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Abstract 
 

The α7 nicotine acetylcholine receptor (α7nAChR, CHRNA7) is a homo-pentameric 

ligand-gated ion channel widely expressed in the Central Nervous System (CNS). Recent 

evidence has demonstrated its expression also in non-neuronal tissues, including 

monocytes and macrophages, where it mediates the Cholinergic Anti-Inflammatory 

Pathway, a neuronal reflex providing the central control of systemic inflammation.  

Recently, the human-restricted duplicated gene of the α7nAChR, called CHRFAM7A 

(α7dup) has been discovered. It is the product of the partial duplication and fusion of 

exon 5-10 of CHRNA7 gene with the novel exons D, C, B and A belonging to the FAM7A 

gene, of unknown function. The CHRFAM7A gene is expressed in human immune cells 

and in the CNS and is translated into two proteins, of 45 kDa and 36 kDa, which are the 

result of alternative splicing. The α7dup protein assembles with the α7 conventional 

subunits and exerts a dominant negative regulation on the α7nAChR function. The 

importance of the α7dup protein in the human inflammatory process has been confirmed 

by the demonstration of its responsiveness to pro-inflammatory stimuli: indeed, the 

Lipopolysaccharide (LPS) treatment of THP-1 monocytic cells and of human primary 

monocytes and macrophages down-regulates CHRFAM7A transcript and protein through 

a transcriptional mechanism reliant on the NF-κB transcription factor. Moreover, 

unpublished data demonstrated that LPS has the opposite effect on the α7 transcript in 

monocytes and macrophages, leading to CHRNA7 up-regulation.  

In this study, we have investigated the transcriptional mechanisms leading to 

CHRFAM7A expression in the THP-1 monocytic cells and in neuroblastoma SH-SY5Y cells 

and we demonstrate that the CHRFAM7A gene is endowed with several complex 

transcriptional mechanisms leading to fine expression modulation, including the presence 

of alternative and tissue-specific Transcription Start Site (TSS), alternative splicing 

mechanism, tissue-specific transcriptional elements and intronic silencer elements. 

Moreover, we demonstrated that the CHRFAM7A down-regulation exerted by LPS involve 

the chromatin remodeling of CHRFAM7A promoter in THP-1 cells.  
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Increasing evidence has linked CHRNA7 expressional and functional dysregulation to 

several neurodegenerative disorders, including Alzheimer’s disease. The treatment with 

the acetylcholinesterase inhibitor Donepezil is effective in temporary ameliorating the 

cognitive symptoms of AD, by increasing the synaptic levels of ACh and counteracting the 

cholinergic loss, which is characteristic of AD. However, emerging findings sustained that 

Donepezil can exert its therapeutic effect also by modulating the immune response and 

potentiating the Cholinergic Anti-Inflammatory Pathway.  

So far, the role of CHRFAM7A gene in AD pathogenesis or pharmacological response 

has not been elucidated. In the present study, we have investigated the expression profile 

of CHRNA7 and CHRFAM7A genes in human nervous and immune tissues obtained from 

AD patients, highlighting expressional alterations of both the α7 conventional and 

duplicated form. Moreover, we have investigated the effect of the AChEI Donepezil on 

CHRFAM7A and CHRNA7 transcription in THP-1 cells, human primary macrophages and 

SH-SY5Y cells, collecting new insights about the possible role of the α7dup gene as a 

pharmacological target in AD therapy. 
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1. Introduction 

 
1.1. Inflammation 

 

The inflammatory process is the host’s physiological response to noxious stimuli or 

pathogens invasion and is directed to the elimination of the infectious agents and the 

restoring of the homeostatic condition. Inflammation is mainly triggered by the cells of 

the innate immune system, such as macrophages or granulocytes, and is sustained by the 

production of several soluble inflammatory mediators, such as cytokines or chemokines. 

Inflammation is scholastically distinguished into an acute and chronic response: the 

acute inflammation, once the infectious agent is destroyed, resolves; otherwise, if the 

triggering stimulus persists, the response could evolve into a chronic process, in which the 

immunological mechanisms of elimination and repair contribute to exacerbate the tissue 

damage (Medzhitov, 2008).  

 

1.1.1. Acute inflammation 

 

Acute inflammation is a rapid, stereotyped and non-specific process that could be 

elicited by any injurious agent, such as a trauma or bacterial or viral infection (Fig. 1.1).  

The first events during an inflammatory process are vascular changes in flow, caliber 

and permeability, in order to promote the formation of an exudate, which drive the 

circulating granulocytes (neutrophils, basophils and eosinophils) to the site of injury, 

generating a local inflammatory response.  

Many bacterial components, such as lipoproteins and glycolipids, are able to induce a 

local inflammation. On the other hand, many different cell types in the host’s mucosa and 

skin respond to the bacterial invasion by producing molecules that control the infection. 

Among these, the mast cells produce histamine, serotonin, Tumor Necrosis factor α 

(TNFα) and other pro-inflammatory cytokines, such as Interleukin-1 (IL-1) and 
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Interleukine-6 (IL-6), which also have a systemic effect (Medzhitov, 2008). The release of 

pro-inflammatory cytokines and chemokines from the site of invasion has many 

complementary effects: (i) it induces the activation of the complement cascade, that 

opsonizes the pathogens and stimulates the phagocytosis; (ii) it recruits the granulocytes, 

which directly eliminate the pathogens and amplify the inflammatory process by 

producing pro-inflammatory mediators; (iii) it promotes the recruitment, differentiation 

and activation of circulating monocytes in macrophages and (iv) activates the tissue-

resident macrophages (Turner et al., 2014).  

The macrophages, as other immune cells, are provided with specific receptors, called 

Pattern Recognition Receptors (PRR), which recognize particular bacterial structures, 

defined as Pathogen-associated Molecular Patterns (PAMP) (Shi and Palmer, 2011; Davies 

et al., 2014). Once activated, the macrophages (i) directly eliminate the pathogens by 

phagocytosis, (ii) release Reactive Oxygen Intermediates (ROS), nitric oxide (NO) and 

lysosomes enzymes, (iii) sustain the inflammation by producing pro-inflammatory 

cytokines and (iv) act as Antigen Presenting Cells (APC) in order to recruit the acquired 

immune system (Davies et al., 2014). During inflammation, one of the most important 

function of macrophages is the production of pro-inflammatory cytokines such as IL-1, IL-

6, TNFα, the High Mobility Group Box-1 (HMGB1) and the Interferon γ (INF-γ) (Serbina et 

al., 2008). All these cytokines act locally by promoting coagulation and increased 

expression of adhesion molecules by the endothelium, thus supporting the sustainment 

of the inflammatory process. Moreover, they act back upon macrophages, enhancing the 

phagocytic activity and chemokines production (Turner et al., 2014). 

The cytokines produced by the macrophages exert also systemic effects: when 

produced in large amount, they promote endocrine functions, inducing fever, cachexia 

and the production of Acute Phase Proteins (APP), such as the fibrinogen and the C-

reactive protein (Sica and Mantovani, 2012). 
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Figure 1.1: Schematic representation of the inflammatory process. During inflammation, innate immune 

cells, such as granulocytes and macrophages are recruited at the site of infection: the concomitant 

secretion at the infection site of cytokines and chemokines and expression of particular receptors by 

immune cells result in a complicated process of adhesion and extravasation, which allows the circulating 

monocytes and granulocytes to reach the inflammation site. The mast cells and macrophages release pro-

inflammatory cytokines in order to amplify the inflammatory response. At the same time, macrophages 

produce also soluble mediators that begin the process of tissue repair.  

 

1.1.2. Molecular mechanisms of acute inflammation 

 

Macrophages are able to distinguish the pathogens by recognizing repetitive molecular 

structures on their surface, for example the lipotecoic acid of gram-positive bacteria and 

lipopolysaccharide (LPS) of gram-negative bacteria. The recognition is driven by specific 

immune receptors, called Pattern Recognition Receptors (PRR). One of the most 

important classes of PRR is that of the Toll-like receptors (TLRs). Of all TLRs, macrophages 

express in particular TLR-4, which is able to bind the LPS released in the blood by the 

gram-negative bacteria. The circulating LPS is bound by a particular soluble molecule, 

named LPS-Binding-Protein (LBP). The interaction between the complex LPS-LBP and TLR4 
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occurs with the cooperation of other two receptors, CD14 and MD-2. TLR4 is a key 

receptor in the innate immune response, because it is able to elicit the Nuclear Factor κB 

(NF-κB) pathway (Lu et al., 2008).  

NF-κB is a crucial transcription factor in the inflammatory process and is involved in the 

transcriptional regulation of many genes that encode for cytokines and chemokines. It is 

widely expressed in many tissues and in particular in the immune system. NF-κB can act 

as homodimer or heterodimer generated from combinations of five Rel family proteins 

(RelA, or p65, c-Rel, RelB, p50 and p52) (Fig. 1.2A).  

NF-κB can be involved into two different pathways, the canonical (or classical) pathway 

and the non-canonical pathway, which differ for the receptors activated and the NF-κB 

subunits involved: in particular, RelA and p50 are constituents of the canonical NF-κB 

pathway.  

The classical NF-κB pathway is elicited by cytokines, such as IL-1 or TNF-α, or bacterial 

components such as LPS (Hayden and Gosh, 2004). When inactive, the heterodimer 

RelA:p50 is retained into the cytoplasm by the interaction with the inhibitor protein IκB, 

that masks the nuclear import signal. The signalling elicited by cytokines or LPS results in 

IκB protein ubiquitination and degradation, followed by NF-κB RelA:p50 relocation in the 

nucleus and binding to particular consensus sequences, named κB sequences, in the 

promoter of the target genes. The classical NF-κB heterodimer RelA:p50 is generally 

thought to promote, rather than repress, the transcription, also by recruiting several co-

transcription factors or chromatin-remodeling factors, such as p300 or CBP (Pereira and 

Oakley, 2008; Zhong et al., 2002). Among other genes whose transcription is induced by 

RelA:p50 there is also IκB, thus providing a robust negative feedback mechanism (Pereira 

and Oakley, 2008; Wessels et al., 2004). The RelA:p50 function is straight regulated at 

several levels, including post-translational modifications: it is known, for example, that 

phosphorylation at Thr435 influences the interaction of RelA with HDAC1 (O’Shea and 

Perkins, 2010) and phosphorylation at Ser276 increases CBP binding to RelA (Zhong et al., 

1998, 2002). On the other hand, the homodimer p50:p50 is generally considered as an 

inhibitor of transcription, as the p50 subunit lacks the transactivation domain: there is 

evidence that it is able to bind the promoter sequences and repress transcription either 

by recruiting HDAC1 or by avoiding the binding of the canonical NF-κB heterodimer 
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(Elsharkawy et al., 2010). p50:p50 homodimer is able to bind nucleosomes as well as 

nude DNA (Angelov et al., 2004) and its binding is predominantly observed in 

“unstimulated” or “resting” cells complexed with HDAC1 and other epigenetic repressors 

(Kang et al., 1992): after stimulation (LPS, TNF-α), NF-κB dimers, containing 

phosphorylated p65 and complexed with CBP/p300,  are recruited to the DNA, where 

they displace p50 homodimers and initiate the NF-κB-dependent transcription (Zhong et 

al., 2002). 

The non-canonical pathway, instead, results in the activation of the RelB and p52 NF-

κB complex and is activated by alternative receptors, such as CD40. This non-canonical 

NF-κB pathway relies on a mechanism, which involved the inducible degradation of the 

precursor of p52, p100. The non-canonical NF-κB pathway is more specific than the 

canonical one and is thought to regulate important biological functions, such as lymphoid 

organogenesis, B cell maturation and differentiation and dendritic cell activation (Sun, 

2011). The heterodimer composed by RelB and p52 is able to either activate or repress 

transcription, as p52 lacks the transactivation domain (Hayden and Gosh, 2004) (Fig. 

1.2B).  

During a gram-negative infection, the LPS released from bacteria is primary bound by 

the CD-14 receptor on the surface of the macrophages and this complex is then 

recognized by TLR4. TLR4 is involved in two different intra-cellular pathways: the Myd-88-

dependent pathway and the Myd-88-indipendent pathway. The Myd-88-dependent 

pathway is known to activate the NF-κB canonical pathway through the adaptor Myd-88 

and the activation of the IKK kinase. Once activated, IKK triggers the phosphorylation and 

consequent proteasomal degradation of IκB, which binds and sequesters NF-κB in the 

cytosol. The degradation results in the binding of the canonical complex to the specific 

binding sequences on the target gene promoters (Fitzgerard et al., 2004) (Fig. 1.2C). In 

addition to the canonical NF-κB pathway, LPS has been described to activate also the NF-

κB non-canonical pathway through the activation of TLR4 signaling (Yamamoto et al., 

2003). The Myd-88-independent pathway is classically thought to activate the IRF3 

transcription factor, but recently it has been also proved that is able to activate the late 

phase p65:p50 NF-κB subunits (Yamamoto et al., 2003). 
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Figure 1.2: Representation of the NF-κB gene family, of the canonical and non-canonical NF-κB pathway, 

and of the LPS signaling. (A) All five components of NF-κB family are characterized by a conserved Rel 

domain, highlighted in red, which is responsible of nuclear localization and DNA binding. (B) NF-κB 

Canonical and Non canonical pathways: the canonical pathway is triggered by several receptors, including 

TLRs and TCR or BCR receptors and culminates in IKK activation, which phosphorylates and induces the 

degradation of the inhibitor IKβα, thus leading to the RelA/p50 nuclear translocation; the non-canonical 
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pathway is instead activated by different receptors, such as CD40 and RANK and is characterized by the 

activation of IKKα, which promotes the processing of the NF-κB subunit p100 in p52, followed by p52/RelB 

nuclear translocation. Representation of the NF-κB family proteins. (C) Schematic representation of the LPS-

induced signalling. The LPS activates the TLR4 receptor expressed by the innate immunity cells such as 

monocytes or macrophages, thus activating two different pathways, known as the Myd88-dependend and –

independent pathways. The Myd88-dependent pathway leads to the nuclear translocation of the NF-κB 

transcription factor, while the Myd88-independent pathway induces the activation of IRF3.  

 

1.1.3. Resolution of acute inflammation 

 

Once the infectious agent causing inflammation has been removed, the acute 

inflammatory process must undergo resolution, in order to avoid tissue damage. Acute 

inflammation is self-limiting and normally results in tissue restoration and repair.  

The first step in resolution of inflammation is neutrophils apoptosis followed by their 

phagocytosis by other inflammatory cells, such as macrophages (Savill et al., 1989). The 

mechanisms driving neutrophils apoptosis are still poorly understood: it is known 

however that macrophages play a key role, by releasing soluble death signals (such as NO) 

which induce neutrophil apoptosis (Maskrey et al., 2010). The uptake of apoptotic cells 

stimulates macrophages to release anti-inflammatory cytokines. These cells undergo a 

functional switch: they quit producing pro-inflammatory cytokines, such as IL-1 and IL-6, 

and begin producing anti-inflammatory cytokines, such as IL-10 and Transforming Growth 

Factor β (TGF-β), which has also reparative properties that help the damaged tissues 

repair. The production of anti-inflammatory cytokines by macrophages and other immune 

cells is typical of alternatively activated M2 macrophages, which are mainly involved in 

restoring tissue homeostasis and are weak antigen presenting cells, thus inhibiting Th1 

response and supporting the Th2 response (Sica and Mantovani, 2002).  

Other important events, that contribute to restore the homeostasis, are the 

chemokines depletion and the switch of eicosanoids (Ortega-Gómez et al., 2012).  

Although the molecular events driving resolution of inflammation are still almost 

unknown, the current opinion sustains that these mechanisms are switch off during the 

early onset of inflammation (Serhan and Savill, 2005).  
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During the resolution of inflammation, the NF-κB transcription factor plays an anti-

inflammatory role, by promoting the transcription of anti-inflammatory cytokines and 

proteins involved in leukocytes apoptosis. Indeed, inhibition of NF-κB during the 

resolution phase has been shown to protract the inflammatory response and prevent the 

leukocyte clearance; however, the mechanisms involved in the inflammatory resolution 

role of NF-κB are still largely unknown (Lawrence and Fong, 2010). 

 

1.1.4. Chronic inflammation 

 

Persistent inflammatory stimuli or dysregulation in the mechanism of resolution of 

inflammation can result in chronic inflammation, which may last for weeks or even years 

and is commonly considered as a risk factor for the development of many diseases such 

as cancer, metabolic diseases, cardiovascular pathologies and neurodegenerative 

disorders, including Alzheimer’s disease.  

Chronic inflammation is principally driven by tissue-resident macrophages: indeed, 

during the acute inflammatory response, these cells physiologically substitute the 

neutrophils infiltrate at the site of infection. If the intervention of tissue-resident 

macrophages is still insufficient to eliminate the noxious stimuli, they begin to chronically 

elaborate low levels of TNF-α and IL-1 (Maskrey et al., 2010), leading to chronic 

inflammation onset, which may involve the formation of granuloma and tertiary lymphoid 

tissues (Medzhitov, 2008). 

 

1.2. The Cholinergic Anti-Inflammatory Pathway 

 

The immune system response to pathogens, during the inflammatory process, is 

regulated by neural reflex circuits (Tracey, 2002).  

Inflammation is perceived by the Central Nervous System (CNS) through different 

routes, including specialized cells in brain vasculature, choroid plexus and 

circumventricular organs, and through TLRs and cytokines receptors in the brain (Goehler 

et al., 2000; Tanga et al., 2005; Boettger et al., 2008).  
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The “inflammatory reflex” is an anti-inflammatory response composed by a sensory 

arc, represented by the afferent arm of the Vagus nerve, and by an efferent arc, which is 

represented by the motor arms of the same nerve (Olofosson et al., 2012) (Fig. 1.3).  

The afferent neurons of the Vagus nerve express IL-1β and prostaglandins receptors 

(Ek et al., 1998) and transmit the “danger” signals from the periphery to the Nucleus 

Tractus Solitarius (NTS), which is interconnected with the dorsal motor nucleus, where 

the majority of efferent Vagus nerve fiber originate. Afferent signals also reach central 

neurons that project to the hypothalamus: these projections are important for the 

regulation of the behavioral and hormonal characteristic of inflammation, such as 

cachexia, fever and the production of glucocorticoid (Goehler et al., 2000).  

Once activated, the cholinergic efferent fibers of the cervical Vagus nerve transmit the 

output signals through the celiac ganglion and splenic nerve to the spleen, which is the 

principal target organ of the inflammatory reflex (Rosas-Ballina et al., 2008; Huston et al., 

2006, 2008). Indeed, both pharmacological and electrical stimulation of the Vagus nerve 

reduce pro-inflammatory cytokines level and TNF-α production in the red pulp of the 

spleen (Bororikova et al., 2000). 

Each component of the efferent arc of the inflammatory reflex is essential for its anti-

inflammatory effect: in fact, the surgical ablation of the cervical Vagus Nerve prevents the 

systemic TNF-α decrease driven by the motor arc (Bernik et al., 2002), but also the 

removal of the splenic nerve abolishes the inhibitory effect of Vagus nerve stimulation on 

splenic TNF-α production (Vida et al., 2011). At the same time, splenectomy reduces the 

anti-inflammatory signal driven by the splenic nerve (Huston et al., 2006, 2008). 

The splenic nerve has catecholaminergic terminations, which release norepinephrine 

to T-cell-rich areas of the spleen. Indeed, also catecholamine depletion with reserpine 

results in abrogation of the anti-inflammatory effect of vagal nerve stimulation (Huston et 

al., 2008).     

The norepinephrine released by the catecholaminergic terminations of the splenic 

nerve interacts with specific β2-adrenergic (β2-AR) receptors expressed by a selective 

population of T-cells of the red pulp of the spleen. The involvement of β2-AR in mediating 

the vagal output was demonstrated by the inhibitory effect of β-adrenergic, but not α-
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adrenergic, antagonist on TNF-α decrease after Vagus nerve stimulation (Kees et al., 

2003). 

T-cells can also express the Choline Acetyltransferase (ChAT) enzyme and synthetize 

acetylcholine (ACh). The ChAT+ T cells represent a small population among the CD4+ cells, 

covering only 1% of the entire population of the spleen, while in the Peyer’s plaque they 

reach about 10%. When activated, the ChAT+ T cells show a Th2 phenotype, releasing 

principally IL-10 and attenuating macrophage cytokines production in the spleen (Elenkov 

et al., 2000). The integrity of the inflammatory reflex also relies on the action of this T-cell 

population, as T-cells nude mice showed an impaired anti-inflammatory response after 

Vagus nerve stimulation (Rosas-Ballina et al., 2011).  

When the norepinephrine binds the β2-AR, ChAT+ T cells synthetize and release ACh. 

The ACh exerts an anti-inflammatory effect, decreasing the level of pro-inflammatory 

cytokines (Fig. 1.3). 

Because of the involvement of the Vagus nerve and the cholinergic system the 

inflammatory reflex was named “Cholinergic Anti-Inflammatory Pathway” (Pavlov et al., 

2003; Rosas-Ballina and Tracey, 2009). 

For long time the link between the release of ACh and the consequent anti-

inflammatory response has been missed.  

ACh targets both the nicotinic (ionotropic) and muscarinic (metabotropic) receptors. 

The muscarinic receptors are G protein-coupled receptors further classified in five 

subtypes (M1-M5) (Caulfield and Birdsell, 1998), while nicotinic receptors are homo- or 

hetero-pentameric ligand-gated ion channel composed by different subunits (α1- α10; β1- 

β4; δ, γ and ε) (Lindstrom, 1997). Both muscarinic and nicotinic receptors are widely 

distributed in the CNS and in immune cells (Pavlov and Tracey, 2004). However, while the 

agonist of nicotinic receptors, nicotine, determines a strong reduction of TNF-α level in 

endotoxin-stimulated human primary macrophages, muscarine is less effective 

(Bororikova et al., 2000), indicating the involvement of the acetylcholine nicotinic 

receptors.  

Few years after the discovery of the expression of the α7 nicotinic acetylcholine 

receptor (α7nAChR) by human macrophages (Wang et al., 2003), the role of this receptor 

in mediating the Cholinergic Anti-Inflammatory Pathway was postulated.  
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This receptor is indeed crucial for the integrity of the inflammatory reflex: in fact, 

antisense oligonucleotides targeting the α7nAChR abolished the nicotine-induced TNF-α 

inhibition in endotoxin-stimulated human macrophages (Wang et al., 2003), and knock-

out mice for the α7 subunit failed to reduce TNF-α serum level after electric vagal 

stimulation (Wang et al., 2003). Moreover, the anti-inflammatory effect of acetylcholine 

can be counteracted by selective α7nAChR antagonists (Tracey, 2002; Wang et al., 2003; 

Ulloa, 2005), while selective agonists reduce the pro-inflammatory cytokines produced by 

macrophages in animal models of pancreatitis (van Westerloo et al., 2006), dextran 

sulfate sodium (DSS)-induced colitis (Ghia et al., 2006) and intestinal ileus (The et al., 

2007). 

The α7nAChR modulates the levels of another important pro-inflammatory cytokine, 

HMGB1, which is one of the most promising target molecules for the treatment of several 

inflammatory diseases, including severe sepsis (Czura et al., 2004). Acetylcholine, and 

more effectively nicotine, has an inhibitory effect on the release of HMGB1 in endotoxin-

stimulated murine macrophages and the inhibition is counteracted by selective nicotinic 

antagonist (Wang et al., 2004). The α7nAChR decreases HMGB1 levels through a post-

translational mechanism, by inhibiting NF-κB function and avoiding HMGB1 translocation 

from the nucleus to the cytoplasm (Wang et al., 2004). 
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Figure 1.3: The Cholinergic Anti-Inflammatory Pathway. The Cholinergic Anti-Inflammatory Pathway 

involves the afferent and efferent branches of the Vagus Nerve. The afferent fibers activate the Nucleus 

Tractus Solitarius, which responds releasing norepinephrine from the vagal splenic terminations. 

Norepinephrine induces ACh secretion by the T cells in the spleen and ACh binds to the α7nAChR expressed 

by macrophages, thus inducing an anti-inflammatory response.  

 

1.3. The α7 nicotinic acetylcholine receptor 
 

The nicotinic acetylcholine receptors (nAChRs) are a family of ligand-gated ion 

channels consisting of five different subunits creating a transmembrane selective cationic 

pore, expressed both in the CNS and in extra-neuronal tissues. They are sensitive to 

activation by nicotine but the endogenous ligand is acetylcholine.  

The nAChR prototype is the muscle nicotinic receptor, a hetero-pentameric receptor 

composed of five related but genetically distinctive subunits organized in stoichiometry of 

two α1 subunits and one each of β1, γ and ε subunits (the embryonic muscular nAChR 

differ for the presence of the δ subunit in place of the ε). Each subunit is composed of 

four transmembrane segments, a cytoplasmatic loop between transmembrane 3 and 4, a 
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long N-terminal extra-cellular domain and an extra-cellular C-terminus loop. The ligand 

binding domain is localized at the interface between the α subunits and the next subunit 

(Karlin, 2002) (Fig. 1.4).  

