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Bifidobacteria are considered dominant and for this reason key members of the human
gut microbiota, particularly during the first one to two years following birth. A substantial
proportion of the bifidobacterial population in the intestine of infants belong to the
Bifidobacterium bifidum taxon, whose members have been shown to display remarkable
physiological and genetic features involving adhesion to epithelia, as well as utilization of
host-derived glycans. Here, we reviewed the current knowledge on the genetic features
and associated adaptations of B. bifidum to the human gut.
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GENERAL FEATURES OF THE GENUS Bifidobacterium
The genus Bifidobacterium, a member of the Bifidobacteriaceae
family, belongs to the Actinobacteria phylum (Stackebrandt and
Tindall, 2000). Bifidobacteria are Gram-positive microorganisms
with a high G+C DNA content, which were first isolated from
feces of a breast-fed infant by Tissier in 1899, and then named
Bacillus bifidus (Tissier, 1900). However, because of their mor-
phological and physiological features, which are similar to those
of lactobacilli, they were classified as members of the genus Lac-
tobacillus for most of the 20th century and only starting from
1974 have been recognized as a separate genus (Buchanan, 2009).
Currently, the genus Bifidobacterium is comprised of 48 different
taxa, 40 of which have been isolated from the gastro-intestinal
tract (GIT) contents of mammals, birds, or insects, while the
remaining eight from sewage and fermented milk (Ventura et al.,
2007a, 2009b, 2014). In addition, two bifidobacterial taxa, i.e.,
Bifidobacterium crudilactis and Bifidobacterium mongoliense, were
isolated from raw milk cheeses (St Marcellin, Vercors area, France)
(Delcenserie et al., 2013). Taking their different ecological niches
into account and combining this information with a compara-
tive analysis of their 16S rRNA sequences, as well as with other
housekeeping genes (clpC, dnaJ, xfp, dnaB, rpoC, and purF),
the various Bifidobacterium taxa can be clustered into six dif-
ferent phylogenetic groups, designated as the Bifidobacterium
adolescentis-, Bifidobacterium asteroides-, Bifidobacterium boum-,
Bifidobacterium longum-, Bifidobacterium pullorum-, and Bifi-
dobacterium pseudolongum-phylogenetic groups (Ventura et al.,
2007a). In this context, the B. bifidum species was shown
not to fit in any of the above mentioned phylogenetic groups,
thus suggesting the existence of unique and specific genetic
features.

BIFIDOBACTERIAL ECOLOGY
Bifidobacteria have been isolated from six different ecological
niches. Bifidobacteria are widely distributed among animals whose
offspring enjoy parental care, such as mammals, birds, social
insects. Therefore, the reason for their ecological distribution
may be due to direct transmission of bifidobacterial cells from
mother/carer to offspring. Though bifidobacteria are commonly
found in the animal gut, these microorganisms have also been
found in three other ecological niches: (iv) human blood (Bifi-
dobacterium scardovii), (v) sewage (e.g., Bifidobacterium minimum
and Bifidobacterium thermacidophilum), and (vi) food products
(e.g., Bifidobacterium animalis subsp. lactis). These atypical eco-
logical niches are rather different from that of the GIT, and it is
plausible that the identification of bifidobacteria in these environ-
ments is the consequence of contaminations from GIT (Ventura
et al., 2007b).

Notably, bifidobacteria that belong to the species Bifidobac-
terium animalis, Bifidobacterium adolescentis, Bifidobacterium
dentium, and Bifidobacterium catenulatum display a more cos-
mopolitan lifestyle (Lamendella et al., 2008).

Bifidobacterium bifidum, Bifidobacterium breve, and Bifidobac-
terium longum are specifically identified in the human gut and have
been shown to represent part of the dominant bacterial members
of the gut microbiota of breast-fed infants (Turroni et al., 2009a,
2012).

