divergence of λh as h→−∞ (dimensionally, the divergence is linear in |h|);
however, remarkable cancellations in the beta function βλ

h allow one to show that λh reaches a fixed point close to
α as h→−∞. The same cancellations are of course (a posteriori) present also in the original naive power series
expansion, but are much less visible there.

Finally, let us comment about the combinatorial divergence due to the large number of diagrams: this divergence
indicates that we should not simply expand in a sum over Feynman graphs, but rather over (resummed) families of
such diagrams; in the fermionic context, the regrouping of Feynman diagrams into families leads to a determinant
or Pfaffian expansion, which is better behaved combinatorially than the original expansion (see for instance [34,
Section 4]). Roughly speaking, using the signs from the fermionic Wick rule we can regroup families of Feynman
diagrams into determinants; the sum over Feynman diagrams is obtained by expanding the determinant along a row
or column; however, it is better to estimate the determinant of an n× n matrix in terms of the maximal eigenvalue,
rather than in terms of the sum over the n! terms in the definition of the determinant.

Using well known methods coming from constructive QFT one can solve the above difficulties, as explained in the
following section.
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6. The interacting case: Non-perturbative multiscale construction

As discussed in the previous section, the perturbation theory in Feynman diagrams for the pressure and correlation
functions of the model does not appear to be convergent in α, uniformly in L and m. In this section we show that at
finite L and m we can reorganize the expansion, thus obtaining a new series, the renormalized expansion, which is
not a power series in α anymore and has better convergence properties. In particular, it will allow us to show that the
observables of interest are well-defined and analytic in α, uniformly as L→∞ and m→ 0 and to get Theorem 2 (see
Section 6.4) and the corresponding statements for multi-dimer correlations (Section 7.2).

The renormalized expansion has been described in detail in several specialized and review papers in the last 20
years, see [9–12,34,50], and is reviewed and adapted to the present case in this section. In order to derive it, we proceed
roughly speaking as follows: we first decompose the propagator in a way similar to (2.34) and we integrate step by
step the propagator on scale h = 0,−1,−2, . . . . At each step, before integrating the next scale, we properly resum
the expansion at hand, by isolating the divergent parts of the relevant and marginal contributions from the rest (the
irrelevant terms); the relevant and marginal divergent parts are proportional to the running coupling constants, already
mentioned at the end of the previous section. Moreover, at each step we express the effect of the integration on scale h

in a way similar to (5.1), with the important difference that the truncated expectation in the r.h.s. of (5.1) is not written
as a sum over Feynman diagrams, but rather as a sum over Pfaffians, each of which collects several contributions
arising from different pairings. The resulting expansion takes the form of a multiscale Pfaffian expansion, expressed
in terms of the running coupling constants, rather than in terms of α.

We start from the generating function with anti-periodic boundary conditions on the Grassmann variables in both
coordinate directions: dropping, for notational simplicity, the label (11),

Z�(λ,m,A)=
∫

P�(dψ)eV
(0)
� (ψ)+B(0)

� (ψ,J), (6.1)

where V
(0)
� + B(0)

� is obtained from V� + B� by re-expressing the original Grassmann fields in terms of Majorana
fields, via (2.22). After the integration of the fields on scales 0,−1, . . . , h + 1, we recast (6.1) into a form similar
to (6.1), with V (0) and B(0) replaced by scale-dependent effective potentials, depending on the infrared fields ψ(≤h).
This is expressed by the following lemma.

Proposition 7. For any h≤ 0, (6.1) can be rewritten as

Z� = eE
(h)
� +S

(h)
� (J)

∫
PZh,mh,χh

(
dψ(≤h)

)
eV

(h)
� (
√

Zhψ(≤h))+B(h)
� (
√

Zhψ(≤h),J). (6.2)

For h= 0, E
(0)
� = S

(0)
� (J)= 0, Z0 = 1, m0(k)=m cosk1, and PZ0,m0,χ0(dψ) is the same as P�(dψ), once written in

the basis of the Majorana fields ψγ . If h < 0, the Gaussian integration PZh,mh,χh
(dψ(≤h)) has propagator

g(≤h)(x− y)

Zh

:=
∫
T2

dk
(2π)2

χh(k)

Zh

e−ik(x−y)

(
Ĝmh

(k) 0
0 Ĝmh

(k)

)
, (6.3)

where χh was defined in (2.36) and

Ĝmh
(k)= 1

2

(−i sink1 + sin k2 imh(k)

−imh(k) −i sin k1 − sin k2

)−1

. (6.4)

The constants E
(h)
� , Zh, the functions mh(k) and the effective potentials S

(h)
� (J), V

(h)
� (ψ), B(h)

� (ψ,J) are defined
inductively in the course of the proof.

The kernels of the effective potential V
(h)
� (ψ) are defined in terms of the following representation:

V
(h)
� (ψ)=

∑
n≥1:
n even

∑
γ1,...,γn

∑
x1,...,xn

W(h)
n,γ (x1, . . . ,xn)

[
n∏

i=1

eipγi
xi ψxi ,γi

]
, (6.5)
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where γ is a shorthand for (γ1, . . . , γn), the sums over x1, . . . ,xn run over �, and W
(h)
n,γ depends on � (weakly, see

comments after (6.7) below), but we drop the label � for simplicity of notation. Note that if we impose that

W
(h)
n,(γ1,...,γn)(x1, . . . ,xn)= (−1)πW

(h)
n,(γπ(1),...,γπ(n))

(xπ(1), . . . ,xπ(n)) (6.6)

with π any permutation and (−1)π its signature, then the representation (6.5) is unique. Similarly,

B(h)
� (ψ,J) =

∑
n≥1:
n even

∑
q≥1

∑
γ1,...,γn,

j1,...,jq

∑
x1,...,xn

y1,...,yq

W
(h)
n,q,γ ,j(x1, . . . ,xn;y1, . . . ,yq)

×
[

n∏
i=1

eipγi
xi ψxi ,γi

][
q∏

i=1

Jyi ,ji

]
, (6.7)

where Jx,j is an alternative symbol for Jb , with b = (x,x + êj ). The kernels W
(h)
q,j (y1, . . . ,yq) of S

(h)
� are defined

analogously. All these kernels satisfy “natural” dimensional estimates that can be deduced from the discussion in
Section 6.2.1 below (see in particular (6.71)). In a finite box, the kernels W

(h)
n,γ , etc., depend weakly on the volume

and mass, in the sense that for any m > 0 they reach their infinite volume limit exponentially fast, and these infinite-
volume kernels admit a limit as m→ 0 (see also comments around (2.64)). Therefore, the finite-volume, finite-mass
kernels are all bounded uniformly in L and m, provided L m−1 1.

Remark 10 (Translation invariance properties of the kernels). At the initial step, h = 0, the kernels W
(0)
n,q,γ ,j and

W
(0)
n,γ are obtained from (2.43) and (2.57) after re-expressing the field ψ in the Majorana basis, via (2.22). Be-

cause of the factors t
(m)
b entering the definition of E

(m)
b , these kernels are not translation invariant. However, the

non-translation invariant terms vanish at m = 0 (see e.g. the quartic terms in the r.h.s. of (2.52) as an illustra-
tion): therefore, P0W

(0)
n,q,γ ,j := W

(0)
n,q,γ ,j|m=0 is translation invariant (same for P0W

(0)
n,γ and P0W

(0)
q,j ), a fact that

will be useful in the following. Similarly, for later convenience, we introduce the operator P1, which extracts the
linear part in m from the kernel it acts on: P1W

(0)
n,q,γ ,j := m∂mW

(0)
n,q,γ ,j|m=0. It is easy to see that the kernels

P1W
(0)
n,q,γ ,j(x1, . . . ,xn;y1, . . . ,yq) are translation invariant, up to an overall oscillatory factor (−1)(x1)1 (see again

(2.52)). The same properties are valid for the kernels at lower scales, as it follows from the induction below.

6.1. Multi-scale integration (proof of Proposition 7)

We proceed inductively. We already discussed the validity of (6.2) at the first step, h= 0. We now need to show how
to go from scale h to h− 1. The first key step that we have to perform at each iteration is the localization procedure,
which consists in isolating the potentially divergent contributions in V

(h)
� and B(h)

� from the rest (Sections 6.1.1
and 6.1.2); next we will rescale the Grassmann fields and finally we will integrate out the (rescaled) fields on scale h

(Section 6.1.3).

6.1.1. The localization procedure
We write:

V
(h)
� = LV

(h)
� +RV

(h)
� , B(h)

� = LB(h)
� +RB(h)

� , (6.8)

where L, the localization operator, is a projection operator that acts linearly on the effective potential as described in
the following. The operator R is called the renormalization operator: it extracts from V

(h)
� + B(h)

� the well-behaved
(“irrelevant”) part. For simplicity, in the following we spell out the definitions of L and R in the L→∞ case only,
the finite volume case being treatable in a similar, even though notationally more cumbersome, way, see e.g. [12,
Eqs (2.74)–(2.75)]. Recall that the only potentially divergent diagrams in the multiscale expansion are those with
(|P ψ

v |, |P J
v |) = (2,0), (4,0), (2,1) (see the discussion after (5.8)), the (2,0) terms being relevant, and (4,0), (2,1)
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being marginal: therefore, L acts non-trivially only on these terms. More precisely, denoting by V
(h)
n,� the n-legged

contribution to the effective potential, i.e.,

V
(h)
n,�(ψ)=

∑
x1,...,xn

γ

W(h)
n,γ (x1, . . . ,xn)

[
n∏

i=1

eipγi
xi ψxi ,γi

]
(6.9)

we let (dropping the � label to indicate that we are formally giving the definition in the L→∞ case only)

LV
(h)
2 (ψ) =

∑
x,y
γ,γ ′

eipγ xψx,γP0W
(h)

2,(γ,γ ′)(x,y)e
ipγ ′y
[
1+ (y− x) · ∂̂]ψx,γ ′

+
∑
x,y
γ,γ ′

eipγ xψx,γP1W
(h)

2,(γ,γ ′)(x,y)e
ipγ ′yψx,γ ′ (6.10)

and

LV
(h)
4 (ψ)=

∑
x1,...,x4
γ1,...,γ4

P0W
(h)
4,γ (x1,x2,x3,x4)

[
4∏

i=1

eipγi
xi ψx1,γi

]
, (6.11)

while LV
(h)
n (ψ)= 0, ∀n > 4. In the first line of (6.10), ∂̂ indicates the symmetric discrete gradient, whose ith compo-

nent acts on lattice functions as ∂̂if (x)= 1
2 (f (x+ êi )−f (x− êi )). Note that all the fields appearing in these formulas

are localized at the same point, or at two points at a distance 1, which justifies the name of localization operator for L.
The action of L on the source term is defined similarly (and it acts non-trivially only on the term with two ψ and one
J fields):

LB(h)(ψ)=
∑
x,y,z
γ,γ ′,j

eipγ xψz,γP0W
(h)

2,1,(γ,γ ′),j (x,y; z)eipγ ′yψz,γ ′Jz,j . (6.12)

The rationale behind the definition of L is that it guarantees that: (1) the action of R= 1−L on the kernels produces
a dimensional gain, which is enough to make the analogue of the dimensional estimate (5.8) for renormalized graphs
(i.e. graphs such that each non-trivial subgraph is renormalized by the action of R) convergent; (2) the algebraic
structure of L is sufficiently simple that the linear space spanned by L(V + B) is finite dimensional, i.e., it can
be parametrized by a finite number of constants. The fact that the action of R = 1 − L on the kernels produces a
dimensional gain has been discussed in several books and review papers, see e.g. [10,34]. A heuristic explanation of
this point, adapted to the present case, is discussed at the end of the present section, see Section 6.1.4 below.

6.1.2. The structure of the local terms
Let us now discuss the explicit structure of the local terms, and let us show that they are parametrized by a finite
number of constants. We define

K
(h)
2,γ (x− y) :=P0W

(h)
2,γ (x,y), (6.13)

K
(h)
4,γ (x1,x2,x3,x4) :=P0W

(h)
4,γ (x1,x2,x3,x4), (6.14)

M
(h)
2,γ (x− y) := (−1)y1P1W

(h)
2,γ (x,y), (6.15)

B
(h)
2,1,γ ,j (x− y,x− z) := P0W

(h)
2,1,γ ,j (x,y; z), (6.16)

so that K
(h)
2,γ , K

(h)
4,γ and B

(h)
2,1,γ ,j are independent of m, while M

(h)
2,γ is linear in m. They are all translation invariant. Let

us separately rewrite in a more compact way the contributions to the local part of the effective potential associated with
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these kernels. As an illustration, let us consider the contribution to the local part of the effective potential associated
with K

(h)
2,γ , which can be rewritten as (again, we provide formulas only in the L→∞ limit; we also add the apex

(≤ h) to the fields to recall that they are on scale ≤ h)∑
x,y

∑
γ,γ ′

eipγ xψ(≤h)
x,γ K

(h)

2,(γ,γ ′)(x− y)e
ipγ ′y
[
1+ (y− x) · ∂̂]ψ(≤h)

x,γ ′

=
∑
γ,γ ′

∫
dkdk′

(2π)2

(
K̂

(h)

2,(γ,γ ′)(pγ ′)+
2∑

j=1

sink′j ∂kj
K̂

(h)

2,(γ,γ ′)(pγ ′)

)

× ψ̂
(≤h)
−k,γ

ψ̂
(≤h)

k′,γ ′ δ
(
k+ pγ − k′ − pγ ′

)
, (6.17)

where, as in (2.18), the integrals over k,k′ run over the torus T2, δ is a periodic Dirac delta over the torus,

ψ̂
(≤h)
k,γ :=

∑
x

eikxψ(≤h)
x,γ (6.18)

and K̂
(h)

2,(γ,γ ′)(k) :=∑x eikxK
(h)

2,(γ,γ ′)(x). In finite volume, integrals are replaced by discrete sums as in (2.16).

Claim 1. We have

LV
(h)
2 (ψ)=

∫
dk

(2π)2
ψ̂T
−kCh(k)ψ̂k, (6.19)

where ψ̂k is a column vector with components ψ̂k,γ , γ = 1,2,3,4, and Ch(k) is a block-diagonal matrix of the form:

Ch(k)=
(

ch(k) 0
0 ch(k)

)
(6.20)

with

ch(k)=−
(

zh(−i sin k1 + sin k2) iσh

−iσh zh(−i sink1 − sin k2)

)
(6.21)

for some zh, σh ∈R with z0 = σ0 = 0. Moreover, there exist real constants lh, Z
(1)
h , Z

(2)
h such that

LV
(h)
4 (ψ)= lh

∑
x

ψx,1ψx,2ψx,3ψx,4, (6.22)

LB(h)(ψ)= Z
(1)
h

Zh

F (1)(ψ,J)+ Z
(2)
h

Zh

F (2)(ψ,J) (6.23)

and

F (1)(ψ,J)= 2i
∑

x

(−1)x1+x2
[
Jx,1(ψx,1ψx,3 +ψx,2ψx,4)

+ iJx,2(ψx,1ψx,3 −ψx,2ψx,4)
]
, (6.24)

F (2)(ψ,J)= 2i
∑

x

[
Jx,1(−1)x1+1(ψx,1ψx,2 +ψx,3ψx,4)

+ Jx,2(−1)x2(ψx,1ψx,4 +ψx,2ψx,3)
]
. (6.25)

Zh is the same as in (6.2)–(6.3) and is inserted in (6.23) for later convenience.
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Remark 11. For future reference, it is useful to give here the expressions of Eqs (6.22) through (6.25) in terms of
Dirac variables, via (2.30):

LV
(h)
4 (ψ)= lh

∑
x

ψ+x,1ψ
−
x,1ψ

+
x,−1ψ

−
x,−1, (6.26)

F (1) =
∑
x,ω

J (1)
ω (x)ψ+x,ωψ−x,ω, J (1)

ω (x) := 2(−1)x(Jx,1 + iωJx,2), (6.27)

F (2) =
∑
x,ω

J (2)
ω (x)ψ+x,ωψ−x,−ω, J (2)

ω (x) := 2
(
Jx,1(−1)x1 + iωJx,2(−1)x2

)
. (6.28)

Proof of Claim 1. Consider first the case h= 0. Then, LV
(0)
2 = 0 (so that z0 = σ0 = 0) simply because the effective

potential V� contains no bilinear term in the fields, cf. (2.52). Suppose instead that h ≤ −1. Then, since we are
assuming the statement of Proposition 7 at scale h, the field ψ̂

(≤h)
k,γ has the same support as χh(k)= χ(2−hk) (in the

sense that its propagator has this support, cf. (6.3)). Remember from the discussion after (2.21) that the support of
χ(·) is essentially {k ∈ T

2 : ‖k‖ ≤ π/2}, where ‖ · ‖ is the Euclidean distance on T
2. Then the only non-vanishing

terms in (6.17) are the diagonal ones, i.e., those with γ = γ ′. Note that the term K̂
(h)
2,(γ,γ ) gives zero contribution, since∫

dkdk′ψ̂−k,γ ψ̂k′,γ = 0 by anticommutation.