The neuronal nicotinic receptors have a different subunit composition: they are homo-

pentameric or hetero-pentameric receptors composed by the combination of twelve 

different subunits, nine α (α2-10), and three β (β2-4). The hetero-pentameric receptor 

has a structure composed by two α subunits and three β subunits, and displays a high 

affinity for nicotine, while homo-pentameric receptors display low affinity for nicotine. 

The neuronal nAChRs are expressed in the CNS, in the autonomic ganglia and in the 

adrenal medulla (Fig. 1.5).  

The neuronal nAChRs can be classified as α-bungarotoxin (α-BTX)-sensitive or α-

bungarotoxin (α-BTX)- non sensitive: generally, the hetero-pentameric nAChR are non-

sensitive to α-BTX, whereas the homo-pentameric receptors, including the α7nAChR and 

the α9nAChR, are classified as α-BTX-sensitive (Karlin, 2002).  

Among the nAChRs, the α7nAChR is particular, because it is a homo-pentameric 

channel composed of five identical α7 subunits, endowed with five ligand binding domain 

(Fig. 1.6).  

The α7nAChR is widely expressed in all the CNS areas, both at pre-synaptic terminals, 

where it modulates neurotransmitter release, and at post-synaptic level, where it triggers 

the action potential. In the Peripheral Nervous System (PNS) it has been found in 

autonomic and sensory ganglia (Berg and Conroy, 2002).  

Recent evidence demonstrated the expression of the α7nAChR also in extra-neuronal 

tissues, such as epithelial cells, endothelial cells, keratinocytes, lung fibroblasts and most 

immune cells, such as monocytes and macrophages (Sharma and Vijayaraghavan, 2002). 
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Figure 1.4: Schematic representation of a general nicotinic acetylcholine subunit: the figure highlights the 

presence of a long N-terminal extracellular domain, containing the acetylcholine binding domain and the 

signal peptide, four transmembrane domains, forming an intra-cellular loop, and a short C-terminal 

extracellular domain.  

 

 

 

Figure 1.5: Schematic representation of the structure of nAChRs. (A) Structure of the embryonic muscular 

nAChR. (B) Structure of the adult muscular nAChR. (C) Structure of the neuronal hetero-pentameric nAChR. 

(D) Structure of the neuronal homo-pentameric nAChR. 
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Figure 1.6: The α7nAChR channel. The presence of five identical α7 subunits determines the presence of 

five ACh binding domains. 

 

1.3.1. The CHRNA7 gene 

 

The α7 subunit is encoded by the CHRNA7 gene, which is a highly evolutionary 

conserved gene, mapping on chromosome 15 in position 15q13-q14. In contrast to others 

genes encoding nicotinic acetylcholine subunits, which are composed of at least six exons, 

the CHRNA7 gene is composed of ten exons, and is located on the positive strand. Exons 

1-5 encode the extra-cellular N-terminus domain, including the signal peptide and the 

acetylcholine binding domain; exons 6-8 encode three of the four transmembrane 

domains and the long intra-cellular loop, which contributes to forming the cationic pore; 

exons 9 and 10 encode the last transmembrane domain, and the small extra-cellular C-

terminal domain (Fig. 1.7).  
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Figure 1.7: Schematic representation of the α7 subunit. The extracellular N-terminal domain is encoded by 

exons 1-5. Exons 6, 7 and 8 encode the first three transmembrane segments and the intracellular loop 

responsible of the intracellular signaling elicited in the cholinergic anti-inflammatory pathway, while exons 

9 and 10 encode the last transmembrane domain and the extra-cellular C-terminal domain. 

 

As many other genes, the human CHRNA7 undergoes alternative splicing, generating 9 

alternative splicing isoforms, only two of which are known to maintain the open reading 

frame: the first isoform is characterized by the skipping of exon 3, while the second is 

characterized by the presence of the novel exon 4a (Gault et al., 1998; Severance and 

Yolken, 2008). A schematic representation of all the alternative isoforms generated from 

CHRNA7 gene splicing is reported in Fig. 1.8. 

The full length CHRNA7 transcript gives rise to an α7 subunit of approximately 56 kDa, 

composed of 502 aa, including the 22 aa N-terminal signal peptide, which is eliminated 

after the correct subunit localization (Changeaux et al., 1998).  

As for other nicotinic receptors, the assembly of the α7nAChR is a slow and inefficient 

process: the assembly of the entire channel takes place in the endoplasmic reticulum (ER) 

and involves the action of several chaperones, including the high specific Resistance to 

Inhibitors of Cholinesterase 3 (RIC 3), whose function is limited to the nAChRs and to 5-

hydroxytryptamine type 3 receptor (5-HT3R) (Millar, 2008).  
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Figure 1.8: Schematic representation of the splicing isoforms generated from CHRNA7 gene. Only the full 

length coding sequence, out of the nine known splicing isoforms, one without exon 3 and the other 

retaining the novel exon 4a (highlighted in red in the figure), are known to contain a functional open 

reading frame. The others contain premature stop codons determining the non-sense mediated decay of 

the mRNA. 

 

1.3.2. α7 nicotinic acetylcholine protein in the nervous system 

 

The α7nAChR is expressed both in the human CNS and PNS. In the CNS, it is expressed 

in several areas, including the hippocampus, the thalamus and the cerebral cortex, both 

at pre- and post-synaptic level, but also at peri-synaptic and non-synaptic sites.  

Receptors containing the α7 subunit belong to the α-bungarotoxin (α-BTX)-sensitive 

nicotinic acetylcholine receptor family and are blocked by nanomolar concentrations of 
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the snake toxin α-BTX. In the chick CNS and PNS there is evidence that the α7 subunit can 

form hetero-pentamers with the α8 and α5 subunits, and experiments performed on 

transfected Xenopus laevis oocytes, and in human epithelial kidney cells tsA201, 

demonstrated that it could also associate with the β2 nicotinic receptor. Despite the 

previous opinion that in mammals α7nAChR is predominantly homomeric ligand-gated 

ion channel, recent evidence demonstrated the presence of functional α7-β2 receptors in 

mouse and human basal forebrain (Moretti et al., 2014). 

The α7nAChR is activated quickly and its desensitization is fast: when activated by the 

endogenous ligand acetylcholine, the α7nAChR produces a rapidly decaying inward 

current that elevates the intracellular levels of calcium in neurons, either directly through 

the channel or indirectly via depolarization and activation of voltage-gated Ca2+ channels, 

or by inducing the release of the intra-cellular Calcium storage in the ER.  

At the pre-synaptic terminals, the α7nAChR has a role in modulating neurotransmitters 

release, in particular glutamate and norepinephrine, whereas at the post-synaptic level, it 

is implicated in triggering the action potential and can contribute to the long term 

potentiation (Berg and Conroy, 2002).  

 

1.3.3. Function of the α7 nicotinic acetylcholine receptor in the immune system 

 

In the extra-neuronal tissues, the α7nAChR plays important roles in proliferation, 

differentiation, migration, adhesion, cell contact, apoptosis, angiogenesis and tumour 

progression. In particular, activation of the α7nAChR on monocytes and macrophages by 

acetylcholine leads to the anti-inflammatory response in the context of the Cholinergic 

Anti-Inflammatory Pathway (Sharma and Vijayaraghavan, 2002).  

Although in extra-neuronal contexts the α7nAChR may act as ion channel, increasing 

the levels of free intracellular calcium, evidence shows that in immune cells, and in 

particular in the Cholinergic Anti-Inflammatory Pathway, it mainly functions by triggering 

intracellular signaling through its intracellular loop. Indeed, human leukocytes treatment 

with nicotine or acetylcholine generates no detectable membrane currents.   

When activated by the endogenous ligand, the α7nAChR expressed by leukocytes 

induces a rapid increase of intracellular Ca2+ concentration, probably due to an increased 
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release of calcium from the ER induced by the activation of PI3K and Phospholipase C 

(PLC), rather than to increased calcium influx. The increased concentration of Ca2+ 

activates the protein kinase C (PKC) which in turn activates the MAPK cascade, thus 

leading to change in gene expression (Villiger et al., 2002).  

Moreover, many proteins have been shown to bind the intracellular portion of the 

α7nAChR and participate to the signal transduction. For example, the α7nAChR activates 

the Janus Kinase 2 (JAK2)-PI3K-AKT-STAT3 signalling. This signalling has been found to 

trigger the transactivation of NF-κB, which in turn increases the expression of the anti-

apoptotic protein Bcl-2 (Marrero and Bencherif, 2009). 

The activation of NF-κB-Bcl-2 has a central pro-inflammatory role but it is also involved 

in the neuroprotective effect against Aβ1-42-dependent apoptosis elicited by nicotine 

treatment (Marrero et al., 2004).  

At the same time, the activation of STAT3 has also anti-inflammatory effects: STAT3 is 

in fact an anti-inflammatory transcription factor, whose activation results in decreased 

pro-inflammatory cytokines’ gene expression. 

α7nAChR-mediated STAT3 activation is important for the anti-inflammatory response 

induced by acetylcholine: indeed, nicotine or acetylcholine fails to reduce TNF-α 

production in cells expressing STAT3 mutated in the residues that are phosphorylated or 

in the DNA-binding domain, and vagal stimulation does not inhibit intestinal inflammation 

in STAT3 conditional knock-out mice (De Jonge et al., 2005). 

On the other hand, the α7nAChR exerts an anti-inflammatory effect also by directly 

reducing the activity of the NF-κB transcription factor (Shaw et al., 2002; Arredondo et al., 

2006). It has been shown that the anti-inflammatory potential of the α7nAChR in 

macrophages, monocytes and epithelial cells relies upon the direct inhibition of NF-κB: 

the inhibitory effect may be mediated by counteracting the degradation of IκB and 

preventing NF-κB translocation (Saeed et al., 2005; Yoshikawa et al., 2006) (Fig.1.9). 

The signalling elicited by α7nAChR activation involves also other pathways: for 

example, nicotine up-regulates the cyclooxygenase (COX-2) and increases PGE2 

production (Heeschen et al., 2001; Takahashi et al., 2006).   
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Figure 1.9: The α7nAChR signaling in the immune system. In the immune system, in particular in 

monocytes and macrophages, the α7nAChR, once activated by ACh, triggers an intra-cellular signalling 

which culminates with the activation of the anti-inflammatory transcription factor STAT3, that mediates 

transcriptional repression of pro-inflammatory genes, such as IL-1 and TNF-α. The activation of α7nAChR 

leads also to the direct inhibition of NF-ΚB.  

 

1.3.4. α7nAChR-related pathologies 

 

1.3.4.1. Neurological disorders 

 

Mutations in the CHRNA7 gene or alteration of the function of α7nAChR have been 

linked to several human neurological disorders, such as Alzheimer’s disease (AD) and 

schizophrenia.  

It is worth noting that all the neurological diseases involving an altered function of the 

α7nAChR as causative or contributing factor are known to be associated with an 
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inflammatory state, generally caused by hyper-activation of the microglia. The α7nAChR is 

indeed expressed by microglial cells where it plays important roles in controlling microglia 

activation (Egea et al., 2015).  

Accumulating evidence indicates a role of the α7nAChR in the pathogenesis of 

neurodegenerative diseases as well as in therapeutic strategies for several dementias, 

including Alzheimer’s disease (AD). AD is indeed characterized by the loss of cholinergic 

neurons due to a selective decrease of nicotinic receptors (Burghaus et al., 2000; Leonard 

et al., 2000; Guan et al., 2002). Moreover, recent studies have suggested a protective role 

of nicotine assumption for Alzheimer’s and Parkinson diseases and the administration of 

nicotine to rat hippocampal cultures seemed to exert a neuroprotective effect against 

glutamate- and β-amyloid-related cytotoxicity (Morens et al., 1995; Brenner et al., 1997; 

Shimohama, 2009). 

Many authors have reported the high affinity association between the α7nAChR and 

Aβ peptides: the two proteins co-localized not only at the neuronal cell membrane, but 

also into the β-amyloid plaques found in AD brain samples (Wang et al., 2000). The nature 

of this association is far from being elucidated: many studies hypothesized an antagonist 

role of the Aβ peptide (Pettit et al., 2001), while others reported increased pre-synaptical 

calcium current in response to Aβ42- α7nAChR association (Wang et al., 2000). 

Specific mutations or polymorphisms in CHRNA7 sequence are associated with an 

increased or decreased risk of AD development: for example, the combination of two 

particular SNPs in CHRNA7 5’-UTR and Intron 2 are associated with a decreased risk of AD, 

while another SNP in CHRNA7 Intron 3 is instead associated with increased risk (Carson et 

al., 2008). The different genotype at CHRNA7 gene can also alter the pharmacological 

response to AD treatment: patients carrying rs8024987 (C/G) or rs6494223 (C/T) 

polymorphisms respond better to AChEi treatment. 7nAChR upregulation induced by 

Donepezil is higher in lymphocytes from TT subjects than in CC or CT (Russo et al., 2015). 

Concerning the pattern of expression of CHRNA7 gene in human AD brain, several 

studies have been conducted with different and often controversy results: in 2000, 

Wevers and collaborators reported a marked decrease of α7nAChR protein in AD pre-

frontal cortex, while they found no differences in mRNA expression compared to controls. 

Contrary, in 2007, Counts et al. reported an up-regulation of CHRNA7 mRNA in Nucleus 
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Basalis neurons (Wevers et al., 2000; Counts et al., 2007). Moreover, Chu and 

collaborators found a significant up-regulation of α7nAChR protein level in leukocytes 

obtained from AD patients compared to control: the up-regulation inversely correlated 

with the Mini-Mental State Examination (MMSE) score, which measures the patient 

cognitive ability, suggesting that CHRNA7 protein level in blood could be used as a 

diagnostic marker for AD (Chu et al., 2005). The results provided by Chu were recently 

confirmed by Conti and collaborators, which measured the level of CHRNA7 mRNA in 

Peripheral Blood Mononuclear Cells (PBMCs) obtained from healthy controls, AD patients 

and AD patients treated with the Donepezil. They found a significant increase of CHRNA7 

expression in AD and AD-Donepezil samples compared to controls (Conti et al., 2016).   

The α7nAChR has a well-characterized role also in several psychiatric disorders, such as 

schizophrenia. Since 1998, it is known that the α7nAChR is implicated in the P50 auditory 

gating deficit (Adler et al., 1998) characterizing schizophrenia and rare, though large 

recurrent microdeletions in CHRNA7 locus are associated with this psychiatric disease 

(Stefansson et al., 2008). No mutations in the CHRNA7 coding region were reported to be 

associated with schizophrenia, but several SNPs in its promoter, usually correlated to a 

decreased CHRNA7 expression, seemed to be associated with schizophrenia and P50 

auditory gating deficit (Leonard et al., 2002; Stephens et al., 2009). Interestingly, one of 

the most characteristic behaviours of schizophrenic patients is heavy smoking, thus 

suggesting the involvement of cholinergic system in this disease (Olincy et al., 1997).  

At the same time, it is worth noting that also schizophrenia has a high component of 

neuro-inflammation: for example, viral or bacterial infections occurring during pregnancy 

are thought to increase the risk of schizophrenia and schizophrenic patients show 

increased levels of circulating pro-inflammatory cytokines (Patterson, 2009). 

Emerging evidence suggests that the α7nAChR can be also implicated in other 

neurological disorders, such as autism (Bacchelli et al., 2015), epilepsy (Damiano et al., 

2015), and Tourette syndrome (Melchior et al., 2013). 

The Chr15q13.3 locus, which contains CHRNA7 gene together with other five genes, is 

subjected to Copy Number Variations (CNVs), due to the presence of six Low Copy Repeat 

(LCR) mediating Non-allelic Homologous Recombination (NAHR), leading to chromosomal 

microdeletions and duplications. The CNVs at Chr15q13.3 are responsible for various 
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neuropsychiatric diseases, including autism, learning disabilities and seizures (Szafranski 

et al., 2000). Recently, it has also been reported the presence of CHRNA7 triplication, 

segregating in four affected family members in three generations: these patients 

presented several neuropsychiatric disorders and intellectual disabilities, including 

anxiety, bipolar disorder, attention deficit and seizures (Soler-Alfonso et al., 2014). 

Of great interest is the role of CHRNA7 in Autism Spectrum Disorders (ASD): it is indeed 

known that the 15q11.2-13.3 region is deleted or duplicated in 1-3% of autism patients 

(OMIM 209850). This genomic region is under control of the Prader-Willi Syndrome 

Imprinting Center (PWS IC). In 2011, Yasui and collaborators demonstrated that the 

expression of CHRNA7 during neuronal development is regulated by the PWS IC through 

the involvement of the transcriptional silencer MeCp2, whose loss of function is 

responsible for Rett Syndrome and which can contribute to long range chromatin 

remodelling (Yasui et al., 2011). This evidence provided a link between CHRNA7 altered 

expression and development of complex neurological disorders, such as Rett Syndrome, 

that is characterized by neurodevelopmental regression similar to autism, and by several 

neurological symptoms, including epilepsy (LaSalle et al., 2009).  

 

1.3.4.2. Immunological disorders 

 

Given the central role of the α7nAChR in the Cholinergic Anti-Inflammatory Pathway, 

it’s not surprising if it has become a promising target for anti-inflammatory therapies.  

Several immunological pathologies characterized by uncontrolled production of pro-

inflammatory cytokines and systemic inflammatory status could be treated with drugs 

and compounds that target the α7nAChR and its pathway in extra-neuronal tissues. For 

example, a particular α7nAChR agonist (TC-7020) is effective in reducing the serum levels 

of pro-inflammatory cytokines and of glucose level, weight gain and food intake in a 

mouse model of diabetes type 2 (Marrero et al., 2010). 

Other α7nAChR agonists (such as nicotine or acetylcholine) seem to be effective also in 

asthma (Mishra et al., 2010), arthritis (van Maanen et al., 2009), psoriasis (Mazza et al., 

2010), ulcerative colitis (Ghia et al., 2006) and sepsis (van Westerloo et al., 2005).  
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Sepsis or Systemic Inflammatory Response Syndrome (SIRS) is one of the major causes 

of death in the western world and is characterized by a systemic inflammation in 

response to high level of endotoxin (generally LPS), which could result in septic shock or 

Multiple Organ Dysfunction Syndrome (MODS). The exaggerated response of the innate 

immune system to bacterial infection is thought to be the leading cause of the high 

mortality of this syndrome, although the precise molecular mechanisms controlling SIRS 

are far to be elucidated. However, new evidence suggests that the high rate of mortality 

could be also due to a state of unresponsiveness of the innate immune cells after 

prolonged exposures to high levels of endotoxin. This aspect of the sepsis is characterized 

by the production of high levels of anti-inflammatory cytokines and is generally indicated 

with the term of endotoxin tolerance or Compensatory Anti-Inflammatory Reaction 

(CARS) (Bone et al., 1997). Several α7nAChR agonists have been reported to reduce the 

TNF-α serum level in experimental sepsis, but the anti-inflammatory effect exerted by 

α7nAChR agonists leads sometimes to an increased lethality rate, due to a decreased 

bacterial clearance (van Westerloo et al., 2005).  

In the last years, several studies have suggested new therapeutic strategies for 

immunological disorders involving CHRNA7 targeting: between those, a therapeutic 

approach directed on modulation of miRNAs, involved in the Cholinergic Anti-

Inflammatory Pathway, has become more and more interesting. In 2013, Sun and 

collaborators discovered that nicotine inhibits STAT3 expression through the activation of 

miRNA-124, via α7nAChR stimulation. This results in a reduced production of pro-

inflammatory cytokines IL-6 and TNF- α. Interestingly, the inhibition of TNF- α by miRNA-

124 is shown to be mediated by the prevention of TNF-converting enzyme (TACE) 

translation, which is necessary for the release of the soluble TNF- α. The pre-treatment 

with miRNA-124 agomir is sufficient to improve the 24 hour survival rate in a murine 

model of endotoxemia, giving interesting hints for a miRNA-based therapy of 

inflammatory pathologies (Sun et al., 2013; Ulloa, 2013).  

More recently, Liu et al. investigated the role of miRNA-132 in sepsis-induced lung-

injury. miRNA-132 is known to be induced after LPS treatment in human primary 

macrophages and contributes to activate the Cholinergic Anti-Inflammatory Pathway by 

reducing acetylcholinesterase level (Shaked et al., 2009). Liu and collaborators found that 
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miRNA-132 is also up-regulated in LPS-treated alveolar macrophages, and this up-

regulation determines an anti-inflammatory response by reducing AChE protein level, 

thus improving ACh anti-inflammatory signaling through α7nAChR activation. Moreover, 

alveolar macrophages treatment with ACh in the presence of miRNA-132 over-expression 

resulted in NF-κB nuclear translocation inhibition and STAT3 up-regulation. Overall, the 

results achieved suggest that miRNA-132 can act as a modulator of inflammation through 

the recruitment of the Cholinergic Anti-Inflammatory Pathway (Liu et al., 2015). 

In the last years, emerging evidence has also highlighted the role of CHRNA7 in the 

development of HIV-associated Neurocognitive Disorders (HAND). Given that HIV does 

not directly infect neurons, the finding of neurological symptoms in HIV-infected patients 

has become an interesting field of research: indeed, different hypotheses have been 

raised to explain the molecular mechanisms of neurological impairment in HIV infection. 

First, it is possible that HIV infection could alter the chemokine/cytokine balance, thus 

inducing a microglial over-activation; alternatively, it has been hypothesized a neuro-toxic 

effect exerted by soluble HIV proteins, such as gp120. Indeed, it has been demonstrated 

that in cultured cells the neurotoxic effect is partly due to α7nAChR activation, leading to 

neuronal death (Ballester et al., 2012).   

 

1.3.5. α7nAChR involvement in AD therapy: the case of Donepezil 

 

The cholinergic system is one of the most promising therapeutic targets in AD: the 

treatment with Acetylcholinesterase Inhibitors (AChEI) such as Galantamine or Donepezil 

is indeed effective and ameliorates the cognitive symptoms of AD (Taylor, 1998). In 

particular, Donepezil, a selective non-competitor AChEI, is one of the most effective drugs 

used in Alzheimer’s disease. As other AChEI, Donepezil overcomes the Blood Brain Barrier 

and temporary ameliorates the cognitive symptoms of AD by inhibiting the 

acetylcholinesterase (AChE) enzyme which is responsible for the degradation of ACh. The 

inhibition of AChE function results in an increased permanence of ACh at nicotinic 

synapses, thus partly counteracting the nicotinic loss, that is one of the characteristic 

signs of AD. Moreover, Donepezil treatment determines the up-regulation of α7nAChR 

protein level in neurons (Takata-Takatori et al., 2008). In addition to its role as AChEI, 
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Donepezil also binds directly the α7nAChR in neurons, exerting a neuro-protective 

function by stimulating the receptor activation: on one hand, the α7nAChR activation 

leads to PI3K-Akt-Bcl-2 signaling pathway, thus providing neuro-protection against β-

amyloid neuro-toxicity; on the other hand, α7nAChR stimulation determines the 

internalization of NMDA functional receptors, thus reducing the glutamate-dependent 

neuro-toxicity (Shen et al., 2010). 

Little is known about the mechanisms of action of Donepezil or other AChEI in the 

context of the immune response. It is known that several AChEI are also able to inhibit 

the action of the circulating Butyryl-cholinesterase (BChE) enzymes, while Donepezil 

effect is limited to the AChE. The inhibition of ACh degradation results in a more effective 

anti-inflammatory response evoked by ACh, thus improving the Cholinergic Anti-

Inflammatory Pathway (Pohanka, 2014). However, Donepezil functions also via AChE-

independent pathways, as it exerts anti-inflammatory effects also in the microglia, where 

AChEs are not expressed (Hwang et al., 2010).  

A very recent study by Arikawa and collaborators provided new insights about the anti-

inflammatory properties of Donepezil: the pre-treatment with Donepezil before LPS 

administration was indeed effective in reducing pro-inflammatory cytokines levels in 

murine macrophages cultures (Arikawa et al., 2016).  

Moreover, Donepezil can also exert its anti-inflammatory potential by directly binding 

the α7nAChR, acting as an agonist (Pohanka, 2014). 

Increasing evidence indicates that AChEI treatment also modulates the adaptive 

inflammatory response, and increasing the antibody-mediated immune response (Reale 

et al., 2006). Recently, it has been demonstrated that Donepezil treatment provides 

GATA-3 expression up-regulation through the activation of the α7nAChR. GATA-3 is a key 

transcription factor involved in the switch of Th1-Th2 response and it has been 

hypothesized a possible role of the Donepezil-α7nAChR axis in inducing the antibody-

mediated response against Aβ peptides (Conti et al., 2016).  

There is evidence of alternative pathways activated by Donepezil treatment: an 

alternative receptor of Donepezil is the σ1 receptor, which is a “receptor chaperone” 

located in the ER that leads to the stabilization of the inositol 1-4-5-triphosphate receptor 

in response to low levels of intra-cellular calcium, thus leading to mitochondrial calcium 
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level increase (Ishikawa and Hashimoto, 2016). Donepezil has been demonstrated to 

induce a rescue in amyloid-dependent Long Term Potentiation impairment through 

activation of σ1 receptor (Solntseva et al., 2014), but there is no evidence that Donepezil 

can bind this receptor also in the immune system. 