BIFIDOBACTERIAL POPULATION IN THE HUMAN GUT
Bifidobacteria quickly colonize the intestine of infants during the
first weeks of life due to selection by breast or formula milk, as
confirmed by metagenomic analyses (Roger et al., 2010; Koenig
et al., 2011). In breast-fed infants, B. breve is the dominant species,
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followed by B. bifidum and B. longum subsp. infantis (Turroni
et al., 2012; Milani et al., 2013).

The fecal microbiota of infants is characterized by high lev-
els of bifidobacteria (Harmsen et al., 2000; Turroni et al., 2012).
The level of abundance of bifidobacteria within the human gut
decreases with age, although ecological analyses based on FISH
and metagenomic studies have estimated that their presence in
the adult colon is around 4.3 ± 4.4% of fecal microbes (Eckburg
et al., 2005; Mueller et al., 2006). In adult feces, B. adolescentis
and B. catenulatum species are commonly detected, followed by
B. longum. Recently, a study involving the isolation of bifidobac-
teria from human intestinal mucosal samples and fecal samples
on selective media (i.e., by a culture-dependent method), fol-
lowed by the sequencing of the 16S rRNA internal transcribed
spacer (ITS) regions of individual isolates allowed a description
of the biodiversity of the bifidobacterial population present in the
human gut (Turroni et al., 2009a). This study identified the most
abundant bifidobacterial species present in the human gut, being
represented by B. longum, B. pseudolongum, B. animalis subsp. lac-
tis, B. adolescentis, B. bifidum, B. pseudocatenulatum, and B. breve.
Furthermore, this analysis highlighted that the distribution of bifi-
dobacteria present in various human subjects underline both an
inter-subject, and an intra-subject variability, as also confirmed
through real-time quantitative polymerase chain reaction (qPCR)
analyses of fecal samples from healthy adults (Guglielmetti et al.,
2013).

Turroni et al. (2009b) evaluated the bifidobacterial composi-
tion of the human intestine by a microbiomic approach, through
the analyses of five colonic mucosal samples from healthy adults.
This work showed how each subject possesses a specific pop-
ulation of colonic bifidobacteria that is in agreement with the
large inter-variability of the whole intestinal microbiota previously
described (Eckburg et al., 2005; Palmer et al., 2007). These sam-
ples were dominated by 16S rRNA gene sequences closely related
to the B. pseudolongum phylogenetic groups (74.5%), followed by
members of the B. longum (17%) and B. adolescentis (8.5%) phy-
logenetic groups. Moreover, this culture-independent approach
led to the identification of many novel bifidobacterial 16S rRNA
gene sequences, which are presumed to represent as yet undefined
novel bifidobacterial species.

As mentioned above, B. bifidum is among the first colonizers
of the human gut, reaching high numbers in the infant gut, but
also detected at low levels in adults (Turroni et al., 2012). Par-
ticularly, the analyses by qPCR of fecal specimens from healthy
adults revealed the presence of B. bifidum in 76% of the ana-
lyzed samples (n = 82), with a mean log(10) number of cells
per g of feces (±SD) of 6.5 ± 1.4, whereas the mean concen-
tration of total bifidobacteria in the same samples was 8.6 ± 1.2
(Guglielmetti et al., 2013). Therefore, B. bifidum species is a fre-
quent member of the intestinal bifidobacterial population in
healthy adults.