In a similar way we find that the contribution to the local part of the effective potential associated with M
(h)
2,γ can

be rewritten as∑
x,y

∑
γ,γ ′

eipγ xψ(≤h)
x,γ M

(h)

2,(γ,γ ′)(x− y)e
i(pγ ′+(π,0))y

ψ
(≤h)

x,γ ′

=
∑
γ,γ ′

∫
dkdk′

(2π)2
ψ̂

(≤h)
−k,γ M̂

(h)

2,(γ,γ ′)
(
pγ ′ + (π,0)

)
ψ̂

(≤h)

k′,γ ′ δ
(
k+ pγ − k′ − pγ ′ − (π,0)

)
. (6.29)

Thanks to the above mentioned properties of the support of the field ψ̂
(≤h)
k,γ

, the only non-vanishing terms in (6.29) are

those with (γ, γ ′)= (1,2), (2,1), (3,4), (4,3). In terms of these definitions and properties we can rewrite LV
(h)
2 as

(6.19), with

Ch(k)=
(

ch(k) 0
0 dh(k)

)
, (6.30)

ch(k)=
(

a
(h)
1 sin k1 + b

(h)
1 sin k2 σ

(h)
1,2

σ
(h)
2,1 a

(h)
2 sin k1 + b

(h)
2 sin k2

)
, (6.31)

dh(k)=
(

a
(h)
3 sin k1 + b

(h)
3 sin k2 σ

(h)
3,4

σ
(h)
4,3 a

(h)
4 sin k1 + b

(h)
4 sin k2

)
(6.32)

and: a
(h)
γ = ∂k1K̂

(h)
2,(γ,γ )(pγ ), b

(h)
γ = ∂k2K̂

(h)
2,(γ,γ )(pγ ), σ

(h)

γ,γ ′ = 1
2 (M̂

(h)

2,(γ,γ ′)(pγ )− M̂
(h)

2,(γ ′,γ )
(pγ ′)). Even more: by using

the symmetries of the Grassmann action and of the propagator, one can check (see Appendix B for some details) that:

• a
(h)
γ is independent of γ and purely imaginary: i.e., a

(h)
γ = izh for some real constant zh;

• b
(h)
γ = (−1)γ ia

(h)
γ , so that b

(h)
γ = (−1)γ−1zh, for the same constant zh;

• σ
(h)
1,2 = −σ

(h)
2,1 = σ

(h)
3,4 = −σ

(h)
4,3 = iσh, for some real constant σh (the fact that σ1,2 = −σ2,1 and σ3,4 = −σ4,3 is

obvious from the definition).

Therefore, in (6.30), ch(k)= dh(k), and ch(k) is of the form (6.21).
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As far as the quartic and source local terms are concerned, we find (6.22) with

lh =
∑

x2,x3,x4
π∈S4

(−1)πK
(h)
4,(π(1),π(2),π(3),π(4))(x1,x2,x3,x4)

4∏
j=1

eipπ(j)xj , (6.33)

where S4 is the set of permutations of (1,2,3,4), and

LB(h)(ψ)=
∑
γ<γ ′

∑
j

Zh;(γ,γ ′),j
∑

z

e
i(pγ+pγ ′ )zψz,γ ψz,γ ′Jz,j , (6.34)

where the constants Zh;(γ,γ ′),j are

Zh;(γ,γ ′),j = B̂
(h)

2,1,(γ,γ ′),j (pγ ′ ,pγ − pγ ′)− B̂
(h)

2,1,(γ ′,γ ),j
(pγ ,pγ ′ − pγ ). (6.35)

Using again the symmetries of the Grassmann action given in Appendix B we find that the constant lh is real, while
the constants Zh;(γ,γ ′),j are such that the source term takes the form (6.23) where Z

(1)
h , Z

(2)
h are real. �

Remark 12. Note that LV
(h)
2 has the same structure as the inverse of the propagator in (2.23)–(2.24), and it is

parametrized just by two real constants zh and σh. In conclusion, thanks to the way L is defined and to the symmetry
of the theory, the local part of the effective potential is parametrized by 5 real constants, namely zh, σh, lh, Z

(1)
h , Z

(2)
h .

These constants are all independent of m, except σh, which is exactly linear in m. As we shall see in the following, the
terms proportional to zh and σh are inserted step by step into the Gaussian integration, thus “dressing” iteratively
the propagator at scale h.

6.1.3. The integration of the fields on scale h

We resume the proof of Proposition 7 and we proceed with the inductive proof of (6.2). We assume the representation
to be valid at scale h; since LV

(h)
2,� is bilinear in the fields and has antisymmetric kernel, we can apply (2.15) to write

PZh,mh,χh

(
dψ(≤h)

)
e
LV

(h)
2,�(
√

Zhψ(≤h)) = et
(h)
� P

Z̃h−1,mh−1,χh

(
dψ(≤h)

)
, (6.36)

where exp(t
(h)
� ) corresponds to the factor

√
det(1−MV ) in (2.15), with V = 2LV

(h)
2 (
√

Zhψ
(≤h)), and accounts for

the change in the normalization of the two Gaussian Grassmann integrations. To be allowed to apply (2.15) we have
to check that det(1 − μMV ) > 0 for every μ ∈ [0,1]. It is not hard to check that this is satisfied if LV

(h)
2 has the

symmetry structure summarized in Claim 1, with zh small and mh−1(0)/mh(0) close to 1, uniformly in h. We will
see later (Remark 18) that this is indeed the case, provided λ is small enough.

The matrix M ′ appearing in (2.15) can be computed immediately in Fourier space, and we obtain after some algebra
that the “dressed” measure P

Z̃h−1,mh−1,χh
(dψ(≤h)) has a propagator similar to (6.3), namely

∫
T2

dk
(2π)2

χh(k)

Z̃h−1(k)
e−ik(x−y)

(
Ĝmh−1(k) 0

0 Ĝmh−1(k)

)
=: g̃

(≤h)(x− y)

Zh−1
, (6.37)

where

Z̃h−1(k) := Zh

(
1+ zhχh(k)

)
, (6.38)

mh−1(k) := Zh

Z̃h−1(k)

(
mh(k)+ σhχh(k)

)
, (6.39)

Zh−1 := Z̃h−1(0)=Zh(1+ zh), (6.40)
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and r.h.s. of (6.37) defines g̃(≤h). The constants zh, σh are computed from the effective potential at scale h, following
the procedure explained in the proof of Claim 1. We can therefore rewrite (6.2) as

Z� = eE
(h)
� +t

(h)
� +S

(h)
� (J)

∫
P

Z̃h−1,mh−1,χh

(
dψ(≤h)

)
× e

LV
(h)
4,�(
√

Zhψ(≤h))+LB(h)
� (
√

Zhψ(≤h),J)+RV
(h)
� (
√

Zhψ(≤h))+RB(h)
� (
√

Zhψ(≤h),J)
. (6.41)

Remark 13. Inductively, we see that mh(k) is linear in m, simply because σh is linear in m, and m0(k)=m cosk1.
Therefore, the propagator at m= 0 is massless: this is an instance of the fact that our theory remains critical at m= 0,
irrespective of the value of the interaction λ.

We now apply the “addition formula” (2.14) to split PZ̃h−1,mh−1,χh
as:

P
Z̃h−1,mh−1,χh

(
dψ(≤h)

)= PZh−1,mh−1,χh−1

(
dψ(≤h−1)

)
P

Zh−1,mh−1,f̃h

(
dψ(h)

)
, (6.42)

where the propagator of P
Zh−1,mh−1,f̃h

is

g(h)(x− y)

Zh−1
=
∫
T2

dk
(2π)2

f̃h(k)

Zh−1
e−ik(x−y)

(
Ĝmh−1(k) 0

0 Ĝmh−1(k)

)
(6.43)

and

f̃h(k)=Zh−1

[
χh(k)

Z̃h−1(k)
− χh−1(k)

Zh−1

]
. (6.44)

(To prove (6.42), just check that g̃(≤h)(x− y)/Zh−1 = g(≤h−1)(x− y)/Zh−1 + g(h)(x− y)/Zh−1).
Note that f̃h(k) has the same support as fh(k)= χh(k)− χh−1(k) defined in (2.35), in fact (using (6.40) and the

fact that χh−1(k)χh(k)= χh−1(k))

f̃h(k)= fh(k)
1+ zh

1+ zhχh(k)
≥ 0. (6.45)

Note also that g(h) satisfies the same estimate as in Lemma 2 (with m replaced by mh(0) and possibly with different
constants C,c) provided that zh in (6.45) stays uniformly small for all scales h ≤ 0. We now rescale the fields and
define

V̂
(h)
�

(√
Zh−1ψ

(≤h)
) := LV

(h)
4,�

(√
Zhψ

(≤h)
)+RV

(h)
�

(√
Zhψ

(≤h)
)
,

(6.46)
B̂(h)

�

(√
Zh−1ψ

(≤h)
) := B(h)

�

(√
Zhψ

(≤h)
)
.

It follows that

LV̂
(h)
� (ψ)= λh

∑
x

ψx,1ψx,2ψx,3ψx,4 =: λhFλ(ψ), (6.47)

LB̂(h)
� (ψ)= Z

(1)
h

Zh−1
F (1)(ψ,J)+ Z

(2)
h

Zh−1
F (2)(ψ,J), (6.48)

with

λh =
(

Zh

Zh−1

)2

lh. (6.49)
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A simple computation (simply based on (2.22) and (2.52), plus the observation that Z−1 =Z0 = 1: recall from Claim 1
that z0 = 0) shows that

λ0 = l0 =−32α =−32
(
eλ − 1

)
. (6.50)

Similarly, we find Z
(1)
0 =Z

(2)
0 = 1. We now define (recall the decomposition ψ(≤h) =ψ(h) +ψ(≤h−1) as in (6.42))

eV
(h−1)
� (

√
Zh−1ψ

(≤h−1))+B(h−1)
� (
√

Zh−1ψ
(≤h−1),J)+Ẽ

(h−1)
� +S̃

(h−1)
� (J)

=
∫

P
Zh−1,mh−1,f̃h

(
dψ(h)

)
e
λhFλ(
√

Zh−1ψ
(≤h))+∑2

j=1 Z
(j)
h Fj (ψ(≤h),J)

× eRV̂
(h)
� (
√

Zh−1ψ
(≤h))+RB̂(h)

� (
√

Zh−1ψ
(≤h),J) (6.51)

with the constants fixed by the convention that B(h−1)
� (ψ,0)= V

(h−1)
� (0)= S̃

(h−1)
� (0)= 0, which proves (6.2) with h

replaced by h− 1, if one sets E
(h−1)
� =E

(h)
� + t

(h)
� + Ẽ

(h−1)
� and S

(h−1)
� (J)= S

(h)
� (J)+ S̃

(h−1)
� (J).

Using (6.51) and the definition of truncated expectation (cf. e.g. (3.5)), we can rewrite

V
(h−1)
� (

√
Zh−1ψ)+B(h−1)

� (
√

Zh−1ψ,J)+ Ẽ
(h−1)
� + S̃

(h−1)
� (J)

=
∑
s≥1

1

s!E
T
h

(
V̂

(h)
�

(√
Zh−1

(
ψ +ψ(h)

)
,J
); . . . ; V̂ (h)

�

(√
Zh−1

(
ψ +ψ(h)

)
,J
)︸ ︷︷ ︸

s times

)
, (6.52)

where ET
h is the truncated expectation with respect to the propagator g(h)/Zh−1 of the field ψ(h) (cf. (6.43)), and

V̂
(h)
� (ψ,J) is a shorthand for V̂

(h)
� (ψ)+ B̂(h)

� (ψ,J). This concludes the proof of Proposition 7. �

Remark 14 (The beta function). The above procedure allows us to write the effective constants ξh := (λh,Zh,mh(0),

Z
(1)
h ,Z

(2)
h ) with h≤ 0, in terms of ξk with h < k ≤ 0:

λh−1 = λh + βλ
h,

Zh−1

Zh

= 1+ βZ
h ,

mh−1(0)

mh(0)
= 1+ βm

h ,

(6.53)
Z

(1)
h−1

Z
(1)
h

= 1+ β
Z,1
h ,

Z
(2)
h−1

Z
(2)
h

= 1+ β
Z,2
h ,

where β#
h = β#

h(ξh, . . . , ξ0) is the so-called beta function. By construction, βλ
h and βZ

h depend only on (λk,Zk), k ≥ h.
Therefore, the first two equations can be solved independently of the others and their solution can be plugged into the
other three. Note also that, applying iteratively (6.53), and recalling that ξ0 = (−32(eλ− 1),1,m,1,1), one can also
see β#

h as a function of λ and (a priori) m. However, by definition and the fact that mh−1(0) is linear in {mk(0)}k≥h,
we see that β#

h is independent of m, that is, it only depends on λ.

Proposition 7 is valid for all h < 0. However, it is convenient to use it only for scales h ≥ h∗, where h∗ is the
first scale (with respect to the ordering h = 0,−1,−2, . . .) such that6 mh−1(0) > 2h. When we reach scale h∗, we
note that the propagator g̃(≤h∗)/Zh∗−1 (see (6.37)) admits the same dimensional estimates as g(h∗)/Zh∗−1 of (6.43).
The two propagators differ mainly because in the former the cut-off function is χ(2−h∗k) and in the latter it is
fh∗(k)� χ(2−h∗k)−χ(2−h∗+1k), so that momenta below 2h∗ are absent in the second. However, the mass mh∗−1(0)

is bounded from below by 2h∗ and it effectively cuts-off momenta below 2h∗ also in g̃(≤h∗)/Zh∗−1. Therefore, one can
integrate all at once all the scales ≤ h∗, thus obtaining the contribution to the pressure and to the generating function
from this last step, Ẽ

(h∗−1)
� + S̃

(h∗−1)
� (J).