 

 

1.4. The CHRFAM7A gene 
 

Recently during the evolutionary history, the CHRNA7 gene has undergone a partial 

duplication and fusion, giving rise to a duplicated gene product, named CHRFAM7A. 

The CHRFAM7A gene is present only in humans and is characterized by a complex 

genomic organization. Since its discovery in 1998, many authors have investigated the 

characteristics and functions of this gene, thus defining new insights about its role in the 

immune system. Despite the great amount of information obtained about the CHRFAM7A 

gene, the mechanisms regarding its regulation and expression remain almost unknown.  

 

1.4.1. The CHRFAM7A locus 

 

The CHRFAM7A gene maps on chromosome 15 (15q13-q14) and is the product of the 

partial duplication and fusion of exons 5-10 of the CHRNA7 gene with the novel exons D, 

C, B and A, identified by 5’-RACE analysis on hippocampal mRNA. The genetic sequence 

shared by CHRFAM7A and CHRNA7 (from exon 5 to exon 10) shows more than 99% of 

homology (Gault et al., 1998).  

Exon D belongs to the gene FAM7A, mapping on chromosome 15, whose function is 

still unknown, while exons C, B and A derive from the Unc-51 Like Kinase 4 (ULK4) gene, 

mapping on chromosome 3 and encoding a serine/threonine kinase (Riley et al., 2002).  

The novel exons D, C, B and A are fused to the CHRNA7-derived exons in frame and the 

two counterparts of the CHRFAM7A gene are transcribed as a single unit (Gault et al., 

1999). In addition to the novel exons D-A, Riley et al. identified also other exons, named 

E, F and G. Exon E derives from the ULK4 gene, while exons F and G belong to the FAM7A 

gene (Riley et al., 2002) (Fig. 1.10).   
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The chimeric CHRFAM7A gene maps 1.6 Mb centromeric apart from its parental gene 

CHRNA7 in inverted orientation (Gault et al., 1998) and is located in a high polymorphic 

locus: indeed, there is evidence that it could be in hemizygosis or even absent in some 

populations. Interestingly, Riley and collaborators reported the case of two individuals 

(father and son) lacking the CHRFAM7A gene in a group of South African Bantu 

schizophrenic patients, suggesting that the loss of CHRFAM7A gene could be relevant in 

neuropsychiatric diseases pathogenesis (Riley et al., 2002). 

The homozygotic absence of CHRFAM7A gene is rare (1% of individuals), while the 

hemizygosis is more common (20% of individuals), indicating that the CHRFAM7A gene 

can be subjected to Copy Number Variation (CNV) (Flomen et al., 2006) (Fig. 1.11A, Fig. 

1.11C). Moreover, it has been described a 2 base pair deletion polymorphism in exon 6 of 

CHRFAM7A (but not present in the CHRNA7 gene) (Gault et al., 1998) which correlates 

with the inversion of CHRFAM7A orientation (Flomen et al., 2008). This polymorphism 

seems to be more frequent in the Caucasian population rather than in African Americans 

(Sinkus et al., 2009) (Fig. 1.11B). 

The 2 base pair deletion polymorphism found in CHRFAM7A exon 6 is less frequent in 

individuals carrying a particular CHRNA7 promoter mutation and is in linkage 

disequilibrium with a 3 base pair intronic insertion in CHRNA7 exon 7, which is thought to 

trigger the alternative splicing of the CHRNA7 gene, generating the exon 3 deleted 

isoform (Gault et al., 2003; Rozycka et al., 2013). 

 

 

 

Figure 1.10: Schematic representation of the order of the upstream exons of CHRFAM7A (apted from 

Sinkus et al., 2015). 
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Figure 1.11: Schematic representation of CHRFAM7A alleles. (A) Wild Type (WT) CHRFAM7A locus allele: 

the CHRFAM7A gene is located 1.6 Mb centromeric with respect to CHRNA7 on opposite strand. (B) Allele 

carrying the 2 base pair deletion in CHRFAM7A exon 6: the deletion correlates with the gene inversion and 

CHRFAM7A is located on the same strand with respect to CHRNA7. (C) Allele characterized by the absence 

of CHRFAM7A gene.   

 

1.4.2. The CHRFAM7A transcript 

 

The first evidence of CHRFAM7A expression in human tissues was reported by Villiger 

and collaborators in 2002. In this study the authors investigated the expression of 

CHRNA7 transcript in leukocytes. Despite the high expression level of CHRNA7 transcript 

in leukocytes, electrophysiological studies failed to reveal ACh or nicotine-evoked current. 

The authors explained the results hypothesizing that the transcript identified actually 

corresponded to the CHRFAM7A transcript, earlier characterized by Gault and 

collaborators in 1998. The CHRFAM7A transcript is indeed translated into a protein, 

named α7dup, that not containing the ACh binding domain of the α7 conventional 

subunit is unable to induce Ca2+ currents. They corroborated the hypothesis by analysing 

by RT-PCR the CHRFAM7A sequence encompassing exons C-A, thus demonstrating that 
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the predominant transcript expressed in leukocytes was the CHRFAM7A. Moreover, while 

in the CNS the CHRNA7 gene is more expressed than CHRFAM7A, in leukocytes 

CHRFAM7A has higher expression level compared to CHRNA7 (Villiger et al., 2002). It is 

now known that CHRFAM7A transcript is expressed in more than 30 human tissues. 

The CHRFAM7A gene is transcribed into a mRNA that could be subjected to alternative 

splicing, generating two different isoforms. The isoform 1 (CHRFAM7A-002) contains all 

ten exons, eight of which are coding exons and generate a mRNA of 6220 bp, while the 

isoform 2 (CHRFAM7A-201) is characterized by the skipping of the novel exon B and has 

nine exons, five of which are coding exons, generating a transcript of 2749 bp.  

The analysis of the CHRFAM7A sequence identified two different Open Reading Frames 

(ORFs) from which the translation could initiate: the first ATG is located in the novel exon 

B and gives rise to a protein of 46 KDa (412 aa), characterized by the presence of an N-

terminus domain of 27 aa which is encoded by the novel exons B and A. The second ATG 

is located in the CHRNA7-derived exon 6 and when the translation start from this ATG a 

35 KDa protein (321 aa) is produced, characterized by the absence of the N-terminus 

domain, resulting in a truncated form of the α7nAChR conventional subunit and does not 

contain any FAM-derived sequence (http://www.ensemble.org). 

Given the fact that the CHRFAM7A pre-mRNA undergoes alternative splicing, while the 

isoform 1 (CHRFAM7A-002) can be translated from both the ATG, giving rise to the 35 

KDa and 46 KDa proteins, the isoform 2 (CHRFAM7A-201), which lacks the exon B, can be 

translated only from the ATG in exon 6, giving rise only to the 35 KDa protein (Fig. 1.12A).  

The translation is further complicated by the presence of the 2 base pair deletion in 

exon 6: the polymorphism involves a TG dinucleotide and is located upstream the ATG in 

exon 6 and its presence generates a premature stop codon in the sequence (Gault et al., 

1998). Thus, when the polymorphism is present, both the isoform 1 and 2 could be 

translated only from the ATG in exon 6, generating the shortest isoform (Fig.1.12B).  

The protein produced by the CHRFAM7A gene, hereon called α7dup, shows many 

analogies with the α7nAChR conventional subunit, as it is characterized by four 

transmembrane domains, a long intra-cellular loop and a short extra-cellular C-terminal; 

however, both the α7dup proteins generated by the CHRFAM7A gene differ from the 
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α7nAChR for their N-terminus domain, which in particular lacks the α7nAChR signal 

peptide and the ACh binding domain (Araud et al., 2011) (Fig. 1.13).   

 

 

 

 

 

 

Figure 1.12: Schematic representation of the CHRFAM7A transcription and translation. (A) The WT 

CHRFAM7A allele is transcribed into two splicing isoforms, the isoform 1, characterized by the presence of 

all the exons, and the isoform 2, which is characterized by the skipping of exon B. The isoform 1 can be 

translated from both the ATG in exon B and the in one exon 6, giving rise to two different proteins of 46 
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KDa and 35 KDa respectively. The isoform 1 is characterized by the presence of a 27 aminoacids N-terminal 

domain, encoded by the novel exons B and A; the isoform 2 lacks the N-terminal domain but is 

characterized by the presence of four transmembrane domains and a short C-terminal as the isoform 1. The 

splicing isoform 2 instead is only translated from the ATG in exon 6, thus giving rise only to the 35 KDa 

protein. (B) The TG deletion in CHRFAM7A exon 6 maps upstream the ATG and causes the insertion of a 

premature stop codon: the isoform 1 is then translated from the ATG in exon B but the translation 

terminates at the premature stop codon inserted by the polymorphism, giving rise to a 40 aminoacids 

peptide whose fate is unclear. The translation re-starts at the ATG in exon 6 giving rise to the 35 KDa 

protein. The CHRFAM7A isoform 2 instead is only translated from the ATG in exon 6, giving rise to the 

shortest isoform. 

 

 

 

Figure 1.13: Comparison between the two α7 duplicated proteins and the α7 conventional subunit: the 

α7dup proteins, as the α7 conventional subunit, are characterized by the presence of four transmembrane 

domains and a short C-terminal extracellular loop, but they completely lack the N-terminal domain of the 

α7 conventional protein, including the signal peptide and the acetylcholine binding domain. 

 

1.4.3. The α7dup protein 

 

The α7dup subunit seems to be unable to form functional receptors, as it lacks the 

α7nAChR N-terminal domain, normally encoded by exons 1-5, and the portion encoded 

by the novel exons is thought not to contain any conventional signal peptide. The α7dup 

also has particular pharmacological properties, as it is not blocked by α-BTX and is not 

able to evoke inward calcium currents.  
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In 2011, De Lucas Cerillo et al. reported that the α7dup subunit is able to bind the 

conventional α7 isoform thus exerting a dominant negative regulation upon the α7 

function: indeed, the co-transfection of α7: α7dup subunits in a molar ratio of 1:5 in 

Xenopus oocytes decreases the nicotine-elicited calcium current (De Lucas Cerillo et al., 

2011). 

This effect seemed to be due to a reduction of the number of functional α7nAChRs 

reaching the oocyte’s membrane. In this perspective, the α7dup protein can act by 

sequestering the conventional α7 subunits in the endoplasmic reticulum. These results 

were confirmed in 2012 by Araud at al. However, the authors also showed an increased 

potentiation of the allosteric modulator PNU-120596, which interacts with the α7 

transmembrane domain, in oocytes transfected with a 1:10 ratio of α7: α7dup. This 

evidence raised the hypothesis that the α7dup protein can exert its dominant negative 

effect also by directly binding the conventional α7 subunits in the plasma membrane and 

reducing the number of ACh binding domains of the receptors (Araud et al., 2012) (Fig. 

1.14). This speculation is also supported by the observation of a direct interaction 

between the two subunits by means of FRET analysis in Neuro2A cells and primary rat 

hippocampal neurons (Wang at al. 2014). 

Interestingly, the α7dup protein encoded by the CHRFAM7A gene carrying the 2 base 

pair deletion polymorphism in exon 6, currently named Δα7dup, seems to exert a more 

potent dominant negative effect upon the α7 conventional function (Araud et al., 2012). 
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Figure 1.14: Schematic representation of the two principal mechanisms by which the α7dup protein is 

thought to exert a dominant negative regulatory role on the α7 conventional receptor. The first 

mechanism relies on the capacity of the α7dup subunit to bind and retain the α7 conventional subunit in 

the Endoplasmatic Reticulum, given the absence in its sequence of a signal peptide, thus reducing the 

number of functional receptors in the plasma membrane. In the second mechanism, the α7dup protein 

binds the α7 conventional subunits and the complex is transported in the plasma membrane: given that the 

α7dup protein lacks the ACh binding domain, the heteropentamers formed by the α7dup and α7 

conventional subunits is characterized by a reduced number of ACh binding domain, thus leading to a 

reduced ACh-induced Ca2+ current. 

 

A functional role of α7dup protein in vivo is suggested by its down-regulation in 

monocytes and macrophages after LPS challenge: the down-regulation, which affects the 
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CHRFAM7A transcript as well as the protein, is also observed in the leukaemic monocytic 

cell model THP-1 (Benfante et al., 2011). The THP-1 cells, unlike the primary monocytes 

and macrophages which are characterized by the expression of both the α7 conventional 

and α7dup proteins, express only the CHRFAM7A transcript and completely lack CHRNA7 

mRNA, even if the CHRNA7 gene is detected in the genome.  

The CHRFAM7A down-regulation occurring in THP-1 and in monocytes and 

macrophages after LPS challenge relies on a transcriptional mechanism directly driven by 

the NF-κB transcription factor. Indeed, the treatment with the NF-κB inhibitor 

Parthenolide rescues the CHRFAM7A control level upon LPS challenge (Benfante et al., 

2011) (Fig. 1.15). 

Interestingly, unpublished data show that the LPS treatment on human primary 

monocytes and macrophages induces the expression of the CHRNA7 gene, suggesting 

that in these cells heteromeric α7 receptors, consisting of both α7 subunit, could be 

formed (Fig. 1.16). This receptor would have a lower capacity to respond to acetylcholine, 

because the subunit has no conventional binding site for the ligand. If true, one might 

speculate that the negative regulation of CHRFAM7A gene may be somehow involved in 

regulating levels of homomeric α7 nicotinic receptor on the membrane of macrophages 

and therefore the ability of these immune cells to respond to acetylcholine released from 

Vagus nerve during an infection. Pro-inflammatory stimuli then would lead to increase of 

the conventional subunits transcript level on one side, and an inhibition of the duplicated 

subunits on the other, thus increasing the ability to respond to ACh. 
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Figure 1.15: CHRFAM7A responsiveness to LPS in THP-1 cell line and human primary monocytes and 

macrophages. (A) The THP-1 cell line expresses the CHRFAM7A but not the CHRNA7 transcript. Real-Time 

PCR analysis was performed using different primers: the primers α7cyto amplifies both the α7 conventional 

and α7dup mRNAs, as they are designed across exon 9 and exon 10; the primers α7E1E2 amplifies only the 

α7 conventional transcript as they are complementary to a region across exon1 and exon2. While the 

primers α7cyto give rise to an amplicon, there is no amplification using the specific α7E1E2 primers, thus 

indicating that the THP-1 cell line express only the α7dup mRNA. (B) Real-Time analysis performed using 

specific primers for the α7 conventional (α7E1E2 primers) and α7dup (α7EAE5) transcript showed that 

primary monocytes and macrophages express both the isoforms and that the CHRFAM7A transcript is 

expressed at higher level compared to CHRNA7. (C) The LPS treatment (1 μg/mL) down-regulates the 
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CHRFAM7A transcript in THP-1 cell line after 2 hours and 3 hours. (D) The CHRFAM7A transcript down-

regulation observed in THP-1 after LPS treatment is detectable also in primary monocytes and macrophages 

after 3 hours. (E) The down-regulation is a transcription-based mechanism reliant on the NF-κB 

transcription factor: indeed, the treatment with the NF-κB inhibitor Parthenolide up-regulates CHRFAM7A 

transcript after 3 hours of LPS treatment recovering the CHRFAM7A mRNA control level (modified from 

Benfante et al., 2011). 

 

 

 

Figure 1.16: CHRNA7 responsiveness to LPS in human primary monocytes and macrophages. 3 hours LPS 

treatment (1 μg/mL) on primary monocytes and macrophages of respectively four and three healthy donors 

determines an up-regulation of the CHRNA7 transcript, detected by means of Real-time PCR. The graph 

shows CHRNA7 mRNA level normalized on GAPDH mRNA of LPS-treated monocytes and macrophages 

compared to that of the control samples set as 1. The monocytes show an up-regulation of about 4-fold, 

while macrophages CHRNA7 transcript is up-regulated of about 7.5-fold with respect to the untreated cells.  

 

The LPS treatment causes alterations in CHRFAM7A transcript expression also in other 

cell models. Dang and collaborators analysed 9 different human gut epithelial cell lines, 

confirming the expression of both CHRNA7 and CHRFAM7A transcripts. Interestingly, 

while the LPS treatment does not affect the expression of CHRNA7, the CHRFAM7A mRNA 

showed a different responsiveness to LPS and is both up- and down-regulated depending 

on the cell line analysed (Dang et al., 2015). In the same study, the authors also 

investigated the CHRFAM7A promoter responsiveness to LPS in the gut epithelial cell line 

FHs. The CHRFAM7A promoter was predicted to encompass about 500 bp of the 5’ 

flanking region from the ATG in exon B, in intron 2 and showed a 3-fold activity compared 
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to the promoter-less vector in the Luciferase assay. The LPS stimulation, however, 

determines only a slight increase in CHRFAM7A promoter activity (Dang et al., 2015).  

The same CHRFAM7A 5’ flanking region was tested to establish its transcriptional 

activity in THP-1 cell line, resulting in a 4-fold activity compared to the empty vector 

(Costantini et al., 2015). Moreover, the over-expression of CHRFAM7A transcript in THP-1 

cell model alters the cell phenotype and the expression of genes associated with focal 

adhesion (Costantini et al., 2015).  

These results, taken together, suggest that the α7dup protein is biologically active and 

may have a role in regulating the inflammatory process, adding a further level of 

complexity in the human resolution of inflammation.  

 

1.4.4. CHRFAM7A involvement in human disease 

 

1.4.4.1. Neurological disorders 

 

The discovery of a new human-restricted gene in a genetic locus known to be involved 

in several psychiatric disorders has risen new possibilities for the genetic studies of 

neuropsychiatric diseases.  

There are indeed several studies linking CHRFAM7A genotype or expression to 

schizophrenia. In 2006, Flomen and collaborators found a correlation between 

CHRFAM7A genotype and psychosis: in particular, the single allelic copy of CHRFAM7A 

(heterozygous genotype) occurred in 24% of psychosis patients, compared to the 16% of 

controls (Flomen et al., 2006). However, this correlation is very weak and the same 

authors were not completely convinced. Moreover, CNVs involving the deletion of 2 Mb 

in the region containing CHRNA7, CHRFAM7A and other genes, which are very rare in the 

common population, are otherwise overrepresented in population affected by 

schizophrenia (Stefansson et al., 2008), autism, neurodevelopmental disorders (Shinawi 

et al., 2009), intellectual impairment such as the Attention Deficit/Hyperactivity Disorder 

(ADHD) (Manchia et al., 2010; Wilens and Decker, 2007) and even more by idiopathic 

generalized epilepsy (Helbing et al., 2009). It has been hypothesized that the correlation 

between the CNVs and the aforementioned pathologies is more likely due to the absence 
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of CHRNA7 gene rather than CHRFAM7A and indeed there are also many cases of 

schizophrenic patients in which the CNV involves the CHRNA7 gene but not the 

CHRFAM7A gene, leaving the patient with only one copy of CHRNA7 and two copies of 

the dominant negative regulator (Stone et al., 2008). 

A recent work by Kunii and collaborators found a decreased CHRNA7/CHRFAM7A 

expression level ratio in the prefrontal cortex of schizophrenic patients. Interestingly, 

decreased CHRNA7/CHRFAM7A ratio is also observed in immature and neonatal 

prefrontal cortex even in the absence of psychotic disorders, suggesting a 

neurodevelopmental role for CHRFAM7A (Kunii et al., 2015).   

Other evidence supported the possible significance of CHRFAM7A in schizophrenia 

pathogenesis: in 2009, it was reported the correlation between the presence of the 2 

base pair deletion polymorphism in CHRFAM7A gene and schizophrenia both in African 

Americans and Caucasian samples (Sinkus et al., 2009), and the same polymorphism was 

correlated to bipolar disorder (Hong et al., 2004), P50 sensory gating deficit (Raux et al., 

2002; Flomen et al., 2013) and deficits in episodic memory, another endophenotype 

proposed for schizophrenia (Dempster et al., 2006). 

The presence of the 2 base pair deletion in CHRFAM7A exon 6 was also investigated in 

idiopathic generalized epilepsy, even though the correlation is controversial, as some 

authors affirm an inverse correlation between the polymorphism and the pathogenesis 

(Rozycka et al., 2013) while other authors do not observe any correlation (Damiano et al., 

2015). 

Giving the numerous studies linking the CHRNA7 gene with dementia pathogenesis, 

also the CHRFAM7A gene has been investigated. Indeed, the CNV involving CHRFAM7A is 

overrepresented in Mild Cognitive Impairment (MCI) and late-onset AD patients 

(Swaminathan et al., 2012). Moreover, a recent work by Fehèr and collaborators 

investigated a possible correlation between the three different genotypes of CHRFAM7A 

(genotype 1: two wild type alleles; genotype 2: one wild type allele and one Δ2bp allele; 

genotype 3: two Δ2bp alleles) and four types of dementia, including Alzheimer’s disease 

(AD), Dementia with Lewys bodies (DLB), Pick’s Disease (PiD) and Vascular Dementia (VD). 

Fehèr et al. demonstrated a higher frequency of the CHRFAM7A genotype 1 (two wild 

type alleles) in AD, DLB and PiD samples, indicating the presence of the 2 bp 
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polymorphism in the genetic sequence as a protective factor against the development of 

these dementia. The authors hypothesized that the expression of the wild type dominant 

negative regulator reduces the α7nAChR function and increases the risk of 

neurodegenerative diseases, while the presence of the polymorphism and the 

consequent production of a truncated form of α7dup protein can result in a more 

efficient α7nAChR assembly, thus reducing the risk of developing neurological disorders 

(Fehèr et al., 2009).  

 

1.4.4.2. Immunological disorders 

 

Right now, little is known about a possible role of CHRFAM7A in human immunological 

disorders, although its high expression level in leukocytes and immune cells and its 

dominant negative regulatory role towards α7nAChR function makes it a promising 

marker or therapeutic tool for several immunological diseases. 

The α7nAChR seems to be involved in the development of HIV-associated 

Neurocognitive Disorder (HAND), as it is activated by the HIV glycoprotein gp120 and is 

implicated in the neurotoxic effect exerted by this viral protein. In 2014, Ramos and 

collaborators showed that the exposure to increasing concentration of gp120 protein 

determined a simultaneously dose-dependent up-regulation of CHRNA7 and down-

regulation of CHRFAM7A transcript in neuronal cell cultures. This effect was shown to be 

dependent on gp-120-CXCR4 interaction, as the administration of CXCR4 antagonists 

abrogated CHRNA7/CHRFAM7A expressional alteration. These results were also 

confirmed in vivo, as the authors found a significant up-regulation of CHRNA7 and a 

significant down-regulation of CHRFAM7A transcripts in post-mortem basal ganglia 

samples of HIV-infected patients (Ramos et al., 2014). Given the dominant negative effect 

of CHRFAM7A towards the α7nAChR functionality, the opposite regulation of the two 

genes can be partly explained by a toxicity effect exerted by gp120, which induce a 

dramatic increase in α7nAChR activity, mediating neuronal death (Ballester et al., 2012).   

Recently, a study by Baird and collaborators investigated the expression of CHRFAM7A 

and CHRNA7 in intestine biopsies of individuals affected by Inflammatory Bowel Disease 

(IBD).   
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IBD is a complex nosological entity characterized by an inflammatory status of the gut, 

which include for example Crohn’s Disease, Celiac Disease, and Ulcerative Colitis. 

The expression analysis revealed an up-regulation of CHRFAM7A transcript in biopsies 

of Crohn’s Disease and Ulcerative Colitis compared to control samples and a concomitant 

down-regulation of CHRNA7 mRNA (Baird et al., 2016). 
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2. Aim of the project 

 
The α7nAChR has a pivotal role in regulating the inflammatory process and increasing 

evidence has reported its importance in the pathogenesis of neurodegenerative and 

inflammatory diseases. Recently, the CHRFAM7A gene, which is the product of the partial 

duplication of CHRNA7 gene, has been discovered. This gene has unique characteristics, 

as it is expressed exclusively in humans and exerts a dominant negative effect towards 

α7nAChR functions. Since its discovery, the CHRFAM7A gene has rapidly become the 

point of interest of several studies which have linked its expression and genotypes to 

different neuropsychiatric diseases. So far, little is known about the expression and 

biological role of CHRFAM7A in inflammatory diseases, although several studies 

suggested the involvement of CHRFAM7A altered expression in inflammatory and/or 

infective pathologies. Interestingly, the acute treatment of human primary monocytes 

and macrophages with LPS, which is considered a paradigm of acute inflammation, down-

regulates CHRFAM7A transcript, by a NF-κB-driven mechanism, and up-regulates CHRNA7 

mRNA.  

