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Abstract

In this thesis I study the non-relativistic limit (c → ∞) of the nonlinear Klein-Gordon (NLKG)
equation on a manifold M , namely

1

c2
utt −∆u+ c2u+ λ|u|2(l−1)u = 0, t ∈ R, x ∈M (0.0.1)

where λ = ±1, l ≥ 2. The aim of the present work is to discuss the convergence of solutions of the NLKG
to solutions of a suitable nonlinear Schrödinger (NLS) equation, and to study whether such convergence
may hold for large (namely, of size O(cr) with r ≥ 1) timescales.

In particular I obtain the following results: (1) whenM is a general manifold, I show that the solution
of NLS describes well the solution of the original equation up to times of order O(1); (2) when M = Rd,
d ≥ 3, I consider higher order approximations of NLKG and prove that small radiation solutions of the
approximating equation describe well solutions of NLKG up to times of order O(c2r) for any r ≥ 1; (3)
when M = [0, π] ⊂ R I consider the NLKG equation with a convolution potential and prove existence
for long times of solutions in Hs uniformly in c, which however has to belong to a set of large measure.

I also get some new dispersive estimates for a Klein Gordon type equation with a potential.
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Riassunto della Tesi

In questa tesi si studia il limite non-relativistico (c→∞) dell'equazione di Klein-Gordon non lineare
(NLKG) su una varietà M ,

1

c2
utt −∆u+ c2u+ λ|u|2(l−1)u = 0, t ∈ R, x ∈M (0.0.2)

dove λ = ±1, l ≥ 2. L'obiettivo del presente lavoro è di discutere la convergenza delle soluzioni della
NLKG alle soluzioni di un'opportuna equazione di Schrödinger non lineare (NLS), e di studiare quando
questa convergenza possa valere su scale di tempo lunghe (più precisamente, dell'ordine di O(cr), r ≥ 1).

In particolare si possono ottenere i seguenti risultati: (1) quando M è una generica varietà, si può
mostrare che le soluzioni della NLS approssimano bene le soluzioni dell'equazione originale, �no a tempi
dell'ordine di O(1); (2) quandoM = Rd, d ≥ 3, considerando approssimazioni ad ordini più alti di NLKG
si può mostrare che le soluzioni di radiazioni piccole dell'equazione approssimata approssimano soluzioni
di NLKG �no a tempi dell'ordine di O(c2r) per ogni r ≥ 1; (3) quando M = [0, π] ⊂ R, considerando la
NLKG con un potenziale di convoluzione, si può dimostrare l'esistenza per tempi lunghi delle soluzioni
in Hs uniformemente in c, che deve però appartenere ad un insieme di misura grande.

Si sono inoltre dimostrate delle stime dispersive per un'equazione di tipo Klein-Gordon con poten-

ziale.



Chapter 1

Introduction

In this thesis we consider the nonrelativistic limit (namely, the limit in which the speed of light
c → ∞) of the nonlinear Klein-Gordon (NLKG) equation. Formal computations going back to
the �rst half of the last century suggest that, up to corrections of order O(c−2), the system
should be described by the nonlinear Schrödinger (NLS) equation. Subsequent mathematical
results have shown that the NLS describes the dynamics over time scales of order O(1).

In the present thesis we obtain some results for the dynamics of NLKG over longer time
scales. Actually we get two kinds of results: (i) results for NLKG uniform as c → ∞ and (ii)
approximation results showing that solutions of NLKG can be approximated by solutions of
suitable higher order NLS equations.

The theory is completely di�erent in the case where the equation lives on R3 or in a compact
manifold. We are now going to present the results splitting these two cases.

1.0.1 The NLKG equation on R3

The NLKG equation describes the motion of a spinless particle with mass m > 0. Consider �rst
the real NLKG

~2

2mc2
utt −

~2

2m
∆u+

mc2

2
u+ λ|u|2(l−1)u = 0, (1.0.1)

where c > 0 is the speed of light, ~ > 0 is the Planck constant, λ ∈ R, l ≥ 2, c > 0.
In the following we will take m = 1, ~ = 1. As anticipated above, we are interested in the
behaviour of solutions as c→∞.

First it is convenient to reduce equation (1.0.1) to a �rst order system, by making the following
symplectic change variables

ψ :=
1√
2

[(
〈∇〉c
c

)1/2

u− i
(

c

〈∇〉c

)1/2

ut

]
.

where

〈∇〉c := (c2 −∆)1/2, (1.0.2)

1



2 CHAPTER 1. INTRODUCTION

which reduces (1.0.1) to the form

−iψt = c〈∇〉cψ +
λ

2l

(
c

〈∇〉c

)1/2
[(

c

〈∇〉c

)1/2

(ψ + ψ̄)

]2l−1

, (1.0.3)

which is hamiltonian with Hamiltonian function given by

H(ψ̄, ψ) =
〈
ψ̄, c〈∇〉cψ

〉
+
λ

2l

∫ [(
c

〈∇〉c

)1/2
ψ + ψ̄√

2

]2l

dx. (1.0.4)

To state our �rst result, we introduce for any k ∈ R and for any 1 < p < ∞ the following
relativistic Sobolev spaces

W k,p
c (R3) :=

{
u ∈ Lp : ‖u‖W k,p

c
:=
∥∥c−k 〈∇〉kcu∥∥Lp < +∞

}
, (1.0.5)

H k
c (R3) :=

{
u ∈ L2 : ‖u‖H k

c
:=
∥∥c−k 〈∇〉kcu∥∥L2 < +∞

}
, (1.0.6)

and remark that the energy space is H
1/2
c . We also remark that for �nite c > 0 such spaces

coincide with the standard Sobolev spaces, while for c =∞ they are equivalent to the Lebesgue
spaces Lp.

We �rst begin with a global existence result for the NLKG (1.0.3) in the cubic case, l = 2,
for small initial data.

Theorem 1.0.1. Consider Eq. (1.0.3) with l = 2.
There exists ε∗ > 0 such that, if the norm of the initial datum ψ0 ful�lls

‖ψ0‖H 1/2
c
≤ ε∗, (1.0.7)

then the corresponding solution of (1.0.3) exists globally in time

‖ψ(t)‖
L∞t H

1/2
c
� ‖ψ0‖H 1/2

c
, (1.0.8)

All the constants do not depend on c.

Remark 1.0.2. For �nite c this is the standard result for small amplitude solution, while for
c =∞ it becomes the standard result for the NLS. Thus Theorem 1.0.1 interpolates between these
apparently completely di�erent situations.

Remark 1.0.3. We also remark that the lack of a priori estimates for the solutions of NLKG
in the limit c→∞ was the main obstruction in order to obtain global existence results uniform
in c in standard Sobolev spaces.

We are now interested in discussing the approximation of the solutions of NLKG with NLS-
type equations. Before giving the result we describe the general strategy we use to get them.

We remark that Eq. (1.0.1) is Hamiltonian with Hamiltonian function (1.0.4). If we divide
the Hamiltonian by a factor c2 (which corresponds to a rescaling of time) and we expand in
powers of c−2 it takes the form

〈ψ, ψ̄〉+
1

c2
Pc(ψ, ψ̄) (1.0.9)

with a suitable funtion Pc. One can notice that this Hamiltonian is a perturbation of h0 := 〈ψ, ψ̄〉,
which is the generator of the standard Gauge transform, and which in particular admits a �ow
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that is periodic in time.
Thus the idea is to exploit canonical perturbation theory in order to conjugate such a Hamilto-
nian system to a system in normal form, up to remainders of order O(c−2r), for any given r ≥ 1.
The problem is that the perturbation Pc has a vector �eld which is small only as an operator ex-
tracting derivatives. One can Taylor expand Pc and its vector �eld, but the number of derivatives
extracted at each order increases. This is typical in singular perturbation problems. Problems
of this kind have already been studied with canonical perturbation theory, but the price to pay
to get a normal form is that the remainder of the perturbation turns out to be an operator that
extracts a large number of derivatives. The standard way to exploit such a �singular� normal
form is to use it just to construct some approximate solution of the original system, and then
to apply Gronwall Lemma in order to estimate the di�erence with a true solution with the same
initial datum.