GENOMICS INSIGHTS INTO THE B. bifidum TAXON
Due to the availability of novel whole-genome sequencing
approaches, research in molecular microbiology, in particular that
related to pathogens, has undergone dramatic changes during
the last decade. In recent times, genome-decoding efforts have

also been directed towards gut commensals and probiotic bacte-
ria such as members of the genus Bifidobacterium (Schell et al.,
2002; Lee et al., 2008; Sela et al., 2008; Barrangou et al., 2009;
Turroni et al., 2010; Bottacini et al., 2011, 2012; O’Connell Moth-
erway et al., 2011). In 2009, a genomics-based discipline, named
probiogenomics, was established, which aims to provide insights
into the diversity and evolution of beneficial gut commensals,
and to reveal the molecular basis for their adaptation and inter-
action with the mammalian gut (Ventura et al., 2009a). Thanks
to these probiogenomics efforts, we have significantly expanded
our understanding of the biology of gut microorganisms, such
as bifidobacteria, and we have generated a large amount of data
on metabolic capabilities, genetics, and phylogeny of these bac-
teria. Within the genus Bifidobacterium, just eight members of
the B. bifidum species have had their genome sequenced out of
23 currently publicly available complete bifidobacterial genome
sequences (NCBI source). Notably, of these eight, only three
genome sequences are complete, while the remaining five B.
bifidum genome sequences are still fragmented in multiple con-
tigs. The genome size of a B. bifidum taxon ranges from 2.14
to 2.28 Mb, whereas such a genome displays a GC content of
about 62%, which is in line with the average values described
for genomes of members of the genus Bifidobacterium (Ventura
et al., 2007b, 2012; Turroni et al., 2013b). The currently NCBI-
deposited reference genome of the B. bifidum species belongs
to the infant stool isolate PRL2010 (Turroni et al., 2010), which
was sequenced and published in 2010. The B. bifidum PRL2010
genome is also similar (89% identity at nucleotide level) to that
of B. longum subsp. infantis ATCC15697 (Sela et al., 2008), even
though they belong to two distinct bifidobacterial phylogenetic
clusters, perhaps reflecting the fact that they share a common
ecological niche (Ventura et al., 2007a). A functional classifica-
tion of the genes present in the B. bifidum genomes according to
the Cluster of Orthologous Genes (COG) families allowed the
identification of a large proportion (>10%) of genes assigned
to the COG family of carbohydrate metabolism and transport,
including genes predicted to be involved in mucin metabolism
(see below).

In silico analyses of the B. bifidum PRL2010 chromosome
identified candidate genes displaying a deviant G+C content
and for this reason possibly acquired through Horizontal Gene
Transfer (HGT), collectively referred to as the mobilome. The
predicted PRL2010 mobilome includes a prophage-like element
Bbif-1 (Ventura et al., 2010) and two loci encompassing type I
Restriction/Modification (R/M) systems as well as a type III R/M
system (Turroni et al., 2010). Moreover, the predicted mobilome
encompasses a 19 kb DNA region, which appears to represent an
integrated plasmid.

The evaluation of genome variability within members of the B.
bifidum species was assayed by Comparative Genomic Hybridiza-
tion (CGH) experiments and the use of B. bifidum PRL2010-based
microarrays (Turroni et al., 2010). In this way genes from the
sequenced B. bifidum PRL2010 strain were assessed for their pres-
ence or absence in the genomes of a set of seven B. bifidum
strains, which included isolates from various infant fecal sam-
ples as well as the neotype of B. bifidum species. Interestingly,
among the variable regions of the CGH map there are those
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predicted as the mobilome of PRL2010 as well as other genes
predicted to be involved in bacterium–environment interaction,
such as the genes specifying sortase-dependent pili (Turroni et al.,
2010). In addition, analysis of the B. bifidum PRL2010 chromo-
some revealed novel insights into the metabolic strategies followed
by this strain to degrade host-derived glycans, and in particular
mucin-associated carbohydrates.

THE GENOMICS OF MUCIN BREAKDOWN IN B. bifidum
Mucin represents the main component of the mucus gel layer
that is covering the epithelial surface of the GIT (Podolsky, 1985).
The main carbohydrate monomers found in mucin include N-
acetylglucosamine, N-acetylgalactosamine, fucose, and galactose,
which are sometimes linked to sialic acid and sulfate groups
(Forstner et al., 1995). In addition, mucin contains salts, lipids,
and many proteins, such as growth factors, lysozyme, defensins,
immunoglobulins, trefoil factors, and several intestinal proteins
(Johansson et al., 2008).