The down-regulation of CHRFAM7A and the up-regulation of CHRNA7 in response to 

LPS have led us to hypothesize a possible regulatory role for CHRFAM7A in the Cholinergic 

Anti-Inflammatory Pathway. The protein encoded by CHRFAM7A would indeed act as a 

sensor protein influenced by the inflammatory status. In the early phase of inflammation, 

the signalling triggered by LPS-TLR4 down-regulates the expression of CHRFAM7A, 

reducing the number of dominant negative subunits which counteract the formation of 

the functional receptors. The concomitant up-regulation of the conventional CHRNA7 

results in an increased number of α7nAChR in the membrane and in potentiation of the 

Cholinergic Anti-Inflammatory Pathway. In this perspective, the CHRFAM7A 

transcriptional regulation becomes a key step in the resolution of human inflammation.  

The mechanisms driving the transcriptional regulation of CHRFAM7A gene are still 

almost unknown.  

In this project, we have investigated the transcriptional mechanisms regulating 

CHRFAM7A expression in two particular cell models: the human acute monocyitc 
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leukemia cell line THP-1 and the neuroblastoma cell line SH-SY5Y. Given the high 

expression levels of CHRFAM7A in the human CNS and leukocytes, we have decided to 

focus on these two cell lines, in order to explore possible differences in tissue-specific 

expression patterns and regulatory mechanisms. Our goal was to identify the minimal 

CHRFAM7A promoter driving its expression and to explore its responsiveness to 

inflammatory stimuli, such as LPS treatment.  

Recent studies have demonstrated the central role of CHRNA7 in the development of 

neurological disorders, including Alzheimer’s disease (AD). Changes in CHRNA7 expression 

or function can concur to AD development either by altering the normal neuronal 

function and/or by unbalancing the pro- and anti-inflammatory signal equilibrium. Given 

the little knowledge regarding the expression and the role of CHRFAM7A gene in AD 

onset and progression, our aim was to investigate whether altered transcriptional 

regulation of CHRFAM7A could contribute to AD development. In this context, we focused 

our attention on the acetylcholinesterase inhibitor Donepezil, which is the leading drug 

used in AD therapy. We identified a specific effect of Donepezil on the transcription of 

CHRFAM7A both in monocytic THP-1 cells, and human primary macrophages and 

Peripheral Blood Mononuclear Cells (PBMCs) of AD patients.  

Overall, our findings provide important insights on the molecular mechanisms of 

Donepezil, supporting its anti-inflammatory potential and suggesting new research lines 

on AD therapy.   
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3. Materials and Methods 

 
3.1. Cell Lines 

 

The human acute monocytic leukemia cell line THP-1 and the human neuroblastoma cell 

line SH-SY5Y were cultured in RPMI 1640 (Lonza) supplemented with 10% fetal bovine 

serum (FBS), penicillin (100 U/ml), streptomycin (100 µg/ml) and L-glutamine (2 mM) at 

37 °C in the presence of 5% CO2. THP-1 cells were maintained at a recommended density 

of between 2x105 and 106 cells/ml. Primary monocytes and macrophages were obtained 

as previously described (Benfante et al., 2011). Briefly, blood CD14+ monocytes were 

obtained from buffy coats of four different healthy donors using Ficoll-Hypaque (Ficoll, 

Biochrome) and Percoll (Amersham Pharmacia Biotech) gradient centrifugation. The 

macrophages were obtained from monocytes’ differentiation after six days of culturing in 

standard condition in the presence of ng/mL M-CSF 100.  

 

3.2. Cell treatment 
 

THP-1 cells were counted and seeded at density of 3 x 105 cells/mL the day before all 

treatments. Each experiment was performed with cells at low passage.  

The Escherichia Coli 055: B5 strain (Sigma Aldrich Co., St. Louis, MO, USA) was used for 

the LPS treatment: the cells were challenged for 6 hours at the final concentration of 1 

μg/mL LPS.  

The treatment with the cholinesterase inhibitor Donepezil was performed using 

Donepezil hydrochloride monohydrate (Sigma Aldrich Co., St. Louis, MO, USA): the THP-1 

cells were treated at the final concentration of 10 μm, 20 μm, 30 μM and 50 μM for 3, 6, 

12 and 24 hours. The SH-SY5Y cells were instead treated with 30 μM Donepezil 

concentration for 3h and 6h.   

The transcription arrest studies were performed on THP-1 cells with 3 hours pre-

treatment with 30 μM Donepezil followed by treatment with the Polymerase II inhibitor 

DRB (Sigma Aldrich Co., St. Louis, MO, USA) at 75 μM final concentration. The cells were 
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collected at 1 hour, 2 hours and 4 hours after DRB challenge. Untreated THP-1 and DMSO-

treated (DRB vehicle) THP-1 cells were used as control. 

Macrophages were treated with 1 μg/mL of LPS for 1 hour and with 20 μM Donepezil for 

three hours.  

 

3.3. 5’ RACE 
 

5’ terminus has been determined by 5’ RACE. The FirstChoice RLM-RACE kit (AMBION) 

was used according to the manufacturer’s instructions. Briefly, total RNA from THP-1 and 

SH-SY5Y cells and primary monocytes and macrophages was treated with CIP enzyme 

(Calf Intestinal Alkaline Phosphatase), at 37 °C for one hour, to remove the 5’-phosphate 

group from ribosomal RNA, tRNA, degraded mRNA fragment and genomic DNA and a 45 

bp long adapter was ligated by T4 RNA ligase, after TAP mediated decapping of mRNA. 

RNA was collected by centrifugation at 14000 rpm for 20 minutes at 4 °C; the pellet was 

washed with 0.5 ml of 70% ethanol and resuspended in RNase-free water to proceed with 

the following step. Adapter-ligated mRNA was reverse transcribed by means of 

SuperScript III First-Strand Synthesis System RT-PCR (Life Technologies), using random 

hexamers and cDNA was amplified by nested PCR with GoTaq Flexi (Promega) used 

according to the manufacturer’s instructions. cDNA was amplified by an initial 

denaturation step at 95 °C for 3 minutes followed by 40 cycles of 30’’ denaturation at 95 

°C, 45’’annealing at 60 °C, 80” elongation at 72 °C and one cycle of a 5 minutes elongation 

step at 72 °C. The primers used for the outer PCR reaction are described in Table 2.1.  

 

Name Sequence 

Outer FW 5’ – GCT GAT GGC GAT GAA TGA ACA CTG - 3’ 

Ex5 REV 5’ – GTT AGT GTG GAA TGT GGC GTC AAA GC - 3’ 

Ex6 REV 5’ – ACA TCG ATG TAG CAG GAA CTC TTG A - 3’ 

Inner FW 5’- CGC GGA TCC GAA CAC TGC GTT TTG CTG GCT TTG ATG - 3’ 

ExA REV 5’- GCA GTT TGC AGC TAT CCA CAA AAT GC - 3’ 

Ex5 REV 5’ – TAG TGT GGA ATG TGG CGT CAA AGC G - 3’ 
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Table 2.1: Sequence of the primers used in the 5’-RACE experiment. 

 

3.4. Total RNA Extraction and Reverse Transcription 
 

Total RNA was extracted using the RNeasy Mini kit and accompanying QIAshredder 

(Qiagen), according to the manufacturer’s instructions. Briefly, a maximum of 9x106 cells 

was collected by centrifugation and the cells lysed with 600 μl of buffer RLT, previously 

added with β-mercaptoethanol (10 μl/ml RLT buffer). The lysate was homogenized by 

means of QIAshredder column centrifuged for 2 minutes at maximum speed. 

To avoid DNA contamination, samples were on-column incubated with DNase I for 15 

minutes and RNA eluted with 50 μl of RNase-free water. The amount of eluted total RNA 

was determined by spectrophotometer at 260 nm and its purity was evaluated using the 

260/280 ratio; 1 μg per sample was reverse transcribed using the SuperScript™ III First-

Strand Synthesis System for RT-PCR (Invitrogen Ltd., Paisley, UK) in accordance with the 

manufacturer's instructions. 

 

3.5. Standard PCR protocol using GoTaq Flexi (Promega) 
 

The standard PCR protocol was performed with the GoTaq Flexi kit (Promega) following 

the manufacturer’s instruction, using a MgCl2 concentration of 1.5 mM and 0.5 μM 

primers final concentration. The thermal protocol was performed using an annealing 

temperature of 55°C-60 °C (depending on the CG contents of the primers) and an 

extension temperature of 72 °C.  

The sequence of the primers used in standard PCR protocol is reported in Table 2.2.  

 

Name Sequence 

Promoter 1 FW 5’-CGC GAG TGT GAG GAA GGG A-3’ 

Promoter 2 FW 5’-CAA GTC CTC GGT GCC CCT T-3’ 

Promoter RV 5’-AGG TGT CCA CTT GTA ATC TTA ATG T-3’ 
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Table 2.2: Sequence of the primers used in the standard PCR for the identification of the 

alternative promoters in THP-1 and SH-SY5Y cDNA. 

 

3.6. High Fidelity PCR using Expand High Fidelity PCR System (Roche) 
 

The High Fidelity PCR protocol was performed using the Expand High Fidelity PCR System 

(Roche) according to the manufacturer’s instruction, using the suggested thermal 

protocol. The sequences of the primers used is reported in Table 2.3. 

 

Name Sequence 

Intron 5 -2487 FW 5’-CAC TTA CAC ACA TGC AGG CA-3’ 

Intron 5 -1037 FW 5’-ATC TGG TTT CCT CCC CTT GG-3’ 

Intron 5 -610 FW 5’-TTA CGG GCA TGA GAC ACT GT-3’ 

Ex 6 REV 5’-CCA CTA GGT CCC ATT CTC CAT TG-3’ 

 

Table 2.3: Sequence of the primers used in the High Fidelity PCR performed for the identification 

of a novel TSS in CHRFAM7A Intron 5. 

 

3.7. Quantitative Real-Time PCR  
 

Gene expression analyses were performed by quantitative Real-Time PCR assay using the 

QuantStudio 5 Thermocycler (Applied Biosystems, CA) and QuantStudio 5 software. The 

target sequences were amplified from 50 ng of cDNA in the presence of TaqMan® Gene 

Expression Master Mix Kit (Applied Biosystem, CA).  

The TaqMan® primer and probe assays used were human CHRNA7 (ID #Hs01063373_m1), 

human CHRFAM7A (ID #Hs04189909_m1) and the endogenous control GADPH (ID 

#Hs99999905_m1) 18S (ID#Hs99999901_s1) and ACTB (ID#Hs01060665_g1). The 2−ΔΔCT 

method was used to calculate the results, thus allowing the normalization of each sample 

to the endogenous control, and comparison with the calibrator for each experiment (set 

to a value of 1).  
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3.8. Absolute quantification by Real-Time RT-PCR 
 

Absolute quantification analysis was performed by quantitative Real-Time PCR assay using 

the ABI Prism™ 7000 Sequence Detection System (Applied Biosystems, CA) and SDS 

software version 1.2.3 and the Power SYBR® Green Master Mix (Applied Biosystem, CA), 

with specific primers for the CHRFAM7A isoform 1 and CHRFAM7A isoform 2 transcripts 

(Table 2.4).  

To estimate the number of copies of CHRFAM7A isoform 1 and 2 per ng of total RNA, 

serial dilutions of plasmid containing CHRFAM7A isoform 1 and 2 fragments were 

included in the Real-Time PCR assay to obtain a standard curve.  

Briefly, the CHRFAM7A isoform 1 and CHRFAM7A isoform 2 Forward and Reverse primers 

were used in standard PCR assay on THP-1 cDNA in order to obtain an amplicon of 81 bp 

and of 135 bp, respectively. The fragments were then purified from agarose gel by means 

of the NucleoSpin ® Gel and PCR Clean Up kit (Macherey-Nagel, Neumann-Neander, 

Germany) and cloned into the empty vector pCR2.1 with the TOPO-TA-cloning kit 

(TermoFisher Scientific), according to the manufacturer’s protocol. The identity of the 

two constructs was confirmed by sequencing.  

In order to obtain the standard curve, the two constructs were linearized with NcoI 

digestion and dephosphorylated with the T-SAP enzyme (Euroclone). Their concentration 

was measured by spectrophotometer at 260 nm.  

The number of molecules for ng of plasmid was calculated with the reported formula: 

 

Number of molecules = ng of plasmid / (660 kDa x plasmid length) 

  

Serial dilutions of the two plasmids from 105 copies/μL to 10 copies/μL were generated 

and analysed by means of ABI Prism™ 7000 Sequence Detection System (Applied 

Biosystems, CA) and SDS software version 1.2.3 and the Power SYBR® Green Master Mix 

(Applied Biosystem, CA), with CHRFAM7A isoform 1 and 2 Forward and Reverse primers 

at concentration of respectively 300nM-300nM and 300nM-900nM.  

The standard curves were performed in order to obtain a slope comprised between -3.2 

and -3.6 and a R2 >0.98. 
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The serial dilutions were included in all the Real-Time PCR analysis, together with the 

cDNA samples.  

Data Analysis- The results are expressed as the mean ± standard deviation of three 

independent experiments. The plasmid serial dilutions allowed to interpolating the Ct 

values for each cDNA analysed to the calibration curve, returning the number of cDNA 

molecules/μL as result. The number of molecules for ng of RNA was obtained considering 

that 1 μL contains cDNA derived by the retrotranscription of 50 ng of total RNA.   

 

Name Sequence 

CHRFAM7A isoform 1 FW 5’-GCA CTC TGA CAA ATA ATG AAA CAA CC-3’ 

CHRFAM7A isoform 1 REV 5’-TTG GAA CTG AAA ATG CTG GTA GTG-3’ 

CHRFAM7A isoform 2 FW 5’-AGA TTA CAA GTG GAC ACC TGA GT-3’ 

CHRFAM7A isoform 2 REV 5’-AAT GTG GAA TTG TCA GAG TGC TTT CT-3’ 

 

Table 2.4: Sequence of the primers used in the absolute quantification of the CHRFAM7A-201 and 

-202 transcripts. 

 

3.9. Plasmid vectors 
 

All of the reporter constructs were obtained by sub-cloning fragments of the human 

CHRFAM7A gene 5’-flanking region into the pGL4b and pGL4.11 plasmid (pGL4.11, 

Promega). 

 

CHRFAM7A -2122 bp/-1 bp_pGL4basic: The genomic region including exon D (from -

2122bp to -155bp with respect to ATG codon in exon B) was obtained by PCR 

amplification of THP-1 genomic DNA with GoTaq Flexi (Promega) with the primers 

Forward (5’-ATGACACCAACCATGAGGTCCCA-3’) and Reverse (5’-

TTGGCCTTGAACCCGGACAT-3’), while the region including exons D, C and B (from -249 bp 

to -1 bp) was obtained by RT-PCR from the cDNA extracted from THP-1 cell line, with the 

primers Forward (5’-TCCGGGTTCAAGGCCAAACC-3’) and Reverse (5’-

CTTAATGTTGCGGTGGGGCG-3’). The two fragments were cloned into the PCRII vector 
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(ThermoFisher Scientific), according to the manufacturer’s instruction, generating the 

CHRFAM7A -2122 bp/-155 bp_pCRII and a CHRFAM7A -249 bp/-1 bp_pCRII vectors; the 

genomic fragment was then digested with HindIII and the cohesive end was filled in with 

the Klenow fragment, followed by Sac II digestion. The cDNA fragment was instead 

digested with EcoRV and SacII and was cloned into the vector containing the genomic 

region. The whole fragment was then extracted by digestion with Nco I and subcloned 

into the pGL4basic (Promega, Madison, USA) vector.  

 

CHRFAM7A -2122 bp/-184 bp_pGL4b: The CHRFAM7A -2122 bp/-1 bp_pGL4b was 

digested with Eco RV and Sac II in order to exclude the exons C and B. The fragment 

containing the putative promoting region and exon D (from -2122 bp to -184 bp with 

respect to ATG in exon B) was blunted with the T4 polymerase (NEB) and cloned into the 

pGL4basic vector linearized with Eco RV. 

 

CHRFAM7A -2122 bp/-184 bp_pGL4.11: The CHRFAM7A -2122 bp/-1 bp_pGL4b was 

digested with Eco RV and Sac II in order to exclude the exons C and B. The fragment 

containing the putative promoting region and exon D (from -2122 bp to -184 bp with 

respect to ATG in exon B) was blunted with the T4 polymerase (NEB) and cloned into the 

pGL4.11 vector linearized with Eco RV. 

 

CHRFAM7A -2015 bp/-184 bp_pGL4b: The CHRFAM7A -2122 bp/-184 bp_pGL4b was 

digested with Eco RV and Avr II and then filled in with the Klenow fragment (NEB), in 

order to delete 108 bp from the promoter region.  

 

CHRFAM7A -2015 bp/-184 bp_pGL4.11: The region included between -2015 bp and -184 

bp with respect to the ATG in exon B was obtained from the CHRFAM7A -2015 bp/-184 

bp_pGL4b by digestion with Xho I and Hind III and cloned into pGL4.11.  

 

CHRFAM7A -1819 bp/-184 bp_pGL4.11: The CHRFAM7A -2122 bp/-184 bp_pGL4.11 

vector was digested with Eco RV and PflM I, blunted with the T4 polymerase and then 

ligated.  
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CHRFAM7A -1459 bp/-184 bp_pGL4.11: The vector CHRFAM7A -2122 bp/-1 bp_pCRII was 

digested with Nhe I and Nru I and the fragment was filled in with the Klenow fragment. 

The region extracted (from -1459bp to -735 bp with respect to the ATG in exon B) was 

then cloned into the CHRFAM7A -2122 bp/-184 bp_pGL4.11 vector digested with Eco RV 

and Nru I.  

 

CHRFAM7A -1163 bp/-184 bp_pGL4basic: The CHRFAM7A -2122 bp/-184 bp_pGL4basic 

vector was digested with Spe I and Pvu II and the fragment obtained was filled in with the 

Klenow fragment and then cloned into the pGL4basic vector digested with Eco RV and 

Pvu II. 

 

CHRFAM7A -1163 bp/-184 bp_pGL4.11: The CHRFAM7A -1163 bp/-184 bp_pGL4basic 

was digested with Kpn I and Hind III in order to extract the fragment spanning from -1163 

bp to -184 bp with respect to the ATG in the exon B and the fragment was then cloned 

into the pGL4.11 vector digested with Kpn I and Hind III. 

 

CHRFAM7A -735 bp/-184 bp_pGL4basic: The CHRFAM7A -2122 bp/-184 bp_pGL4b was 

digested with Nru I and Hind III and the fragment was cloned into the pGL4basic digested 

with Eco RV and Hind III.  

 

CHRFAM7A -735 bp/-184 bp_pGL4.11: The CHRFAM7A -735 bp/-184 bp_pGL4basic was 

digested with Kpn I and Hind III in order to extract the fragment, cloned into the pGL4.11 

digested with Kpn I and Hind III.  

 

CHRFAM7A -557 bp/-184 bp_pGL4basic: The CHRFAM7A -2122 bp/-184 bp_pGL4b was  

digested with Eco RV and Eco NI and then ligated.  

 

CHRFAM7A -557 bp/-184 bp_pGL4.11: The CHRFAM7A -2122 bp/-184 bp_pGL4.11 was 

digested with Kpn I and Hind III and the fragment was cloned into the pGL4.11 vector 

digested with Kpn I and Hind III.  
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CHRFAM7A -4280 bp/-184 bp_pGL4.11: The CHRFAM7A -4280 bp/-1 ΔAlu_pGL4basic was 

digested with Eco RV and PflM I and the fragment was inserted into the CHRFAM7A -2122 

bp/-184 bp_pGL4.11 digested with the same enzymes.  

 

CHRFAM7A -2122 bp/-184 bp ΔTSS SH-SY5Y_pGL4basic: In order to generate a construct 

with a specific deletion in correspondence to the Transcription Start Site (TSS) 

characteristic of the SH-SY5Y cell line, included between -417bp and -402bp with respect 

to the ATG in exon B, we have performed a PCR-based strategy. The region between -591 

bp and -417 bp was amplified by PCR using the GoTaq Flexi (Promega) with the primers 

forward 5’-GACGAGGACCGGGGC-3’ and reverse 5’-GCGGCTGCACCGAGGACTTGGC-3’. At 

the same way, the region between -402 bp and -184 bp was amplified with the primers 

forward 5’-CTCGGTGAGCCGCGCTCCCAC-3’ and reverse 5’-GGCCTTGCTTGGCAATC-3’. The 

reverse primer of the second PCR reaction maps on the pGL4basic backbone sequence 

which contains a HindIII restriction site. The reverse primer of the first PCR reaction and 

the forward primer of the second PCR reaction contain at 5’ end two sequences 

(underlined) that are complementary to each other. The two PCR products, of 175 bp and 

257 bp, were purified from agarose gel and the annealing between the two 

complementary regions of the forward and reverse primers was allowed by a thermal 

protocol including 3 minutes at 95°C, and 5 cycles of expansion protocol with an 

annealing temperature of 30°C. After the annealing cycles, the primers forward of the 

first PCR reaction and reverse of the second PCR reaction were added and the 

amplification of the entire fragment was allowed by a standard thermal PCR protocol. 

After the agarose gel purification, the PCR product of about 431 bp was cloned into the 

pCRII vector and extracted by Eco NI and Hind III digestion. The fragment of 364 bp was 

then cloned into the CHRFAM7A -2092 bp/-184 bp_pGL4basic digested with Eco NI and 

Hind III and its identity was established by sequencing. 

CHRFAM7A -735 bp/-184 bp ΔTSS SH-SY5Y_pGL4basic: The CHRFAM7A -2122 bp/-184 bp 

ΔTSS SH-SY5Y_pGL4basic construct was digested with Nru I and Hind III enzymes and the 
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fragment of 568 bp were then ligated into the pGL4basic vector digested with Eco RV and 

Hind III. 

CHRFAM7A -735 bp/-184 bp INTRON4-Luc_pGL4.11: The sequence specific of the 

CHRFAM7A intron 4 was amplified from genomic DNA by standard PCR using GoTaq Flexi 

(Promega) with the primers Forward (5’- CTCGAGGGCAATTTTTATGGGCATTCC -3’) and 

Reverse (5’-CTCGAGGACCCACACTTGGTTTGTGCTTC-3’) carrying at the 5’ ends the 

restriction site for the XhoI enzyme (underlined). The PCR product was purified from 

agarose gel, cloned into the pCRII vector and then excided with Xho I. The digestion 

product was then cloned into the CHRFAM7A -735 bp/-184 bp_ pGL4.11 construct 

digested with Sal I, in order to insert the intron 4 fragment at the 3’ end of the Luciferase 

gene.  

 

CHRFAM7A -735 bp/-184 bp INTRON4 ΔAlu-Luc_pGL4.11: The intron 4 sequence from -

3281 bp to -1400 bp from the first nucleotide in exon A was amplified using the Forward 

primer (5’- CTCGAGGGCAATTTTTATGGGCATTCC -3’) and the Reverse primer (5’- 

CTCGAGACTGCCTTCTACCCATTTGTTC -3’) with the Xho I site at the 5’ end (underlined) 

with GoTaq Flexi (Promega). The PCR product was purified from agarose gel and cloned 

into the pCRII vector. The fragment was then digested with Xho I and cloned into the -735 

bp/-184 bp_ pGL4.11 construct digested with Sal I, in order to insert the intron 4 

fragment at the 3’ end of the Luciferase gene.  

 

CHRFAM7A -2122 bp/-557 bp_pGL4.11: The CHRFAM7A -2122 bp/-184 bp_pGL4.11 was 

digested with Hind III and Eco NI and the fragment of 1570 bp was blunted by Klenow 

fragment treatment and cloned into the pGL4.11 vector digested with Eco RV. 

 

 CHRFAM7A -447 bp/-184 bp_pGL4.11: The pCRII vector containing the sequence from -

447 bp to exon 5 amplified during the 5’-RACE protocol was digested with Eco RV and Sac 

II and the 250 bp long fragment was blunted with T4 polymerase and cloned into the 

pGL4.11 vector digested with Eco RV.  
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3.10. Transient transfection and luciferase assay 
 

THP-1 cells and SH-SY5Y cells were transfected by means of a lipid based method 

(DREAMFECT Gold, Li Star Fish and Fugene HD, Promega, respectively). The day before 

transfection, 1x 106 THP-1 and 2.5 x 105 SH-SY5Y cells were plated in 2 ml complete RPMI 

medium in a 6-well plate. The day of transfection, 50 μl of plain RPMI medium were 

mixed with 2 µg of plasmid DNA (Mix 1), with the Firefly and Renilla containing construct 

in a 1:1 molar ratio; in another tube 50 μl plain RPMI medium were mixed with 8 µl 

DREAMFECT gold or Fugene HD (Mix 2), in order to have a 1: 4 DNA/lipid ratio. 

Mix 2 was added to Mix 1, gently mixed and left for 20 minutes at room temperature, to 

allow for the formation of the lipid-DNA complexes that were added drop-wise to the 

cells. All of the transfections were performed in duplicate, and each construct was tested 

in at least three independent experiments using different batches of plasmid preparation. 