6Note that this definition is slightly different from the one given in Section 5.2, which referred to the non-renormalized expansion, where the mass
was not modified iteratively under the RG flow. The correct one, used from now on and keeping into account the mass renormalization, is the
current one. With some abuse of notation we indicate it by the same symbol.
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6.1.4. Dimensional gains associated with the action of R
Let us now turn to the discussion (promised after (6.12)) of why the localization procedure produces the right di-
mensional gains, required for making the multiscale expansion of the effective potentials convergent. Recall from
Section 5.2.2 that the possible divergences in the tree expansion come from vertices v ∈ V (τ) with (|P ψ

v |, |P J
v |) =

(2,0), (4,0), (2,1). We focus on the case (4,0) (quartic kernels). Consider the combination

V
(hv)
4

(
ψ(≤hv)

)= ∑
x1,...,x4
γ1,...,γ4

W
(hv)
4,γ (x1,x2,x3,x4)

[
4∏

i=1

eipγi
xi ψ(≤hv)

xi ,γi

]
. (6.54)

Such a term appears in the computation of the effective potentials at scale hv − 1, see (6.52). In the multiscale
integration procedure, the “external fields” ψ

(≤hv)
x1,γ1 , . . . ,ψ

(≤hv)
x4,γ4 will be contracted on scales h1, . . . , h4 smaller or

equal to hv . We let h− :=max(h1, . . . , h4). By proceeding in a way similar to the one described in Section 5.2, W
(hv)
4,γ

can be written as a sum over trees τv with root v at scale hv and over P ∈Pτv of terms W
(hv)
4,γ (τv,P;x1, . . . ,x4), where

τv specifies the cluster structure of the labelled diagrams contributing to it, while P = {Pw}w∈V (τv)∪E(τv) specifies
the field labels associated with the vertices w of τv (recall that |Pw| represents the number of fields external to the
subdiagram associated with w). We denote by V

(hv)
4 (τv,P;ψ) the analogue of (6.54) at fixed τv and P. The kernel

W
(hv)
4,γ (τv,P;x), with x := (x1, . . . ,x4), is a combination of propagators, each having a scale strictly larger than hv .

We let h+ > hv denote the smallest such scale. Since a propagator at scale k decays over a length scale of order 2−k ,
W

(hv)
4,γ (τv,P;x) is essentially zero whenever two variables xi ,xj are at distance (much) larger than 2−h+ .
Recall that the quartic kernels have scaling dimension zero. In other words, go back to (5.8): if τ there is a tree that

contains the vertex v we are looking at (and τv is the sub-tree starting from v), the contribution to the r.h.s. from the
portion of the tree τ from scale h− to h+ containing the cluster v is 1= 20×(h−−h+). In order to make the sum over
trees τ convergent, we would need to improve this bound by 2θ(h−−h+) for some θ > 0. To see that the dimensional
estimate of RV

(h)
4 (τv,P;ψ) is better than the one of V

(h)
4 (τv,P;ψ) precisely by such a factor (with θ = 1), we rewrite

(denoting x= (x1, . . . ,x4) and omitting for lightness the index (≤ hv) on the fields)

RV
(hv)
4 (τv,P;ψ) =

∑
x,γ

[
4∏

i=1

eipγi
xi

]{
(1−P0)W

(hv)
4,γ (τv,P;x)

[
4∏

i=1

ψxi ,γi

]

+P0W
(hv)
4,γ (τv,P;x)

[
ψx1,γ1

ψx2,γ2ψx3,γ3(ψx4,γ4 −ψx1,γ4)+ · · ·

+ψx1,γ1(ψx2,γ2 −ψx1,γ2)ψx1,γ3ψx1,γ4

]}
. (6.55)

The kernel in the second line has an operator 1−P0 acting on it, which extracts its m-dependent part, i.e., it extracts
the m-dependent part from at least one of the propagators contributing to its value; recalling that every m extracted
from a propagator G(k) comes with a dimensional gain of the order 2h∗−k (see Lemma 2; note that the terms linear
in m originate necessarily from the non-diagonal part of some propagator), we see that this term has the desired
dimensional gain, simply because 2h∗−k ≤ 2h−−h+ . The terms in second and third line of (6.55) involve a difference
between two fields at different locations, of the form ψxi ,γi

−ψx1,γi
, which is formally (i.e., forgetting lattice effects)

the same as

ψxi ,γi
−ψx1,γi

� (xi − x1) ·
∫ 1

0
ds∂ψx1+s(xi−x1),γi

. (6.56)

Now note that the factor xi − x1 goes together with P0W
(hv)
4,γ (τv,P;x) which, as discussed above, decays over a

typical length scale 2−h+ . Therefore, |xi − x1| can be bounded essentially by 2−h+ . Similarly, the derivative ∂ acting
on ψ·,γi

corresponds to a dimensional contribution proportional to 2hi ≤ 2h− , simply because ψ·,γi
is contracted at

scale hi ≤ h− and the derivative of G(hi) satisfies the same qualitative estimates as G(hi) times an extra 2hi (see
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Lemma 2). Therefore, all the terms appearing in RV
(hv)
4 (τv,P;ψ) are associated with a gain factor 2h−−h+ , which is

enough to renormalize the (marginal) quartic terms.
To summarize, the action of L essentially corresponds to extracting the zero order term in a Taylor expansion of

the kernel with respect to m, and of the fields with respect to x− x1; conversely, the action of R corresponds to taking
the rest of first order of the same Taylor expansion. The rest of order 1 has an improved estimate by a factor 2h−−h+

as compared to the original kernel. By proceeding similarly, one can show that the rest of order 2 has a dimensional
gain ∝ 22(h−−h+), etc. The rationale behind the definition of L should now be clear: if it acts on a marginal term,
it extracts the zero-th order term in the aforementioned Taylor expansion, so that the renormalized part has a gain
2h−−h+ , which is enough to eliminate the divergences in (5.8) from vertices v with (|P ψ

v |, |P J
v |)= (4,0) or (2,1); if

it acts on a linearly relevant term (i.e., a term with (|P ψ
v |, |P J

v |)= (2,0)), it extracts the zero-th plus first order terms
in the Taylor expansion (this is precisely the choice done in (6.10)), so that the renormalized part (which is a Taylor
rest of order 2) has a gain 22(h−−h+).

6.2. The renormalized tree expansion

Now that we described the inductive definition of the (renormalized) effective potential, we have to explain why such
an expansion is well behaved: that is, we explain how to get estimates on the kernels of the effective potential. As
already observed above, see in particular Remark 14, the effective potential on scale h can be thought of as a function
of the whole sequence of effective constants ξk = (λk,Zk,mk(0),Z

(1)
k ,Z

(2)
k ), h < k ≤ 0. The sequence {ξk}k>h is a

solution to the beta function equation (6.53) with initial data (λ0,Z0,m0(0),Z
(1)
0 ,Z

(2)
0 )= (−32(eλ − 1),1,m,1,1)

and, therefore, the sequence itself, as well as the effective potential, are just functions of λ and m. Nevertheless, it is
convenient to proceed as follows.

We will first think of {ξk}k>h as an arbitrary sequence, not necessarily a solution to the beta function (6.53).
The first key result to be discussed, summarized in Proposition 8 and in Eq. (6.70) below, is that the kernels of
the effective potential can be written as an absolutely convergent series, provided the sequence {ξk}k>h is such that
λk , (Zk/Zk−1 − 1) and (mk(0)/mk−1(0) − 1) remain small (more precisely, the required assumptions are (6.66)–
(6.67) for λ small enough). The proof of this fact requires a combinatorial representation of the expansion in terms
of renormalized GN trees, reviewed in this section, and the iterative use of the Pfaffian representation for truncated
expectations, recalled in Lemma 3.

Once we know that the kernels of the effective potential are well defined for sequences of effective constants
satisfying suitable conditions, the next goal is, of course, to prove that the solution to the beta function equation do
satisfy such conditions, i.e., it remains uniformly close to the initial datum for all h≤ 0. The flow driven by the beta
function is very non-trivial and it has been investigated in a series of works from the mid 1990s to the mid 2000s
for very similar models (cf. [11,13,14,49,50] among others), by combining the use of the Schwinger–Dyson equation
with local Ward Identites. A crucial point is that the beta function can be written as the sum of two terms: one part is
“universal,” i.e., it is the same for all the models treated in [11,13,14,49,50] and corresponds to the beta function of
a reference model (an ultraviolet cut-off version of the Luttinger model [51]); the second part is a model-dependent
rest, which is exponentially small and, therefore, summable as h→−∞. The key point is, therefore, to study the flow
under the universal part of the beta function, and to prove that such a flow remains bounded and close to the initial
datum for all h≤ 0. We review the conceptual scheme used to study the flow in Section 6.3 below.

Let us now describe the tree expansion for the effective potential, and let us discuss how to prove its absolute
convergence. The definition of the renormalized GN trees arises naturally from the iterative construction described
in the proof of Proposition 7 (see (6.52)) and it is described in detail, e.g., in [10,12,34]. The renormalized trees are
defined in a way very similar to the one described in Section 5.2.1, with the following important differences.

(1) A renormalized tree τ contributing to V
(h)
� , B(h)

� , Ẽ
(h)
� , or S̃(h)(J) has root on scale h and can have endpoints on

all possible scales between h+ 2 and +1. The endpoints v on scales hv ≤ 0 are preceded by a node of τ (on scale
hv − 1) that is necessarily a branching point.

(2) Normal endpoints on scale hv are associated with λhv−1Fλ, if hv ≤ 0; they are associated with (one of the monomi-

als contributing to) V̂ (0), if hv = 1. Similarly, special endpoints on scale hv are associated with (Z
(j)

hv−1/Zhv−2)Fj

(cf. (6.23)), where either j = 1 or j = 2, if hv ≤ 0; they are associated with (one of the monomials contributing
to) B̂(0), if hv = 1.
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(3) Each vertex of the tree that is not an endpoint and that is not the special vertex v0 (the leftmost vertex of the tree,
immediately following the root on τ ) is associated with the action of an R operator.

The family of renormalized trees with root on scale h, N normal endpoints and n special endpoints will be denoted
by T (h)

N,n. In terms of renormalized trees, the l.h.s. of (6.52) can be written as (replacing h− 1 by h)

V
(h)
�

(√
Zhψ

(≤h)
)+B(h)

�

(√
Zhψ

(≤h),J
)+ Ẽ

(h)
� + S̃

(h)
� (J)

=
∑

N,n≥0
N+n≥1

∑
τ∈T (h)

N,n

V (h)
(
τ,
√

Zhψ
(≤h),J

)
, (6.57)

where V (h)(τ,
√

Zhψ
(≤h),J) is defined iteratively: if v0 is the first vertex of τ , if τ1, . . . , τs (s = sv0 ≥ 1) are the

subtrees of τ with root v0, and if ET
h+1 is the truncated expectation associated with the propagator Z−1

h g(h+1),

V (h)
(
τ,
√

Zhψ
(≤h),J

)
= 1

s!E
T
h+1

(
V

(h+1)(
τ1,
√

Zhψ
(≤h+1),J

); . . . ;V (h+1)(
τs,
√

Zhψ
(≤h+1),J

))
, (6.58)

where ψ(≤h+1) =ψ(≤h) +ψ(h+1) and V
(h+1)

(τi ,
√

Zhψ
(≤h+1),J):

• is equal to RV̂ (h+1)(τi ,
√

Zhψ
(≤h+1),J) if τi is non-trivial. Here R is the linear operator induced by the definitions

(6.8)–(6.12), and V̂ (h+1)(τi,
√

Zhψ
(≤h+1),J) is defined in analogy with (6.46), that is

V̂ (h+1)
(
τi,
√

Zhψ
(≤h+1),J

) := V (h+1)
(
τi,
√

Zh+1ψ
(≤h+1),J

);
• is equal to λh+1Fλ(

√
Zhψ

(≤h+1)) if τi is trivial, h <−1 and the endpoint of τi is normal;
• is equal to

∑2
j=1(Z

(j)

h+1/Zh)Fj (
√

Zhψ
(≤h+1),J) if τi is trivial, h <−1 and the endpoint of τi is special;

• is equal to V̂ (0)(
√

Z−1ψ
(≤0)) (resp. B̂(0)(

√
Z−1ψ

(≤0),J)) if τi is trivial, h=−1 and the endpoint of τi is normal
(resp. special).

In order to compute as explicitly as possible the tree values V (h)(τ,ψ,J), we can inductively apply (6.58) and use
the Pfaffian representation for the truncated expectation in its r.h.s., originally due to Battle, Brydges and Federbush
[4,17,18], later improved and simplified [1,19] and re-derived in several review papers, see e.g. [34,36]:

Lemma 3 (Pfaffian representation). Using a notation similar to (3.4) and (3.7) we get

ET
h

(
X1(ψ); . . . ;Xs(ψ)

)= c1 · · · csZ
−p

h−1

∑
T ∈T

αT

∏
�∈T

g
(h)
�

∫
dPT (t)Pf

(
Mh,T (t)

)
. (6.59)

Here:

• the constants ci are those appearing in the definition (3.7) of Xi and 2p =∑s
i=1 ni (recall that ni is the order of

the monomial Xi );
• the first sum runs over set of lines forming a spanning tree between the s vertices corresponding to the monomials

X1, . . . ,Xs , i.e., T is a set of lines that becomes a tree if one identifies all the points in the same clusters;
• αT is a sign (irrelevant for the subsequent bounds);
• g

(h)
� is a shorthand for g

(h)

γ (�),γ ′(�)(x(�)−x′(�)), where γ (�), γ ′(�) and x(�), x′(�) are the γ and x indices associated
with the two ends of the line �, which should be thought of as being obtained from the pairing (contraction) of two
fields ψx(�),γ (�) and ψx′(�),γ ′(�);

• if t= {ti,i′ ∈ [0,1],1 ≤ i, i′ ≤ s}, then dPT (t) is a probability measure with support on a set of t such that ti,i′ =
ui · ui′ for some family of vectors ui = ui (t) ∈Rs of unit norm;

• Mh,T (t) is an antisymmetric (2p − 2s + 2) × (2p − 2s + 2) matrix, whose elements are given by M
h,T
f,f ′ =

ti(f ),i(f ′)g
(h)

�(f,f ′), where: f,f ′ /∈⋃�∈T {f 1
� , f 2

� } and f 1
� , f 2

� are two field labels associated with the two (entering
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and exiting) half-lines contracted into �; i(f ) ∈ {1, . . . , s} is s.t. f ∈ Pvi(f )
; g

(h)

�(f,f ′) is the propagator associated

with the line obtained by contracting the two half-lines with indices f and f ′.
If s = 1 the sum over T is empty, but we can still use Eq. (6.59) by interpreting the r.h.s. as equal to 0 if P1 is empty

and equal to PfMh,T (1) otherwise.

Remark 15. If the Pfaffian is expanded by using its definition (2.3), then (6.59) reduces to the usual representation
of the truncated expectation in terms of connected Feynman diagrams. The spanning trees in (6.59) guarantee the
minimal connection among the vertices X1, . . . ,Xs and the Pfaffian can be thought of as a resummation of all the
Feynman diagrams obtained by pairing (contracting) in all possible ways the fields outside the spanning tree, with
the rule that each contracted pair (ψx,γ ,ψy,γ ′) is replaced by Z−1

h−1g
(h)

γ,γ ′(x− y); the interpolation in t is necessary in
order to avoid an over-counting of the diagrams.

With respect to the Feynman graph expansion, Eq. (6.59) has the advantage that the Pfaffian Pf(Mh,T (t)) can be
bounded by using the Gram–Hadamard inequality [34], which leads to∣∣∣∣∫ dPT (t)Pf

(
Mh,T (t)

)∣∣∣∣≤ (C2h
)p−s+1

. (6.60)

Here 2(p − s + 1) is the size of the antisymmetric matrix Mh,T and C is the constant appearing in the estimate of
g(h), see the lines following (6.45). This is in contrast with the estimate scaling like (p − s + 1)!(C2h)p−s+1 that
we would get via the Feynman expansion. Morally speaking, recalling that (PfM)2 = detM , the Gram–Hadamard
inequality is similar in spirit to bounding the determinant of a k × k matrix by the largest eigenvalue to the power k

(which is combinatorially optimal), rather than by the number of terms in the determinant times the maximum of the
matrix elements to the power k. Finally, the number of spanning trees is bounded as

|T| ≤ s!Cp, (6.61)

with p the total number of fields appearing in X1, . . . ,Xs [34, Appendix A3.3]. Note that, if formula (6.59) is applied
to the r.h.s. of (6.52), then the number of spanning trees ∝ s! is compensated by the factor 1/s! appearing there.