Among members of the genus Bifidobacterium, the ability to
degrade mucin is a peculiar property of the B. bifidum species,
which can hydrolyse the glycosydic bonds of mucin (Turroni et al.,
2010, 2011) and utilize it as the sole carbon source (Guglielmetti
et al., 2009).

In silico analyses of the genome sequences of PRL2010 revealed a
relatively small set of genes dedicated to carbohydrate metabolism,
which predominantly specified glycosyl hydrolases (GH), com-
pared to other bifidobacteria (Turroni et al., 2011). Remarkably,
about 60% of the identified GH-encoding enzymes from B.
bifidum PRL2010 are predicted to be involved in the degradation
of mucin-derived oligosaccharides, most of which are uniquely
present in the B. bifidum chromosome relative to other currently
available bifidobacterial genomes. Furthermore, according to the
Carbohydrate Active Enzymes (CAZy) system (Cantarel et al.,
2009), the B. bifidum PRL2010 genome is predicted to encode
members of two carbohydrate-binding module (CBM) families,
CBM32 and CBM51, that are suggested to bind to carbohydrate
residues encountered in the mucin core structure. Notably, in
bifidobacteria the genetic information corresponding to predicted
CBM32 and CBM51 members were only detected in the genomes
of B. bifidum (Turroni et al., 2011).

Additional insights into the behavior of B. bifidum PRL2010
to utilize mucin were obtained from functional genomics
approaches, such as whole proteome profiling as well as tran-
scriptomic investigations (Turroni et al., 2010). Several of the
enzymes encoded by B. bifidum PRL2010 involved in mucin
metabolism encompass extracellular enzymes, such as putative
exo-α-sialidases, as well as a predicted 1,2-α-L-fucosidase and
1,3/4-α-L-fucosidase, and a putative cell wall-anchored endo-α-N-
acetylgalactosaminidase (Ashida et al., 2008, 2009; Kiyohara et al.,
2012). Additional PRL2010 encoded enzymes that are believed
to be involved in mucin breakdown include four N-acetyl-β-
hexosaminidases, and four β-galactosidases. The mucin-catabolic
phenotype of PRL2010 is further facilitated by the presence of
carbohydrate transporters belonging to various families, such
as the ATP-binding cassette (ABC-type), phosphoenolpyruvate
phosphotransferase system (PEP-PTS) and major facilitator super-
family (MFS).

The genome of B. bifidum PRL2010 encompasses a DNA
region spanning eight genes, which encode enzymes for the
breakdown of galacto-N-biose that forms one of the core struc-
tures of mucin-oligosaccharides. In this context it is believed
that B. bifidum PRL2010 accesses mucin-derived galacto-N-biose
by the action of extracellular enzymes like the exo-α-sialidases
and 1,2-α-L-/α-1,3/4-fucosidases, which perform de-sialidation
and de-fucosylation, respectively, of mucin-derived oligosac-
charides to facilitate further breakdown by the action of other
enzymes encoded by PRL2010 such as the lacto-N-biosidase and
endo-α-N-acetylgalactosaminidase.

Comparative genomics analyses involving all other currently
available B. bifidum genomes revealed a high conservation of
the predicted genetic arsenal involved in mucin breakdown
(Turroni et al., 2011). Thus, it is tempting to conclude that mucin
metabolism in PRL2010 is a genetic feature of most if not all mem-
bers of the B. bifidum species rather than of a unique strain. Mucin
degradation, which is expected to reduce the mucin layer and
consequently reduce the protective barrier covering the intestinal
mucosa, is generally considered as an undesirable event. How-
ever, one may also consider breakdown as an evolved “host-settler
mechanism.” In fact, mucin production in the GIT normally ini-
tiates only several months after birth and reaches its mature level
at about 12 months (Hooper et al., 1999). Interestingly, mucin
breakdown activity as operated by B. bifidum could trigger the
secretion of additional colonic mucin, thus increasing the thick-
ness of the total amount of mucus layer covering the gut and so
reinforcing the epithelial barrier function, which constitutes an
important feature especially in those subjects affected by irrita-
ble bowel syndrome (Caballero-Franco et al., 2007). The capacity
to efficiently use mucus is a typical feature also of Akkermansia
muciniphila, a human intestinal species that has been associated
with healthy intestines and disease prevention (Guglielmetti et al.,
2008b).