The activity of the CHRFAM7A constructs was evaluated 24 hours after transfection by 

means of the commercial kit Dual-Luciferase Reporter Assay System (Promega), that 

allows to measure the bioluminescence produced by the two luciferase genes (Firefly and 

Renilla luciferase) independently. The activity of Luciferase was measured using a GloMAx 

Discovery Luminometer (Promega). 

 

3.11. Data analysis 
 

For each construct, the values of Firefly luciferase obtained in the different experiments 

(expressed as relative luminescence units, RLU) were plotted against the corresponding 

values of Renilla luciferase (also expressed as RLU). Linear regressions were obtained with 

correlation coefficients ranging from 0.75 to 0.99. The transcriptional activity of each 

construct was defined as the slope of the straight line and expressed as the fold increase 

over the transcriptional activity of the promoter-less plasmid pGL4.11. The results are 

given as the mean values ± standard deviation (SEM) of at least three independent 

experiments. The data were analysed by means of one-way ANOVA, Tukey’s test using 

GraphPad Prism 5 Software (GraphPad Software, Inc.); p values <0.05 were considered 

significant.  
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3.12. Chromatin Immunoprecipitation 
 

The day before treatment, THP-1 cells were plated in petri dishes with a density of 5 x 

105/mL. After 24 hours, the cells were treated with 1μg/mL LPS for 1 hour and 30 

minutes. Treated and untreated cells were then collected in order to have 2 x 106 cells for 

sample and the Chromatin Immunoprecipitation protocol was then performed as 

described below. 

 1 x 107 of treated and untreated THP-1 cells were cross-linked with 1% formaldeyde for 

10 minutes and neutralized with 0.125 M glycine for 5 minutes. The cells were then 

washed with PBS 1X and centrifuged, resuspended in 1 mL of Cell Lysis Buffer (Hepes 5 

mM, KCl 85 mM, Triton X-100 0.5%) added with 1 mM PMSF, centrifuged and 

resuspended in 1 mL of Nuclei Lysis Buffer (Tris HCl pH 8 50 mM, EDTA 10 mM, SDS 1%) 

added with 1 mM PMSF. The lysate was sonicated in order to obtain chromatin fragments 

of about 200 nucleotides. 500 μL of sonicated lysate were then pre-cleared for 2 hours 

with 500 μL of Novex rProtein G Agarose beads (Life Technologies) in 4 mL of ChIP 

Dilution Buffer (SDS 0.01%, Triton X-100 1.1%, EDTA 1.2 mM, Tris HCl pH 8 16.7 mM, NaCl 

167 mM), while 100 μL were conserved as Input. 1 mL of the pre-cleared chromatin was 

added in 1.5 mL tubes together with 5 μg of antibodies specific for the NF-κB subunit p65 

(Santa Cruz, Oregon, USA), or p50 (Santa Cruz, Oregon, USA), or c-Rel (Santa Cruz, 

Oregon, USA), or with the antibody for the Acetylation of Histone 4 (Millipore), or with 

the Rabbit IgG (Santa Cruz, Oregon, USA). The chromatin and the antibodies were then 

incubated over night at 4°C. 

In order to promote the antibody-beads binding, we used pre-coated beads, incubated 

over night with CBB buffer added with 10% of BSA (NEB).  

40 μL of pre-coated beads were added to the chromatin samples and incubated for 3 

hours at 4 °C. The following steps consisted in 5 washes of 10 minutes with Wash Buffer 

High Salt (SDS 0,1%, EDTA 2 mM, Triton X-100 1%, Tris HCl pH8 20 mM, NaCl 500 mM), 

Wash Buffer Low Salt (SDS 0,1%, EDTA 2 mM, Triton X-100 1%, Tris HCl pH8 20 mM, NaCl 

150 mM) and LiCL Buffer (LiCl 250 mM, NP-40 1%, EDTA 1 mM, Tris HCl pH8 10 mM). The 
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beads were then eluted in 150 μL of Elution Buffer (Tris HCl pH8 50 mM, EDTA 10 mM, 

SDS 1%) and DNA de-crosslinked by over-night incubation at 65°C.  

The DNA was then purified using the Chromatin IP DNA Purification kit (Active Motif).  

The DNA obtained from the ChIP protocol was analyzed by means of standard PCR assay 

using primers specific for the IL-6 and CHRFAM7A promoter (Table 2.5). 

 

Name Sequence 

IL-6 promoter FW 5’-GCC TCA ATG ACC ACC TAA GC-3’ 

IL-6 promoter REV 5’-GAG CCT CAG ACA TCT CCA GTC-3’ 

CHRFAM7A promoter FW 5’-CCC TGT TGG AGA CCT GGC CA-3’ 

CHRFAM7A promoter REV 5’-TAC TTT GCC GTG TTC CCT GGT G-3’ 

 

Table 2.5: Sequence of the primers used in the standard PCR protocol on ChIP samples. 

 

3.13. Electrophoresis Mobility Shift Assay  
 

Nuclear extracts were prepared from untreated and LPS-treated (1h, 1 μg/mL) THP-1 

cells. Briefly, the cell pellet was resuspended and centrifuged twice in buffer A (Hepes 10 

mM, MgCl2 1.5 mM, KCl 10 mM, PMSF 0.2 mM, DTT 0.5 mM), centrifuged and 

resuspended in buffer C (Hepes 20 mM, glycerol 25%, EDTA 0.2 mM, PMSF 0.2 mM, DTT 

0.5 mM).  

The double-stranded oligonucleotides, whose sequence is reported in Table 2.6, were 

marked with the filling-in method, by incubating 1-2 ρmoles of oligonucleotides for 20 

minutes at 25°C in the presence of 330 μM dNTPs, 40 μCi of α32P dCTP, 1000 U of Klenow 

fragment and Buffer 10X. 5 ρg of untreated and LPS-treated THP-1 nuclear extract were 

then incubated in the presence of 2 μg of poly(dI-dC) (Sigma Aldrich), 100 mM NaCl/KCl 

and binding buffer 2X (Ficoll 4%, Hepes 20 mM, MgCl2 1 mM, DTT 0.5 mM). 10,000-

20,000 cpm of marked oligonucleotide (1 fmol) or cold oligonucleotide were then added 

with or without the specific antibodies against NF-κB p65 (Santa Cruz, Oregon, USA), p50 

(Santa Cruz, Oregon, USA), or c-Rel (Santa Cruz, Oregon, USA), and the reactions were 

incubated in ice for 30 minutes. Products were electrophoresed at 30 mAfor 3 h on 4.8% 
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polyacrylamide gels in high ionic strength buffer (50 mM Tris, 380 mM glycine, 2 mM 

EDTA, pH -8.5) and dried gels analysed by autoradiography. 

 

Name Sequence  

CHRFAM7A NF-κB WT FW 5’-GGC CCT TGT CCT GGG AGG CCC ATG CAC CAA CA-3’ 

CHRFAM7A NF-κB WT REV 5’-GGT GTT GGT GCA TGG GCC TCC CAG GAC AAG GG-3’ 

CHRFAM7A NF-κB mut FW 5’-GGC CCT TGT CCT TTC TGG GCC CAT GCA CCA CA-5’ 

CHRFAM7A NF-κB mut REV 5’-GGT GTT GGT GCA TGG GCC CAG AAG GAC AAG GG-3’ 

Consensus NF-κB FW 5’-GGA GTT GAG GGG GAC TTT CCC AGG C-3’ 

Consensus NF-κB REV 5’-GGG CCT GGG AAA GTC CCC CTC AAC T-3’ 

 

Table 2.6: Sequence of the oligonucleotides used in the EMSA protocol. 

  

3.14. Human biological samples 
 

The RNA of different human brain areas, including hippocampus, thalamus, caudatum, 

cerebellum, Girus Frontalis Superior (GFS), Girus Temporalis Superior (GTS) and Lobus 

Parietalis Superior was kindly donated by Dr. Carlo Sala of Istitituto di Neuroscienze (IN), 

Consiglio Nazionale delle Ricerche (CNR), Milano. 

The RNA of human post-mortem hippocampal tissue of control individuals and 

Alzheimer’s disease patients was kindly donated by Prof. Marco Venturin of Università 

degli Studi di Milano. 

The RNA extracted from human PBMCs obtained by healthy individuals, Alzheimer’s 

disease patients and Alzheimer’s disease patients treated with Donepezil was kindly 

donated by Prof. Carlo Ferraresi of the Università di Milano Bicocca. The healthy controls 

were demonstrated not to have any personal or familial of neurological or psychiatric 

disorders. Alzheimer’s disease patients were diagnosed according to the National 

Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s 

Disease and Related Disorders Association criteria (McKhann et al., 1984), and alternative 

diagnoses were excluded by brain imaging and an extensive neuropsychological test 
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battery. Alzheimer’s disease patients undergoing Donepezil treatment were treated with 

10 ng Donepezil o.d. for at least six months.  
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4. Results 

 
4.1. Characterization of CHRFAM7A transcriptional regulation 

 

4.1.1. Identification of the CHRFAM7A regulatory region 

 

CHRNA7 and its duplicated form CHRFAM7A are located on Chr.15, 1.6 Mb apart, 

making unlikely that the same regulatory region can control the expression of both genes.  

In silico analysis by means of ENSEMBL and NCBI database, showed that CHRFAM7A is 

encoded by a ten exons gene (a hybrid of exons D-A and 5-10 from CHRNA7), whose 

transcription gives raise to two alternative spliced mRNA that differ for the presence of 

exon B. These two transcripts contain an open reading frame due to the presence of two 

ATG codons, one in exon B and one in exon 6, giving raise to two proteins of 46.22 kDa 

and of 35.48 kDa, respectively (Fig. 4.1.1A). The EST (Expressed Sequence Tag) analysis of 

CHRFAM7A gene predicted that the start of transcription is located 566 bp upstream the 

ATG codon in exon B, defining a 410 base pairs length for exon D and a length for 5’UTR 

specifying region of 566 bp in the case of the mRNA encoding the isoform 1, and 919 bp, 

in the case of the isoform 2 (ORF starting from exon 6).  

An in silico analysis of a region spanning 2600 bp of CHRFAM7A 5’ flanking region, by 

means of the MatInspector database (http://www.genomatix.de), a databank of known 

regulatory element for transcription factors, identified a number of sites for Sp1 factor, 

the Aryl hydrocarbon receptor (AhR), the Kruppel-like family transcription factors, STAT3 

transcription factor and a binding site for NF-κB. The latter is crucial in the regulation of 

CHRFAM7A gene, as it could be the site through which NF-kB negatively regulates the the 

expression of the 7 duplicated gene in response to LPS (Fig. 4.1.1B). 

The presence of consensus sequences of known transcription factors suggested that 

this region could be a good candidate for driving the expression of CHRFAM7A gene. The 

in silico sequence analysis allowed us to map an Alu sequence located between 560 and 
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260 bp upstream the putative transcriptional start site (- 1185 bp/- 851 bp with respect to 

the ATG codon in exon B), as predicted by EST analysis. This sequence, typically 300 bp 

long, is highly repeated in the human genome, with an associated negative role on gene 

expression (Ebihara et al., 2002). 

 

 

 

Figure 4.1.1: In silico analysis of the CHRFAM7A regulatory region. (A) Schematic representation of the two 

splicing isoform generated from the CHRFAM7A gene: the isoform 1 is characterized by the presence of all 
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the exons and two functional Open Reading Frames (ORFs) located in exon B and exon 6, respectively. 

Isoform 1, which is translated from the ATG in exon B, gives rise either to the longest protein, of about 46 

KDa, which is characterized by a 27 amminoacides N-terminal domain encoded by the exons B and A, or to 

the shortest protein, of about 35 KDa, lacking the N-terminal domain. The isoform 2 is characterized by the 

skipping of exon B and is translated only by the ATG in exon 6, giving rise only to the shortest protein. (B) 

Bioinformatic analysis of a region of about 2400 bp upstream the exon B of the CHRFAM7A gene with the 

online tool MatInspector (hhtp://www.Genomatix.de). The analysis reveals the presence of several 

consensus sequences for transcription factors involved in immune cells differentiation and maturation but 

also for neuro-specific transcription factors (underlined in the test). In particular, the analysis highlights the 

presence of a NF-κB consensus sequence, located at -1717 bp from the ATG in exon B, a AhR consensus 

sequence and several STAT3 consensus sequences. The EST analysis predicted the start of transcription at -

566 bp from the ATG in exon B (black arrow), in correspondence with the first nucleotide of exon D. The 

UCSC (University of California Santa Cruz) genome browser (http://genome.ucsc.edu) highlighted an Alu 

sequence in CHRFAM7A 5’ flanking region encompassing - 1185 bp/- 851 bp with respect to the ATG codon 

in exon B (grey box). 

 

4.1.2. Identification of multiple Transcription Start Sites (TSS) in monocytic cell 

line, primary human macrophages and neuroblastoma cell model 

 

In order to map and functionally characterize the CHRFAM7A gene regulatory region in 

different cell subtypes, we conducted experiments to determine whether the mRNA start 

of transcription predicted by the genome project was confirmed. Total RNA extracted 

from THP-1, SH-SY5Y and primary cultures of human macrophages was analyzed by 5'-

RACE, which allows the amplification of 5’ mRNA region and the identification of the TSS. 

THP-1 cell line do not express CHRNA7 gene, while SH-SY5Y cells express both the 

CHRNA7 and CHRFAM7A genes, which have 99% of sequence homology in the region 

encompassing exons 5-10: for this reason, the strategy of 5’-RACE was different for the 

THP-1 and SH-SY5Y cell line.  

In THP-1 cell line, after ligation of the adapter and the retro-transcription of adapter-

bound mRNA, the first cDNA strand was amplified by a nested PCR strategy. The first 

round of amplification was performed by using, as a specific reverse primer, an 

oligonucleotide complementary to a region of exon 5 (EX5 primer), which would 

guarantee the amplification of CHRFAM7A gene (5' OUTER primer). The second 

http://genome.ucsc.edu/
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amplification (nested-PCR) was carried out with a reverse oligonucleotide complementary 

to a region of exon A (EXA primer, 5'-RACE INNER primer) (Fig. 4.1.2A). 

A 500 bp product generated by 5 '-RACE inner PCR was obtained, and eight positive 

clones out of twelve analysed transformants colonies have been identified. The cloned 

product was sequenced and the identity, as CHRFAM7A cDNA, confirmed by BLAST 

analysis (http://ncbi.nlm.nih.gov). To map the exact mRNA TSS we aligned, by means of 

the Alignment function of Vector NTI software (Invitrogen), the sequence obtained by 

nested PCR with approximately 2000 bp spanning 5' flanking region of the CHRFAM7A 

gene and cDNA sequence up to exon B, present in the database. This analysis showed that 

the first nucleotide maps within exon D, 120 bp downstream of the site predicted by the 

analysis of EST (Fig. 4.1.2D), and 447 bp upstream the ATG codon in exon B (referred as + 

1). In addition, this transcript corresponds to isoform 2, as exon B is not present. 

However, THP-1 cells express both isoform 1 and 2 (Benfante et al., 2011). To confirm 

the presence of a transcript encoding isoform 1, which should retain exon B, we repeated 

the PCR amplification under less stringent conditions. A major band 400 bp long was 

amplified under these conditions, along with the 500 bp fragment. Ten transformants 

colonies were analysed and the different products were sequenced, which enabled us to 

confirm that the 500 bp fragment corresponds to the previously identified mRNA starting 

447 bp upstream the ATG codon in exon B. The 400 bp fragment identifies an alternative 

transcript, missing the region between - 208 and - 703, with a transcription start site 

mapping 771 base pairs upstream the ATG codon in exon B and corresponding to isoform 

1, since it retained exon B (Fig. 4.1.2C). 

The THP-1 cell line represents a valid experimental model of monocytes/ 

macrophages. Given the nature of immortalized cells, we wanted to determine whether 

the transcripts identified in THP-1 cells represented the physiological one in human 

Peripheral Blood Mononuclear Cells (PBMCs)-derived monocytes/macrophages. For this 

purpose, total RNA extracted from human macrophages, isolated from peripheral blood, 

was subjected to 5'-RACE analysis. Oligonucleotides used for amplification were the same 

as those used in the previous experiments. Only the sequence of one clone, out of 13 

colonies, was compatible with the alternative transcripts identified in THP-1, missing 

region - 703/- 208 of exon D, with the start of transcription at -771 bp and corresponding 
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to isoform 1 (exon B retained) (Fig. 4.1.2E). Five clones, whose fragment was about 350 

bp long, show 100% homology to the clone containing the 500 bp fragment, but missing 

exon B (Fig. 4.1.2F). 

The expression of the gene encoding CHRFAM7A was also confirmed in a neuronal cell 

model, the neuroblastoma SH-SY5Y cell line, along with the CHRNA7 gene. Compared to 

macrophages, where CHRFAM7A turns out to be the mainly expressed gene, here the 

relative CHRNA7/CHRFAM7A expression level is 2:1 (data not shown). We therefore 

decided to investigate, by 5’-RACE, the existence of alternative transcripts that could 

predict for the existence of tissue-specific promoters, responsible for a different 

regulation of the CHRFAM7A receptor subunit in neuronal cells compared to cells of the 

innate immunity lineage. To be sure to amplify either the transcript encoding CHRNA7 or 

CHRFAM7A, we designed two new oligonucleotides, one complementary to a region of 

exon 6 (primer EX 6), used as an outer primer in the first round of amplification, and a 

second oligonucleotide, used as inner primer, complementary to a different region of 

exon 5 with respect to that used in previous experiments (EX 5 new primers), in the 

second PCR amplification. The nested PCR amplification protocol gave raise to two bands, 

respectively, 550 and 400 bp long (Fig. 4.1.2B). Three positive clones have been selected 

for sequencing analysis. The BLAST analysis of the sequence corresponding to the 400 bp 

fragment confirmed that it corresponds to the CHRNA7 gene cDNA, starting from the 

predicted TSS. The 550 bp long fragment corresponds to the CHRFAM7A cDNA encoding 

isoform 1, with the transcription start site located 415 base pairs upstream the ATG 

codon in exon B (Fig. 4.1.2G).  

The 5’-RACE analysis showed the presence of two alternative TSS in the THP-1 cell 

model, which may predict the existence of two different alternative promoters. 

Moreover, in SH-SY5Y cell model, the 5’-RACE analysis revealed the presence of a 

different TSS and detected the expression of the sole CHRFAM7A isoform 1, retaining 

exon B. These results suggested that CHRFAM7A isoform 2 (exon B skipped) expression 

was restricted to the THP-1 cell model, and that CHRFAM7A gene is indeed subjected to 

alternative tissue-specific splicing. For this reason, we applied an absolute qPCR protocol, 

in order to specifically and quantitatively detect CHRFAM7A isoform 1 and 2 in THP-1 and 

SH-SY5Y cDNA, to confirm the presence of tissue-specific isoforms.  
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The absolute qPCR protocol was performed using primers designed to specifically 

amplify the two isoforms, avoiding the amplification of genomic DNA: the forward primer 

for isoform 1 was designed on the exon junction between exon C and B and the reverse 

primer was designed on the exon junction between exon B and A, giving rise to a PCR 

product of 81 bp; the forward primer for isoform 2 was designed on the exon junction 

between exon D and C, and the reverse primer was designed on the exon junction 

between exon C and A, giving rise to a fragment of 135 bp (Fig. 4.1.2H). The primers were 

initially tested on THP-1 and SH-SY5Y cDNA by means of standard PCR and allowed the 

amplification of two PCR products of the predicted molecular weights, indicating the 

expression of the two isoforms in both the cell models (Fig. 4.1.2I). 

In order to quantify the expression of the two transcripts we performed a Real-Time 

PCR protocol generating a standard curve with serial dilutions of the two PCR fragment as 

described in Materials and Methods. This method allowed us to determine the number of 

copies/ ng RNA of the two transcripts in order to compare their expression levels.  

The analysis showed that both in THP-1 cell line and SH-SY5Y cell line the isoform 1 is 

more expressed than isoform 2 (THP-1: 1476 copies/ng RNA vs 344 copies/ng RNA; SH-

SY5Y: 1967 copies/ng RNA vs 819 copies/ng RNA) (Fig. 4.1.2L).  

These results indicate that isoform 1 and 2 are both expressed in the two cell models, 

excluding the mechanism of tissue-specific alternative splicing.   

Given the expression of both the isoforms in SH-SY5Y cells, we decided to evaluate also 

the expression of the alternative transcripts, whose transcription is directed by the 

different TSS: the transcript 1, starting at -771 bp from the ATG in exon B and lacking the 

region encompassing -703 bp and 208 bp (Fig. 4.1.2C) and transcript 2, starting at -447 bp 

and skipping exon B (Fig. 4.1.2D).  

In order to confirm the expression of these two transcripts we performed a standard 

PCR protocol on THP-1 and SH-SY5Y cDNA using primers that could guarantee the 

selective amplification of transcript 1 (Fig. 4.1.2C) and transcript 2 (Fig. 4.1.2D).  

The amplification of transcript 1 was performed using a Forward primer 

complementary to the region included between -771 bp and -703 bp and a Reverse 

primer designed on the exon junction between exon D and exon C, in order to avoid 

amplification of genomic DNA.  
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The amplification of transcript 2 was performed using a Forward primer between -447 

bp and -415 bp and the same Reverse primer of the transcript 1 amplification (the 

sequences of the primers are reported in Table 1 of Materials and Methods).   

The PCR on transcript 1 amplified a fragment of about 104 bp both in THP-1 and SH-

SY5Y cDNA. The molecular weight of the fragment was in accordance with the length of 

transcript 1, starting at -771 bp from the ATG in exon B and lacked the region between -

703 bp and -208 bp (Fig. 4.1.2M).  

The PCR product resulting from the PCR on transcript 2 was of about 293 bp and was 

expressed both in THP-1 and SH-SY5Y cDNA (Fig. 4.1.2N). In both cases the control 

samples (which are the result of the reverse transcription in the absence of the retro-

transcriptase enzyme) showed no amplification, further confirming the specificity of the 

amplification product.   

The analysis showed that both THP-1 and SH-SY5Y express the alternative transcripts 1 

and 2, suggesting that the transcription in both the cell lines could initiate from both -771 

bp and -447 bp from the ATG in exon B.  

It is worth noting that the expression of transcripts 1 and 2 in SH-SY5Y cells does not 

exclude that the CHRFAM7A gene in SH-SY5Y could be also transcribed from -415 bp with 

respect to the ATG in exon B, as predicted by 5’-RACE analysis. 
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Figure 4.1.2: Identification of CHRFAM7A Transcription Start Site. (A) 5’RACE analysis of CHRFAM7A gene 

in THP-1 cell line was performed using as specific outer primer an oligonucleotide complementary to the 

CHRFAM7A exon 5 and an inner primer complementary to exon A. (B) In SH-SY5Y cell line both CHRNA7 and 

CHRFAM7A transcripts are expressed, so the 5’-RACE strategy was differently performed: as outer reverse 

primer was used a sequence complementary to exon 6, while the inner reverse primer was designed on 

exon 5.  (C) The analysis on THP-1 cells identified two different TSS, one at -771 bp with respect to the ATG 

in the exon B, and (D) one at -447 bb, respectively. These alternative TSS identify two different alternative 

promoters. (E,F) The 5’RACE in primary macrophages were designed with the same primers and recognizes 

a unique TSS for both the spliced isoforms, at -771 bp. (G) The analysis on SH-SY5Y cells showed a unique 

TSS, located at -415 bp, which seems to give rise only to isoform 201. (H) Schematic representation of the 
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primer design for the specific amplification of CHRFAM7A isoform 1 and CHRFAM7A isoform 2. (I) Standard 

PCR on THP-1 and SH-SY5Y cDNA for the detection of the two CHRFAM7A splicing isoforms. (L) Absolute 

quantification by Real-Time PCR of CHRFAM7A isoform 1 and 2 in THP-1 and SH-SY5Y cDNA samples. The 

results are expressed as molecules for ng RNA. (M) A standard PCR protocol was used to specifically amplify 

the promoter 1 in THP-1 and SH-SY5Y cDNA, in order to determine the presence of the TSS located at -771 

bp from the ATG in exon B: a forward primer located in region encompassing -771 bp and -703 bp and a 

reverse primer spanning exon D and exon C were used. The primers should amplify a region of 104 bp, 

giving the absence of the region between -703 bp and -208 bp. The promoter 1 is expressed not only in 

THP-1 cell model, but also in SH-SY5Y. (N) In order to verify the expression of promoter 2 in THP-1 and SH-

SY5Y cDNA, a primer forward located between -447 bp and -415 bp and a reverse primer spanning econ D 

and exon C were used in a standard PCR protocol. Both THP-1 cell model and SH-SY5Y cell model express 

promoter 2, indicating the presence of the TSS located at -447 bp. 

 

4.1.3. Functional analysis of the CHRFAM7A regulatory sequence in THP-1 and 

SH-SY5Y cell line 

 

5' -RACE experiments have identified, in different cell lines, alternative transcripts, 

characterized by different transcription start site and the presence/ absence of some 

regions of exon D and exon B. The identification of the region containing the promoter 

was based on these data, which led us to hypothesize that the regulatory sequence can 

be located in the 5'-flanking region of the identified mRNA. In order to test this 

hypothesis, a construct containing a fragment 2100 bases in length and including part of 

exon B (up to ATG codon), exon C, exon D and part of the 5’ genomic region into pGL4 

basic vector, upstream of the Firefly luciferase reporter gene was generated (CHRFAM7A -

2122 bp/-1 bp_pGL4b). 