When we apply iteratively (6.58) and Lemma 3, we can naturally distinguish the various contributions arising from
the choices of the monomials in the factors V̂ (0) and B̂(0) associated with the endpoints on scale 1, as well as the scale
at which each field in these monomials is contracted (we can keep track of these informations via the labels P attached
to the trees, as explained in Section 5.2.1).

The resulting formula has a natural structure, slightly complicated by the presence of the R operators acting at all
vertices of the tree that are not endpoints. Therefore, in order to make it as transparent as possible, let us temporarily
neglect the action of the renormalization operator, i.e., let us temporarily pretend that the action of R on the nodes
of τ is replaced by the identity. Then the result of the iteration would lead to the following relation (the reader can
easily convince himself of the formula by induction, or consult the aforementioned reviews for more details, see in
particular [12,34]):

V (h)∗ (τ,
√

Zhψ,J)=
∑

P∈Pτ

√
Zh
|Pψ

v0 |∑
T ∈T

∑
xv0

W ∗τ,P,T(xv0)ψ
(
P ψ

v0

)
J
(
P J

v0

)
, (6.62)

where T =⋃v not e.p. Tv is the union of the spanning trees Tv associated with all the nodes that are not endpoints
in τ , which arise from the inductive application of the Pfaffian formula (6.59). The star in V∗ is to recall that we are
ignoring the renormalization operator. Moreover, W ∗

τ,P,T is given by

W ∗τ,P,T(xv0) =
[ ∏

v not e.p.

(Zhv/Zhv−1)
|P ψ

v |/2
][∏

v e.p.

K(hv)
v (xv)

]

×
{ ∏

v not e.p.

1

sv!
∫

dPTv (tv)Pf
(
Mhv,Tv (tv)

)[∏
�∈Tv

g
(hv)
�

]}
, (6.63)
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where K
(hv)
v (xv) is equal to: λhv−1, if v is a normal endpoint on scale hv < 1; (Z

(jv)

hv−1/Zhv−2), if v is a special endpoint

on scale hv < 1; the kernel (see Remark 9) of the monomial of V̂ (0) (resp. B̂(0)) compatible with the assignment of
external fields Pv , if v is a normal (resp. special) endpoint on scale hv = 1.

The analogous formula for V (h)(τ,
√

Zhψ,J), in which we do not neglect the action of R, can be written in the
form

V (h)(τ,
√

Zhψ,J)

=
∑

P∈Pτ

√
Zh

|Pψ
v0 |∑

T ∈T

∑
β∈BT

∑
xv0

Wτ,P,T,β(xv0)
[
ψ
(
P ψ

v0

)]
β
J
(
P J

v0

)
, (6.64)

where β is a multi-index that keeps track of the various terms arising from the action of R: see e.g. (6.55), which
shows that the action of R on a four-legged kernel produces 4 different terms. Moreover,[

ψ
(
P ψ

v0

)]
β
=
∏

f∈Pψ
v0

∂
qβ(f )

jβ(f ) ψx(f ),ω(f ), (6.65)

where jβ(f ) ∈ {1,2} and qβ is a nonnegative integer ≤ 2; the action of a derivative on the fields arises from the
interpolation formula (6.56), see [12] for details. In particular, the kernels Wτ,P,T,β admit a representation similar to
(6.63), see [12, Eq. (3.81)] for an analogous formula (the parameter β appearing there is equal to L in our case, and
our β is called α there).

6.2.1. Analyticity and dimensional estimates of the kernels
The expressions (6.62)–(6.64) can be bounded by using (6.60). In the absence of the action of the R operators the
resulting bound has the same structure as the final bound of Section 5.2, see (5.8) and following discussion, modulo
an improved combinatorial factor due to the use of the Pfaffians rather than of the Feynman diagrams. If, on the
contrary, we take the action of R into account, the dimensional factors are improved by the gain factors discussed in
Section 6.1.4. The net result is:

Proposition 8. Let |λ| ≤ λ0 for λ0 suitably small. If

sup
h′>h

|λh′ | ≤ cl |λ|, sup
h′>h

∣∣∣∣ Zh′

Zh′−1

∣∣∣∣≤ 22czλ
2
, (6.66)

sup
h′>h

∣∣∣∣ mh′(0)

mh′−1(0)

∣∣∣∣≤ 2cm|λ|, sup
h′>h

2−h′ ∣∣mh′(0)
∣∣≤ 1 (6.67)

for some λ-independent constants cl, cz, cm > 0, then there exists a (λ-independent) constant C > 0 such that, if
τ ∈ T (h)

N,n,

1

|�|
∑
xv0

∣∣Wτ,P,T ,β(xv0)
∣∣ ≤ CN+n

(
cl |λ|
)1/2|Iψ

v0 |−N 2h(2−1/2|P ψ
v0 |−|PJ

v0
|−Qβ)

×
[ ∏

v s.e.p.

∣∣∣∣Z(jv)

hv−1

Zhv−1

∣∣∣∣][∏
v not
e.p.

C
∑sv

i=1 |Pvi
|−|Pv |

sv! 2czλ
2|P ψ

v |22−1/2|P ψ
v |−|PJ

v |−z(Pv)

]
, (6.68)

where the first product in the second line runs over the special endpoints, while the second over all the vertices of the
tree that are not endpoints. Moreover Qβ =∑f∈Pψ

v0
qβ(f ) and

z(Pv)=
⎧⎨⎩1− cm|λ| if (P

ψ
v ,P J

v )= (4,0), (2,1),
2(1− cm|λ|) if (P

ψ
v ,P J

v )= (2,0),
0 otherwise.

(6.69)
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This is the analogue of [12, Eq. (3.110)] and the details of its proof can be found there. To understand the factor

λ
1
2 |Iψ

v0 |−N , observe that if for instance all endpoints are quartic monomials λψx1ψx2ψx3ψx4 , then λ
1
2 |Iψ

v0 |−N = λN .

Note that the renormalized scaling dimension d(Pv) := 2− 1
2 |P ψ

v | − |P J
v | − z(Pv) appearing at exponent in the

last factor of (6.68) satisfies

d(Pv)+ czλ
2
∣∣P ψ

v

∣∣≤ (−1

6
+ czλ

2
)(∣∣P ψ

v

∣∣+ 2
∣∣P J

v

∣∣), (6.70)

which is negative for λ small. Therefore, if λ is small enough, the product
∏

v not e.p. 2czλ
2|P ψ

v |+d(Pv) in the second

line of (6.68) produces an exponentially small factor smaller than, e.g., 2−
|Pv |
12 (hv−hv′ ) for each branch of the tree

connecting two vertices v and v′, with v′ < v and |Pv| constant along the branch. Not surprisingly, this allows to sum
over the scale differences hv − hv′ , as well as over the choices of the field labels {Pv}v∈τ (see [34, Appendix 6.1] for
details about how to perform these summations). Using also the fact that the number of spanning trees in T is smaller
than (const.)N+n

∏
v sv! (see (6.61)), and that the number of elements of BT is smaller than (const.)N+n, we get

1

|�|
∑
N≥1

∑
τ∈T (h)

N,n

∑
P∈Pτ

∑
T ∈T

∑
β∈BT :
Qβ=q

∑
xv0

∣∣Wτ,P,T ,β(xv0)
∣∣

≤ Cn+1|λ|
(

sup
h′>h
j=1,2

∣∣∣∣Z(j)

h′
Zh′

∣∣∣∣)n

2h(2−1/2|P ψ
v0 |−|PJ

v0
|−q)

, (6.71)

for a suitable, λ-independent, C > 0. This is the analogue of [12, Theorem 3.12] and further details of its proof can
be found there. Eq. (6.71) is the final dimensional estimate on the (renormalized) kernels of the effective potential,
promised after (6.7). Absolute summability of the tree expansion immediately implies:

Corollary 1. The kernels on scale h are analytic functions of the sequences {(λk,Zk,mk)}k>h in the space defined
by (6.66)–(6.67), for λ small.

Note that the factors Z
(j)

h′ /Zh′ , corresponding to special endpoints, may diverge in the infrared limit, i.e. for h′ →
−∞ (and in fact this happens for j = 2, see Proposition 10 below: the ratio grows like 2h′(η2(λ)−η(λ)) and η2 �= η in
general). When we compute the nth cumulant of the height function (Section 7.2) we will consider diagrams with
n special endpoints and such diverging factors do appear. It will however turn out that they are irrelevant in the
computation the large-distance asymptotics of height cumulants, since they are compensated by oscillations in the
multi-dimer correlation functions.

Remark 16 (The short memory property). If λ is small then, as discussed above (see lines after (6.70)), every branch

of the tree is associated with an exponentially decaying factor smaller than, e.g., 2−
|Pv |
12 (hv−hv′ ). Therefore, not only

the sum over the scale and field labels converges exponentially, but we also have that the sum restricted to the trees
τ with root on scale h and at least one vertex on scale k > h is bounded dimensionally by the r.h.s. of (6.71) times a
dimensional gain of the form Cθ 2θ(h−k), for a suitable θ > 0 (it can be checked, in particular, that any θ in (0,1−
2cm|λ| + 2czλ

2) makes the job). This improved bound is usually referred to as the short memory property (i.e., trees
with long branches are exponentially suppressed) and will play an important role in the following. From now on, θ

will be a constant in (0,1), uniformly bounded away from zero for λ small. One can think for definiteness of θ = 1/2,
but as we just discussed one can actually take θ close to 1 when λ is close to zero.

6.3. The beta function

The above procedure implies the absolute summability and analyticity of the tree expansion kernels, provided the
effective constants λh, Zh, mh(0) satisfy the conditions (6.66)–(6.67) of Proposition 8. It is easy to verify that these
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conditions hold at the first step, h = 0, and that they remain valid for a finite number of steps, provided λ is small
enough. The difficult issue is to show that they remain valid for all the scales such that h∗ ≤ h ≤ 0, uniformly in h∗
(that is, uniformly in m, as m→ 0).

An important remark is that, as long as these conditions are verified, the beta function itself, governing the flow of
the effective constants via (6.53), is analytic: in fact, the beta function is defined simply in terms of the local parts of
the 2- and 4-legged kernels of the effective potential V (h) and of the local part of the 3-legged kernel of B(h), cf. Eqs
(6.33)–(6.39) and (6.47)–(6.49). Therefore, the natural strategy to study the flow of λh, Zh, mh(0) is the following:
write down the Taylor expansion for the beta function, which is convergent as long as (6.66)–(6.67) are verified;
truncate the Taylor expansion at lowest non-trivial order, and try to check whether the approximate flow governed by
this truncated beta function verifies (6.66)–(6.67); if so, prove that the solution is stable under the addition of higher
order Taylor approximations.

In order to understand the difficulty of the problem at hand, consider the flow equation for λh, and suppose that
the second order truncation of the beta function reads λh−1 = λh + ahλ

2
h + · · · . The qualitative properties of the flow

are encoded in ah: if, e.g., ah ≥ a > 0, uniformly in h, then the truncated flow is divergent as h→−∞, and the same
holds for the non-truncated flow; in this case, the multiscale construction in the form described above would have to
be stopped at a critical scale, below which perturbation theory in λh is not applicable anymore. If, on the contrary,
ah ≤−a < 0, uniformly in h, then the truncated flow would be convergent, λh→ 0 as h→−∞, and the same would
hold for the non-truncated flow; such a scenario is usually called asymptotic freedom in the Renormalization Group
language. Quite remarkably, our case of interest realizes a critical, intermediate, scenario: an explicit computation of
the lowest order contribution to the beta function shows that in the case of interacting dimers ah = 0. Therefore, the
truncated flow of λh remains analytically close to the initial datum λ0, uniformly in h. The problem, of course, is that,
since ah is vanishing, the truncated flow is unstable, and one needs to show that a similar cancellation takes place at
all orders in perturbation theory, which is very hard (if not impossible) to prove by direct computation.

The idea to be pursued is that the beta function of the dimer model is asymptotically close as h→−∞ to that
of several other models, all belonging to a family called, in the RG language, a universality class (the Luttinger
liquid universality class). Other statistical mechanics or field theory models belonging to the same class are: the
Luttinger model [14,51], the Thirring model [6,46,62], the XXZ spin chain [12,63], the repulsive 1D Hubbard model
[8], the 8-vertex model [5,15], the Ashkin–Teller model at criticality [37,48], etc. All these are associated with the
same reference model (an ultraviolet cut-off version of the Luttinger model, whose precise definition is given in
Section 6.3.2), which is defined in the two-dimensional continuum, with exactly linear effective dispersion relation for
the free propagator (in the sense of (6.73) below). The key fact is that the reference model displays more symmetries
than the dimer model or any of the other models in the same universality class: these extra symmetries can be used to
show that the beta function for λh in the reference model is asymptotically zero; as a consequence, the same property
is true for the dimer model, as well as for the other models mentioned above. Let us now describe more technically
how this idea is implemented.

6.3.1. Asymptotic vanishing of the beta function
At each step of the multiscale integration procedure, we can decompose the single scale propagator (6.43) as the sum
of a massless relativistic propagator plus a rest:

g(h)(x)

Zh−1
= 1

Zh−1

(
g

(h)
R (x)+ r(h)(x)

)
, (6.72)

where

g
(h)
R (x)=

∫
dk

(2π)2
e−ikxf̃h(k)(−ik1 + Jk2)

−1 (6.73)

and J is the diagonal matrix with diagonal elements (1,−1,1,−1). The index R stands for “relativistic,” which refers
to the fact that the denominator is exactly linear in k. Note that the rest satisfies improved dimensional estimates
as compared to g

(h)
R : i.e., ‖r(h)(x)‖ satisfies an estimate like (2.39) times an extra (gain) factor that can be bounded

proportionally to 2h +mh(0)/2h. Using (6.67) and the definition of h∗ we get

mh(0)

2h
≤ 2

mh(0)

mh∗(0)

2h∗

2h
≤ 2 · 2(h∗−h)(1−cm|λ|).
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In conclusion, the rest r(h) has an improved dimensional estimate as compared to g
(h)
R by a factor proportional to

2h + 2(h∗−h)(1−cm|λ|).

Remark 17. Any observable on scale h can be naturally decomposed as the sum of a dominant part plus a rest: the
dominant part is expressed in terms of GN trees with all the endpoints on scale ≤ 0 and their values computed by
replacing all the single-scale propagators by their massless relativistic approximation g

(h)
R ; the rest can be written as

a sum of trees, each of which either has at least one endpoint on scale 1, or it has at least one single scale propagator
of type r(k) for some k ≥ h. It is easy to see that the rest satisfies a better dimensional estimate than the dominant part
(better by an exponential factor 2θh+ 2θ(h∗−h), with 0 < θ < 1 as in Remark 16, in the infrared limit). To see this, use
the estimate above for ||r(k)(x)|| and the short memory property (Remark 16): just note that 2k2θ(h−k) ≤ 2θh.