This strategy works also here, but it only leads to a control of the solutions over times of
order O(c2), that, when scaled back to the physical time, turns out to be of order O(1).

The idea we use here in order to improve the time scale of the result is that of substituting
Gronwall Lemma with a more sophisticated tool, namely dispersive estimates and the retarded
Strichartz estimate. This can be done each time one can prove a dispersive or a Strichartz
estimate (in the spaces W k,p

c orW k,p) for the linearization of equation (1.0.3) on the approximate
solution uniformly in c.

It turns out that this is often a quite hard task. Actually we were able to accomplish it only
for radiation solutions. For solutions of other kind we have some preliminary results that could
have some interest in themselves, and that will be described later on.

In order to state the approximation result for radiation solutions, we consider the approximate
equation given by the Hamilton equations of the normal form truncated at order O(c−2r), and
let ψr be a solution of such a normalized equation.

Of course, in order to produce some solution of the normal form equation one has to know
the equation itself. In Sect. 3.3 we compute it at order 4. It is given by:

−iψt = c2ψ − 1

2
∆ψ +

3

4
λ|ψ|2ψ

+
1

c2

[
51

8
λ2|ψ|4ψ +

3

16
λ
(
2|ψ|2 ∆ψ + ψ2∆ψ̄ + ∆(|ψ|2ψ̄)

)
− 1

8
∆2ψ

]
. (1.0.10)

We remark that it is a singular perturbation of a Gauge-transformed NLS equation. If one,
after a gauge transformation, only considers the �rst order terms, one has the NLS, for which
radiation solution exist (for example in the defocusing case all solutions are of radiation type).
For higher order NLS nothing is known. There are some preliminary results by Kim, Arnold
and Yao (see [48]) and by Carles, Lucha and Moulay (see [23]), who proved dispersive estimates
and local-in-time Strichartz estimates for solutions of the linearized normal form equation (which
actually do not involve any normal form transformation)

−iψt = c2ψ −
r∑
j=1

aj
c2(j−1)

∆jψ, (1.0.11)

where aj = (2j−1)!
j!(j−1)!22j−1 for any j ≥ 1.

Before stating the result, we introduce the following set of admissible exponents:

∆r := {(p, q) : (1/p, 1/q) lies in the closed quadrilateral ABCD, }
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where

A =

(
1

2
,

1

2

)
, B =

(
1,

1

τr

)
, C = (1, 0), D =

(
1

τ ′r
, 0

)
, τr =

2r − 1

r − 1
,

1

τr
+

1

τ ′r
= 1.

Now, the aforementioned authors proved the following dispersive estimates

Proposition 1.0.4. Let r ≥ 1, and denote by ψr(t) the solution of the linearized normal form
equation of order r (1.0.11). Then we have the following local-in-time dispersive estimate

‖ψr(t)‖L∞(R3) � c
3(1− 1

r )|t|−3/(2r) ‖ψr(0)‖L1(R3) , 0 < |t| ≤ c2(r−1). (1.0.12)

Furthermore, ‖ψr(t)‖L2 = ‖ψr(0)‖L2 for any t ∈ R.
Therefore for any (p, q) ∈ ∆r \ {(2, 2), (1, τr), (τ

′
r,∞)}

‖ψr(t)‖Lq(R3) � c
3(1− 1

r )( 1
p−

1
q )|t|−

3
2r ( 1

q−
1
p ) ‖ψr(0)‖Lp(R3) , 0 < |t| ≤ c2(r−1). (1.0.13)

We have the following theorems

Theorem 1.0.5. Let r > 1, and �x k1 � 1. Let 1 ≤ p ≤ 2 be such that (p, 3) ∈ ∆r \ {(1, τr)}.
Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1 the following holds: consider the solution ψr(t)
of the nonlinear normal form equation with initial datum ψr,0 ∈ W k+k0,p. Assume also that
ψr(t) satis�es the decay estimate (1.0.13) for Eq. (1.0.11).

Then there exists α∗ := α∗(l, r, p) > 0 and there exists c∗ := c∗(r, k, p) > 1, such that for any
α > α∗ and for any c > c∗, if ψr,0 satis�es

‖ψr,0‖Wk+k0,p � c−α, (1.0.14)

then

sup
t∈[0,T ]

‖ψ(t)− ψr(t)‖Hkx �
1

c2
, T � c2(r−1), (1.0.15)

where ψ(t) is the solution of (1.0.3) with initial datum ψr(0).

Theorem 1.0.6. Let r > 1, and �x k1 � 1. Let 1 ≤ p ≤ 2 be such that (p, 3) ∈ ∆r \ {(1, τr)},
and let 1 ≤ p1 ≤ 2 be such that (p1, 6(l − 1)) ∈ ∆r. Then ∃ k0 = k0(r) > 0 such that for any
k ≥ k1 the following holds: consider the solution ψr(t) of the nonlinear normal form equation
with initial datum ψr,0 ∈ W k+k0,p

c ∩ Lp1 . Assume also that ψr(t) satis�es the decay estimate
(1.0.13) for Eq. (1.0.11).

Then there exist α∗ := α∗(l, r, p) > 0 and α∗1 := α∗1(l, r, p1) > 0 and there exists c∗ :=
c∗(r, k, p) > 1, such that for any α > max(α∗, α∗1) and for any c > c∗, if ψr,0 satis�es

‖ψr,0‖W k+k0,p
c ∩Lp1 � c

−α,

then

sup
t∈[0,T ]

‖ψ(t)− ψr(t)‖H k
c
� 1

c2
, T � c2(r−1),

where ψ(t) is the solution of (1.0.3) with initial datum ψr,0.
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The nonrelativistic limit for the Klein-Gordon equation on Rd has been extensively studied
over more then 30 years, and essentially all the known results only show convergence of the solu-
tions of NLKG to the solutions of the approximate equation for times of order O(1). The typical
statement ensures convergence locally uniformly in time. We mention a �rst series of results (see
[85], [61] and [54]) in which it was shown that, if the initial data are in a certain smoothness
class, then the solutions converge in a weaker topology to the solutions of the approximating
equation. These are informally called �results with loss of smoothness�. Although we can prove
a longer time convergence, our results also �ll in this group.

Some other results, essentially due to Machihara, Masmoudi, Nakanishi and Ozawa, ensure
convergence without loss of regularity in the energy space, again over time scales of order O(1)
(see [55], [57] and [63]).

Concerning radiation solutions there is a remarkable result (see [62]) by Nakanishi, who
considered the complex NLKG in the defocusing case, in which it is known that all solutions
scatter (and thus the scattering operator exists), and proved that the scattering operator of the
NLKG equation converges to the scattering operator of the NLS.

We remark that this result is not contained in our one and does not contain it. Indeed, the
scattering operator involves the backward �ow of the free equation, that for the considered class
of solutions has some contracting properties.

We also mention the recent result proved by Lu and Zhang in [53], which concerns the NLKG
with a quadratic nonlinearity. Here the problem is that the typical scale over which the standard
approach allows to control the dynamics is O(c−1), while the dynamics of the approximating
equation takes place over time scales of order O(1). In that work the authors are able to use a
normal form transformation (in a spirit quite di�erent from ours) in order to extend the time of
validity of the approximation over the O(1) time scale. We did not try to reproduce or extend
that result.