To determine whether this region contained functional elements able to sustain the 

transcription of the reporter gene, transient transfection experiments were conducted in 

THP-1 monocyte cell line and in SH-SY5Y neuroblastoma cell line. The full-length construct 

showed a lower activity than a promoterless construct (pGL4.11), taken as a reference of 

baseline activity, both in THP-1 and SH-SY5Y cell model (data not shown).  

This result could suggest that the sequence we cloned actually did not contain the 

functional elements necessary for CHRFAM7A gene transcription or that a strong negative 

element was present in this region. In particular, the construct retained the exons D, C 
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and B and the presence of these exons, without the corresponding intronic sequences, 

might interfere with the luciferase transactivation. A more thorough in silico analysis of 

the 2000 bp region has also showed the presence of an Alu sequence, between -1083 and 

-830 base pairs upstream the ATG codon, that could have a negative effect on gene 

transcription (Levine and Manley, 1989; Ebihara et al., 2002).  

Moreover, 5’-RACE experiments showed that the region -208 bp/-703 bp was always 

absent in transcripts identified in the macrophage lineage, and the same mRNA is co-

expressed together with another transcript in THP-1 cell line. This data suggested us that 

this region could represent an intron, retained in the alternative transcript expressed in 

THP-1 cells. Its presence, together with the Alu sequence, might have a negative effect on 

the expression of our reporter constructs in transient transfection experiments. 

To address the role of these regions, we generated a series of construct in which the 

region encompassing the exons C and B was deleted (CHRFAM7A -2122 bp/-184 

bp_pGL4.11), as described in Materials and Methods (Fig. 4.1.3A).  

These constructs retain the TSS identified in macrophages and THP-1 cell model 

located at -771 bp with respect to ATG codon in exon B, the TSS identified in THP-1 cell 

line at -477 bp and the TSS identified in SH-SY5Y cell line, and lack most of the putative 5’ 

UTR-specifying region.  

The plasmid vectors containing the different portion of the CHRFAM7A genomic region 

were tested by means of transient transfection of THP-1 and SH-SY5Y cell line. Promoter 

activity was measured as Firefly luciferase values fold changes compared to the empty 

pGL4.11 or pGL4b vector (Fig. 4.1.3B, Fig. 4.1.3C). The deletion of exons C and B 

increased the activity of the reporter by 17-fold ± 0.78 over pGL4.11 in THP-1 cell line, 

while in SH-SY5Y cell line it showed a lower activity compared to the empty vector.  

Interestingly, the construct -4280 bp/-184 bp, which retains a longer 5’ region of 

CHRFAM7A promoter, had a lower activity in THP-1 cells compared to the -2122 bp/-184 

bp (6.16-fold ± 0.39 over pGL4.11 vs 17-fold ± 0.78 over pGL4.11), indicating the presence 

of negative regulatory elements. 

All the deletion constructs had a statistically significant activity compared to the empty 

vector in THP-1 cell line: in particular, the -735 bp/-184 bp construct, which retains the 

TSS at -477 bp and lacks the Alu sequence, showed a 33-fold ± 1.86 activity compared to 
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the empty pGL4.11, indicating also the presence of several and strong positive elements 

which are sufficient to drive a robust CHRFAM7A expression in monocytic cell line.  

Also the -557 bp/-184 bp had a statistically significant higher activity than the 

promoter-less vector (19.5-fold ± 0.9 over pGL4.11), even though the TSS at -771 bp from 

the ATG in exon B is deleted. On the other hand, the -447 bp/-184 bp construct, which 

retains only the TSS identified in SH-SY5Y cells, showed a lower activity compared to the 

pGL4.11 vector, indicating the -557 bp/-184 bp fragment as the minimal CHRFAM7A 

promoter (data not shown).  

On the contrary, in SH-SY5Y cell line all the deletion constructs retaining the Alu 

sequence and the entire upstream region showed a lower activity with respect of the 

empty vector pGL4b (data not shown).  

Only the CHRFAM7A -735 bp/-184 bp and the -557 bp/-184 bp constructs showed a 

higher expression compared to the pGL4b vector, with respectively 1.7-fold ± 0.056 and 

1.3-fold ± 0.026 increase. Although the increase in activity of these constructs over the 

promoter-less vector is statistically significant, it is not high enough to indicate the 

presence of a neuro-specific promoter.   

This result indicated the absence of neuro-specific sequences in the region analysed or 

the presence of strong negative tissue-specific elements. Moreover, the specific deletion 

of the SH-SY5Y transcription start site in the -735 bp/-184 bp construct did not decrease 

the transcriptional activity (-735 bp/-184 bp: 1.7-fold ± 0.056; -735 bp/-184 bp ΔSH-SY5Y 

TSS: 2-fold ± 0.003), thus suggesting the existence of other elements cooperating in 

CHRFAM7A expression in neuroblastoma cell model.   
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Figure 4.1.3: Functional analysis of CHRFAM7A promoter region in THP-1 and SH-SY5Y cell lines. (A) 

Schematic representation of the CHRFAM7A 5’ flanking region analysed by Luciferase assay. (B) Transient 

transfection and Luciferase assay on THP-1 cells transfected with several CHRFAM7A promoter deletion 

constructs: the full length construct (-2122 bp/-184 bp) retains the NF-κB consensus sequence at -1717 bp, 

the Alu element, all three detected TSS and exon D. All the plasmids analyzed showed a significant activity 

in THP-1 cells. The results are expressed as fold increase over the promoterless vector, pGL4.11, and are the 

means ± standard error of three independent transfections performed in duplicate. The data were analysed 

by means of one-way ANOVA, Tukey’s test using GraphPad Prism 5 Software (GraphPad Software, Inc.); p 

values <0.05 were considered significant. (C) Transient transfection and Luciferase assay on SH-SY5Y cells 

transfected with several CHRFAM7A promoter deletion constructs. The full length construct (-1122 bp/-184 

bp) showed a lower activity with respect to the empty vector. The only constructs that displayed a higher 

activity compared to pGL4b vector is -735 bp/-184 bp and -557 bp/-184 bp, suggesting the presence of 

strong neuro-specific negative elements or the absence of necessary neuro-specific elements in the region 

analysed. The results are expressed as fold increase over the promoterless vector, pGL4b, and are the mean 
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± standard error of two independent transfections performed in duplicate. The data were analysed by 

means of one-way ANOVA, Tukey’s test using GraphPad Prism 5 Software (GraphPad Software, Inc.); p 

values <0.05 were considered significant. 

 

4.1.4. The CHRFAM7A Intron 4 reduces the transcriptional activity in THP-1 but 

not in SH-SY5Y cell model  

 

While in monocytic cell model the CHRFAM7A promoter sequence showed a strong 

transcriptional activity, in neuroblastoma cell line the activity was very low, even if SH-

SY5Y expresses the CHRFAM7A transcript. In line with this evidence, we hypothesized the 

presence of a neuro-specific enhancer sequence in the genomic region encompassing the 

CHRFAM7A gene.  

In 2005, Stefan et al. reported the presence of a neuronal enhancer sequence into the 

murine Chrna7 intron 4, which is critical for the neuronal expression of the gene (Stefan 

et al., 2005).  

In humans, the translocation event involving the CHRNA7 and FAM7A genes occurred 

into the CHRNA7 intron 4, that, in CHRFAM7A gene, separates the FAM7A-derived exon A 

from CHRNA7-derived exon 5. In order to identify the position of the recombination point 

we aligned the CHRNA7 intron 4 sequence compared to the CHRFAM7A intron 4 

sequence by means of the alignment tool of the VectorNTITM software (Fig. 4.1.4A): the 

recombination point maps at -468 bp from the first nucleotide of exon A, referred as +1, 

at the end of an AluY element of 231 nucleotides predicted by UCSC genome browser 

(Fig. 4.1.4B). The presence of an Alu sequence in CHRFAM7A intron 4 and in CHRNA7 

intron 4, exactly at the edge of recombination point suggested that the genetic fusion was 

driven by the repeated sequences. 

We cloned the CHRFAM7A intron 4 sequence at the 3’-end of the Luciferase gene in 

the -735 bp/-184 bp_pGL4.11 construct and we tested it in THP-1 and SH-SY5Y cell 

models, in order to verify the presence of a tissue-specific enhancer element. 

The -735 bp/-184 bp Intron4 construct was transiently transfected and its 

transcriptional activity was compared to that of the -735 bp/-184 bp construct. While in 

THP-1 cell model, the presence of the Intron 4 significantly reduced the transcriptional 
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activity of about 20%, in SH-SY5Y cell line its presence at the 3’-end of the Luciferase gene 

did not modify the activity of the -735 bp/-184 bp fragment (Fig. 4.1.4C).  

The presence of the Alu sequence in the Intron 4 region led us to hypothesize a 

possible tissue-specific repressive effect exerted by the repeat. In order to investigate the 

role of the Alu in Intron 4 in modulating the promoter activity, we generated a -735 bp/-

184 bp construct carrying at 3’-end of the Luciferase gene the Intron 4 sequence deleted 

of the Alu element. This sequence corresponds to the FAM7A-derived portion of the 

CHRFAM7A intron 4.  

In THP-1 cell line the -735 bp/-184 bp Intron 4 ΔAlu construct showed a partial 

recovery of the -735 bp/-184 bp transcriptional activity with respect to the -735 bp/-184 

bp Intron4 construct; however, no statistically significant difference was highlighted 

between the -735 bp/-184 bp Intron 4 and the -735 bp/-184 bp Intron 4 ΔAlu constructs. 

These results suggested that the Alu repeat in CHRFAM7A intron 4 had a corollary role in 

reducing the promoter transcriptional activity, but its deletion did not completely 

counteract the inhibitory effect of the intronic sequence.  

In SH-SY5Y cells, the -735 bp/-184 bp Intron 4 ΔAlu construct showed no statistically 

significant different activity compared to the -735 bp/-184 bp and -735 bp/-184 bp Intron 

4 constructs, suggesting that no enhancer elements were present in the FAM7A-derived 

intron 4 region (Fig. 4.1.4C).  
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Figure 4.1.4: In silico and functional analysis of CHRFAM7A Intron 4 region. (A) The alignment of CHRNA7 

Intron 4 (Seq_1) and CHRFAM7A Intron 4 (Seq_2) sequences with the align tool of VectorNTI identifies the 

point of recombination, which is located 468 bp from the first nucleotide in exon 5. (B) Schematic 

representation of the CHRFAM7A intron 4: in the scheme the point of recombination, the AluY element, 

several NF-κB consensus sequences predicted by MatInspector and the primers used for the Luc-intron 4 

construct are highlighted. (C) Luciferase assay on THP-1 and SH-SY5Y cells transiently transfected with Luc-

intron 4 construct shows that the presence of Intron 4 significantly reduces CHRFAM7A promoter activity in 

THP-1 but not in SH-SY5Y. The deletion of the intron 4 Alu sequence, in THP-1 cells increase the -735 bp/-

184 bp construct activity compared to the -735 bp/-184 bp Intron 4 construct but the difference is not 

statistically significant. In SH-SY5Y cells the -735 bp/-184 bp Intron 4 ΔAlu shows no statistically significant 

activity differences with the other constructs. The results are expressed as the mean ± standard error of 

each deletion construct and are the mean of at least three independent experiments. The data were 

analysed by means of one-way ANOVA, Tukey’s test using GraphPad Prism 5 Software (GraphPad Software, 

Inc.); p values <0.05 were considered significant. 
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4.1.5. Identification of a novel CHRFAM7A Transcription Start Site in intron 5 

 

The analysis of CHRFAM7A gene sequence with the online tool PHANTOM5 

(http://fantom.gsc.riken.jp/zenbu) revealed the presence of a putative Transcription Start 

Site in intron 5. The CHRFAM7A intron 5 separates exon 5 from exon 6, in which the 

second ORF of the CHRFAM7A gene is located. The TSS is predicted at -3022 bp from the 

ATG in exon 6 (where the A is referred as +1), defining a 5’-UTR of about 3000 bp.  

We aligned by means of the alignment tool of VectorNTITM software the sequences of 

the CHRNA7 and CHRFAM7A intron 5 obtained from the Ensemble genome browser: the 

two sequences differ for the presence of 279 additional nucleotides in CHRFAM7A intron 

5 constituted by a AC dinucleotide repeat, included between -3037 bp and -2739 bp. The 

alignment showed that the putative TSS is located into the region specific of CHRFAM7A 

intron 5 (Fig. 4.1.5A, B). 

Given the high repetitive feature of the region in analysis, we found several difficulties 

in performing a 5’-RACE analysis, thus we decided to proceed with a standard PCR 

protocol on THP-1 and SH-SY5Y cDNA, in order to verify the presence of a putative 

transcript starting in intron 5. 

The standard PCR protocol was performed using a proofreading Taq enzyme (Expand 

High Fidelity PCR System, Roche) on THP-1 and SH-SY5Y cDNA. Briefly, the PCR was 

performed using three different Forward primers located at -610 bp, -1037 bp and -2487 

bp from the ATG in exon 6, respectively. As common reverse primer, an oligonucleotide 

complementary to a sequence in exon 6 was used (all the oligonucleotides sequences are 

reported in Table 2 in Materials and Methods).  

The three different PCR gave rise to three different amplification products of 

respectively 730 bp, 1156 bp and 2607 bp, while the control samples (which are the 

product of the reverse transcription in the absence of the retro-transcriptase enzyme) 

showed no amplification (Fig. 4.1.5C, D, E), suggesting the presence of a TSS upstream the 

-2487 bp forward primer. A further PCR assay using a forward primer and a reverse 

primer located at -2899 bp and -2440 bp from the first nucleotide of exon 6 failed to 

amplify a specific fragment in the cDNA samples, suggesting the presence of a TSS in the 

region between -2487 bp and -2899 bp (data not shown).  
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The in silico analysis of the intron 5 region up-stream the predicted TSS by means of 

the online tool MatInspector, revealed the presence of a CAAT box and a TATA box 

located at -2810 bp from the first nucleotide of exon 6, suggesting the presence of a 

functional promoter. 
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Figure 4.1.5: Identification of a new Transcription Start Site in CHRFAM7A intron 5. (A) Alignment of the 

intron 5 sequences of CHRNA7 gene (Seq_1) and CHRFAM7A gene (Seq_2) obtained from the Ensemble 

genome browser by means of the Align tool of VectorNTITM software. The figure highlights the intron 5 

sequence from 781 bp from the first nucleotide of intron 5 to 2497 bp. The two genes differ for the 

presence of additional 279 bp in CHRFAM7A intron 5 characterized by a high repetitive sequence. The TSS 

predicted by Phantom5 software maps into the CHRFAM7A specific high repetitive sequence (highlighted in 

the box). (B) Schematic representation of the CHRFAM7A intron 5: the figure shows the position of the 

three forward primers used for the PCR amplification on THP-1 and SH-SY5Y cDNA. In the figure three NF-κB 

consensus sequences predicted by the MatInspector tool, the CHRFAM7A high repetitive sequence and the 

predicted TSS, located at -3022 bp from the ATG in exon 6 are also highlighted. (C, D, E) A standard PCR 

protocol was used to determine the presence of the putative TSS in intron 5: three different forward 

primers (located respectively at -2487 bp, -1037 bp and -610 bp from the ATG in exon 6) and a common 

reverse primer located in exon 6 were used, resulting in three different PCR product of respectively 2607 

bp, 1156 bp and 730 bp.  

 

4.1.6. LPS treatment causes chromatin remodelling at the CHRFAM7A promoter 

 

The CHRFAM7A mRNA down-regulation occurring in THP-1 cell line is a transcription-

based mechanism driven by the direct intervention of the NF-κB transcription factor 

(Benfante et al., 2011).  

In order to determine whether the LPS challenge could induce alteration in the 

epigenetic marks of CHRFAM7A promoter, we performed a Chromatin 

Immunoprecipitation (ChIP) assay on control and LPS-treated THP-1, followed by standard 

PCR protocol on a particular CHRFAM7A region (encompassing -1714 bp and -1514 bp) 
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containing the NF-κB consensus sequence predicted by the MatInspector online tool. The 

PCR analysis was performed using primers designed to amplify a region of 147 bp around 

the predicted sequence (Fig. 4.1.6A). 

After 6 hours of LPS challenge a reduction in Histone 4 acetylation (aH4), which is a 

well-characterized mark of opened chromatin, is visible (Fig. 4.1.6B). The deacetylation of 

the promoter sequence correlates with the observed transcript down-regulation, and 

indicates that transcriptional repression is also mediated by epigenetic modifications. 

However, no p65, p50 or c-Rel NF-κB subunits binding was observed (data not shown), 

suggesting that NF-κB recruitment at CHRFAM7A promoter occurred at another cognate 

sequence.  

As control, the same chromatin samples were analysed for the Interleukin-6 (IL-6) 

promoter amplification, which is known to undergo transcriptional up-regulation by NF-

κB activation after LPS challenge (Libermann and Baltimore, 1990). The LPS treatment 

results in a marked IL-6 promoter acetylation along with an apparent reduction of p65 

signal and an apparent increase in p50 signal, supporting the evidence reported by 

Libermann and Baltimore in 1990 (Fig. 4.1.6C).  

In order to definitively exclude that NF-κB could exert its function by binding to the 

over mentioned sequence, we performed an Electrophoresis Mobility Shift Analysis 

(EMSA) assay using a synthetic radiolabeled oligonucleotide containing the -1707 bp/- 

1697 bp CHRFAM7A NF-κB sequence on nuclear extract of LPS-treated THP-1.  

The LPS treatment induced the formation of five complexes (indicated in red in Fig. 

4.6D), which were not detectable in untreated extracts. In particular, the complexes 2 and 

4 were more visible in extracts incubated with the mutant oligonucleotide (lane 4) and in 

extracts incubated in the presence of p50 (lane 6) and c-Rel (lane 7) specific antibodies. 

The significance of these complexes formation is not clear, but it might indicate that LPS 

treatment is able to activate THP-1 cells. 

However, the EMSA assay did not show competition with an excess of cold 

oligonucleotide (lane 3) and no specific super-shift was detected in the presence of 

specific antibody against p65 (lane 5), p50 (lane 6) and c-Rel (lane 7) subunits. These 

results clearly indicated that NF-κB p65, p50 and c-Rel subunits did not bind the analysed 

sequence.  
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On the contrary, the control NF-κB consensus oligonucleotide determined the 

formation of specific complex (lane 14), which was subjected to competition by increased 

concentration of cold oligo (lane 15, 16) and showed a specific supershift in the presence 

of p50 antibody (lane 18) (Fig. 4.1.6D, E). The formation of specific complex in the 

presence of the control NF-κB consensus oligonucleotide supported the validity of the 

experimental design and further confirmed that NF-κB do not bind the CHRFAM7A -1714 

bp/ -1514 bp predicted sequence.  

 

 

 

 

 

Figure 4.1.6: CHRFAM7A Chromatin remodelling identification after LPS treatment in THP-1 cell line. (A) 

Schematic representation of the region analysed by Chromatin Immunoprecipitation (ChIP): the NF-κB 

consensus sequence predicted by MatInspector maps at -1707 bp from the ATG in exon B. In the figure the 
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primers used for the ChIP protocol are highlighted. (B) The ChIP analysis followed by standard PCR on 

CHRFAM7A reveals a reduction in the aH4 level after LPS treatment, in accordance with the transcript 

down-regulation. (C) The control IL-6 promoter showed that the LPS challenge on THP-1 cells induces an 

increase in p50 NF-κB subunit binding and a decrease in p65 NF-κB subunit signal, with a reduction in the 

Histone 4 acetylation (aH4). (D) EMSA assay performed with a radiolabeled oligonucleotide complementary 

to the CHRFAM7A NF-κB sequence on LPS-treated and untreated THP-1: the LPS treatment induces the 

formation of seven complexes (indicated in red), but no specific supershift in the presence of specific 

antibody against NF-κB subunits could be observed. (E) EMSA assay performed with a radiolabeled NF-κB 

consensus sequence on LPS-treated and untreated THP-1: the LPS challenge induces the formation of a 

specific complex which undergoes a supershift in the presence of the NF-κB p50 antibody.   

 

4.1.7. LPS treatment decreases CHRFAM7A promoter activity 

 

Chromatin Immunoprecipitation analysis performed on CHRFAM7A promoter revealed 

that, after LPS stimulation on THP-1 cells, no p50, p65 or c-Rel binding at the NF-κB 

sequence located at -1707 bp from the ATG in exon B could be observed. However, many 

evidence, including the reduction of aH4 level, suggested that the down-regulation of 

CHRFAM7A expression after LPS treatment is driven by a transcriptional mechanism.  

These observations might indicate that NF-κB binds to another promoter region.  

In order to map the NF-κB binding sequence driving transcriptional repression upon 

LPS treatment, we decided to perform a transfection experiment using different 

CHRFAM7A promoter deletion constructs. Five hours after the transfection the cell 

medium was changed and the following day the cells were treated with 1 μg/mL LPS for 

six hours: given that the down-regulation relies on a transcriptional mechanism, the LPS 

treatment should induce a decrease in the promoter activity, detectable by a reduction of 

the reporter gene transcription, in all the deletion constructs carrying the NF-κB cognate 

sequence.  

We tested three different deletion constructs: the full length construct -2122 bp/-184 

bp, the -1458 bp/-184 bp, which starts downstream with respect to the NF-κB predicted 

sequence and the shortest construct, the -557 bp/-184 bp, that corresponds to the 

minimal CHRFAM7A promoter region.  
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All the constructs showed a statistically significant decreased activity of about 35% 

after LPS treatment, thus indicating the presence of NF-κB binding in the region 

encompassing -557 bp and -184 bp from the ATG in exon B (Fig. 4.1.7A).  

To confirm the results, we also generated a control deletion construct carrying only the 

promoter region from -2122 bp to -557 bp: if the NF-κB responsive sequence is indeed 

included between -557 bp and -184 bp, this construct should not respond to LPS.  

As expected, although the -2122 bp/-557 bp construct showed lower activity with 

respect to the full length construct, indicating the presence of important positive 

elements in the deleted region, it undergoes a slight down-regulation after LPS challenge, 

but this difference is not statistically significant, confirming that the -557 bp/-184 bp 

region does contain a LPS-responsive element.  

The MatInspector online tool does not predict any NF-κB binding sequence in the 

region between -557 bp and -184 bp, but highlights the presence of several consensus 

sequences for transcription factor known to interact with NF-κB (Fig. 4.1.7B). For 

example, it has been demonstrated that NF-κB binds to a non-classical consensus 

sequence for CREB on IL-1β promoter (Cogswell et al., 1994) and that c-Rel and RelB are 

able to repress INFβ transcription through the involvement of YY1 as result of a signaling 

induced by TLR-3 (Siednienko et al., 2011). 

On the other hand, different prediction software for transcription factor binding sites, 

such as TFBIND (http//: www.tfbind.it), revealed the presence of several consensus 

sequences for NF-κB. 
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Figure 4.1.7: Identification of the LPS-responsive region in CHRFAM7A promoter. (A) Transient 

transfection of THP-1 cells with -2122 bp/-557 bp, -2122 bp/-184 bp, -1459 bp/-184 bp and -557 bp/-184 bp 

CHRFAM7A promoter deletion constructs reveals a transcriptional activity decreased of the Luciferase 

reporter gene after 6 hours of LPS treatment for the constructs carrying the -557 bp/-184 bp region, while 

the reporter construct deleted for this region is not responsive to LPS. The results are expressed as mean ± 

standard error of each construct and are the mean of at least three independent experiments. The 

statistical analysis was performed using the one-way ANOVA analysis followed by Tukey’s test with 

GraphPad Prism 5 Software (GraphPad Software, Inc.) and p values <0.05 were considered significant. (B) 

Schematic representation of the CHRFAM7A 5’ flanking region: in the figure, the -557 bp/-184 bp region is 
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delimited and GCF2, Egr1, CREB and YY1 consensus sequences predicted by MatInspector are highlighted. In 

the scheme also the NF-κB sequences predicted by the online tool TFBIND.  

4.1.8. Summary  

 

Overall, the results obtained in this part of the project highlighted the complexity of the 

transcription of the human-restricted CHRFAM7A gene. We have investigated the 

transcriptional mechanisms of the gene in two different cell lines, the monocytic cell line 

THP-1 and the neuroblastoma cell line SH-SY5Y and we have concluded that: 

 The CHRFAM7A gene has different alternative and tissue-specific TSS, and both 

the splicing isoforms generated from the CHRFAM7A gene are expressed in THP-1 

cells and SH-SY5Y cells. 

 The CHRFAM7A gene is characterized by the presence of tissue-specific regulatory 

elements: we have identified the minimal promoter driving its expression in THP-1 

cells, while we have not yet identified the neuro-specific elements driving its 

expression in SH-SY5Y cells. 