In particular, the beta function can be written as the sum of a dominant part plus a rest, in the sense discussed in
this remark:

βλ
h = βλ

h,R + rλ
h , (6.74)

where, as long as (6.66)–(6.67) are verified, the rest satisfies∣∣rλ
h

∣∣≤ (const.)λ2
h2θh. (6.75)

The universal part βλ
h,R of the beta function has been studied in detail in several works. In particular, [14, Theorem 2

and Eq. (57)] establish the asymptotic vanishing of the beta function, which is summarized here.

Proposition 9. For λh small enough, let Z̄h(λh) be the solution to the beta function equation for Zh with the sequence
(λh, . . . , λ0) replaced by (λh, . . . , λh) and Z̄0(λh)= 1. Then βλ

h,R((λh, Z̄h(λh)), . . . , (λh, Z̄0(λh))) is asymptotically
vanishing as h→−∞, i.e.,∣∣βλ

h,R

((
λh, Z̄h(λh)

)
, . . . ,

(
λh, Z̄0(λh)

))∣∣≤ Cθ |λh|22θh, (6.76)

for 0 < θ < 1 (see Remark 16) and a suitable Cθ > 0.

Note that, at the nth order in perturbation theory, βλ
h,R is the sum of O(2n!) Feynman graphs of order O(|λh|n),

each of which is not vanishing as h→−∞, but a dramatic cancellation implies that their sum is O(|λh|n2θh), for
all n≥ 2. A consequence of (6.75) and (6.76) and of a lowest order computation of βZ

h , βm
h , β

Z,j
h is that the flow of

the interacting dimer model is exponentially convergent, as summarized in the following proposition (the proof is a
simple corollary of Proposition 9, see also the comment following [14, Eq. (57)] and [6, Theorem 2.1]). In reading the
following proposition, recall that the beta functions of λh, Zh, Z

(j)
h , mh(0)/m are independent of m and, therefore,

the corresponding flows can be extrapolated to h→−∞ (i.e., in the study of their flow we do not need to stop at h∗).

Proposition 10. For λ small enough, the solution to the beta function equations (6.53) satisfies the following:

lim
h→−∞λh = λ−∞(λ) (6.77)

with λ−∞(λ) analytic in λ and such that∣∣λh(λ)− λ−∞(λ)
∣∣≤Cθ

∣∣λ2
∣∣2θh (6.78)

for a suitable 0 < θ < 1 as in Remark 16 and Cθ > 0. Moreover, | Zh

Zh−1
| ≤ 22czλ

2
and | mh(0)

mh−1(0)
| ≤ 2cm|λ|, for suitable

constants cz, cm > 0, uniformly in h. Finally,

Zh ∼ 2η(λ)h, Z
(i)
h ∼ 2ηi(λ)h, mh(0)∼m2ηm(λ)h, (6.79)
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where ∼ means that the ratio of the two sides is bounded from above and below by two universal positive constants,
uniformly in h, and η(λ), η1(λ), η2(λ) and ηm(λ) are analytic functions of λ, such that η(0) = η′(0) = η1(0) =
η2(0)= ηm(0)= 0. Moreover, η1(λ)= η(λ).

This proposition implies, in particular, that (6.66)–(6.67) are satisfied for all h ∈ [h∗,0], with h∗ = (log2 m)/(1−
ηm)+O(1), as m→ 0. Combining this with Proposition 8 and Corollary 1, we get that the kernels of the effective
potential on scale h are analytic in λ, uniformly in h. The last claim in the proposition, i.e., the fact that η1(λ)= η(λ),
is proved in [13, Theorem 1] (where the index ηb equals our 2(η− η1)).

Remark 18. Note that |Zh/Zh−1| ≤ 22czλ
2

and |mh(0)/mh−1(0)| ≤ 2cm|λ| say that zh and σh are small with λ, uni-
formly in h (recall from (6.40) that Zh−1/Zh = 1+ zh), as was required for the multi-scale integration to be valid
(see comment after (6.36)).

Remark 19. The flow of the effective constants is stable under small changes in the original energy function of the
model; e.g., it remains valid in the presence of a finite range, rather than purely nearest neighbor, interaction. A small
analytical change in the weights entering the definition of the model induces a small analytical change in the values of
λ−∞(λ), η(λ) and ηi(λ). In this sense, these functions are non-universal, i.e., they are model-dependent. However, the
critical exponents η= η1 and η2 are universal (i.e., model-independent) functions of λ−∞(λ). The proof these claims
goes together with the proof of Propositions 9 and 10 and we will not discuss it in details. However, in Section 6.3.2
below, we will explain more technically some of the ideas behind them.

6.3.2. The reference model: Emerging Dirac description
In this section we define the reference model, which we mentioned so far only vaguely. It is needed both in the proofs
of Proposition 10, and in the explicit computation of the dimer-dimer correlation (e.g. Theorem 2), which is required
for a sharp estimate of the height fluctuations. The generating function of the reference model are defined by the
following Grassmann functional integral (for lightness of notations we give formally the expression in infinite volume
and massless limit, but to be precise the model is defined on [−L,L]2 with anti-periodic b.c. on the fields ψ±ω and
with an infrared regularization, similar to putting m > 0 in the dimer model; see [15] for details):

eSR(J) =
∫

PZ

(
dψ(≤M)

)
eV(
√

Zψ(≤M))+B(
√

Zψ(≤M),J), (6.80)

where the Grassmann field is {ψ(≤M)±
x,ω }ω=±

x∈R2 , PZ(dψ(≤M)) is the Grassmann Gaussian integration with propagator∫
PZ

(
dψ(≤M)

)
ψ(≤M)ε

x,ω ψ
(≤M)ε′
y,ω′ = δε,−ε′δω,ω′

2Z

∫
dk

(2π)2
e−ik(x−y) χM(k)

−ik1 +ωk2
, (6.81)

and the χM is an ultraviolet cut-off (coherently with our previous notations, it is a smooth function that vanishes say
for ‖k‖ ≥ 2M ), to be eventually removed, M→+∞. Moreover,

V(ψ)= λ∞
∫

dxdyv(x− y)ψ+x,1ψ
−
x,1ψ

+
y,−1ψ

−
y,−1 (6.82)

with v(x− y) a smooth short-range potential (decaying on a length-scale of order 1), and

B(ψ,J) = Z(1)

Z

∑
ω

∫
dxJ (1)

ω (x)ψ(≤M)+
x,ω ψ(≤M)−

x,ω (6.83)

+ Z(2)

Z

∑
ω

∫
dxJ (2)

ω (x)ψ(≤M)+
x,ω ψ

(≤M)−
x,−ω . (6.84)

We denote the correlation functions of the reference model as

S
(j1,...,jn)

R;ω1,...,ωn
(x1, . . . ,xn) := lim

M→∞
∂n

∂J
(j1)
ω1 (x1) · · · ∂J

(jn)
ωn (xn)

SR(J)

∣∣∣∣
J=0

. (6.85)
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For instance,

S
(1,1)

R;ω,ω′(x,y)= lim
M→∞

(
Z(1)
)2〈

ψ+x,ωψ−x,ω;ψ+y,ω′ψ
−
y,ω′
〉(M)

R,λ∞, (6.86)

where 〈·〉(M)
R,λ∞ denotes (the L→∞ limit of) the average with respect to the measure of density

e−SR(0)eV(
√

Zψ(≤M))PZ

(
dψ(≤M)

)
.

There is a clear analogy between the (M→∞ limit of the) reference model and the dimer model with m= 0, once the
latter is re-expressed in terms of Dirac variables (ψ±x,ω)x∈� (see (2.30)). Indeed, the corresponding free propagators
have the same asymptotic behavior at large distances, see Proposition 2. Also, recall (cf. (6.26)–(6.28)) that the local
parts of the interaction potential and of the source term of the dimer model are given, in terms of Dirac variables, by

λ0

∑
x

ψ+x,1ψ
−
x,1ψ

+
x,−1ψ

−
x,−1,

∑
x,ω

(
J (1)

ω (x)ψ+x,ωψ−x,ω + J (2)
ω (x)ψ+x,ωψ−x,−ω

)
,

respectively, to be compared with (6.82)–(6.84). The analogy is approximate because the fields of the reference model
are defined on the continuum and those of the dimer model on the lattice. However, the large-distance behavior of
the correlation functions do turn out to be the same for the two models, see Propositions 11 and 12. For ease of
comparison, let us introduce a convenient notation for the dimer correlation functions expressed in terms of Dirac
fields: if

S(J)= lim
m→0

lim
�↗Z2

log
Z(11)

� (λ,m,A)

Z(11)
� (λ,m,0)

(6.87)

is the (m→ 0 limit of the �↗ Z
2 limit of the) generating function of correlations for the interacting dimer model,

we let

S(j1,...,jn)
ω1,...,ωn

(x1, . . . ,xn) := ∂n

∂J
(j1)
ω1 (x1) · · · ∂J

(jn)
ωn (xn)

S(J)

∣∣∣∣
J=0

(6.88)

be the corresponding correlation functions, where the external fields J
(j)
ω (x) are related to Jx,j via (6.27)–(6.28).

The generating and correlation functions SR(J) and S
(j1,...,jn)

R;ω1,...,ωn
(x1, . . . ,xn) of the reference model can be expressed

in terms of trees, whose values are the same as those of the dominant trees contributing to the corresponding functions
S(J) and S

(j1,...,jn)
ω1,...,ωn (x1, . . . ,xn) of the dimer model (once again, here we call “dominant” the trees where the propaga-

tors g(h) are replaced by the relativistic propagators g
(h)
R , as discussed in Remark 17). In particular, both types of trees

are associated only with endpoints of type λh, Z
(1)
h , or Z

(2)
h , and the single-scale propagators have exactly the same

form, once the identification between Dirac fields of continuum and discrete models is used.
A minor difference between the contributions to SR(J) and the dominant contributions to S(J) lies in the fact that

the trees contributing to SR(J) have endpoints on all scales ≤M , rather than ≤ 0; moreover, the sequence of running
coupling constants λh,R,Zh,R,Z

(1)
h,R,Z

(2)
h,R of the reference model, corresponding to the initial data λ∞,Z,Z(1),Z(2)

is different in general from the corresponding sequence of the dimer model. However, the key observation is the
following.

Proposition 11. The initial data λ∞,Z,Z(1),Z(2) of the reference model can be properly adjusted, so that
λh,R,Zh,R,Z

(1)
h,R,Z

(2)
h,R are asymptotically the same as the constants of the dimer model, as h→−∞, namely, if

h≤ 0,

|λh − λh,R| +
∣∣∣∣ Zh

ZR,h

− 1

∣∣∣∣≤ Cθ |λ|22θh,

∣∣∣∣ Z(i)
h

Z
(i)
R,h

− 1

∣∣∣∣≤Cθ |λ|2θh, (6.89)
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uniformly in M , for some 0 < θ < 1 as in Remark 16 and a suitable Cθ > 0, provided λ is sufficiently small. In
particular, the infrared fixed point of λh,R is the same as the one of λh: λ−∞,R = λ−∞. ZR,h and Z

(i)
R,h satisfy the first

two of (6.79) with critical exponents that coincide with those of the dimer model, once all of them are expressed as
functions of λ−∞.

For the proof, see [15], where a similar statement is proven for a quantum spin chain instead of the interacting
dimer model. See in particular [15, Eq. (79)], where Z

(th)
h is the same as our ZR,h.

As anticipated above, the reason why it is useful to introduce the reference model at all is that it has more sym-
metries than the dimer model. In particular, its “action” V + B is formally covariant under a “local chiral gauge
transformation” ψ±x,ω �→ e±iαω(x)ψ±x,ω (here, “local” refers to the fact that the phase transformation depends on the
point, “chiral” to the fact that it depends on ω, while “formally” means “up to corrections due to the ultraviolet reg-
ularization χM(k)”). The latter induces exact identities (known as Ward Identities) between the correlation functions
of the reference model, which in turn induce asymptotic identities between the correlations of the dimer model. By
playing with these identities one can prove, among other things, Proposition 10, as well as the following equations for
the correlation functions.

Proposition 12. Fix the bare parameters λ∞,Z,Z(i) as in Proposition 11. Then the correlation functions of the ref-
erence and dimer models are asymptotically the same at large distances; more precisely, denoting by Dx the diameter
of the set x := {x1, . . . ,xn}, n ≥ 2, and by δx the minimal distance among the points in x, if δx ≥ max{1, c0Dx} for
some c0 > 0, then

∣∣S(j1,...,jn)

R;ω1,...,ωn
(x1, . . . ,xn)− S(j1,...,jn)

ω1,...,ωn
(x1, . . . ,xn)

∣∣≤ Cn,θ

Dn+θ
x

, (6.90)

for some 0 < θ < 1 as in Remark 16 and a suitable Cn,θ > 0, which may depend on c0.
Moreover, there exist functions K1(·),K2(·), κ2(·), analytic in their argument in a neighborhood of zero, such that

K1(0)=K2(0)= κ2(0)= 1, and for all x �= y

S
(1,1)

R;ω,ω′(x,y)= δω,ω′

(4π)2

K1(λ−∞)

((x1 − y1)+ iω(x2 − y2))2
+R

(1)

ω,ω′(x− y), (6.91)

S
(1,2)

R;ω,ω′(x,y)= S
(2,1)

R;ω,ω′(x,y)= 0, (6.92)

S
(2,2)

R;ω,ω′(x,y)= δω,−ω′

(4π)2

K2(λ−∞)

|x− y|2κ2(λ−∞)
+R

(2)

ω,ω′(x− y), (6.93)

where, if n1, n2 ≥ 0, the rest R
(i)

ω,ω′ satisfies

∣∣∂n1
x1

∂n2
x2

R
(i)

ω,ω′(x)
∣∣≤ C′n1+n2,θ

|x|−2−θ−n1−n2

for θ ∈ (0,1) as in Remark 16 and C′n,θ > 0. Moreover, if q > 2,

S
(1,1,...,1)
R;ω1,...,ωq

(x1; . . . ;xq)= 0. (6.94)

Eq. (6.90) for n= 2 and j1 = j2 = 1, and Eq. (6.91) are proved in [15]: (6.90) for n= 2 and j1 = j2 = 1 is the same
as [15, Eq. (43)], while (6.91) is the same as [15, Eq. (41)], just expressed in real space rather than momentum space.
The rest R

(1)

ω,ω′ can be written in closed form (as apparent from [15, Eq. (39)]), but we do not write it here explicitly, in
order to avoid a further digression that would not be needed for our purposes. The proof of (6.90) for general values of
n, j1, . . . , jn is a corollary of the proof in [15]. Eq. (6.92) is a trivial consequence of the fact that the propagator (6.81)
is diagonal in ω and the interaction (6.82) contains as many fields with ω =+ as fields with ω =−. Eqs (6.93) and
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(6.94) are proven in [7, Theorem 1.1]7 in the case where v(x− y) is replaced by a local delta-like interaction (in this
case the reference model is called Thirring model). If instead v is as in (6.82), then (6.93) and (6.94) can be proven by
comparing the tree expansions of the Thirring and of the reference model (6.80), in the same spirit as one compares
the expansions of the dimer and reference model, see discussion before Proposition 11.

The exponent κ2 is related in a simple way to the exponents η and η2 of Zh and Z
(2)
h : it is equal to 1+ η2− η, once

η and η2 are re-expressed as functions of λ−∞ = λ−∞(λ), rather than of λ.
Finally, note that Eq. (6.94) is the analogue of the cancellation (3.39) that we already used in the analysis of the

non-interacting dimer model.
The usefulness of the formulas for the correlation functions in Proposition 12 is that they can be used to compute

sharp estimates for the large distance behavior of the dimer correlation functions. These will be exploited in order to
complete the proofs of Theorems 2, 1 and 3.