We remark that there are ome other well known solutions of NLS which would be interesting
to study; indeed, it is well known that in the case of mixed-type nonlinearity

iψt = −∆ψ − (|ψ|2 − |ψ|4)ψ,

such an equation admits linearly stable solitary wave solutions; it can also be proved that the
standing waves of NLS can be modi�ed in order to obtain standing wave solutions of the normal
form of order r, for any r. It would be of clear interest to prove that true solutions starting close
to such standing wave remain close to them for long times (remark that the NLKG does not
admit stable standing wave solutions). In order to get this result one should prove a Strichartz
estimate for NLKG close to the approximate solution and uniformly in c. For the moment we
did not succeeed in obtaining such a result.

The thesis contains a preliminary result which can have some independent interest: it is a
dispersive estimate for the linear equation

−i ψt = H(x)ψ := c〈∇〉c ψ + V (x)ψ, (1.0.16)

ψ(0) = ψ0,

where V ∈ C(R3,R) satis�es

|V (x)|+ |∇V (x)| � 〈x〉−β , x ∈ R3, (1.0.17)

for some β > 0.
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Theorem 1.0.7. Let us assume that V satis�es (1.0.17) for some β > 9, and that the point c2

is neither an eigenvalue nor a resonance for the operator H(x). Then for any σ > 9/2, for any
ψ0 ∈ L2

σ and for c ≥ 1 su�ciently large one has

‖eitH(x)Pc(H)ψ0‖L2
−σ
� 〈t〉−3/2 ‖ψ0‖L2

σ
, |t| → ∞.

Before closing the subsection, we add a few technical comments. The �rst one is that, in
order to exploit Strichartz estimates after the normal form, we need to develop normal form in
the framework of the spaces W k,p, while known results in Galerkin averaging theory only allow
to deal with the spaces Hk. This is due to the fact that the Fourier analysis is used in order
to approximate the derivatives operators with bounded operators. Thus the �rst technical step
needed in order to be able to exploit dispersion is to reformulate Galerkin averaging theory in
terms of dyadic decompositions. This is done in Theorem 3.1.3.

At this point we also mention that actually the Galerkin averaging result proved in the thesis
is of abstract form and has a further new application: it allows to justify the approximation of
the solutions of NLKG by solutions of the NLS over time scales of order O(1), on any manifold
admitting a Littlewood-Paley decomposition (such as Riemannian compact manifolds without
borders, or Rd; see the introduction of [19] for the construction of Littlewood-Paley decomposition
on manifolds).

Proposition 1.0.8. Let M be a manifold which admits a Littlewood-Paley decomposition, and
consider Eq. (1.0.1) on M .
Fix r ≥ 1, R > 0, k1 � 1, 1 < p < +∞. Then ∃ k0 = k0(r) > 0 with the following properties:
for any k ≥ k1 there exists cl,r,k,p,R � 1 such that for any c > cl,r,k,p,R, if we assume that

‖ψ0‖k+k0,p ≤ R

and that there exists T = Tr,k,p > 0 such that the solution of the equation in normal form up to
order r satis�es

‖ψr(t)‖k+k0,p ≤ 2R, for 0 ≤ t ≤ T,

then

‖ψ(t)− ψr(t)‖k,p ≤ Ck,p c−2r, for 0 ≤ t ≤ T. (1.0.18)

A similar result has been obtained for the case M = Td by Faou and Schratz, who aimed
to construct numerical schemes which are robust in the nonrelativistic limit (see [35]; we refer
also to [12], [13] and to [14] for some numerical analysis of the nonrelativistic limit of the NLKG
equation).

Actually the present thesis is part of a research program in qualitative theory of Hamiltonian
PDEs in which canonical perturbation theory is used together with the theory of dispersive equa-
tions in order to understand the dynamics of some system. In this context, the nonrelativistic
limit of the NLKG is a relevant example of a singular limit.

The issue of nonrelativistic limit has been studied also in the more general Maxwell-Klein-
Gordon system ([15], [58]), in the Klein-Gordon-Zakharov system ([59], [60]), in the Hartree
equation ([25]) and in the pseudo-relativistic NLS ([26]). However, all these results proved the
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convergence of the solutions of the limiting system in the energy space ([25] studied also the
convergence in Hk), locally uniformly in time; no information could be obtained about the con-
vergence of solutions for larger (in the case of NLKG, that would mean c-dependent) timescales.

Other examples of singular perturbations that have been studied either with canonical per-
turbation theory or with other techniques (typically multiscale analysis) are the problem of the
continuous approximation of lattice dynamics (see e.g. [11], [76] and [75]) and the semiclassical
analysis of Schrödinger operators (see e.g. [69], [40], [2]). In the framework of lattice dynamics,
the time scale covered by all known results is that typical of averaging theorems, which corre-
sponds to our O(1) time scale. We hope that the methods developed in the present thesis could
allow to extend the time of validity of those results.

1.0.2 The case of x ∈ [0, π]

We consider here (1.0.1) on M = [0, π] ⊂ R with a convolution potential, namely

1

c2
utt − uxx + c2 u + V ∗ u = f(u), (1.0.19)

with c ≥ 1, x ∈ T, f ∈ C∞(R) a real-valued function, with Dirichlet boundary condition. The
potential has the form

V (x) =
∑
j≥1

vj cos(jx);

having �xed a positive s, for any R > 0 we consider the probability space

V := Vs,R =

{
(vj)j≥1 : v′j := R−1jsvj ∈

[
−1

2
,

1

2

]}
,

and we endow the space (1,+∞)× V 3 (c, (vj)j) with the product probability measure.
By introducing the following change of coordinates,

ψ :=
1√
2

( (c2 −∆ + Ṽ )1/2

c

)1/2

u− i

(
c

(c2 −∆ + Ṽ )1/2

)1/2

ut

 ,
where Ṽ is the operator that maps u to V ∗ u, the Hamiltonian of (1.0.19) now takes the form

H(ψ, ψ̄) = H0(ψ, ψ̄) +N(ψ, ψ̄),

where

H0(ψ, ψ̄) =
〈
ψ̄, c(c2 −∆ + Ṽ )1/2ψ

〉
,

N(ψ, ψ̄) =
λ

24

∫
f

( c

(c2 −∆ + Ṽ )1/2

)1/2

(ψ + ψ̄)

 dx.

By generalizing the techniques developed in [10] we are able to prove the following long-time
existence result.
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Theorem 1.0.9. Consider the equation (1.0.19) and �x γ > 0, and τ > 1. Then for any r ≥ 1
there exists a set Rγ := Rγ,s,r ⊂ ]1,+∞[×V satisfying

|Rγ ∩ ([n, n+ 1]× V)| = O(γ) ∀n ∈ N0,

and s∗ > 0 s.t., ∀s > s∗, there exists εs,r,γ,τ such that for any (c, (vj)j) ∈ (]1,+∞[×V) \Rγ and
for any initial datum ful�lling

ε := ‖ψ0‖Hs ≤ εs,r,γ,τ , (1.0.20)

one has
‖ψ(t)‖Hs ≤ 2ε , |t| ≤ ε−r . (1.0.21)

Finally, there exists a smooth torus Tc such that for any s1 < s− 1/2

ds1((ψ(t), ψ̄(t)),Tc) � ε
r1
2 +1, |t| � ε−(r−r1+1/2),

where r1 ≤ r, and ds1 is the distance in Hs1 . All the constants are independent of c.