 The CHRFAM7A intron 4 contains an immune-specific silencer able to overthrow 

CHRFAM7A expression in THP-1 cells. 

 CHRFAM7A intron 5 contains a TSS. 

 The LPS treatment down-regulates the CHRFAM7A expression in THP-1 cells 

through a transcriptional mechanism involving chromatin remodelling. 

 The CHRFAM7A LPS-responsive promoter region is located between -557 bp and -

447 bp from the ATG in exon B.  

 

 

4.2. CHRFAM7A as pharmacological target in Alzheimer’s disease: a report of 

Donepezil effect 
 

4.2.1. CHRNA7 and CHRFAM7A expression levels in hippocampus of AD patients 

 

In the last years, many authors have reported a link between nAChRs functional 

dysregulation and development of Alzheimer’s disease (AD). Indeed, cholinergic neurons 
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loss is a key feature of AD and is probably responsible of most of the neurological 

symptoms (Burghaus et al., 2000).  

The expression pattern of CHRNA7 transcript in AD human brain has been investigated 

by different authors with different and often controversy results (Wevers et al., 2000; 

Counts et al., 2007): these differences are probably accountable to the different brain 

areas analysed.   

As the discovery of CHRFAM7A gene is more recent, less evidence has been achieved 

about the possible role of this gene in AD development. However, given the CHRFAM7A 

regulatory role of CHRNA7 function, it could be of great interest to investigate CHRFAM7A 

expression and function in human AD pathogenesis. 

For this reason, we first evaluated the expression of CHRNA7 and CHRFAM7A 

transcripts in different human brain areas, including hippocampus, thalamus and 

cerebellum: as already reported in literature, both the transcripts are expressed in all the 

brain areas analysed (Villiger et al., 2002). The expression level, which we compared to 

that detected in SH-SY5Y neuroblastoma cell line, changed depending on the sample, but 

the CHRNA7 expression level was always higher compared to that of CHRFAM7A (Fig. 

4.2.1A).  

We then decided to evaluate CHRFAM7A expression in RNA samples obtained from 

human post-mortem hippocampus of healthy control and AD patients, kindly donated by 

Prof. Marco Venturin of the Università degli Studi di Milano. We analysed 4 controls 

samples and 11 AD samples.  

Interestingly, our results disagreed with those reported in literature, as we found a 

significant CHRNA7 transcript down-regulation in AD samples compared to controls. 

The CHRFAM7A transcript was instead up-regulated in AD hippocampus compared to 

controls (Fig. 4.2.1B). The CHRFAM7A up-regulation observed is not statistically 

significant, probably because CHRFAM7A transcript expression pattern displayed a great 

variability among the different samples, compared to that of CHRNA7 transcript, which is 

more uniform. This is probably due to the high genetic heterogeneity of CHRFAM7A gene, 

which is present in homozygosis, hemizygosis or is even absent in the population. 
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Figure 4.2.1: CHRNA7 and CHRFAM7A expression in human CNS areas and human AD hippocampal tissue. 

(A) CHRNA7 and CHRFAM7A mRNA expression level in different human brain areas. The results are 

compared to CHRNA7 and CHRFAM7A level of expression detected in SH-SY5Y. The data are obtained after 

normalization over the internal standard GAPDH and are expressed as 2-ΔCt x 103. (B) CHRNA7 and 

CHRFAM7A expression level in control (white dots) and AD (black squares) RNA obtained from human 

hippocampal tissue. The data are obtained after normalization over the internal standard GAPDH and are 

expressed as 2-ΔCt x 103. Each point represents a single donor and black line represent the median value. 

Statistical analysis was performed using non-parametric T-test and p<0.005 were considered significant. 
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4.2.2. CHRNA7 and CHRFAM7A expression level in human PBMCs of AD 

untreated and Donepezil treated patients 

 

The pathogenic mechanisms leading to Alzheimer’s disease development are very 

complex and have not been already completely characterized. It’s a common opinion 

that, beside the neuronal damage mechanisms, including cholinergic loss, tau 

phosphorylation or amyloid plaques formation, the onset of a systemic mild inflammatory 

status, could contribute to AD development and progression. In this perspective, several 

efforts have been taken on to investigate the role of inflammation in AD. 

Given the central role of CHRNA7 and CHRFAM7A in the regulation of human immune 

response, it become of great importance to investigate the expression of these two genes 

in the immune system of AD patients. 

In collaboration with the laboratory of Prof. Carlo Ferraresi of the Università Milano 

Bicocca, we have analysed CHRNA7 and CHRFAM7A expression pattern in human 

Peripheral Blood Mononuclear Cells (PBMCs) of healthy controls, AD untreated patients 

and Donepezil treated AD patients.  

Donepezil is a selective non-competitor acetyl-cholinesterase inhibitor (AChEI) 

frequently used in the therapy for AD. As other AChEI, Donepezil ameliorates the 

cognitive symptoms of AD by inhibiting AChE activity and increasing the permanence of 

ACh at the cholinergic synapses. However, increasing evidence indicates that it could act 

also as a modulator of the innate immune system, probably by directly binding the 

α7nAChR and activating the Cholinergic Anti-Inflammatory Pathway (Hwang et al., 2010).  

We analysed 9 control samples, 8 AD samples and 10 AD-Donepezil samples.  

The CHRNA7 transcript is not subjected to marked changes in expression among the 

different experimental groups.  

The CHRFAM7A transcript is up-regulated in AD group and AD-Donepezil group 

compared to controls. Moreover, CHRFAM7A is down-regulated in AD-Donepezil group 

compared to AD group. However, the differences in CHRFAM7A transcript expression 

among the different groups are not statistically significant, probably due to the high 

heterogeneity in CHRFAM7A expression (Fig. 4.2.2). 
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Figure 4.2.2: CHRNA7 and CHRFAM7A mRNA expression level in control (black dots), AD (white squares) 

and AD-Donepezil treated (grey triangles) human PBMCs samples. The data are obtained after 

normalization over the internal standard 18S and are expressed as 2-ΔCt x 103. Each point represent a single 

donor and black line represent the median value. Statistical analysis was performed using non-parametric T-

test and p<0.005 were considered significant. 

 

4.2.3. Donepezil up-regulates CHRFAM7A transcript in THP-1 cell model 

 

The qPCR analysis performed on RNA samples obtained from human PBMCs of 

controls, AD and Donepezil-treated AD individuals revealed a possible Donepezil effect on 

CHRFAM7A transcript expression. In order to better characterize the drug mechanism of 

action, we decided to move to an immune cell model, represented by the THP-1 cell line. 

We treated THP-1 monocytic cell line with increasing concentration of Donepezil at 

different time in order to analyse its possible effect on CHRFAM7A expression regulation. 

Interestingly, the treatment with increasing concentrations of Donepezil (10 μM, 20 μM, 

30 μM and 50 μM) determined an up-regulation of CHRFAM7A transcript both at 3 hours 

and 6 hours. The up-regulation is in line with the increasing concentration of the drug 

(Fig. 4.2.3.1A). A time course analysis with 30 μM and 50 μM Donepezil concentration 

(3h, 6h, 12h and 24h) showed that the CHRFAM7A mRNA up-regulation reaches a 

maximum at 3 and 6 hours, and remain constant until 24 hours (Fig. 4.2.3.1B).  
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Repeated experiments at 3 and 6 hours with 30 μM Donepezil confirmed the 

statistically significant CHRFAM7A transcript up-regulation in THP-1 cell model (Fig. 

4.2.3.1C: hatched grey bars).   

 

 

 

 

Figure 4.2.3.1: Donepezil effect on CHRFAM7A expression in THP-1 cells. (A) Dose-response of Donepezil 

(10 μM, 20 μM, 30 μM and 50 μM) at 3h (black square) and 6h (black triangle) determines the linear up-

regulation of CHRFAM7A transcript in THP-1 cells. (B) Time-course experiment with 30 μM (black dot) and 

50 Μm (black square) Donepezil showed a maximal up-regulation of CHRFAM7A transcript in THP-1 cells at 

3h and 6h. results are expressed as relative CHRFAM7A mRNA level normalized to that of endogenous 

GAPDH gene, according to the 2-ΔCt method. (C) Repeated experiments on THP-1 cells with Donepezil 30 μM 

at 3h and 6h showed a statistically significant up-regulation of CHRFAM7A transcript (grey bars) versus 

control cells (white bars). Results are expressed as fold expression over the untreated sample (white bar) ± 

standard deviations, and are the mean of at least three independent experiments. The statistical analysis 

was performed using ordinary One-way ANOVA followed by Tukey’s test; ****p values<0.0001. 

 

We decided to verify if Donepezil effect on CHRFAM7A transcript could counteract the 

down-regulation exerted by LPS treatment; for this purpose, we followed the protocol 

reported in Fig. 4.2.3.2A: cells were treated with 30 μM Donepezil for 1h, followed by 1 
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μg/ mL LPS challenge for 3h. At the end of experiment Donepezil treatment lasted 4 

hours.  

As expected, LPS treatment determined a statistical significant transcript down-

regulation (Fig. 4.2.3.2B: dark grey bar vs white bar) while Donepezil treatment induced a 

significant CHRFAM7A transcript up-regulation (Fig. 4.2.3.2B: hatched grey bar vs white 

bar).  

The Donepezil treatment followed by LPS challenge resulted in significant CHRFAM7A 

transcript up-regulation (Fig. 4.2.3.2B: black bar vs white bar), which is however 

statistically significant lower compared to the up-regulation induced by the sole 

Donepezil treatment (Fig. 4.2.3.2B: black bar vs hatched grey bar).  

 

 

 

 

Figure 4.2.3.2: CHRFAM7A modulation after Donepezil-LPS co-treatment in THP-1 cells. (A) Experimental 

design of the Donepezil/LPS analysis. (B) The pre-treatment of THP-1 cells with 1h of Donepezil 30 μM 

followed by 3h of LPS 1 μg/mL challenge showed that Donepezil counteracts the CHRFAM7A transcript 

down-regulation induced by LPS (black bar vs dark grey bar).  Results are expressed as fold expression over 

the untreated sample (white bar) ± standard deviations, and are the mean of at least three independent 
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experiments. The statistical analysis was performed using ordinary One-way ANOVA followed by Tukey’s 

test; p values<0.005 were considered significant. *statistical significant compared to control (white bar). § 

statistical significant compared to Donepezil treated cells (hatched grey bar). 

 

To simulate the drug administration in the presence of an already sustained 

inflammatory process, we performed the opposite experiment, by pre-treating THP-1 

cells with 1 μg/mL LPS for 2h followed by two additional hours in the presence of 30 μM 

Donepezil, as reported in Fig. 4.2.3.3A. In this case, Donepezil treatment lasted two hours 

and LPS four hours. 

As expected, LPS treatment significantly down-regulated CHRFAM7A transcript (Fig. 

4.2.3.3B: dark grey bar vs white bar), while Donepezil treatment alone significantly up-

regulated it (Fig. 4.2.3.3B: hatched grey bar vs white bar). The combination of the two 

treatments (black bar) determined again a significant up-regulation of CHRFAM7A over 

the control (Fig. 4.2.3.3B: black bar vs white bar), although significantly lower with 

respect to that induced by the Donepezil treatment alone (Fig. 4.2.3.3B: black bar vs 

hatched grey bar), as observed in the previous experiment. These data led us to conclude 

that Donepezil either if added after or previous a pro-inflammatory stimulus, is capable of 

counteracting CHRFAM7A down-regulation, due to LPS treatment. 
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Figure 4.2.3.3: CHRFAM7A modulation after LPS-Donepezil co-treatment in THP-1 cells (A) Experimental 

design of the LPS/Donepezil analysis. (B) The pre-treatment of THP-1 for 2h with 1 μg/mL LPS (dark grey 

bar) followed by 2h treatment with Donepezil 30 μM showed that Donepezil counteracts the CHRFAM7A 

transcript down-regulation induced by LPS challenge (black bar vs dark grey bar), resulting in a statistically 

significant up-regulation compared to the control sample (white bar). Results are expressed as fold 

expression over the untreated sample (white bar) ± standard deviations, and are the mean of at least three 

independent experiments. The statistical analysis was performed using ordinary One-way ANOVA followed 

by Tukey’s test; p values<0.005 were considered significant. *statistical significant compared to control 

(white bar). § statistical significant compared to Donepezil treated cells (hatched grey bar). 

 

LPS treatment is commonly considered as a good paradigm of acute inflammation. In 

order to investigate whether the Donepezil effect on CHRFAM7A expression could be an 

indication of an anti-inflammatory effect of the drug, we decided to evaluate the 

transcriptional response of two inflammatory genes, IL-6 and TNF-α, after Donepezil 

administration following LPS pre-treatment. LPS strongly induces IL-6 and TNF-α gene 

expression; for this reason, the experimental design here differed from the protocol of 

Fig. 4.2.3F: we extended the time of Donepezil treatment in order to be sure to measure 

any possible variation in these inflammatory cytokine genes, as reported in Fig. 4.2.3.4A. 

After five hours of LPS treatment, the down-regulation of CHRFAM7A transcript is not 

statistically significant compared to control cells (Fig. 4.2.3.4 B: dark grey bar vs white 

bar), as already reported in Benfante et al., 2011. However, four hours Donepezil 

treatment induced a significant up-regulation of CHRFAM7A transcript (Fig. 4.2.3.4B: 



99 
 

hatched grey bar vs white bar) and the co-treatment determined a significant CHRFAM7A 

transcript increase over the control (Fig. 4.2.3.4B: black bar vs white bar), however 

significant lower with respect to that induced by Donepezil treatment alone (Fig. 

4.2.3.4B: black bar vs hatched grey bar). 

The TNF-α transcript is dramatically up-regulated after LPS treatment (Fig. 4.2.3.4C: 

dark grey bar vs white bar) but the administration of Donepezil after 1 hour from the LPS 

challenge significantly reduced TNF-α transcription (Fig. 4.2.3.4C: black bar vs dark grey 

bar). Donepezil alone did not increase TNF- α transcription (Fig. 4.2.3.4C: hatched grey 

bar vs white bar). 

The IL-6 transcript is not expressed in untreated THP-1 cells, but LPS treatment 

induced its expression: the co-treatment LPS-Donepezil determined a slight down-

regulation compared to the LPS-treated cells (Fig. 4.2.3.4D: black bar vs dark grey bar), 

however not statistically significant. Nevertheless, all together, this evidence may indicate 

that Donepezil has an anti-inflammatory effect on THP-1 cells. 
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Figure 4.2.3.4: Donepezil counteracts the LPS-mediated pro-inflammatory cytokines expression in THP-1 

cells. (A) Experimental design of the LPS/Donepezil analysis performed to investigate the anti-inflammatory 

effect of Donepezil. (B) Donepezil treatment (4 hrs) after LPS challenge (1 hr) significantly up-regulates 

CHRFAM7A transcript in THP-1 cell line (black bar vs white bar). (C) Donepezil treatment (4 hrs) after LPS 

challenge (1 hr) significantly reduces TNF-α transcription (black bar vs grey bar). (D) Donepezil treatment (4 

hrs) after LPS challenge (1hr) induces a slight down-regulation of IL-6 transcript (black bar vs grey bar). 

Results are expressed as fold expression over the untreated sample (white bar) ± standard deviations, and 
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are the mean of at least three independent experiments. The statistical analysis was performed using 

ordinary One-way ANOVA followed by Tukey’s test; p values<0.005 were considered significant. *statistical 

significant compared to control (white bar). § statistical significant compared to Donepezil treated cells 

(hatched grey bar) # statistical significant compared to LPS treated cells. 

 

To further characterize the molecular mechanism of Donepezil on CHRFAM7A up-

regulation, we set up a transcription arrest experiment by means of Polymerase II 

inhibitor DRB treatment, in order to evaluate if the up-regulation of CHRFAM7A transcript 

after Donepezil treatment is due to a transcriptional or a post-transcriptional mechanism, 

for example by increasing CHRFAM7A mRNA stability. After three hours of Donepezil 

challenge, THP-1 cells were treated with 75 μM DRB and collected at 1, 2, and 4 hours of 

treatment. CHRFAM7A transcript level was evaluated by quantitative Real-Time PCR and 

compared to that of untreated THP-1 cells (Fig. 4.2.3.5).  

In the absence of Donepezil, we confirmed that CHRFAM7A transcript half-life 

measured is approximately 120 minutes (Benfante et al., 2011); Donepezil pre-treatment 

did not affect CHRFAM7A mRNA stability (Fig. 4.2.3.5: white squares vs black dots), 

indicating that Donepezil does not increase CHRFAM7A expression via a post-

transcriptional mechanism, but rather suggesting that a regulation occurs at the level of 

transcription. For control purpose, we also measured CHRFAM7A transcript level of DRB-

untreated and DMSO-treated cells (DRB vehicle), in order to exclude changes due to the 

vehicle (data not shown).  

 

 

Figure 4.2.5: Transcription arrest analysis on THP-1 treated for 3h with 30 μM Donepezil: no significant 

changes were observed between the untreated (black circles) and Donepezil-treated (white squares) 
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samples at 1h, 2h or 4h DRB treatment. Results are expressed as fold expression over time 0 sample (set as 

1) ± standard deviations and are the mean of at least three independent experiments. The statistical 

analysis was performed using ordinary one-way ANOVA followed by Tukey’s test; p values <0.05 were 

considered significant. 

 

4.2.4. Donepezil treatment on human primary macrophages modulates CHRNA7 

and CHRFAM7A transcript 

 

The THP-1 cell line usually represents a good in vitro model to predict monocytes 

behaviour. However, the low level of expression of CHRNA7 transcript did not allow to 

investigate the CHRNA7 gene response to Donepezil treatment. For this reason and in 

order to better define the in vivo response, we decided to repeat the treatment on 

human primary macrophages obtained by differentiation with M-CSF of human primary 

monocytes of four different healthy donors. The experiment was performed in 

collaboration with professor Massimo Locati and doctor Lorenzo Drufuca at the Università 

degli Studi di Milano. 

We followed the protocol described in Fig. 4.2.4C in the presence of 20 μM Donepezil 

final concentration. Macrophages of the four donors were treated with Donepezil for 

three hours; qPCR analysis revealed an up-regulation of both CHRNA7 (Fig. 4.2.4A) and 

CHRFAM7A (Fig. 4.2.4B) transcripts with respect to untreated cells in all donors, although 

not statistically significant, probably due to the high variability in CHRNA7 and CHRFAM7A 

basal expression in the human samples (Fig. 4.2.4A, B). Indeed, interestingly, one of the 

donors, indicated as donor C in Fig. 4.2.4A, revealed extremely low CHRFAM7A 

expression level, so we decided to exclude it from the statistical analysis: it is likely that 

the donor C has only one allele carrying the CHRFAM7A gene.  

In order to confirm and expand the findings of the previous experiments about 

Donepezil effect on the Cholinergic Anti-Inflammatory Pathway, macrophages were pre-

treated for 1h with 1 μg/mL LPS followed by 3 hours of Donepezil challenge, as reported 

in Fig. 4.2.4C.  

In accordance with the preliminary results reported in the introduction of this thesis, 

CHRNA7 transcript was up-regulated by LPS treatment (Fig. 4.2.4D: dark grey bar vs white 

bar). Donepezil seemed to synergize the effect of LPS, as we could observe a further 
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significant up-regulation of CHRNA7 transcript in macrophages co-treated with LPS and 

Donepezil (Fig. 4.2.3D: black bar vs dark grey bar).  

The CHRFAM7A transcript level followed the same modulation observed in THP-1 cells: 

the LPS treatment alone determined a CHRFAM7A down-regulation (Fig. 4.2.4E: dark grey 

bar vs white bar), while the LPS-Donepezil co-treatment induced an up-regulation (black 

bar vs white bar), which is slight less than to that induced by the Donepezil challenge 

alone (hatched grey bar vs white bar), indicating that also in an in vivo model, Donepezil 

counteracts LPS effect on CHRFAM7A expression.  
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Figure 4.2.4: Donepezil modulates CHRNA7 and CHRFAM7A expression in human primary macrophages.  

(A) Donepezil treatment (20 μM, 3h) on primary human macrophages determined an up-regulation of 

CHRNA7 transcript, however not statistically significant. (B) Donepezil treatment (20 μM, 3h) on human 

primary macrophages determined an up-regulation of CHRFAM7A transcript, however not statistically 

significant. The data were obtained by means of quantitative Real-time PCR by normalization on the 

endogenous standard ACTB and are expressed as 2-ΔCt x 105. Each point (circles for untreated cells and 

squares for Donepezil-treated macrophages) represents one donor. The untreated sample and Donepezil-

treated sample of the same donor has the same colour. The black line corresponds to the median value. The 
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statistical analysis was performed using non-parametric T-test and p<0.005 were considered significant. (C) 

Experimental design of the LPS/Donepezil analysis on human primary macrophages. (D) CHRNA7 and (E) 

CHRFAM7A modulation after 1h pre-treatment with 1 μg/mL LPS followed by 3h 20 μM Donepezil. The 

statistical analysis was performed using one-way ANOVA followed by Tukey’s test with; p values <0.05 were 

considered significant. *statistical significant with respect to untreated cells (white bar); § statistical 

significant with respect to Donepezil treated cells (hatched grey bar). 

 

4.2.5. Donepezil treatment up-regulates CHRFAM7A and down-regulates CHRNA7 

gene in SH-SY5Y cell model 

 

The AChEI Donepezil has demonstrated anti-inflammatory properties, but its principal 

therapeutic effect is exerted in the CNS, where it inhibits the degradation of ACh and 

potentiate the cholinergic transmission.  

For this reason, given the expression of both CHRNA7 and CHRFAM7A in SH-SY5Y 

neuroblastoma cells, we decided to evaluate the effect of Donepezil in this cell model. 

In line with the THP-1 treatment optimization, we treated SH-SY5Y cells with 30 μM 

Donepezil for 3 hours and 6 hours.  

Intriguingly, in the neuroblastoma cell line, we observed a statistical significant down-

regulation of CHRNA7 (Fig. 4.2.5A: dark grey bat vs black bar) and an up-regulation of 

CHRFAM7A (Fig. 4.2.5B: hatched grey bar and dark grey bar vs black bar) transcript. The 

CHRNA7 down-regulation is statistically significant only at 6 hours of treatment, whereas 

CHRFAM7A transcript level compared to control cells is significantly higher both at 3h and 

6h of treatment, with a fold expression similar to that observed in Donepezil-treated THP-

1 cells. 
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Figure 4.2.5: Donepezil modulates CHRNA7 and CHRFAM7A expression in SH-SY5Y cells. 3 hours and 6 

hours 30 μM Donepezil treatment on SH-SY5Y cells induced a down-regulation of (A) CHRNA7 transcript and 

an up-regulation of (B) CHRFAM7A transcript. The results are the mean of three independent experiments 

and are expressed as fold increase over the untreated sample according to the 2-ΔΔCt method. The statistical 

analysis was performed using one-way ANOVA followed by Tukey’s; p values <0.05 were considered 

significant. 

4.2.6. Summary 

 

In this part of the project, we have investigated the possible CHRFAM7A expression 

alteration in human neuronal and immune tissues obtained by Alzheimer’s disease 

patients.  Moreover, we have investigated the effect of the acetylcholinesterase inhibitor 

Donepezil on CHRFAM7A and CHRNA7 expression. Overall, we have concluded that: 
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 CHRFAM7A is up-regulated in both hippocampal and PBMCs tissues of AD patients 

compared to controls.  

 Donepezil up-regulates CHRFAM7A expression in THP-1 cells through a 

transcriptional mechanism. 

 Donepezil counteract the LPS-mediated down-regulation of CHRFAM7A in THP-1 

cells. 

 Donepezil up-regulates CHRNA7 and CHRFAM7A in human primary macrophages. 

 In SH-SY5Y cells, the drug induces a concomitant down-regulation of CHRNA7 and 

up-regulation of CHRFAM7A.  
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5. Discussion 

 
The homomeric α7 nicotinic acetylcholine receptor (α7nAChR) (CHRNA7) is widely 

expressed in the Central Nervous System (CNS) where it plays pivotal role in 

neurotransmitter release modulation and generation of the action potential, modulating 

calcium-dependent events (Berg and Conroy, 2002).  

Recently, it has been found also in extra-neuronal tissues, including epithelial cells, 

endothelial cells, fibroblasts, and macrophages (Sharma and Vijayaraghavan, 2002). The 

α7nAChR expressed by macrophages is implicated in the Cholinergic Anti-Inflammatory 

Pathway, which provide a central control of systemic inflammation by triggering a vagal 

cholinergic response that reduces the pro-inflammatory cytokines release. At the center 

of this process is the macrophage α7nAChR, which responds to ACh and triggers the intra-

cellular signaling, culminating in reduced transcription of pro-inflammatory genes (Wang 

et al., 2003).  