6.4. The two-point dimer correlation: Proof of Theorem 2

We are finally in the position of proving Theorem 2. We start from

〈1(x,x+êj );1(y,y+êj ′ )〉λ =
∂2

∂Jx,j ∂Jy,j ′
S(J)

∣∣∣∣
J=0

, (6.95)

where S(J) is defined in (6.88) (see also discussion after (7.2) below). Recalling the definition of J
(i)
ω (x) in terms of

Jx,j (cf. (6.27)–(6.28)), we can, if desired, re-express (6.95) in terms of the correlation functions for the Dirac fields
(6.88). More explicitly,

∂2

∂Jx,j ∂Jy,j ′
S(J)

∣∣∣∣
J=0
=
∑

ω,ω′=±
i,i′=1,2

S
(i,i′)
ω,ω′ (x,y)

∂J
(i)
ω (x)

∂Jx,j

∂J
(i′)
ω′ (y)

∂Jy,j ′
. (6.96)

Inserting (6.90) in (6.96) and using (6.92), we rewrite:

〈1(x,x+êj );1(y,y+êj ′ )〉λ

=
2∑

i=1

∑
ω,ω′=±

S
(i,i)

R;ω,ω′(x,y)
∂J

(i)
ω (x)

∂Jx,j

∂J
(i)

ω′ (y)

∂Jy,j ′
+ R̃j,j ′(x− y), (6.97)

where∣∣R̃j,j ′(x− y)
∣∣≤ Cθ

|x− y|2+θ
, (6.98)

with θ ∈ (0,1) as in Remark 16, for some Cθ > 0. Substituting (6.91) and (6.93) into (6.97), and using the definition
of J

(i)
ω (x) in (6.27)–(6.28), we obtain (1.9), with K(λ) = K1(λ−∞), K̃(λ) = K2(λ−∞) and κ(λ) = κ2(λ−∞). This

concludes the proof of Theorem 2, and, therefore, as discussed in Section 4, of Theorem 1 for n= 2.

7. Height fluctuations in the interacting model: Proof of Theorems 1 and 3 for λ �= 0

In this section we use the renormalized tree expansion, the dimensional estimates on the renormalized trees, and the
comparison between the dimer and reference models, discussed in the previous section, to complete the proof of our
main results.

7To get (6.93) and (6.94) from [7, Theorem 1.1] one has to put to zero the parameter ζ there, in which case the Sine-Gordon model appearing in
the l.h.s. of [7, Eq. (1.16)] reduces to the massless Gaussian Free Field. Analyticity of the functions Ki(·), κ−(·) is not stated explicitly there, but
it follows as byproduct from the proofs.
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7.1. Tree expansion for the correlation functions

The multiscale construction described in the previous section induces a representation of the multipoint dimer corre-
lation functions in terms of a renormalized tree expansion. We limit ourselves to the discussion of the correlations at
distinct bonds, the general case being treatable in a similar manner. Using (2.53) and the discussion in Section 2.4, we
find:

〈1b1; . . . ;1bq 〉λ := lim
m→0

lim
�↗Z2

〈1b1; . . . ;1bq 〉�;λ,m
(7.1)

= lim
m→0

lim
�↗Z2

∂k

∂Ab1 · · ·∂Abq

logZ(11)
� (λ,m,A)

∣∣∣∣
A=0

= ∂q

∂Jb1 · · · ∂Jbq

S(J)

∣∣∣∣
J=0

, (7.2)

where S(J) is defined in (6.88) and it can be computed via the iterative renormalized expansion described in the
proof of Proposition 7: in particular, it can be written as S(J) =∑h≤0 S̃(h)(J), where S̃(h)(J) is the single-scale
contribution to the generating function, see (6.51). Note that in the last line of (7.2) we exchanged a derivative with
the limits �↗ Z

2, m→ 0. This is justified by the fact that S(J) can be expressed via an absolutely convergent
expansion, uniformly in � and m, as already discussed in Section 6.2.1 (see below for more details about the bounds
on the tree values contributing to the correlation functions). For what follows, recall that as long as m > 0 the sum
over h runs from h∗ to 0 and that the limit m→ 0 corresponds to h∗ →−∞; therefore, in the following formulas, we
shall always replace h∗ by −∞.

The single-scale contribution S̃(h)(J) to S(J) can be written in a way similar to (6.7):

S̃(h)(J)=
∑
q≥1

∑
j1,...,jq

∑
y1,...,yq

S
(h)
q,j (y1, . . . ,yq)

q∏
i=1

Jyi ,ji
, (7.3)

where S
(h)
q;j (y1, . . . ,yq) collects the contributions to W

(h)
q;j (y1, . . . ,yq) involving propagators on scales > h and at least

one propagator on scale h+ 1. Therefore,

〈1(y1,y1+êj1 ); . . . ;1(yq ,yq+êjq )〉
λ
= q!

∑
h≤0

S
(h)
q,j (y1, . . . ,yq) (7.4)

and, as explained in Section 6.2, S
(h)
q,j (y1, . . . ,yq) can be expressed by a sum over trees τ ∈ T (h)

N,n with n ≤ q special

endpoints8 and N ≥ 0 normal end-points:

〈1(y1,y1+êj1 ); . . . ;1(yq ,yq+êjq )〉
λ

=
∑
h≤0

∑
N≥0

q∑
n=1

∑
τ∈T (h)

N,n

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

Sτ,P(y1, j1; . . . ;yq, jq). (7.5)

Here Sτ,P(y1, j1; . . . ;ym, jm) is the tree value, which can be bounded in a way similar to Eq. (6.68). To give the bound
we need a few extra definitions. Given τ ∈ T (h)

N,n, let us denote by τ ∗ the minimal subtree of τ connecting all its special

endpoints. For each v ∈ τ ∗, let s∗v be the number of vertices immediately following v on τ ∗ such that |P J
v | ≥ 1 (i.e.,

the number of descendants of v in τ ∗). Moreover, let Vnt (τ
∗) be the set of vertices in τ ∗ with s∗v > 1, which are the

branching points of τ ∗. For future reference, we also define v∗0 to be the leftmost vertex on τ ∗ and h∗0 its scale. See
Figure 13.

8The reason why n≤ q rather than n= q is that some special endpoints – those on scale 1 – could be associated with monomials of order two or

more in the J fields, i.e. a monomial of type ξ̃ (γ ;R) with |R|> 1, as the one depicted graphically in Figure 8.
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Fig. 13. Example of a tree τ ∈ T (h)
N,n

appearing in the expansion for the m points correlation function, with N = 3 and n= q = 3. The subtree τ∗
associated with τ is highlighted.

Given these definitions, we can write the bound for Sτ,P(y1, j1; . . . ;yq, jq) as∣∣Sτ,P(y1, j1; . . . ;yq, jq)
∣∣

≤ q!CN+n
(
C|λ|)1/2|Iψ

v0 |−N 2h(2−q)

[ ∏
v∈Vnt (τ∗)

22(s∗v−1)hv e−c
√

2hv δv

]

×
[ ∏

v s.e.p.

∣∣∣∣Z(jv)

hv−1

Zhv−1

∣∣∣∣][∏
v not
e.p.

2cλ2|P ψ
v |22−1/2|P ψ

v |−|PJ
v |−z(Pv)

]
, (7.6)

which is very similar to the bound Eq. (6.68) for the renormalized kernels of the effective potential. In particular,
z(Pv) is given by (6.69). Note that the assumptions (6.66)–(6.67) are verified, thanks to Proposition 10. In comparison

with (6.68), note the presence in (7.6) of the product over the vertices v ∈ Vnt (τ
∗) of 22(s∗v−1)hv e−c

√
2hv δv , where

δv is the tree distance of the set
⋃

f∈PJ
v
{x(f )}, i.e. the length of the shortest tree graph on Z

2 connecting its points

(x(f ), f ∈ P J
v , is one of the coordinates yi ). In this product, the factors 22(s∗v−1)hv take into account the dimensional

gain coming from the fact that we are not summing over the space labels yi of the external fields (the gain is meant
in comparison with Eq. (6.68) where, on the contrary, we summed over all the field variables). Moreover, the factors

e−c
√

2hv δv come from the decaying factors e−c
√

2hw |x(�)−x′(�)| associated with the propagators g
(hw)
� , with w ≥ v and

� ∈ T (the notation g
(hw)
� is as in Lemma 3; the exponential factor comes from the estimate on the propagator on scale

hw , cf. Lemma 2 and the comment after (6.45)). See [6, Section 2.3] for a few more details.

Remark 20. In the following we will actually need improved bounds on the tree values, as compared to (7.6). The
improvements will be based on a decomposition of the tree values into a dominant part plus a rest, combined with a
crucial cancellation in the dominant part, induced by (6.94). Rather than presenting the improved bounds directly, we
prefer to state (7.6) first, and then explain how to obtain an extra dimensional gain for the different contributions to
(7.5), in order to make the ideas behind the proof of these dimensional gains more transparent.

As in Section 6.3.1, the tree expansion (7.5) is refined by decomposing the single scale propagators as in (6.72). The
“refined tree expansion” brings along an extra set of labels, which distinguishes the fields associated with relativistic
propagators g

(h)
R from those with non-relativistic propagators r(h). We call “dominant” the contributions from trees

with endpoints on scales ≤ 0 and involving only relativistic propagators, as in Remark 17. In the perspective of
computing the height fluctuations, it is convenient to distinguish two classes of terms among the dominant ones: those
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with all the special endpoints of type Z
(1)
hv

, and the rest. The final decomposition we shall use takes the following
form:

〈1(y1,y1+êj1 ); . . . ;1(yq ,yq+êjq )〉
λ
= ∂q

∂Jy1,j1 · · ·∂Jyq ,jq

S(J)

∣∣∣∣
J=0

= S(1)
q,j (y1, . . . ,yq)+ S(2)

q,j (y1, . . . ,yq)+ S(3)
q,j (y1, . . . ,yq), (7.7)

where: S(1) collects all the dominant contributions from trees whose special endpoints are all of type Z
(1)
h ; S(2)

collects all the dominant contributions from trees with at least one special endpoint of type Z
(2)
h ; S(3) collects all

the subdominant contributions, i.e., the contributions from trees with at least one endpoint on scale 1, or at least one
propagator of type r(h).

7.2. Multipoint dimer correlation and height cumulants

In order to compute the cumulant of order q > 2 of the height difference, we start from (3.2), with n replaced by q .
Proceeding as in (3.33), in the q-fold sum over the bonds b1 ∈ C(1)

ξ→η, . . . , bq ∈ C(q)

ξ→η , we distinguish a contribution
that includes the terms where all the bonds are outside the two balls Brq (ξ), Brq (η), from the rest. By construction,
the former contribution involves bond configurations such that the bonds are all mutually disjoint, and is the most
difficult to bound. For simplicity, we limit our discussion to these terms, leaving the analysis of the rest to the reader.
We write them in the form

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

(
S(1)

q,j (x1, . . . ,xq)+ S(2)
q,j (x1, . . . ,xq)+ S(3)

q,j (x1, . . . ,xq)
)
, (7.8)

where xi , ji are such that bi = (xi ,xi+ êji
), and the ∗ on the sums indicate the constraint that all the bonds are outside

Brq (ξ) ∪ Brq (η). In the following, we analyze the terms coming from S(1)
q,j first, and then we discuss the other two

contributions.

7.2.1. The contributions of type S(1)
q,j

For these terms, we use the cancellation (6.94) for the correlations of the reference model, which implies that the
analog of S(1)

q,j in the reference model, to be called S(1)
R;q,j, is identically zero:

S(1)
R;q,j(x1, . . . ,xq) :=

∑
ω1,...,ωq

S
(1,...,1)
R;ω1,...,ωq

(x1, . . . ,xq)

q∏
l=1

∂J
(1)
ωl

(xl )

Jxl ,jl

≡ 0, (7.9)

where, for x ∈ Z
2, J

(1)
ω (x) = (−1)x(Jx,1 + iωJx,2), as in (6.27). Therefore, we can add and subtract S(1)

R;q,j, thus
finding

S(1)
q,j (x1, . . . ,xq)= S(1)

q,j (x1, . . . ,xq)− S(1)
R;q,j(x1, . . . ,xq), (7.10)

which implies∣∣∣∣∣
∗∑

b1∈C(1)
ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

S(1)
q,j (x1, . . . ,xq)

∣∣∣∣∣
≤
∑
h

∑
N≥0

(1)∑
τ∈T (h)

N,q

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

∣∣Sdom
τ,P (x1, j1; . . . ;xq, jq)− SR

τ,P(x1, j1; . . . ;xq, jq)
∣∣. (7.11)
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Here, the apex (1) on the sum over the trees recalls that we are summing over the contributions associated with S(1)
q,j .

We denoted by Sdom
τ,P the dominant contribution to the value of the tree τ (i.e. the contribution obtained by replacing

each propagator g(h) with g
(h)
R , see (6.72)), and by SR

τ,P the tree value computed in the relativistic reference model. The
sum over h ranges between −∞ and M , where M is the ultraviolet cut-off of the reference model, to be eventually
sent to infinity.

We distinguish three types of contributions, that we treat separately:

(a) Those associated with the trees with endpoints all on scales ≤ 0, each of which comes in the form of a difference
between the dominant contribution of the tree value in the dimer model, and the corresponding tree value in the
reference model. These contributions are the same, modulo the fact that the effective constants associated with
the endpoints of the tree for the dimer model are λh, Zh, Z

(1)
h , while those in the tree for the reference model are

λR,h, ZR,h, Z
(1)
R,h. Recall that the difference between these effective constants is bounded as in Proposition 11.

Therefore, the contribution associated with each of these trees is bounded in a way similar to (7.6), times an extra
factor 2θhw , with w the right-most endpoint of the tree.

(b) Those associated with the trees that have root at scale h < 0 but have at least one endpoint on scale hv ≥ 1. Since
these terms do not appear (by definition) in S(1)

q,j , we have |Sdom
τ,P − SR

τ,P| = |SR
τ,P|. These terms will turn out to be

negligible due to the short memory property (Remark 16).
(c) Those associated with trees with root at scale h≥ 0. Also in this case, Sdom

τ,P = 0.

We claim that the sum in the r.h.s. of (7.11) can be bounded by

Cq

+∞∑
h=−∞

2h(2−q) min
{
2θ ′h, e−c′

√
2hδmin

}∑
N≥0

CN |λ|N

×
(1)∑

τ∈T (h)
N,q

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

[ ∏
v s.e.p.

∣∣∣∣Z(1)
R;hv−1

ZR;hv−1

∣∣∣∣][ ∏
v∈Vnt (τ∗)

22(s∗v−1)hv e−c′
√

2hv δv

]

×
[ ∏

v not e.p.

2cλ2|P ψ
v |22− 1

2 |P ψ
v |−|PJ

v |−z(Pv)+θ ′
]

(7.12)

for some positive small θ ′, c′ > 0, where we recall that the “pruned tree” τ ∗ was defined after (7.5), see Figure 13.
Here, if as usual bi = (xi ,xi + êji

),

δmin = min
1≤i �=j≤q

min
bi ,bj

|xi − xj |,

with the minimum taken over all possible locations of bi , bj appearing in the sum (7.12) and δmin ≥ 1 since the bonds
bi , bj are disjoint for i �= j . Let us see why (7.12) holds. First consider the trees of type (a), for which h < 0: as we
explained, each of these trees satisfies the estimate (7.6), times an extra factor 2θhw , with w the right-most endpoint of
the tree. We can replace 2θhw by 2θ ′h with some 0 < θ ′ ≤ θ , provided we add θ ′ to the exponent 2− 1

2 |P ψ
v | − |P J

v | −
z(Pv) at each vertex that is not an endpoint. Of course, we will choose θ ′ sufficiently small so that the exponents
remain strictly negative at each vertex (recall (6.70)). Also, we have used hv ≥ h and δv ≥ δmin. Next consider trees of

type (c), for which h≥ 0. In this case, the dimensional gain arises only from the factors e−c
√

2hv δv in the second line

of (7.6), which are smaller than e−(c/2)
√

2hv δv e−(c/2)
√

2hδmin . As for the trees of type (b), the dimensional gain comes
from the short memory property. More precisely, since there is at least a vertex on scale 0, we can extract from the
bound (7.6) a factor 2θ ′h provided we add θ ′ to every exponent 2− 1

2 |P ψ
v | − |P J

v | − z(Pv).
To prove that the q > 2 cumulants of the height differences do not diverge with the distance, it remains to show that

(7.12) is bounded by some constant depending only on q . By Propositions 10 and 11, the critical exponent of Z
(1)
R;h is
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equal to the one of ZR;h, and the ratios |Z(1)
hv−1/Zhv−1| can be bounded from above by a constant, independent of hv .