An immediate corollary of Theorem 1.0.9 allows us to show that for any α > 0 any solution of
Eq. (1.0.19) in Hs with initial datum of size O(c−α) remains of size O(c−α) up to times of order
O(cα(r+1/2)) for any r ≥ 1, uniformly in c; however, we have to assume that both the parameter
c and the coe�cients of the potential belong to a set of large measure. The main limitation of
such a result is that it holds only for solutions with initial data which are small with respect to
c.

For what concerns the result on [0, π], the new ingredient with respect to [10] is a diophantine
type estimate for the frequencies, which holds uniformly when c→∞.

A further comment is that it would of interest to study the dependence of the torus Tc on c.
Of course one expects that it should converge to an invariant torus of the NLS (with a convolution
potential). However this is a quite subtle property that we expect to be true, but needs further
investigation for a proof. This is due to the fact that the NLS is the singular limit of NLKG
and to the fact that c is only allowed to vary in Cantor like sets, so that one can only expect
Whitney-smooth dependence on it.

A further aspect that would deserve future work is the study of the nonrelativistic limit of
the NLKG without potential. This is expected to be a quite subtle problem since, for c 6= 0 the
frequencies of NLKG are typically non resonant, while the limiting frequencies are resonant.



Chapter 2

Dispersive estimates

In this chapter we will discuss the dispersive properties of Klein-Gordon type equations. First
we will study these properties in the free case, namely for the Klein-Gordon equation, for which
we will derive both Strichartz estimates and a weighted-norm decay; we will later use these
Strichartz estimates in order to approximate the NLKG equation for long times. These are the
�rst examples of dispersive estimates for the KG equation that are uniform with respect to c.
Next we will study the dispersive properties of the Spinless Salpeter equation with a poten-
tial: we will generalize the weighted-norm decay obtained in the �rst part to the case of a
time-independent potential, and we will obtain local-in-time a priori estimates for some time-
dependent potentials.
Finally we will present Strichartz estimates for the Klein-Gordon equation with a time-independent
potential: again this is the �rst result of this kind that is uniform with respect to c.

2.1 Dispersive properties of the Klein-Gordon equation

At the beginning we will obtain dispersive estimates for the linear equation

−i ψt = c〈∇〉c ψ, x ∈ R3. (2.1.1)

Proposition 2.1.1. For any Schrödinger admissible couples (p, q) and (r, s), namely such that

2

p
+

3

q
=

3

2
,

2

r
+

3

s
=

3

2
,

one has

‖〈∇〉
1
q−

1
p

c eit c〈∇〉c ψ0‖LptLqx � c
1
q−

1
p−

1
2 ‖〈∇〉1/2c ψ0‖L2 , (2.1.2)

∥∥∥∥〈∇〉 1q− 1
p

c

∫ t

0

ei(t−s) c〈∇〉c F (s) ds

∥∥∥∥
LptL

q
x

� c
1
q−

1
p+ 1

s−
1
r−1 ‖〈∇〉

1
r−

1
s+1

c F‖Lr′t Ls′x . (2.1.3)

Remark 2.1.2. By choosing p = +∞ and q = 2, we get the following a priori estimate for �nite
energy solutions of (2.1.1),

‖c1/2〈∇〉1/2c eit c〈∇〉c ψ0‖L∞t L2
x
� ‖c1/2〈∇〉1/2c ψ0‖L2 .

9
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We also point out that, since the operators 〈∇〉 and 〈∇〉c commute, the above estimates in the
spaces LptL

q
x extend to estimates in LptW

k,q
x for any k ≥ 0.

Proof. We recall a result reported by D'Ancona-Fanelli in [30] for the operator 〈∇〉 := 〈∇〉1.

Lemma 2.1.3. For all (p, q) Schrödinger-admissible exponents (ie, s.t. 2
p + 3

q = 3
2)

‖eiτ 〈∇〉 φ0‖
Lpτ W

1
q
− 1
p
− 1

2
,q

y

= ‖〈∇〉
1
q−

1
p−

1
2 eit 〈∇〉 φ0‖Lpτ Lqy ≤ ‖φ0‖L2

y
.

Now, the solution of equation (2.1.1) sati�es ψ̂(t, ξ) = eic〈ξ〉ctψ̂0(ξ). We may de�ne η := ξ/c,
in order to have that

φ̂(c2t, η) := ψ̂(t, cη) = ψ̂(t, ξ),

and in particular that φ̂0(η) = ψ̂0(ξ).
Since

〈ξ〉c =
√
c2 + |ξ|2 = c

√
1 + |ξ|2/c2, (2.1.4)

we get

φ̂(t, η) = eit c
2〈ξ/c〉φ̂0(ξ/c)

= ei tc
2 〈η〉φ̂0(η)

= ei τ 〈η〉φ̂0(η)

if we set τ := c2t. Now, by setting y := cx a simple scaling argument leads to

‖eiτ 〈∇〉 φ0‖Lpτ Lqy � ‖〈∇〉
1
p−

1
q+ 1

2 φ0‖L2 = ‖ 〈η〉
1
p−

1
q+ 1

2 φ̂0‖L2

and since

‖ 〈η〉k φ̂0‖2L2 =

∫
R3

〈η〉2k |φ̂0(η)|2 dη =

∫
R3

〈
ξ

c

〉2k

|φ̂0(η/c)|2 dξ

c3
=

1

c2k+3

∫
R3

〈ξ〉2kc |ψ̂0(ξ)|2 dξ,

we get

‖ 〈η〉
1
p−

1
q+ 1

2 φ̂0‖L2 =
1

c
3
2−

1
q+ 1

p+ 1
2

‖〈∇〉
1
p−

1
q+ 1

2
c ψ0‖L2 , (2.1.5)

while on the other hand

ψ(t, x) = (2π)−d/2
∫
R3

ei〈ξ,x〉 ψ̂(t, ξ) dξ = (2π)−d/2
∫
R3

ei〈η,cx〉 ψ̂(t, cη) c3dη

= (2π)−d/2 c3
∫
R3

ei〈η,cx〉 φ̂(c2t, η) dη = c3 φ(c2t, cx),

yields

‖ψ‖LptLqx = c3− 3/q− 2/p ‖φ‖LpτLqy . (2.1.6)

Hence we can deduce (2.1.2); via a scaling argument we can also deduce (2.1.3).
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One important application of the Strichartz estimates for the free Klein-Gordon equation is
the following global existence result uniform with respect to c for the NLKG equation (1.0.3)
with cubic nonlinearity (this means l = 2), with small initial data.

Theorem 2.1.4. Consider Eq. (1.0.3) with l = 2 on R3.
There exists ε∗ > 0 such that, if the norm of the initial datum ψ0 ful�lls

‖ψ0‖H 1/2
c
≤ ε∗, (2.1.7)

then the corresponding solution ψ(t) of (1.0.3) exists globally in time:

‖ψ(t)‖
L∞t H

1/2
c
� ‖ψ0‖H 1/2

c
, (2.1.8)

All the constants do not depend on c.