In 1998, Gault and collaborators discovered a new gene, later assigned as CHRFAM7A, 

composed by exons 5-10 of CHRNA7 fused in frame with exons D, C, B and A, belonging to 

the FAM7A (Chr.15) and ULK4 gene (Chr.3). The chimeric gene maps on chromosome 

15q13.3, 1.6 Mb apart from the parental gene and its presence is restricted to humans 

(Gault et al., 1998).  

The CHRFAM7A gene undergoes alternative splicing and is translated into a 45 KDa and 

36 KDa proteins, called α7dup proteins, which conserve the entire transmembrane and C-

terminal portion of the α7nAChR conventional subunit, but lack the N-terminal domain, 

including the signal peptide and the ACh binding domain (Villiger et al., 2002). Many 

studies proved the direct interaction between the duplicated and the conventional 

subunits and there is also evidence that the α7dup subunits could exert a dominant 

negative function toward the conventional receptor, segregating it in the Endoplasmic 

Reticulum or reducing the ACh-dependent calcium current (De Lucas-Cerillo et al., 2011; 

Araud et al., 2012; Wang et al., 2014). 
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Given the expression of the α7dup proteins both in the CNS and in almost all the 

immune cells, this evidence raise the hypothesis that the α7dup subunits could act as a 

functional modulator of α7nAChR activity in the CNS and immune systems.  

In 2011, a study from my laboratory demonstrated that the pro-inflammatory 

stimulus, represented by LPS treatment, down-regulates CHRFAM7A transcript both in 

the THP-1 monocytic cell model and in human primary monocytes and macrophages. This 

down-regulation is driven by the NF-κB transcription factor, as demonstrated by the 

recovery of its expression level obtained with Parthenolide (NF-κB inhibitor) treatment 

(Benfante et al., 2011). Moreover, preliminary results on human primary monocytes and 

macrophages showed that LPS treatment has an opposite effect on CHRNA7 transcript, 

inducing an up-regulation of CHRNA7 expression.  

These results indicated that THP-1, monocytes and macrophages LPS treatment, which 

represent a paradigm of acute inflammation, determines an alteration in 

CHRNA7/CHRFAM7A transcript balance, suggesting a functional role for α7dup in the 

immune response. 

This evidence led us to hypothesize a possible model of function for the α7dup protein: 

our hypothesis was that it can function as an inflammatory sensor influenced by the local 

inflammatory status. The signaling triggered by LPS or other inflammatory molecules 

during the early phase of inflammation converges on NF-κB activation and its 

translocation into the nucleus where it simultaneously represses CHRFAM7A and induces 

CHRNA7 transcription, although there is no evidence that the CHRNA7 up-regulation 

observed in human monocytes and macrophages is directly mediated by NF-κB.  

A reduced number of α7dup subunits and an increased number of α7 conventional 

subunits will be translated, with a consequent increased number of α7 functional 

receptors in the membrane. 

The increased number of α7nAChR enhance the anti-inflammatory effect induced by 

ACh, thus providing the first step in the resolution of inflammation (Fig. 5.1). 
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Figure 5.1: Graphical representation of the hypothesized model of function of the α7dup subunit during an 

acute inflammation process: the signalling triggered by LPS-TLR4 interaction results in NF-κB nuclear 

translocation. In the nucleus, NF-κB binds CHRNA7 and CHRFAM7A promoter inducing transcriptional 

activation and repression respectively, thus reducing the number of α7dup subunits retaining the functional 

α7nAChR in the ER. This process allows an increase in the number of α7 receptors in the cell membrane, 

thus potentiating the Cholinergic Anti-Inflammatory Pathway response and initiating the resolution phase.  

 

Our goal was to decipher the transcriptional mechanisms driving CHRFAM7A 

regulation in order to better understand the role of the Cholinergic Anti-Inflammatory 

Pathway and its possible dysregulation in pathological conditions, including immune 

system disorders and neurological diseases characterized by inflammatory status. 

As a first step, we decided to characterize the CHRFAM7A promoter, in order to better 

understand its regulation and function. The characterization process included the 

identification of the TSS and the functional analysis in THP-1 and SH-SY5Y cells. 5’-RACE 
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analysis performed to identify CHRFAM7A TSS revealed the presence of different 

alternative and tissue-specific promoters.  

In particular, the presence of different TSS for the two splicing isoforms in THP-1 lead 

us to hypothesize that CHRFAM7A alternative splicing could be driven by alternative 

promoter expression, as demonstrated for other genes (Ayoubi and Van de Ven, 1996).  

On the contrary, in SH-SY5Y cells 5’-RACE analysis identified a unique and different TSS 

and the only transcript detected is the isoform 1, including exon B. However, the standard 

PCR analysis, performed with primers designed to specifically detect the transcript from -

771 bp and from -447 bp, revealed the presence of these two mRNA also in SH-SY5Y cell 

model. Nevertheless, the PCR result does not exclude that the transcription can start also 

and predominantly from the TSS located at -415 bp identified by 5’-RACE analysis. 

Moreover, standard PCR analysis and Real-Time absolute quantification assay, designed 

to specifically detect CHRFAM7A isoform 1 and isoform 2, demonstrated the expression 

of both isoforms in THP-1 and in SH-SY5Y cells, with a higher expression of isoform 1 

compared to isoform 2. These results suggested that, whatever is the TSS used in SH-SY5Y 

cells, the isoform 1, supposedly transcribed from all the TSS identified, is the major 

CHRFAM7A transcript. 

The functional analysis of CHRFAM7A promoter in THP-1 cells, identified a region 

including strong positive elements sufficient to provide a robust CHRFAM7A expression. 

The deletion of the AluY sequence found in CHRFAM7A promoter between -1083 and -

830 base pairs upstream the ATG codon, determined a dramatic increase in 

transcriptional activity, suggesting that this sequence can have a negative effect on gene 

transcription, as reported by other authors: indeed, there are several examples that the 

presence of Alu sequences in different genes promoters, such as that of the α6 nicotinic 

acetylcholine receptor (CHRNA6), could drive transcriptional repression (Levine and 

Manley, 1989; Ebihara et al., 2002). 

The region analysed does not correspond to that identified by Costantini and 

collaborators in 2015 (Constatini et al., 2015), that, by a deeper analysis, is revealed to 

correspond to CHRFAM7A intron 2. In our opinion, this region is able to provide a basic 

CHRFAM7A expression (4-fold increase over the empty vector), but lacks all the elements, 
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which confer to the promoter the higher transcriptional activity (35-fold over the empty 

vector for the -735 bp/-184 bp deletion construct).  

In SH-SY5Y, instead, we could observe a different asset: despite the high level of 

CHRFAM7A expression, all the deletion construct analysed failed to induce robust 

transcriptional activity, indicating that this promoter region may either contain strong 

negative neuro-specific elements or that the 5’-flanking region starting at -735 bp from 

the ATG in exon B, even if providing a basic transcriptional activity, lacks all the elements 

necessary for CHRFAM7A expression in neuronal cells. 

We then hypothesized that the neuro-specific transcriptional elements could be 

located in other CHRFAM7A genomic regions. In 2005, Stefen and collaborators identified 

a neuro-specific enhancer element in the murine chrna7 intron 4 driving the neuronal 

expression. The specific location of the enhancer was not identified, but the authors 

mapped it at the 3’ of the deletion breakpoint found in chromosome 15 in a mouse model 

of Angelman and Prader-Willi syndrome (Stefen et al., 2005).  

The recombination event driving the formation of the human CHRFAM7A gene 

occurred in CHRNA7 intron 4, in correspondence to an Alu sequence. The CHRFAM7A 

intron 4 is therefore an interesting element, as it contains the recombination point, an 

Alu element and a region derived from the CHRNA7 intron 4 where a putative neuro-

specific enhancer can be present. Interestingly, the analysis of CHRFAM7A intron 4, while 

not revealing any neuro-specific elements, led us to identify a THP-1-specific negative 

element, overthrowing CHRFAM7A promoter transcriptional activity. The presence of the 

AluY element in intron 4 led us to hypothesize a possible role of the repetitive element: 

indeed, in the last years, several studies demonstrated that these genomic sequences, 

beforehand considered as “junk DNA”, could have pivotal role in regulating crucial 

molecular process, including transcription, splicing and epigenetic modulation (Ebihara et 

al., 2002). However, in THP-1 cells, the deletion of the AluY element induced only a partial 

activity recovery, indicating that the Alu element can have a corollary role in the 

transcriptional repression exerted by CHRFAM7A intron 4, but that there are also other 

elements contributing to the tissue-specific repression. 
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The high complexity of CHRFAM7A transcriptional regulation mechanisms was also 

confirmed by the casual discovery of a transcription starting from CHRFAM7A intron 5, 

found in THP-1 and SH-SY5Y cDNA.  

Even though THP-1 cells do not express CHRNA7 transcript, making us confident that 

the transcript analysed was specific for CHRFAM7A gene, we couldn’t demonstrate that 

the putative TSS isn’t shared between the CHRNA7 gene and its duplicated form. 

However, if true, it might implicate the presence of another alternative promoter driving 

the expression of the shortest CHRFAM7A isoform.  

Given the pivotal role played by the α7 nicotinic acetylcholine receptor in the 

cholinergic anti-inflammatory pathway, and the several evidence that its duplicated form 

could exert a dominant negative effect toward its function, we were interested in 

characterizing the CHRFAM7A behaviour in the presence of pro-inflammatory or anti-

inflammatory stimuli.  

As demonstrated by Benfante et al., both CHRFAM7A transcript and protein are down-

regulated by LPS in THP-1 cells and primary human monocytes and macrophages through 

a transcriptional mechanism reliant on NF-κB transcription factor (Benfante et al., 2011). 

In this perspective, we decided to better characterize the role of NF-κB, by defining its 

binding sequence into CHRFAM7A promoter.  

We started by analysing a NF-κB consensus sequence predicted by the MatInspector 

software at -1707 bp from the ATG in exon B. The Chromatin ImmunoPrecipitation (ChIP) 

analysis revealed that LPS treatment induces a reduction in the Histone 4 acetylation 

level, confirming that the down-regulation of CHRFAM7A transcript is due to a 

transcriptional mechanism involving chromatin remodeling. However, no p65, p50 or c-

Rel binding was observed. A consequent Electrophoresis Mobility Shift Assay (EMSA) 

experiment confirmed that the region analysed is not bound by p65, p50 or c-Rel. 

Given this evidence, we could hypothesize that (i) NF-κB binds to another cognate 

sequence into the CHRFAM7A promoter, (ii) the NF-κB subunits involved in the down-

regulation are the non-canonical ones, including RelB and p52 or (iii) both the possibilities 

simultaneously.  

As the down-regulation is driven by a transcriptional mechanism, we decided to 

localize the NF-κB binding sequence, by evaluating the transcriptional activity reduction 
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of different CHRFAM7A deletion construct after LPS treatment. The three construct, -

2122 bp/-184 bp, -1459 bp/-184 bp and -557 bp/-184 bp, underwent a significant activity 

reduction after 6 hours of LPS challenge, suggesting that the responsive NF-κB sequence 

is located in the region between -557 bp and -447 bp from the ATG in exon B.  

In the last years, increasing evidence has highlighted the link between CHRNA7 

expressional or functional dysregulation and development of neuropsychiatric and 

neurodegenerative disorders.  

In particular, Alzheimer’s disease (AD) is characterized by a massive loss in cholinergic 

neurons and recent evidence suggests that most of the biological changes are attributing 

to a neuro-inflammatory status or even to a systemic inflammatory status (Guan et al., 

2002). Moreover, the α7nAChR might play a crucial role in the development of the 

disease, as it has been demonstrated that it could directly bind to the Aβ42 aggregates, 

which seem to modulate its activation (Wang et al., 2000).  

Since its discovery, also the CHRFAM7A gene has become an interesting candidate in 

the AD research, but, although the numerous studies investigating the effect of 

CHRFAM7A genotype on AD development risk, little is known about possible CHRFAM7A 

expressional alteration leading to AD pathogenesis.  

We have analysed CHRNA7 and CHRFAM7A gene expression pattern in human post-

mortem hippocampal tissues obtained from healthy controls and AD patients: contrary to 

previous evidence showing no significant changes (Wevers et al., 2000) or even up-

regulation (Counts et al., 2007) of CHRNA7 expression in AD brain samples, our results 

revealed a significant down-regulation of CHRNA7 expression in AD hippocampus 

compared to controls. This apparent contradiction could be explained by the different 

brain areas analysed: Counts and collaborators analysed Nucleus Basalis neurons, 

whereas Wevers et al. analysed neurons obtained from pre-frontal cortex of AD patients. 

Moreover, it is known that the hippocampal neuronal circuits are necessary for the 

integrity of memory and learning processes and that cholinergic loss during AD 

development mainly damages the hippocampal region (Drever et al., 2011). Given this 

evidence, we found not surprising the down-regulation of CHRNA7 expression in AD 

samples.  
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The CHRFAM7A gene is up-regulated in AD hippocampus compared to controls. The 

up-regulation is however not statistically significant, probably due to the high 

expressional heterogeneity in the samples analysed. However, we could observe an 

opposite expression modification of CHRNA7 and CHRFAM7A genes, suggesting that also 

in AD, as well as in the paradigm of acute inflammation represented by macrophages LPS 

treatment, the two isoforms undergo opposite regulation. 

So far, the possible role of CHRFAM7A gene product as pharmacological target has not 

been investigated. However, its putative role as dominant negative regulator of the α7 

nicotinic receptor makes it an interesting candidate for pharmacological intervention on 

immune or neurodegenerative diseases, including AD.  

The acetylcholinesterase inhibitors (AChEI) drugs are currently used in the therapy for 

AD and exert a positive but temporary effect on behavioural and cognitive symptoms. 

Although the pharmacological effect of AChEI is mainly due to acetylcholine 

degradation inhibition at cholinergic synapses, recent findings indicated that their ability 

to trigger the Cholinergic Anti-Inflammatory Pathway by binding the α7nAChR 

consistently contributes to the therapeutic effect (Tabet, 2006) (Fig. 5.2).  
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Figure 5.2: schematic representation of the role of AChE and BChE in the Cholinergic Anti-Inflammatory 

Pathway: the vagus nerve terminations release norepinephrine, which induce the production of ACh, which 

in turn stimulates the anti-inflammatory response through macrophages’ α7nAChR activation. The 

termination of the anti-inflammatory pathway is granted by degradation of ACh provided by AChE activity 

associated with the circulating red blood cells and BChE in plasma. 

 

Among the AChEI, Donepezil (AriceptTM) is one of the most effective. It has been 

classified as a non-competitive selective inhibitor of acetylcholinesterase and, conversely 

to others AChEI, its mechanism is restricted to AChE and does not involve BChE inhibition. 

A resume of Donepezil characteristics, compared to other AChEI, is reported in Table 5.1. 

 

 

Group of compounds Compounds 

(examples) 

Mechanism 

of inhibition 

Inhibition of 

AChE and 

BChE 

Penetration 

through 

Blood Brain 

Importance 

as drug 
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Barrier 

Organophosphates Sarin, Soman, 

Tabun 

irreversible Equal to 

AChE and 

BChE 

Good Low 

Carbamates Pyridogstimine, 

Neostigmine, 

Rivastigmine 

Pseudo-

irreversible 

Equal to 

AChE and 

BChE 

Low Low 

- Tacrine Non-

competitive 

AChE>BChE Good Low 

- Galantamine Competitive AChE Good High 

- Donepezil Non-

competitive 

AChE Good High 

- Huperzine A Non-

competitive 

AChE>>BChE Good High 

 

Table 5.1: resume of the main characteristics of AchE inhibitors used in therapy.  

 

In the immune contest, it has been proposed that Donepezil activates the Cholinergic 

Anti-Inflammatory Pathway by inhibiting peripheral AChE activity and increasing ACh 

availability. However, Donepezil has been shown to directly bind to α7nAChR, as it exerts 

anti-inflammatory effect (reducing TNF-α and IL-1 levels) also in microglia cell lines, where 

no AChE expression was detected (Hwang et al., 2010).  

In collaboration with the laboratory of Prof. Carlo Ferrarese at the Università Milano 

Bicocca, we determined the expression profile of CHRNA7 and CHRFAM7A genes in 

Peripheral Blood Mononuclear Cells (PBMCs) obtained from healthy controls, AD patients 

and AD patients treated with the acetylcholinesterase inhibitor Donepezil (AriceptTM).  

It has been demonstrated that the α7nAChR protein level is significantly increased in 

leukocytes of AD patients compared to controls and that the α7nAChR increase inversely 

correlates with the Mini-Mental State Examination (MMSE) score of the patients, 

suggesting that α7nAChR blood levels can be used as a marker for AD diagnosis (Chu et 

al., 2005). Moreover, Conti and collaborators found a significant increase of CHRNA7 

mRNA expression in PBMCs of AD patients compared to controls. They also analysed 
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PBMCs obtained from AD patients treated with Donepezil, but they didn’t found any 

significant differences compared to the untreated patients (Conti et al., 2016).  

Our analyses revealed no significant changes in CHRNA7 expression level between the 

different biological groups, while CHRFAM7A expression is up-regulated in AD PBMCs 

compared to controls and Donepezil treatment determined a reduction in CHRFAM7A 

expression compared to the AD-untreated samples. As the antibodies currently used for 

the identification of the α7 protein are not able to distinguish between the conventional 

and duplicated form, we can speculate that the significant increment of α7nAChR protein 

in AD leukocytes observed by Chu et al. is actually mainly determined by CHRFAM7A 

protein up-regulation. 

These studies led us to better characterize the effect of Donepezil specifically on 

CHRFAM7A gene expression.  

Here we demonstrated that Donepezil treatment of THP-1 cells induces the up-

regulation of CHRFAM7A mRNA acting at transcriptional level. The drug effect on CHRNA7 

gene expression level cannot be measured, as the THP-1 cell model does not express the 

CHRNA7 transcript.  

The CHRFAM7A up-regulation was an unexpected result: given the anti-inflammatory 

potential of the drug, we expected a down-regulation of the CHRFAM7A transcript, thus 

inducing an increase in the number of functional α7nAChR in the membrane to potentiate 

the Cholinergic anti-inflammatory pathway, as also observed in PBMCs of AD patients 

under Donepezil therapy (Chu et al., 2005; Conti et al., 2016). 

It should, however, be taken into consideration that the THP-1 model hardly 

recapitulate the human monocytic lineage, as several differences in the pattern 

expression and phenotypic characteristics have been reported. It is possible that the low 

level of expression of CHRNA7 compared to the primary human monocytes and 

macrophages, which express both the isoforms, have altered the response to Donepezil. 

Indeed, it has been demonstrated that Donepezil exerts its anti-inflammatory effects 

mostly through the direct binding to the α7 receptor. The absence of this receptor in THP-

1 cells makes it unlikely that Donepezil up-regulates CHRFAM7A through α7nAChR 

binding. However, there is evidence that THP-1 cells might have a slight but detectable 

AChE activity (Thullbery et al., 2005), so that Donepezil effect on CHRFAM7A transcript 
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could be mediated by AChE inhibition or by other targets, whose activation is not 

necessary linked to an anti-inflammatory effect observed.  

For these reasons, we decided to evaluate the effect of Donepezil treatment on 

CHRFAM7A expression also in human primary macrophages, which represent a valid 

model and express also the CHRNA7 gene. The analysis on human macrophages 

recapitulated the results obtained on THP-1 cells, as we could observe an up-regulation of 

CHRFAM7A expression, confirming the validity of THP-1 cell model. 

Given the results obtained on human macrophages, we hypothesized that CHRFAM7A 

up-regulation could be a result of a compensatory effect, directed to the restoration of 

the homeostatic condition after an anti-inflammatory stimulus. Indeed, we showed in 

THP-1 cell model as well as in human primary macrophages that Donepezil is able to 

counteract the CHRFAM7A down-regulation exerted by LPS treatment, attenuating the 

LPS-induced up-regulation of pro-inflammatory cytokines IL-6 and TNF-α.  

These results agreed with the recent findings of Arikawa and collaborators, which 

demonstrated that Donepezil treatment reduces the pro-inflammatory cytokines levels in 

a murine macrophages cell model stimulated with LPS. The authors also investigated the 

role of NF-κB in the anti-inflammatory effect exerted by Donepezil, highlighting a reduced 

LPS-dependent NF-κB nuclear translocation after Donepezil treatment. However, the 

authors excluded an involvement of the Cholinergic Anti-Inflammatory Pathway in the 

anti-inflammatory effect of Donepezil, as they observe NF-κB nuclear translocation 

inhibition after Donepezil treatment also in the presence of the nAChR blocker 

mecamylamine (Arikawa et al., 2016). Although these results could be in line with our 

findings, which suggest that Donepezil acts via a α7nAChR-independent route, it is worth 

noting that the nAChR blocker mecamylamine is not specific for the α7nAChR, leaving 

open the questions about α7nAChR involvement.   

The Donepezil challenge on human primary macrophages, led us to analyse also the 

CHRNA7 expression response to the drug: intriguingly, Donepezil treatment up-regulated 

CHRNA7 transcript and the up-regulation is synergized by LPS pre-treatment.  

While we could explain the differential effect of LPS upon CHRFAM7A and CHRNA7 

transcripts as a compensatory mechanisms directed to the restoration of the homeostatic 

condition into a physiological perturbation of a healthy system, the effect of Donepezil on 
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CHRNA7 and CHRFAM7A expression is more complex: a possible explanation is that the 

drug, in the absence of a specific pathological contest, up-regulates both the transcripts in 

order to maintain the balance between the pro- and anti-inflammatory forces.   

Importantly, in SH-SY5Y cells, we found that Donepezil down-regulates CHRNA7 

transcript, while up-regulating CHRFAM7A mRNA. This suggests that in the nervous 

system Donepezil acts through different routes and that CHRFAM7A gene could have a 

distinct role from that played in the immune system. Several studies have hypothesized a 

possible neurotoxic role of α7nAChR up-regulation in neurological disorders, such as AD 

or HIV-associated Neurocognitive Disorders (HAND), probably due to Ca2+-dependent 

neuronal apoptosis (Counts et al., 2007; Ballester et al., 2012). In this context, the 

simultaneous CHRNA7 down-regulation and CHRFAM7A up-regulation exerted by 

Donepezil treatment in neuronal cell lines may underlie the neuroprotective action of the 

drug, by reducing α7nAChR function through the potentiation of the dominant negative 

regulatory effect of CHRFAM7A.  
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6. Conclusions  

 
Overall, the results achieved in this thesis explored the high complexity of CHRFAM7A 

transcriptional regulation: as a human-restricted gene and a recent product of the 

evolutionary history, CHRFAM7A gene is endowed with all the mechanisms contributing 

to a fine regulation in homeostatic, pathophysiological and pathological conditions: 

 CHRFAM7A gene expression is under the control of different tissue-specific 

regulatory regions in THP-1 monocytic cell model and neuroblastoma SH-SY5Y 

cell model. The CHRFAM7A 5’-flanking region encompassing -2450 bp and -447 

bp from the ATG in exon B is sufficient to drive a robust transcriptional activity 

in THP-1 cells, allowing us to identify the α7 dup promoter. Contrary, in SH-

SY5Y cells the same region did not show transcriptional activity, suggesting that 

it does not contain neuro-specific elements and confirming the presence of 

tissue-specific promoters.  

 The CHRFAM7A Intron 4 includes a silencer element specific for the THP-1 cell 

line, as it did not repress the transcriptional activity of the α7 dup promoter in 

SH-SY5Y cells.  

 The CHRFAM7A Intron 5 contains a Transcription Start Site, giving rise to an 

Open Reading Frame probably encoding the shortest α7 dup splicing isoform.  

 The CHRFAM7A gene, which is down-regulated in THP-1 cells after LPS 

treatment, undergoes chromatin remodeling (reduced H4 acetylation), 

indicating that LPS mediates CHRFAM7A down-regulation by a mechanisms 

driven by NF-κB, through a transcriptional route involving epigenetic 

mechanisms.  

 The CHRFAM7A NF-κB consensus sequence is probably located in the region 

encompassing -557 bp and -447 bp from the ATG in exon B.  
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Moreover, we have investigated the acetylcholinesterase inhibitor Donepezil effect on 

CHRFAM7A expression in immune cell model and primary human macrophages:  

 

 In THP-1 cells, CHRFAM7A transcript is up-regulated by the acetylcholinesterase 

inhibitor Donepezil through a transcriptional mechanism. The drug counteract the 

down-regulation exerted by LPS thus exerting a possible anti-inflammatory effect. 

Thanks to the collaboration with professor Locati M. and doctor Drufuca L., we 

repeated the analysis in human primary macrophages, where we evaluated also 

Donepezil effect on CHRNA7 transcript. We observed the up-regulation of both 

CHRNA7 and CHRFAM7A in human macrophages.  

 In SH-SY5Y cells Donepezil up-regulates CHRFAM7A, and down-regulates CHRNA7 

transcript, suggesting a different mechanism of Donepezil function in the 

neuroblastoma cell model.  

 

Given the great therapeutic potential of this drug and the little current knowledge 

about its mechanism of action, we consider that the results provided could contribute to 

a better characterization of the pharmacological activity of Donepezil.  
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