PILI PRODUCTION BY B. bifidum AS KEY HOST–MICROBE
EFFECTOR MOLECULES
Non-flagellar appendages decorating the microbial cell surface
were identified in bacteria in the early 1950s and since then the
molecular data about their assembly, composition, and func-
tion has greatly expanded, especially for pathogens (Telford et al.,
2006). In this context, these extracellular structures are considered
crucial in the initial establishment of pathogens inside the host
and are consequently considered key effector molecules in patho-
genesis. However, their identification in bifidobacteria was only
very recently established (Foroni et al., 2011; O’Connell Mother-
way et al., 2011). It has been shown that bifidobacterial genomes
belonging to B. bifidum, B. longum subsp. longum, B. adolescen-
tis, B. dentium, B. animalis subsp. Lactis, and B. breve contain
one to seven predicted sortase-dependent pilus gene loci, each
of which are predicted to encode one major pilin subunit (rep-
resented by FimAPRL2010 or FimPPRL2010 for the pil2PRL2010 and
pil3PRL2010 clusters, respectively) plus a minor pilin subunit (rep-
resented by FimBPRL2010 and FimQPRL2010 for the pil2PRL2010 and
pil3PRL2010 clusters, respectively), as well as a so-called sortase,
a protein specifically dedicated to covalently assemble these pilin
subunits (Foroni et al., 2011).
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Very recently, the four B. bifidum genome sequences that
are currently publicly available have been screened for sortase-
dependent pili leading to the identification of three loci (Turroni
et al., 2013a). Of these three identified loci, only two were shown
to be genetically intact whereas the third appeared to be non-
functional due to a frameshift within the coding region of the
gene encoding major pilus subunit (Turroni et al., 2013a). When
FimAPRL2010 was compared to FimA homologs encoded by other
B. bifidum strains, their amino acid sequences were shown to dis-
play much higher variability compared to the FimP homologs
(Turroni et al., 2013a). Furthermore, FimAPRL2010 includes a
CnaB-type domain that is known to serve as a stalk in binding to
components of the Extra Cellular Matrix proteins of the host, such
as fibronectin, collagen types I to XV, and laminin (Deivanayagam
et al., 2000).

Transcriptomic investigations performed on B. bifidum
PRL2010 upon colonization of mice as well as upon contact
with human cell lines, demonstrated a clear transcriptional up-
regulation of those genes encompassing two sortase-dependent
pili, named pil2 and pil3 (Turroni et al., 2013a). Heterologous
expression of the pilus-encoding genes corresponding to Pil2
and Pil3 in the non-piliated, Gram-positive host Lactococcus lac-
tis showed that both types of pili are modulating the adhesion
to human enterocytes through extracellular matrix (ECM) pro-
teins and bacterial aggregation. ECM deglycosylation provoked
a dramatic reduction in PRL2010 pili-mediated binding ability
compared to untreated ECM (Turroni et al., 2013a), pointing that
N- and/or O-linked glycoproteins are involved in adhesion of
PRL2010 pili to ECM. Furthermore, carbohydrate binding com-
petition experiments demonstrated that mannose and fucose act
as potential receptors for Pil2 of B. bifidum PRL2010 in a fashion
that is reminiscent of that previously described for other enteric
bacteria (Farfan et al., 2011), whereas the putative binding part-
ners for Pil3 appear to encompass a larger set of carbohydrates
(Turroni et al., 2013a).