Proof. It just su�ces to apply Duhamel formula,

ψ(t) = eitc∇cψ0 + i
λ

2l

∫ t

0

ei(t−s)c∇c
(

c

〈∇〉c

)1/2
[(

c

〈∇〉c

)1/2

(ψ + ψ̄)

]2l−1

,

and Proposition 2.1.1 with p = +∞, in order to get that

‖ψ(t)‖
L∞t H

1/2
c
� ‖ψ0‖H 1/2

c
+ c1/s−1/r

∥∥∥∥∥∥∇1/r−1/s
c

[(
c

〈∇〉c

)1/2

(ψ + ψ̄)

]3
∥∥∥∥∥∥
Lr
′
t L

s′
x

,

but by choosing r = +∞ and by Hölder inequality we get

‖ψ(t)‖
L∞t H

1/2
c
� ‖ψ0‖H 1/2

c
+

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ψ + ψ̄)

]3
∥∥∥∥∥∥
L1
tL

2
x

� ‖ψ0‖H 1/2
c

+

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ψ + ψ̄)

]2
∥∥∥∥∥∥
L1
tL

3
x

∥∥∥∥∥
(

c

〈∇〉c

)1/2

(ψ + ψ̄)

∥∥∥∥∥
L∞t L

6
x

� ‖ψ0‖H 1/2
c

+

∥∥∥∥∥
(

c

〈∇〉c

)1/2

(ψ + ψ̄)

∥∥∥∥∥
2

L2
tL

6
x

∥∥∥∥∥
(

c

〈∇〉c

)1/2

(ψ + ψ̄)

∥∥∥∥∥
L∞t L

6
x

� ‖ψ0‖H 1/2
c

+ ‖ψ‖2
L2
tW
−1/2,6
c

‖ψ‖
L∞t W

−1/2,6
c

� ‖ψ0‖H 1/2
c

+ ‖ψ‖2
L2
tW
−1/3,6
c

‖ψ‖
L∞t H

1/2
c

,

and one can conclude by a standard continuation argument.

We also establish the weighted norm decay for the free Klein-Gordon equation; we will prove
later that this decay can be extended to the spinless Salpeter equation with time-independent
potential.
This result is the �rst weighted-norm decay uniform with respect to c for the KG equation. Some
classical results for the KG equation may be found in the literature (see [20], [79], [64]), but they
are not uniform with respect to c. The proof we give is inspired by the one for the weighted
energy decay established in [49] and in [50]. For any ρ ∈ R we will denote by L2

ρ the Hilbert
space of functions ψ ∈ L2

loc(R3) with the �nite norm

‖ψ‖L2
ρ

:=

(∫
R3

| 〈x〉ρ ψ(x)|2d3x

)1/2

.
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Proposition 2.1.5. Let σ > 3/2. Then for ψ0 ∈ L2
σ and for any c ≥ 1

‖eit c〈∇〉c ψ0‖L2
−σ
� 〈t〉−3/2 ‖ψ0‖L2

σ
, |t| > 1. (2.1.9)

Proof. It su�ces to consider t > 0. Then the action of the dynamical group eitc〈∇〉c is the
following (the proof of this fact can be found in sec. B.1)

eitc〈∇〉cψ0(x) =

∫
R3

U0(x− y, t)ψ0(y)d3y, (2.1.10)

U0(z, t) =
c2

2π

(ct+ i0)H
(2)
2 (c[ct+ i0− |z|]1/2[ct+ i0 + |z|]1/2)

(ct+ i0− |z|)(ct+ i0 + |z|)
, (2.1.11)

where H
(2)
2 is the Hankel function of second kind of order 2. Now, let us �x 0 < δ < 1: by

exploiting the classical asymptotics for the function H
(2)
2 (see formula 9.2.4 in [1]),

|H(2)
2 (z)| � z−1/2, z →∞

we have that

|U0(z, t)| � c2ctc−1/2(1− δ2)−1/4c−1/2t−1/2

(1− δ2)2c2t2

� (1− δ2)−9/4 〈t〉−3/2
, |z| < δct, t > 1, c ≥ 1. (2.1.12)

Now consider an arbitrary t̄ > 1. Let us split the initial function ψ0, ψ0 = ψ′0,c,t̄+ψ
′′
0,c,t̄, such that

‖ψ′0,c,t̄‖L2
σ

+ ‖ψ′′0,c,t̄‖L2
σ
� ‖ψ0,c,t̄‖L2

σ
, t̄ > 1, (2.1.13)

ψ′0,c,t̄(x) = 0 for |x| ≥ δct̄/2, ψ′′0,c,t̄(x) = 0 for |x| ≤ δct̄/4, (2.1.14)

(for example, choose ζ ∈ C∞c (R) s.t. ζ(s) = 1 for |s| ≤ δ/4, ζ(s) = 0 for |s| ≥ δ/2, and set
ψ′0,c,t̄ = ζ(| · |/(ct̄))ψ0, ψ

′′
0,c,t̄ = [1− ζ(| · |/(ct̄))]ψ0; notice that ∀α |∂αx ζ(| · |/(ct̄))| � 1 for t̄ > 1).

The estimate for eit̄c〈∇〉cψ′′0,c,t̄ follows from the energy estimates for the Klein-Gordon equation,

and (2.1.13):

‖eit̄c〈∇〉cψ′′0,c,t̄‖L2
−σ

σ>0
≤ ‖eit̄c〈∇〉cψ′′0,c,t̄‖L2 � ‖ψ′′0,c,t̄‖L2

σ≥0

�
(

1 +
δ2c2t̄2

16

)−σ/2
‖ψ′′0,c,t̄‖L2

σ

δ<1,c≥1

≤ 22σ

δσ
〈t̄〉−σ ‖ψ′′0,c,t̄‖L2

σ

σ>3/2

� 22σ

δσ
‖ψ0‖L2

σ

〈t̄〉3/2
. (2.1.15)

Now split eit̄c〈∇〉c = (1−ζ(|·|/(ct̄)))eit̄c〈∇〉c+ζ(|·|/(ct̄))eit̄c〈∇〉c , and recall that 1−ζ(|x|/(ct̄)) = 0
for |x| < δct̄/4. Then
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∥∥∥[1− ζ(| · |/(ct̄))] eit̄c〈∇〉cψ′0,c,t̄
∥∥∥
L2
−σ

�
(

1 +
δ2c2t̄2

16

)−σ/2 ∥∥∥[1− ζ(| · |/(ct̄))] eit̄c〈∇〉cψ′0,c,t̄
∥∥∥
L2

(2.1.16)

� 22σ

δσ
〈t〉−σ ‖eit̄c〈∇〉cψ′0,c,t̄‖L2

� 22σ

δσ
〈t〉−σ ‖ψ′0,c,t̄‖L2

� 22σ

δσ
〈t〉−σ ‖ψ′0,c,t̄‖L2

σ

� 22σ

δσ
〈t〉−3/2 ‖ψ0‖L2

σ
. (2.1.17)

Finally, in order to estimate ζ(| · |/(ct̄))eit̄〈∇〉cψ′0,c,t̄ we notice that

U ′0(·, t̄)ψ′0,c,t̄ := ζ(| · |/(ct̄))U0(·, t̄)ψ′0,c,t̄
= ζ(| · |/(ct̄))U0(·, t̄)ζ(| · |/(ct̄))ψ′0,c,t̄.

The kernel of the operator [1− ζ(| · |/(ct̄))]U0(·, t̄)[1− ζ(| · |/(ct̄))] is equal to

U ′0(x− y, t̄) = [1− ζ(|x|/(ct̄))]U0(x− y, t̄)[1− ζ(|y|/(ct̄))].

Since 1− ζ(|x|/(ct̄)) = 0 for |x| < δct̄/4, the estimate (2.1.12) implies that

|U ′0(x− y, t̄)| � (1− δ2)−9/4 〈t̄〉−3/2
, , t̄ > 1, c ≥ 1. (2.1.18)

Now, the norm of the operator U ′0(·, t̄) : L2
σ → L2

−σ is equivalent to the norm of the operator

Ac,σ,t̄(x, y) := 〈x〉−σ [1− ζ(|x|/(ct̄))]U0(x− y, t̄)[1− ζ(|y|/(ct̄))] 〈y〉−σ : L2(R3
y)→ L2(R3

x).