Moreover, by proceeding as in the proof of (3.44), we find that, for a suitable C′q > 0,

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

∏
v∈Vnt (τ∗)

e−c′
√

2hv δv ≤ C′q
∏

v∈Vnt (τ∗)
2−hvm̄J

v , (7.13)

where m̄J
v is the number of special endpoints contained in the cluster v but not in any other cluster v′ > v (i.e. the

number of special endpoints immediately following v, on scale hv + 1). To get (7.13), we used

δv ≥ cq

∑
f∈PJ

v

min
(
d(xf , ξ), d(xf ,η)

)
(7.14)

for some cq > 0, see also the comment before (3.42) when |P J
v | = 2. In conclusion, (7.11) is bounded by

C′′q
+∞∑

h=−∞
2h(2−q) min

{
2θ ′h, e−c′

√
2hδmin

}∑
N≥0

CN |λ|N

×
(1)∑

τ∈T (h)
N,q

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

[ ∏
v∈Vnt (τ∗)

2hv(2s∗v−2−m̄J
v )

][ ∏
v not e.p.

2d̄v(Pv)

]
, (7.15)

where d̄v(Pv) = 2 − |P ψ
v |(1/2 − cλ2) − |P J

v | − zv + θ ′ which, from (6.70), is negative and actually smaller than
−1+ ε, for any ε > 0, if λ and θ ′ are small enough.

By proceeding as in the proof of (3.48), we find∏
v∈Vnt (τ∗)

2hv(2s∗v−2−m̄J
v ) = 2h∗0(q−2)

∏
v∈V (τ∗)

2|P J
v |−2, (7.16)

where V (τ ∗) is the set of vertices of τ ∗ that are not endpoints and h∗0 − 1 is the scale of the root of τ ∗. Note that the

factor 2h∗0(q−2), multiplied by the factor 2h(2−q) that appears in (7.15), equals the product of 2q−2 = 2|P J
v |−2 over all

the vertices on the branch joining the root of τ with the root of τ ∗. Therefore, (7.15) is bounded by

C′′q
+∞∑

h=−∞
min
{
2θ ′h, e−c′

√
2hδmin

}∑
N≥0

CN |λ|N
(1)∑

τ∈T (h)
N,q

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

∏
v not e.p.

2d̂v(Pv), (7.17)

where

d̂v(Pv)=
{−|P ψ

v |(1/2− cλ2)− zv + θ ′ if |P J
v |> 0,

d̄v(Pv) otherwise.
(7.18)

Note that d̂v ≤ −a < 0 for every v and a suitable constant a independent of λ, provided λ and θ ′ are small enough.
From this, it follows that (7.17) is summable over P, τ and h (recall δmin ≥ 1), the result being a finite, q-dependent,
constant, as desired.

7.2.2. The contributions of type S(2)
q,j

Let us now consider S(2)
q,j , which is apriori very dangerous, in that each of the trees contributing to it is bounded as in

(7.6), without any extra obvious gain (i.e., (6.94) is not true if the upper index is not (1, . . . ,1)). Nevertheless, as was
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the case also for q = 2 in Section 7.2, the dimensional gain arises from oscillating factors, when summing over the
bonds bj in the paths C(j)

ξ→η , j ≤ q .

The contribution to the qth cumulant of the height difference from terms of type S(2)
q,j is of the form

∑
h≤0
N≥0

(2)∑
τ∈T (h)

N,q

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

σb1 · · ·σbq S
dom
τ,P (x1, j1; . . . ;xq, jq), (7.19)

where the notation is analogous to the one used above for the contributions of type S(1)
q,j . An important difference is

that here we do not take absolute values, since we want to take advantage of the signs σb .
Note in fact that every dominant tree is naturally associated with an oscillatory factor, which is equal to the product

of the oscillatory factors (−1)x or (−1)xi associated with the special endpoints of these trees (see Eqs (6.23) through
(6.25)). The value of a dominant tree equals this oscillatory factor times a “non-oscillatory” value (see below for more
details), obtained by contracting via relativistic propagators (which by definition have no oscillatory factors attached)
the contributions that are left attached to all the endpoints. Now, it is apparent from (6.24) that all the trees contributing
to S(1)

q,j (x1, . . . ,xq) have the same oscillatory factor, equal to (−1)x1+···+xq . This compensates exactly with the factor

(−1)x1+···+xq from the product of σb, see (3.12).
The situation is different for S(2)

q,j (x1, . . . ,xq): we recall that the trees involved in this expression have at least

one special endpoint of type Z
(2)
h . If we denote by {(xi , ji)}i∈I2 the set of points and directions associated with the

endpoints of type Z
(2)
h (here I2 ⊂ {1, . . . , q} is a suitable nonempty index set), then Sdom

τ,P (x1, j1; . . . ;xq, jq) comes

with the oscillatory factor [∏i∈I2
(−1)(xi )ji ][∏i∈I c

2
(−1)xi ], where I c

2 = {1, . . . , q} \ I2. This means that

Sdom
τ,P (x1, j1; . . . ;xq, jq)=

[∏
i∈I2

(−1)(xi )ji

][∏
i∈I c

2

(−1)xi

]
S̃dom

τ,P (x1, j1; . . . ;xq, jq), (7.20)

where S̃dom
τ,P is a “non-oscillatory” function, in the sense that it satisfies the following natural scaling properties: if

n= (n1, n2) and ∂n
x = ∂

n1
x1 ∂

n2
x2 with ∂xi

the discrete derivative in the ith coordinate direction,∣∣∣∣∣
[

q∏
i=1

∂ni
xi

]
S̃dom

τ,P (x1, j1; . . . ;xq, jq)

∣∣∣∣∣ ≤ q!CN+q |λ|N 2h(2−q)

×
[ ∏

v s.e.p.

Cnv 2hvnv
Z

(iv)
hv−1

Zhv−1

][ ∏
v∈Vnt (τ∗)

22(s∗v−1)hv e−c
√

2hv δv

]

×
[ ∏

v not e.p.

2cλ2|P ψ
v |22−1/2|P ψ

v |−|PJ
v |−z(Pv)

]
, (7.21)

where, if v is the special endpoint with label xv = xi , with i ∈ {1, . . . , q}, then nv = (ni )1 + (ni )2. This bound differs
from (7.6) just by the dimensional factors 2hvnv , which arise from the action of the derivatives ∂

ni
xi

on a relativistic

propagator g
(hv)
R , cf.(6.73).

Now, using (3.12) and (7.20), we rewrite (7.19) as

∑
h≤0
N≥0

(2)∑
τ∈T (h)

N,q

∑
P∈Pτ :

|Pv0 |=|PJ
v0
|=q

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

αb1(−1)j1 · · ·αbq (−1)jq

×
[∏

i∈I2

(−1)(xi )3−ji

]
S̃dom

τ,P (x1, j1; . . . ;xq, jq). (7.22)
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Using the fact that the paths C(i)

ξ→η consist of straight portions, each of which is formed by an even number of bonds,
we find that∣∣∣∣∣

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

[
q∏

i=1

αbi
(−1)ji

][∏
i∈I2

(−1)(xi )3−ji

]
S̃dom

τ,P (x1, j1; . . . ;xq, jq)

∣∣∣∣∣
≤

∗∑
b1∈C(1)

ξ→η

· · ·
∗∑

bq∈C(q)

ξ→η

∣∣∣∣[∏
i∈I2

∂(xi )3−ji

]
S̃dom

τ,P (x1, j1; . . . ;xq, jq)

∣∣∣∣. (7.23)

Finally, we recognize that the summand in the r.h.s. of this equation can be bounded by the r.h.s. of (7.21), with the
factor[ ∏

v s.e.p.

Cnv 2hvnv
Z

(iv)
hv

Zhv

]
replaced in this specific case by[ ∏

v s.e.p.:
iv=1

Z
(1)
hv

Zhv

][ ∏
v s.e.p.:
iv=2

C12hv
Z

(2)
hv

Zhv

]
≤ Cq

[ ∏
v s.e.p.:
iv=2

2hv(1+η2−η)

]
, (7.24)

where we used the fact that, thanks to Proposition 10, Z
(1)
h /Zh ≤ (const.) and Z

(2)
h /Zh ≤ (const.)2(η2−η)h. Since the

number of special endpoints of type Z
(2)
h is at least 1, the product in the r.h.s. of this equation is smaller than 2θh̄,

where θ is a suitable constant between zero and one, and h̄ is the largest among the scales of the special endpoints of
type Z

(2)
h . As we did for the terms of type (a) of S(1)

q,j , the dimensional gain 2θh̄ can be “transferred to the root,” i.e.

transformed into 2θ ′h provided θ ′ is added to the exponent 2− |P ψ
v |(1/2− cλ2)− |P J

v | − z(Pv) of each node. At that
point, one proceeds like after (7.12).

7.2.3. The contributions of type S(3)
q,j

We are finally left with S(3)
q,j , which can be treated in a way similar to (and actually simpler than) the previous cases:

the trees contributing to it either contain a non-relativistic propagator r(hw), which produce an extra factor 2θhw (which
can be “transferred to the root” by using the short memory property, as for the terms of type (a) of S(1)

q,j ); or contain

endpoints on scale 1, in which case the short memory property produces an extra factor 2θh. In addition to these
gains, one should take into account that all the special endpoints of type 2, possibly appearing in a tree contributing to
S(3)

q,j , whose presence produces a dimensional factor 2h(η2−η) (which may be 1, if η2 − η < 0), are associated with

an oscillatory factor that effectively acts as a derivative operator, thus improving the factor 2h(η2−η) into 2h(1+η2−η),
precisely as discussed for S(2)

q,j . Details are left to the reader. Summarizing, also the contributions of type S(3)
q,j give

rise to a finite (q-dependent) constant, which concludes the proof of Theorem 1.

7.3. Proof of Theorem 3

Since convergence of the moments of a random variable ξn to those of a Gaussian random variable ξ implies conver-
gence in law (and therefore in the sense of the characteristic function) of ξn to ξ [16, Section 26 and 30], we need
only to prove that

lim
ε→0

〈
hε(φ)

〉
λ
= 0, (7.25)

lim
ε→0

〈
hε(φ);hε(φ)

〉
λ
=
∫

φ(x)φ(y)Gλ(x − y)dx dy (7.26)



Height fluctuations in interacting dimers 161

and

lim
ε→0

〈
hε(φ); . . . ;hε(φ)︸ ︷︷ ︸

q times

〉
λ
= 0, q > 2. (7.27)

Note that (7.25) is trivial (and does not need the limit ε→ 0) since the height is fixed to zero at the central face (“the
origin” 0) and height gradients have zero expectation by construction, recall (1.4).

Proof of (7.26). Choose a face p at a distance of order 1/ε from the support of φ(ε·) and rewrite〈
hε(φ);hε(φ)

〉
λ
= ε4

∑
η1,η2

φ(εη1)φ(εη2)
〈
(hη1 − hp);hη2

〉
λ

(7.28)

+ ε4
∑
η1,η2

φ(εη1)φ(εη2)〈hp;hη2〉λ. (7.29)

Let us show first of all that (7.29) is o(1). Indeed, since φ is smooth and of zero average,

ε2
∑
η

φ(εη)=O(ε). (7.30)

Also, from (1.7) of Theorem 1 and Cauchy–Schwarz it follows that |〈hp;hη2〉λ| =O(log(1/ε)) (write hη2 = hη2 −h0
and observe that all η2 in the sum are at distance O(1/ε) from 0; same reasoning for hp). In conclusion, the sum
in (7.29) is O(ε log(1/ε))= o(1). Remark also that in (7.28) one can restrict the sum to η1 �= η2. Indeed, again just
observe that |〈(hη1 − hp);hη2〉λ| =O(log(1/ε)) so the sum (7.28) restricted to η1 = η2 is O(ε2 log(1/ε))= o(1).

Let C(1)
p→η1

(resp. C(2)
0→η2

) be a path from p to η1 (resp. from 0 to η2) of length at most a|p−η1| (resp. a|η2|), chosen

such that the distance between C(1)
p→η1

and C(2)
0→η2

is larger than (1/a)|η1 − η2| for some positive a > 0, uniformly in
η1, η2 in the support of φ(ε·). From the definition (1.4) of height function,〈

(hη1 − hp);hη2

〉
λ
=

∑
b1∈C(1)

p→η1 ,b2∈C(2)
0→η2

σb1σb2〈1b1;1b2〉λ. (7.31)

The r.h.s. of (7.31) is given by the r.h.s. of (4.2), except that one should read C(1)
p→η1

, C(2)
0→η2

instead of C(1)

ξ→η , C(2)

ξ→η .

The error term Rj1,j2 gives a contribution O(|η1 − η2|−θ ), and recall that θ > 0. The term proportional to K̃ , due
to the oscillations, gives a contribution O(|η1 − η2|−2κ+1) and recall that κ is close to 1. The one proportional to K

instead, looking at (4.3), gives K times the integral

− 1

2π2
Re
∫ η1

p
dz

∫ η2

0
dw

1

(z−w)2
(7.32)

plus an error O(|η1−η2|−1) coming from replacing the Riemann sum with the integral. Altogether, all the error terms
are of the form O(|η1 − η2|−c′) for some positive c′. Once the sum over η1 �= η2 in (7.28) is performed, the overall
contribution of the error terms is O(εc′).

It remains to compute the integral, that gives (cf. (3.28))

1

2π2
log

( |η2 − p|
|η2 − η1|

× |η1|
|p|
)

. (7.33)

Note that

ε4
∑
η1,η2

φ(εη1)φ(εη2)
[
log
(
ε|η2 − p|)+ log

(
ε|η1|

)− log
(
ε|p|)]= o(1). (7.34)
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Indeed, in all of the logarithms one of the two summed variables is absent, the logarithms are O(log(1/ε)) and
ε2∑

η φ(εη)=O(ε).
It remains to look at

− K

2π2
ε4
∑
η1,η2

φ(εη1)φ(εη2) log
(
ε|η2 − η1|

)
(7.35)

that converges to the r.h.s. of (7.26). �

Proof of (7.27). In analogy with the case q = 2, choose faces p1, . . . ,pq such that all their mutual distances, as well
as their distance from the support of φ(ε·), are in [cq/ε,1/(cqε)] for some suitably small cq > 0, and rewrite〈

hε(φ); . . . ;hε(φ)︸ ︷︷ ︸
q times

〉
λ

= ε2q

′∑
η1,...,ηq

φ(εη1) · · ·φ(εηq)
〈
(hη1 − hp1); . . . ; (hηq

− hpq )
〉
λ
+ o(1), (7.36)

with sum restricted to configurations such that |ηi − ηj | ≥ 1/cq . The proof of (7.36) is like for q = 2: use that
|〈hη1; . . . ;hηq

〉
λ
| is bounded by some power of log(1/ε), as it follows from (1.8) and from a repeated application

of Cauchy–Schwarz. Let also C(i)
pi→ηi

, i ≤ q be paths from pi to ηi of length at most (1/cq)|pi − ηi |, with mutual
distances at least cq mini �=j |ηi − ηj |.