Recombinant piliated L. lactis cells were also shown to evoke
a higher tumor necrosis factor alpha (TNFα) response during
murine colonization compared to their non-piliated parent, indi-
cating that B. bifidum PRL2010 sortase-dependent pili not only
contribute to adhesion but also display immunomodulatory activ-
ity (Turroni et al., 2013a). Triggering TNFα production by pili
synthetized by B. bifidum PRL2010 may represent an intriguing
feature of this species as one of the first colonizers of the human
gut (Turroni et al., 2012). In this context, it is worth mentioning
that cytokines belonging to the TNFα superfamily are not only
linked to the occurrence of inflammatory diseases (Yasutake et al.,
1999), but also exert a major role in the rejection of tumors and
the response to infections (Wajant et al., 2003; Lebeer et al., 2010).
Furthermore, the induction of TNFα may be crucial for the ini-
tiation of cross-talk among immune cells without provoking any
inflammation or detrimental effects (Galdeano et al., 2007).

OTHER HOST RESPONSE EFFECTOR MOLECULES ENCODED
BY B. bifidum
Recently, the murine lytic enzyme TgaA encoded by B. bifidum
MIMBb75 has been molecularly characterized (Guglielmetti
et al., 2014b). This peptidoglycan-degrading enzyme contains

two active domains, i.e., a lytic murine transglycosylase and a
cysteine histidine-dependent amidohydrolase/peptidase (CHAP)
domain and was demonstrated to exert immunomodulatory
effects (Guglielmetti et al., 2014a). The TgA-encoding gene does
not appear to be widely distributed among the currently avail-
able B. bifidum genomes and thus represents an example of a
strain-dependent gene (Guglielmetti et al., 2014b).

Other B. bifidum proteins involved in host interaction are rep-
resented by the surface lipoprotein BopA, which was originally
described to be involved in adhesion to intestinal epithelium
(Guglielmetti et al., 2008b; Gleinser et al., 2012). However, recently
the role of BopA in the adhesion of B. bifidum was reassessed and,
in contrast to what was published earlier, the strong adhesion
of B. bifidum to epithelial cell lines is mainly BopA-independent
(Kainulainen et al., 2013).

Within the surface proteins encoded by B. bifidum strains
responsible of adhesion to the human intestine, the transaldolase
Tal of B. bifidum A8 has been also proposed (Gonzalez-Rodriguez
et al., 2012). Notably, such protein has been shown in modulating
the adhesion to mucin as well as to promote bacterial aggrega-
tion, thus could act as a key colonization factor in driving the
establishment of B. bifidum cells in the human gut.

IMMUNE RESPONSE OF B. bifidum STRAINS
Members of the B. bifidum species have been claimed to exert
an important role in the evolution and maturation of the
immune system of the host, which is still undeveloped at birth
(Lopez et al., 2011). The interaction of B. bifidum with the host
immune system has been assayed by investigating the impact of
B. bifidum Z9 in combination with a second human gut commen-
sal, Lactobacillus acidophilus, on the transcriptome of dendritic
cells (DCs) (Weiss et al., 2010). This study highlighted that B.
bifidum Z9 down-regulates the expression of genes involved to
the adaptive immune system in murine DCs. Such findings cor-
roborated other studies based on in vitro assays and involving
various strains belonging to different Bifidobacterium species,
which display a clear and distinct induction of cytokine profile
by bifidobacteria. In particular, it was shown that B. bifidum
strains, in contrast to representatives of other bifidobacterial
species, provoked a significantly increased production of the
IL-17 cytokine (Turroni et al., 2010; Lopez et al., 2011). The
observation that B. bifidum strains induce an immune response
affecting Treg/TH17 plasticity (Turroni et al., 2010; Lopez et al.,
2011) leads to hypothesize that such commensal bacteria have a
key role in mucosal tolerance, as also suggested by the demon-
stration that B. bifidum, differently from several other species
of the genus, possesses the ability to induce IL-2 secretion by
DCs (Guglielmetti et al., 2014a). In particular, it was demon-
strated that the cell-surface-exposed molecule Tga of B. bifidum
MIMBb75 is capable alone through its C-terminal CHAP domain
of inducing DCs activation and IL-2 production (Guglielmetti
et al., 2014b).