However, since

Ac,σ,t̄(x, y) = 〈x〉−σ U ′0(x− y, t̄) 〈y〉−σ , (2.1.19)

we can estimate the norm of Ac,σ,t̄ as follows

‖ 〈x〉−σ U ′0(x− y, t̄) 〈y〉−σ ‖L2→L2 = sup
‖f‖L2=1

∫
R3
x

〈x〉−2σ

∣∣∣∣∣
∫
R3
y

U ′0(x− y, t̄) 〈y〉−σ f(y)d3y

∣∣∣∣∣
2

d3x

1/2

= sup
‖f‖L2=1

∫
R3
x

〈x〉−2σ

∣∣∣∣∣
∫
R3
y

ξ(|x|/(ct̄))U ′0(x− y, t̄)ξ(|y|/(ct̄)) 〈y〉−σ f(y)d3y

∣∣∣∣∣
2

d3x

1/2

≤ ‖U0(·, t̄)‖L∞(|·|<δct̄) sup
‖f‖L2=1

∫
|x|≤δct̄/2

〈x〉−2σ

∣∣∣∣∣
∫
|x|≤δct̄/2

ξ(|x|/(ct̄))ξ(|y|/(ct̄)) 〈y〉−σ f(y)d3y

∣∣∣∣∣
2

d3x

1/2

(2.1.12)

� (1− δ2)−9/4 〈t̄〉−3/2 ‖ 〈·〉−σ ‖L2
x

sup
‖f‖L2=1

‖ 〈·〉−σ f‖L1
y

σ>3/2

≤ (1− δ2)−9/4‖ 〈·〉−σ ‖2L2 〈t̄〉−3/2
,
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which leads to the thesis.

Remark 2.1.6. Like the Strichartz estimates (2.1.2) and (2.1.3), also the weighted time-decay
(2.1.9) can be extended to a Hk

σ − Hk
−σ estimate, by exploiting a simple argument of pseudo-

di�erential calculus.

Remark 2.1.7. Again by a simple argument of pseudo-di�erential calculus, one can also show

that for any σ > 3/2, for any ψ0 ∈ 〈∇〉−1/2
c L2

σ and for any c ≥ 1 the following energy decay holds

‖ 〈·〉−σ 〈∇〉1/2c eit c〈∇〉c ψ0‖L2 � 〈t〉−3/2 ‖ 〈·〉σ 〈∇〉1/2c ψ0‖L2 , |t| > 1. (2.1.20)

2.2 Dispersive properties of the Spinless Salpeter Equation

with a potential

Now consider the following equation

−i ψt = H(x)ψ := c〈∇〉c ψ + V (x)ψ, (2.2.1)

ψ(0) = ψ0,

where V ∈ C(R3,R) satis�es

|V (x)|+ |∇V (x)| � 〈x〉−β , x ∈ R3, (2.2.2)

for some β > 0.

Proposition 2.2.1. Let σ > 3/2, and assume that β ≥ 2σ.
Then Eq. (2.2.1) admits a unique solution ψ ∈ L∞(R)L2(R3). Furthermore

‖ψ(t)‖L2
x

= ‖ψ0‖L2
x

Proof. One may argue by writing the Duhamel formula and by using a perturbative argument,
by exploiting the boundedness of V , and the dispersive estimates (2.1.2) and (2.1.9) for the free
KG equation.

Theorem 2.2.2. Let us assume that V satis�es (2.2.2) for some β > 9, and that the spectral
condition (B.2.52) holds. Then for any σ > 9/2, for any ψ0 ∈ L2

σ and for c ≥ 1 su�ciently large
one has

‖eitH(x)Pc(H)ψ0‖L2
−σ
� 〈t〉−3/2 ‖ψ0‖L2

σ
, |t| → ∞, (2.2.3)

where Pc denotes the projection onto the continuous spectrum of H.

Indeed, if we denote by R0,c(z) := (c〈∇〉c − z)−1 the free resolvent and by Rc(z) := (H(x)−
z)−1 the perturbed resolvent, one can relate these two operators through the Born perturbation
series,

Rc(z) = R0,c(z)−R0,c(z)V Rc(z)
= R0,c(z)−R0,c(z) V R0,c(z)

+R0,c(z) V R0,c(z) V Rc(z).
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Next, by taking the inverse Fourier-Laplace transform, we can deduce the corresponding ex-
pansion for the evolution operator for (2.2.1),

eitH(x) = eitc〈∇〉c + i

∫ t

0

ei(t−s)c〈∇〉cV (x)eisc〈∇〉cds− iF−1
z→t [Wc(z)Rc(z)] , (2.2.4)

where Wc(z) := R0,c(z) V R0,c(z) V .

However we stress the fact that for the KG equation, unlike the Schrödinger equation, we
cannot exploit the classical Jensen-Kato technique reported in [46] to deduce the L2

σ - L2
−σ de-

cay from the Born expansion: indeed, as pointed out by (B.2.35), the free resolvent of the KG
equation does not decay for large |z|. Hence, for the KG equation the integration by parts does
not provide the long-time decay.
As pointed out in [49], the fact that the multiplication by tN (for large N) improves the
smoothness of the solution is not only a technical di�erence between the KG equation and
the Schrödinger equation; it corresponds to the di�erent behaviour of wave propagation for rel-
ativistic and non-relativistic equations.

Therefore, to get the weighted energy decay we will deal with the terms in (2.2.4) as in [49]:
by exploiting (2.1.9) for the �rst term, (2.1.9) and the decay of the potential for the second term,
and Jensen-Kato technique combined with the asymptotics of Wc(z) for large |z| for the last
term. Indeed, we can write

eitH(x)Pc(H)ψ0 =
1

2πi

∫ +∞

c2
e−izt [Rc(z + i0)−Rc(z − i0)]ψ0dz

=:
1

2πi
[ψ1(t) + ψ2(t) + ψ3(t)] ,

where

ψ1(t) :=

∫ +∞

c2
e−izt [R0,c(z + i0)−R0,c(z − i0)]ψ0dz,

ψ2(t) :=

∫ +∞

c2
e−iztR0,c(z + i0)V (x)R0,c(z + i0)ψ0dz+

−
∫ +∞

c2
e−iztR0,c(z − i0)V (x)R0,c(z − i0)ψ0dz,

ψ3(t) :=

∫ +∞

c2
e−izt [Wc(z + i0)R0,c(z + i0)−Wc(z − i0)R0,c(z − i0)]ψ0dz.

Now, the �rst term ψ1(t) = eitc〈∇〉cψ0 by the LAP for the free resolvent. Hence, Proposition
2.1.5 implies that for σ > 3/2 and for any c ≥ 1

‖ψ1(t)‖L2
−σ
� 〈t〉−3/2 ‖ψ0‖L2

σ
. (2.2.5)

Lemma 2.2.3. The following convolution representation holds

ψ2(t) = i

∫ t

0

ei(t−τ)c〈∇〉cV (x)ψ1(τ)dτ, τ ∈ R, (2.2.6)

where the integral converges in L2
−σ for σ > 3/2.
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Proof. We �rst recall that ψ2(t) = ψ21(t)− ψ22(t), where

ψ21(t) :=

∫ +∞

c2
e−iztR0,c(z + i0)V (x)R0,c(z + i0)ψ0dz,

ψ22(t) :=

∫ +∞

c2
e−iztR0,c(z − i0)V (x)R0,c(z − i0)ψ0dz.

If we denote by

U±0 (t) := θ(±t)eitc〈∇〉c ,
ψ±1 (t) := θ(±t)ψ1(t).