We will show that, uniformly in η1, . . . ,ηq in the support of φ(ε·),
∣∣〈(hη1 − hp1); . . . ; (hηq

− hpq )
〉
λ

∣∣=O
(

min
i �=j
|ηi − ηj |−θ

)
(7.37)

for some θ > 0. Given this, it is obvious that (7.36) is o(1).
To get (7.37) replace each (hηi

− hpi
) by

∑
bi∈C(i)

pi→ηi

σb1b and recall the decomposition (7.7). We will consider

only the terms of type S(1)
q,j , the two others requiring a very similar argument. The sum over b1, . . . , bq of S(1)

q,j is

bounded like in (7.12), except of course that now bi ∈ C
(i)
pi→ηi

. Repeating exactly the steps (7.13)–(7.16), one gets
again the upper bound (7.17).

Recall that the sum over N in (7.17) is finite because d̂v ≤−a < 0. While after (7.17) we used that δmin ≥ 1, here
we will take advantage of δmin ≥ cq mini �=j |ηi − ηj | because of the way the paths C(i)

pi→ηi
were chosen. It is then

immediate to see that the sum over h in (7.17) is not only finite, but actually decays like

C′q
(

min
i �=j
|ηi − ηj |

)−θ ′′
(7.38)

for some positive θ ′′. Eq. (7.37) and therefore also (7.27) are proven. �

Appendix A: The free propagator

Here we compute the free propagator with (θ, τ ) boundary conditions, proving Lemma 1. To this purpose, we need to
diagonalize the Grassmann quadratic form S = S(ψ)=− 1

2

∑
x,y∈� ψx(K

(θτ)

t(m) )x,yψy. For k ∈D(θτ)
� , we let

ψ̂k =
∑
x∈�

ψxe
ikx (A.1)
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so that

ψx = 1

L2

∑
k∈D(θ,τ )

�

ψ̂ke−ikx. (A.2)

Note that (A.2) holds also when one of the two coordinates of x equals L/2+ 1, in which case it gives the correct
boundary condition ψ(L/2+1,y) = (−1)θψ(−L/2+1,y) and ψ(x,L/2+1) = (−1)τψ(x,−L/2+1).

Plugging (A.2) into the definition of S and using the anticommutation relation ψ̂kψ̂k′ = −ψ̂k′ψ̂k one finds with
standard computations

S(ψ)= 1

L2

∑
k∈D(θτ )

�

{
ψ̂kψ̂−k(−i sin k1 + sink2)+mψ̂kψ̂−k+(π,0) cosk1

}
, (A.3)

where it is understood that, if −k does not belong to D(θτ)
� , one should interpret −k as −k+ 2π(n1, n2) ∈D(θτ)

� for
the suitable choice of ni ∈ Z (similarly for −k+ (π,0)).

We have rewritten S as −(1/2)
∑

k,k′ ψ̂kAk,k′ψ̂k′ where the matrix A connects k only with −k and with −k +
(π,0). To apply (2.7) it remains only to invert A. It is easy to check that the only non-zero elements of A−1 are

A−1
k,−k = L2 i sink1 + sin k2

2D(k,m)
, (A.4)

A−1
k,−k+(π,0)

= L2 m cosk1

2D(k,m)
. (A.5)

Then, formula (2.16) is obtained simply from (A.2), (2.7) and∫
(θτ)

P
(θτ)
� (dψ)ψ̂kψ̂k′ =A−1

k,k′ .

A.1. Large-distance behavior of G(x)

Here we prove Proposition 2. Take x �= 0, m = 0, and let Ĝωω(k) = 1/[2(−i sin k1 +ω sink2)] and ĝωω(k) =
1/[2(−ik1 +ωk2)] be the Fourier transforms of the diagonal elements of G and g, respectively. We have

Gωω(x)=
∫
T2

dk
(2π)2

χ(k)e−ikxĝωω(k)+Rω,1(x). (A.6)

The function Ĝωω(k)− ĝωω(k) is C∞ on the support of χ(·), except at the origin. At k= 0, one can easily check that
it has bounded first derivatives and that the second derivatives are bounded by O(1/|k|). As a consequence (given that
χ(k) is C∞), an integration by parts argument shows that the remainder Rω,1(x) decays at least as fast as |x|−2. Next,
we rewrite the first term in the r.h.s. of (A.6) as∫

R2

dk
(2π)2

e−ikxĝωω(k)+Rω,2(x), (A.7)

where Rω,2(x) = (2π)−2
∫
R2 dk(1 − χ(k))ĝωω(k). Since (1 − χ(k)) is C∞ and vanishes in a neighborhood of 0,

where ĝωω is singular, again (via integrations by parts) it is easy to see that Rω,2(x) decays faster than any inverse
power of |x|. The sum Rω,1 +Rω,2 produces the diagonal elements of the remainder R in (2.27). Finally, the integral
in (A.7) is evaluated explicitly by using the residue theorem, and we obtain (2.28).

A.2. Finite-size corrections for the non-interacting system

Here we prove that, as long as m > 0, the finite-L corrections to the free propagator g
(θ,τ)
� are exponentially small,

and that the ratio of Pfaffians (2.61) tends to 1 exponentially fast.
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Let us start with the Poisson summation formula, that in our notations we can write as follows: if F̂ is a smooth
function on the torus T2 and L is an even integer, then

1

L2

∑
k∈D(θ,τ )

�

F̂ (k)=
∑

�1,�2∈Z
F(�1L,�2L)(−1)θ�1+τ�2 , (A.8)

where θ, τ ∈ {0,1} and

F(x)= 1

(2π)2

∫
T2

F̂ (k)e−ikx dk. (A.9)

If F̂ (k) = e−ik(x−y)N(k,m,y1)/(2D(k,m)) then the l.h.s. is exactly g
(θ,τ)
� , cf. (2.17). The term (�1, �2) = (0,0) in

the r.h.s. is g(x,y) (cf. (2.18)), while the terms (�1, �2) �= (0,0) give a contribution exponentially small in L, since the
Fourier transform of the analytic function F̂ (k) decays exponentially.

As for (2.61), from the definition of Pfaffian and the explicit form (A.3) of K
(θτ)
� ,

1

L2
log PfK(θτ)

� = 1

4L2

∑
k∈D(θτ )

�

log
[
4D(k,m)

]
. (A.10)

Using again the Poisson summation formula and the smoothness of D(k,m) on the torus, the r.h.s. gives

1

4(2π)2

∫
T2

dk log
[
4D(k,m)

]+O
(
exp
(−c(m)L

))
(A.11)

for some c(m) > 0 and the claim on the ratios of Pfaffians follows.

Appendix B: Symmetry properties

In this Appendix we list the symmetry properties of the Grassmann action required for proving the properties of the
coefficients a

(h)
γ , b

(h)
γ , σ

(h)

γ,γ ′ , lh and Zh;(γ,γ ′),j listed after (6.20), after (6.33) and after (6.35). It is straightforward to

check that the Gaussian integration P�(dψ), the interaction V
(0)
� and the source term B(0)

� are separately invariant
under the following symmetry transformations, irrespective of the Grassmann boundary conditions.

(1) Parity: ψx,γ → iψ−x,γ , m→−m and Jx,j → J−x−êj ,j .
(2) Reflections around the horizontal axis: First change κ→ κ∗, where κ is a generic coefficient in the polynomials

V
(0)
� , B(0)

� , and in the quadratic action entering the definition of P�(dψ); then

(ψx,1,ψx,2,ψx,3,ψx,4) �→ (ψx̃,1,−ψx̃,2,−ψx̃,3,ψx̃,4), with x̃= (x1,−x2), (B.1)

and Jx,1→ Jx̃,1, Jx,2→ Jx̃−ê2,2.
(3) Quasi-particle interchange #1:

(ψx,1,ψx,2,ψx,3,ψx,4) �→ (−ψx,3,−ψx,4,ψx,1,ψx,2) (B.2)

while Jx,j is left unchanged.
(4) Quasi-particle interchange #2:

(ψx,1,ψx,2,ψx,3,ψx,4) �→ (−ψx̃,2,ψx̃,1,−ψx̃,4,ψx̃,3), with x̃= (x1,−x2), (B.3)

and Jx,1→ Jx̃,1, Jx,2→ Jx̃−ê2,2.
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(5) If in addition m = 0, invariance under reflections in a diagonal line: First change κ → κ∗, then transform the
Grassmann fields as:

(ψx,1,ψx,2,ψx,3,ψx,4) �→
√

i(ψx̃,1,−iψx̃,4,−ψx̃,3,−iψx̃,2), with x̃= (x2, x1), (B.4)

and the external fields as Jx,1→ Jx̃,2, Jx,2→ Jx̃,1.

It is easy to check that the symmetries above are preserved by the multiscale integration. This is based on the obser-
vation that if

eV ′(ψ) =
∫

P(dφ)eV (ψ+φ) (B.5)

and if both V and P are invariant under the above symmetries, then V ′ is also invariant. Therefore, the effective
potentials and effective source terms on scales h = −1,−2, etc., are also invariant under the same symmetries. We
can then use these symmetries in order to infer suitable symmetry properties of the kernels of V (h) and B(h), which in
particular imply the desired properties listed after (6.20), (6.33) and (6.35).

As an illustration of the general method used to infer properties on the renormalization constants from the sym-
metries above, let us discuss the consequences of symmetry (5) on the structure of the diagonal terms in LV

(h)
2 . The

diagonal terms in P0V
(h)
2 (ψ) have the form

∑
γ

∫
dk

(2π)2
ψ̂−k,γ K̂

(h)
2,(γ,γ )(k+ pγ )ψ̂k,γ (B.6)

and they are left invariant by symmetry (5), which is applicable since in P0V
(h)
2 (ψ) the mass m is set to zero. That is,

(B.6) is equal to∑
γ

i(−1)γ+1
∫

dk
(2π)2

ψ̂k̃,γ̃

[
K̂

(h)
2,(γ,γ )(k+ pγ )

]∗
ψ̂−k̃,γ̃

, (B.7)

where 1̃= 1, 2̃= 4, 3̃= 3, 4̃= 2 and k̃= (k2, k1). Therefore,

K̂
(h)
2,(γ,γ )(k+ pγ )= i(−1)γ

[
K̂

(h)
2,(γ,γ )(k̃+ pγ̃ )

]∗
, (B.8)

which implies that a
(h)
γ = i(−1)γ [b(h)

γ̃
]∗. To give another example, symmetry (2) implies a

(h)
γ =−[a(h)

γ ]∗ and b
(h)
γ =

[b(h)
γ ]∗. The remaining reality and symmetry properties of the renormalization constants can be derived similarly.

More precisely (details are left to the reader):

• symmetry (3) implies a
(h)
1 = a

(h)
3 , b

(h)
1 = b

(h)
3 as well as a

(h)
2 = a

(h)
4 , b

(h)
2 = b

(h)
4 and σ

(h)
(1,2)
= σ

(h)
3,4 ;

• symmetry (4) implies a
(h)
1 = a

(h)
2 , a

(h)
3 = a

(h)
4 as well as b

(h)
1 =−b

(h)
2 , b

(h)
3 =−b

(h)
4 ;

• symmetry (2) implies (σ
(h)
(1,2)

)∗ = −σ
(h)
(1,2)

and lh ∈R;
• symmetry (3) implies Zh;(1,2),j =Zh;(3,4),j and Zh;(1,4),j =Zh;(2,3),j , j = 1,2 (recall (6.33));
• symmetry (4) for j = 1 gives Zh;(1,3),1 =Zh;(2,4),1 and Zh;(1,4),1 =Zh;(2,3),1 = 0;
• symmetries (1) and (4) for j = 2 give Zh;(1,3),2 = −Zh;(2,4),2 and Zh;(1,2),2 = Zh;(3,4),2 = 0 (symmetry (1) is

applicable since in the computation of LB one puts the mass m to zero);
• symmetry (2) for j = 1 gives Zh;(1,2),1,Zh;(1,3),1,Zh;(2,4),1,Zh;(3,4),1 are purely imaginary;
• symmetries (1) and (2) for j = 2 give Zh;(1,3),2 and Zh;(2,4),2 are real, while Zh;(1,4),2 and Zh;(2,3),2 are purely

imaginary;
• symmetry (5) gives Zh;(1,2),1 =−Zh;(1,4),2 and Zh;(1,3),2 = iZh;(1,3),1.

It is important to observe that, to prove the desired properties of σ
(h)

γ,γ ′ , which depend on the mass m, one needs
neither symmetry (5), that holds only for m= 0, nor symmetry (1) which requires m→−m.
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Appendix C: Gevrey class cut-off functions

We assume that the cut-off functions χ̄ (·), χ(·) are in the Gevrey class of order 2. We recall that a C∞(Rd) function
f is said to be in the Gevrey class of order s if on every compact K ⊂ R

d there are two constants A= A(K,f ) and
μ= μ(K,f ) so that for any non-negative integers n1, . . . , nd∥∥∂n1

1 · · ·∂nd

d f
∥∥∞ ≤Aμn1 · · ·μnd (n1! · · ·nd !)s . (C.1)

For s = 1 we have a common characterization of real-analytic functions; the class of order 2 includes the function
e−1/x1 1x1≥0. A useful feature of Gevrey functions is the fact that the Fourier transform f̃ (x) of a compactly supported

Gevrey function f (k) of order s decays at large distances like a stretched exponential e−(const.)|x|1/s
.

The example of a function χ̄ (k) to keep in mind is the following. Given ε > 0, let fε(k) := e−(1−k2/ε2)−1
1|k|≤ε

and Fε(k) = ∫ k

−∞ fε(t) dt/
∫ +∞
−∞ fε(t) dt . Note that Fε is a smoothed version of the Heaviside step function. It is

Gevrey of order 2, and such that Fε(k)+ Fε(−k) = 1. For ε < π/2 we let θε(k) = Fε(k + π/2)Fε(−k + π/2). We
also define χ̃ (k) :=∑n∈Z θε(k+ 2πn), which we can naturally think as a function on the circle T :=R \ (2πZ). It is
straightforward to check that

χ̄ (k) := χ̃ (k1)χ̃(k2) (C.2)

satisfies all the properties required, in particular it is positive, symmetric under k→−k,
∑4

i=1 χ(k− pi)= 1 and the
support of χ̄ (k) does not include (0,π), (π,0), (π,π), provided ε is chosen small enough.

We also introduce

χ(k) :=
∑
n∈Z2

θε

(|k+ 2πn|), (C.3)

which is (as a function on the torus) a rotationally invariant version of χ̄ (k).
To prove Lemma 2 one should start from the definition of G(h), given as in (2.24) with χ̄ (·) replaced by fh(·) and

make a change of variables k→ k2h (the prefactor 2h(1+n1+n2) in (2.39) comes from the change of variables plus the
following facts: (i) D(k,m)∼ |k|2 on the support of fh, (ii) every discrete derivative ∂j corresponds to multiplication
by e−ikj − 1 in Fourier space, and |e−ikj − 1| ≤ (const.)2h on the support of fh). At that point, one can see G(h)(x)

as the Fourier transform of a Gevrey function of order 2 computed at 2hx, whence the decay factor exp(−c
√

2hx) in
(2.39). The argument is similar for the off-diagonal elements and for h = h∗ (thanks to the presence of the infrared
cut-off induced by the mass m∼ 2h∗ ), as well as for the propagators g(h) and R(h).
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