Recently, the host response triggered by the presence of
B. bifidum PRL2010 cells was investigated thanks to a high-
throughput gene expression technology and by utilizing both an
in vitro cell line model as well as a murine model (Turroni et al.,
2014a). Notably, the overall host-response scenario driven by B.
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bifidum PRL2010 cells can be described as a pro-inflammatory
response priming the immune system, yet at the same time atten-
uating the pro-inflammatory response by down-regulation of
certain chemokines, heat shock proteins (HSP) as well as stim-
ulating the up-regulation of defensin and tight junction genes.
In addition, results from ELISA experiments displayed that expo-
sure to B. bifidum PRL2010 triggers the synthesis of IL-6 and IL-8
cytokines, presumably through NF-κb activation (Turroni et al.,
2014a).

Other in vivo observations involving B. bifidum strains have
been performed under chemically-induced diseases such as col-
itis. In this context, administration of B. bifidum strain S17 to
mice with colitis was shown to suppress intestinal inflammation
with a significant reduction in histology scores and the levels of
pro-inflammatory cytokines interleukin IL-1β, IL-6, keratinocyte-
derived chemokine and the inflammatory markers cyclooxygenase
and myeloperoxidase (Philippe et al., 2011).

B. bifidum STRAINS AS POTENTIAL HEALTH-PROMOTING
CANDIDATES
Various strains of the B. bifidum species have been reported to exert
health benefits to their human host, including antibacterial activi-
ties against pathogens such as Helicobacter pylori (Shirasawa et al.,
2010; Chenoll et al., 2011), reduction of apoptosis in the intesti-
nal epithelium of infants suffering from necrotizing enterocolitis

(Khailova et al., 2010), modulation of the host-immune system
(Fu et al., 2010; Philippe et al., 2011), and alleviation of anti-
inflammatory activities associated with certain chronic large bowel
dysfunctions (Mouni et al., 2009; Guglielmetti et al., 2011). In
addition, B. bifidum together with other bifidobacterial species like
B. breve and B. longum subsp. infantis are considered important
for the establishment of a well-balanced, autochthonous intesti-
nal microbiota in newborns (Tabbers et al., 2011). However, in
order to exert a potential health-promoting activity in the human
gut, bacteria need to reach this compartment in a viable form,
while they should also be able to persist within the intestine. In
this context, many B. bifidum strains have been shown to pos-
sess a strong adhesion phenotype to human epithelial intestinal
cell monolayers (Caco-2 and HT29) (Guglielmetti et al., 2009;
Serafini et al., 2013) and in a few cases, such as for B. bifidum
PRL2010 and MIMBb75, were demonstrated to survive under
gastrointestinal challenges (Serafini et al., 2013) and colonize the
intestine impacting on the resident microbial communities at
various intestinal loci (Singh et al., 2013). Another interesting
phenotype displayed by probiotic bacteria is their displacement
and competition against pathogens. Interestingly, in vitro trials
based on HT29 monolayer involving B. bifidum PRL2010 cells
displayed a clear inhibition of adhesion of pathogenic bacteria
such as Escherichia coli and Cronobacter sakazakii (Serafini et al.,
2013).