We know that the Fourier-Laplace transform of ψ1,

ψ̃+
1 (z) :=

∫
R
θ(t)eiztψ1(t)dt,

solves the stationary equation zψ̃+
1 (z) = c 〈∇〉c ψ̃

+
1 (z) − iψ0, and therefore may be rewritten as

ψ̃+
1 (z) = iR0,c(z)ψ0. Hence the term ψ21 satis�es also

ψ21(t) = −i
∫
R
e−iztR0,c(z + i0)V (x)ψ̃+

1 (z)dz

= −i
∫
R
e−iztR0,c(z + i0)V (x)

(∫
R
eizτψ+

1 (τ)dτ

)
dz

= −i(i∂t + i)2

∫
R

e−izt

(z + i)2
R0,c(z + i0)V (x)

(∫
R
eizτψ+

1 (τ)dτ

)
dz.

The last double integral converges in L2
−σ with σ > 3/2 by the decay for the free equation (2.1.9),

by the LAP for the free resolvent (B.2.11) and by the asymptotics (B.2.35). Hence, we can apply
Fubini theorem to change the order of integration

ψ21(t) = −i
∫ t

0

U+
0 (t− τ)V (x)ψ+

1 (τ)dτ, t > 0,

since U+
0 (t−τ) may be rewritten by exploiting the spectral-Fourier representation for the solution

of the free KG equation,

θ(t)ψ(t) =
1

2πi

∫
R
e−i(z+iε)tR0,c(z + iε)ψ0dz, ε > 0.

Similarly, one can show that

ψ22(t) = −i
∫ t

0

U−0 (t− τ)V ψ−1 (τ)dτ, t < 0.
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Now, let us consider σ ∈ (3/2, β/2]. Applying (2.1.9) to the integrand in (2.2.6) we get for
c ≥ 1

‖ei(t−τ)c〈∇〉cV ψ1(τ)‖L2
−σ

σ>3/2

� 1

〈t− τ〉3/2
‖V ψ1(τ)‖L2

σ

σ≤β/2
� 1

〈t− τ〉3/2
‖ψ1(τ)‖L2

−σ

� 1

〈t− τ〉3/2
1

〈τ〉3/2
‖ψ0‖L2

σ
.

Integrating in τ we obtain

‖ψ2(t)‖L2
−σ
� 〈t〉−3/2 ‖ψ0‖L2

σ
, σ > 3/2. (2.2.7)

Finally, we rewrite the term ψ3(t) as

ψ3(t) =

∫ +∞

c2
e−iztN (z)ψ0dz, (2.2.8)

where N (z) :=M(z + i0)−M(z − i0) for z ∈ Γ := C \ [c2,+∞), and

M(z) :=Wc(z)Rc(z), Γ \ Σ(V ).

By the asymptotic of R0,c(z) and Rc(z) we can deduce that for su�ciently large c

Lemma 2.2.4.

‖N ′′(z)‖L2
σ→L2

−σ
= O

(
c−5/2|z − c|−3/2

)
, z → c2, σ > 9/2, z ∈ Γ. (2.2.9)

Proof. The asymptotic follows from

M′′(z) =W ′′c (z)Rc(z) + 2W ′c(z)R′c(z) +Wc(z)R′′c (z),

combined with (B.2.15), (B.2.16), (B.2.56) and (B.2.57). Indeed, we want to estimate terms of
the form

R(k1)
0,c (z)VR(k2)

0,c (z)VR(k3)
c (z),

with k1, k2, k3 ≥ 0, k1 + k2 + k3 = 2. We provide the estimate for the term with k1 = k2 = 1 and
for the term with k1 = k2 = 0, the others being similar.

Fixed σ > 9/2, choose δ ∈ (5/2,min(σ, β − 5/2)]; then for c ≥ 1

‖R′0,c(z)VR′0,c(z)VRc(z)‖L2
σ→L2

−σ
≤

= O
(
|z − c2|−1/2

)
‖VR′0,c(z)VRc(z)‖L2

σ→L2
δ

β>2δ
= O

(
|z − c2|−1/2

)
‖R′0,c(z)VRc(z)‖L2

σ→L2
−δ

= O
(
|z − c2|−1

)
‖VRc(z)‖L2

σ→L2
δ

= O
(
|z − c2|−1

)
‖Rc(z)‖L2

σ→L2
−δ

≤ O
(
|z − c2|−1

)
‖Rc(z)‖L2

σ→L2
−σ

= O
(
c−2|z − c2|−1

)
, z → c2.
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On the other hand, if one chooses δ ∈ (9/2,min(σ, β − 3/2)],

‖R0,c(z)VR0,c(z)VR′′c (z)‖L2
σ→L2

−σ
≤

� ‖R0,c(z)VR0,c(z)VR′′c (z)‖L2
σ→L2

−δ

= O
(
c−2
)
‖VR0,c(z)VR′′c (z)‖L2

σ→L2
δ

β>2δ
= O

(
c−2
)
‖R0,c(z)VR′′c (z)‖L2

σ→L2
−δ

= O
(
c−4
)
‖VR′′c (z)‖L2

σ→L2
δ

= O
(
c−4
)
‖R′′c (z)‖L2

σ→L2
−δ

≤ O
(
c−4
)
‖R′′c (z)‖L2

σ→L2
−σ

= O
(
c−4|z − c|−3/2

)
, z → c2.

Similarly we can show

Lemma 2.2.5. Let k = 0, 1, 2; then for su�ciently large c

‖N (k)(z)‖L2
σ→L2

−σ
= O

(
|z|−2

)
, |z| → ∞, σ > 3(k + 1)

2
, z ∈ Γ. (2.2.10)

Proof. We just show the case k = 2. Di�erentiatingM(z) twice we get

M′′(z) =W ′′c (z)Rc(z) + 2W ′c(z)R′c(z) +Wc(z)R′′c (z);

for a �xed σ > 9/2, choose δ ∈ (9/2,min(σ, β − 3/2)], then for the �rst term we have

‖W ′′c (z)Rc(z)f‖L2
−σ
≤ ‖W ′′c (z)Rc(z)f‖L2

−δ

(B.2.60)

� O
(
|z|−2

)
‖Rc(z)f‖L2

−δ

(B.2.55)

� O
(
|z|−2

)
‖f‖L2

δ
, |z| → ∞, z ∈ Γ.

Other terms may be estimated similarly, by choosing a suitable value of δ.

Now we can prove the decay of ψ3(t) by the usual Jensen-Kato technique. First, we split
ψ3(t) into the low and high-energy components: we choose φ1,φ2 ∈ C∞0 (R), such that

• supp(φ1) ⊆ [c2/2, c2 + 1],

• supp(φ2) ⊆ [c2 − 1,+∞),

• φ1(z) + φ2(z) = 1 ∀z ≥ c2.

Then ψ3(t) = ψ31(t) + ψ32(t), where

ψ31(t) =

∫ c2+1

c2
e−iztφ1(z)N (z)ψ0dz,

ψ32(t) =

∫ +∞

c2+1

e−iztφ2(z)N (z)ψ0dz.
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By (2.2.9), we can apply to the Fourier integral ψ31(t) the corresponding version of the Lemma
B.1 in [49] (which is based on Lemma 10.2 in [46]), in order to get

‖ψ31(t)‖L2
−σ
� 〈t〉−3/2 ‖ψ0‖L2

σ
, t→∞, σ > 9/2. (2.2.11)

Furthermore, since supp(φ2N ) ⊆ [c2 + 1,+∞) and since (φ2N )′′ ∈ L1([c2 + 1,+∞), L(L2
σ, L

2
−σ))

with σ > 9/2 by (2.2.10), by integrating by parts twice we get

‖ψ32(t)‖L2
−σ
� 〈t〉−2 ‖ψ0‖L2

σ
, t→∞, σ > 9/2. (2.2.12)

Finally, the decay (2.2.3) (and thus the proof of Theorem 2.2.2) follows from (2.2.5), (2.2.7),
(2.2.11) and (2.2.12).