FIGURE 1 | Schematic representation of the main effects produced by Bifidobacterium bifidum in the human gut.
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A health-promoting microorganism needs to be administered
to its human host within a specific matrix in order to assure
survival and biological functionality of its cells (e.g., producing
probiotic molecules). Recently, kefir and kefiran were shown to
affect the transcriptome of B. bifidum PRL2010 causing increased
transcription of genes involved in the metabolism of dietary gly-
cans as well as genes acting as host–microbe effector molecules
such as pili (Serafini et al., 2014). Thus, the use of kefir and perhaps
other (fermented) food products may be considered as a valuable
means for the administration of B. bifidum cells to humans and
may represent an effective food matrix to pre-adapt bifidobacterial
cells to the host in order to enhance probiotic efficacy.

INDUSTRIAL USE OF B. bifidum
Due to their health-promoting activities, much effort has been
invested in the incorporation of bifidobacteria into probiotic food,
supplements, and pharmaceutical preparations. By regulatory def-
inition, microbial cells must be alive in a sufficient number in
order to define a product as probiotic. In this perspective, the
commercial use of B. bifidum as a probiotic has been limited by
the fact that members of this species are particularly sensitive to
stresses such as acidity and, in particular, oxygen (Jayamanne
and Adams, 2006). Strategies to preserve probiotic cell viabil-
ity are available and involve, for instance, microencapsulation
(Zhang et al., 2013), and the addition of prebiotic molecules
to the formulation (Guglielmetti et al., 2008a). However, these
strategies do not overcome the problem of the limited biomass
yields generally obtained in industrial fermentations due to the
intrinsic stress sensitivity of B. bifidum, resulting in a strong
increase of production costs. In this context, an aspect of par-
ticular importance is represented by strain “domestication.” In
fact, once a bifidobacterial strain is isolated from its natural envi-
ronment, its intrinsic sensitivity to oxygen decreases slowly and
progressively during the numerous subcultivations under labo-
ratory conditions. In this direction, an example is represented
by strain B. bifidum MIMBb75, which was isolated about twelve
years ago from a fecal sample of a healthy adult. Although orig-
inally very recalcitrant to laboratory cultivation, after hundreds
of subculturings in aerobic atmosphere followed by incubation in
a gas-pack with Anaerocult A, this strain drastically improved its
ability to resist oxidative and other laboratory stresses (Gugliel-
metti S., personal communication). Thus, the selective pressure
of a laboratory environment induced physiological changes that
allowed the employment of strain B. bifidum MIMBb75 at indus-
trial level; this strain, in fact, is now commercially available in a
pharmaceutical probiotic product consisting of an encapsulated
formulation, in which MIMBb75 cells can maintain a viability
of at least 109 CFU per capsule during the entire shelf-life of
the product (Guglielmetti et al., 2011; Guglielmetti S., personal
communication).

CONCLUSION
During the last 5–10 years research in bifidobacteria has blos-
somed (Ventura et al., 2012, 2014; Turroni et al., 2014b). In this
context, genomic investigations of bifidobacteria have revealed
genetic repertoires that are considered crucial for conveying the
typical saccharolytic phenotype of these bacteria, and which

are worthy of detailed investigation for their potential roles in
colonization of the human gut and their dependence on our
diet. However, the discovery of the specific functional con-
tribution to the host by each member of the bifidobacterial
population in the human gut is still at its infancy. Further-
more, very little is known about the cross-talk that is believed to
occur between individual members of the bifidobacterial micro-
biota (Egan et al., 2014) and with other members of the gut
microbiota (Sonnenburg et al., 2006). The genetic data retrieved
from the genome analysis of B. bifidum suggests the existence
of various molecules that are responsible for specific health-
promoting activities exerted by members of this bifidobacterial
taxon (Figure 1). Future work needs to be carried out in order
to better understand how these genetic features are exploited in
the human gut through the use of high throughput metagenomic
and post-genomic approaches. Nonetheless, currently available
experimental data already supports the notion that B. bifidum rep-
resents a highly interesting bacterial species that is able to benefit
human health in the prevention and treatment of gastrointestinal
dysfunctions.
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