Remark 2.2.6. Unfortunately, one cannot derive from (2.2.3) the corresponding Strichartz es-
timates for the operator H(x). However, one can deduce the following weighted decay: since by
Duhamel formula

ψ(t) = eit c〈∇〉cψ0 +

∫ t

0

ei(t−s) c〈∇〉cV (x)δ(s)ds,

one has that by Proposition 2.1.1 for any σ > 9/2

‖ψ(t)‖L∞t L2
x
� ‖ψ0‖L2 + ‖V (x)ψ(t)‖L1

tL
2
x

(2.1.9)

� ‖ψ0‖L2
x

+ ‖ 〈t〉−3/2 ‖ψ0‖L2
σ
‖L1

t

≤ ‖ψ0‖L2 + ‖ψ0‖L2
σ

≤ 2‖ψ0‖L2
σ
. (2.2.13)

Similarly, one can prove that for any σ > 9/2 and for any F ∈ L∞t L2
σ,x∥∥∥∥∫ t

0

ei(t−s)H(x)F (s)ds

∥∥∥∥
L∞t L

2
−σ,x

≤
∥∥∥∥∫ t

0

‖ei(t−s)H(x)F (s)‖L2
−σ

∥∥∥∥
L∞t

�
∥∥∥∥∫ t

0

‖ 〈t− s〉−3/2 ‖F (s)‖L2
σ

∥∥∥∥
L∞t

= ‖ 〈·〉−3/2 ∗ ‖F (·)‖L2
σ
‖L∞t ≤ ‖F (·)‖L1

t∩L∞t L2
σ,x
. (2.2.14)

The issue of proving dispersive estimates for PDEs with time-dependent potentials is abso-
lutely non-trivial, and often requires re�ned estimates (see for example [70], which deals with
the NLS equation).
However, by a simple adaptation of the argument used in the proof of Theorem 1.1 in [31], we
can get local-in-time a priori estimates for potentials in the L1

tL
∞
x class: we emphasise that the

potentials in this case may be both large and may also change sign.

Proposition 2.2.7. Let I = [0, T ] be a bounded time interval, and assume that V ∈ L1
tL
∞
x is a

real-valued potential. Assume also that ψ0 ∈ L2 and that F ∈ L1
tL

2
x. Then the integral equation

ψ(t, x) = eitc〈∇〉cψ0(x) +

∫ t

0

ei(t−s)c〈∇〉c [F (s) + V (s)ψ(s)]ds (2.2.15)

admits a unique solution ψ ∈ C(I)L2
x that satis�es the following a priori estimate

‖ψ‖L∞t L2
x
� ‖ψ0‖L2 + ‖F‖L1

tL
2
x
. (2.2.16)
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Proof. Consider a small time interval J = [0, δ], and for any v ∈ C(J)L2
x de�ne the mapping

Φ(v) := eitc〈∇〉cψ0(x) +

∫ t

0

ei(t−s)c〈∇〉c [F (s) + V (s)v(s)]ds. (2.2.17)

A direct application of Proposition 2.1.1 gives

‖Φ(v)‖L∞t L2
x
� ‖ψ0‖L2 + ‖V v‖L1

tL
2
x

+ ‖F‖L1
tL

2
x

� ‖ψ0‖L2 + ‖V ‖L1
tL
∞
x
‖v‖L∞t L2

x
+ ‖F‖L1

tL
2
x
.

Thus we have construct a mapping Φ : C(J)L2
x → C(J)L2

x. Assume now that the interval J is
so small that

‖V ‖L1
tL
∞
x
� 1

2
; (2.2.18)

in this case we have that Φ is a contraction on C(J)L2
x, and hence has a unique �xed point v,

which is the required solution. Furthermore, we have that

‖v‖L∞t L2
x
� ‖ψ0‖L2 +

1

2
‖v‖L∞t L2

x
+ ‖F‖L1

tL
2
x
;

‖v‖L∞t L2
x
� 2‖ψ0‖L2 + 2‖F‖L1

tL
2
x
. (2.2.19)

One can clearly apply (2.2.19) on any subinterval J = [t0, t1] ⊆ I on which (2.2.18) holds; we
will get an estimate of the form

‖v‖L∞(J)L2
x
� 2‖ψ(t0)‖L2 + 2‖F‖L1(J)L2

x
, (2.2.20)

which implies that

‖v(t1)‖L2
x
� 2‖ψ(t0)‖L2 + 2‖F‖L1(J)L2

x
; (2.2.21)

by partitioning the interval I into a �nite number of subintervals on which (2.2.18) holds, and
by inductively applying (2.2.20) and (2.2.21) we can deduce (2.2.16).

Remark 2.2.8. Proposition 2.2.7 can also be generalized to an unbounded time interval I =
[0,+∞), by partitioning the interval I in a �nite number of subintervals in which condition
(2.2.18) holds.

De�nition 2.2.9. Let V : R3 → R be a real-valued function such that

H(x) = c〈∇〉c + V (x)

admits a self-adjoint extension. We say that V is of Strichartz type if for any bounded time
interval I = [0, T ], for any ψ0 ∈ L2 and for any F ∈ L1

t ∩ L∞t L2
x, the integral equation

h(t, x) = eitH(x)h0 +

∫ t

0

ei(t−s)H(x)F (s)ds

has a unique solution h ∈ L∞t L2
x that satis�es the estimate

‖h‖L∞t L2
x
≤ K(I, V )‖h0‖L2 +K(I, V )‖F‖L1

t∩L∞t L2
x
. (2.2.22)



2.2. DISPERSIVE PROPERTIES OF THE SPINLESS SALPETER EQUATIONWITH A POTENTIAL21

Remark 2.2.10. Consider a real-valued potential V ∈ CtL∞x , and assume that there exists β > 9
such that for each �xed t > 0

|V (t, x)| � 〈x〉−β , ∀x ∈ R3.

Then V is of Strichartz type. Indeed, for any arbitrary t0, we have that V (t0, ·) is of Strichartz
type by Proposition 2.2.7 .

Proposition 2.2.11. Let I = [0, T ] be a bounded time interval, and let V ∈ CtL
∞
x . Assume

that for each t ∈ I the potential V (t, ·) is of Strichartz type, and that h0 ∈ L2, F ∈ L1
t ∩ L∞t L2

x.
Then the local-in-time a priori estimate (2.2.16) holds.
Moreover, if there exists T0 > 0 such that ‖V (t, ·)‖L∞x is su�ciently small for t > T0, the results
holds also in the case I = [0,+∞) (global-in-time a priori estimate).

Proof. The proof follows the lines as the one of (2.2.16): indeed, for any �xed t0 > 0 the continuity
in time of the potential allows one to consider V (t, x) as a small perturbation of V (t0, x) for t
near t0.
Let J = [0, δ] be a small time interval, and construct the following mapping on the space
C(J)L2(R3),

Φ(v) := eitH(0,x)ψ0(x) +

∫ t

0

ei(t−s)H(0,x)[F (s) +W (s)v(s)]ds, (2.2.23)

where H(0, x) = c〈∇〉c+V (0, x), andW (s, x) = V (s, x)−V (0, x) (formula (2.2.23) is meaningful
because V (0, x) is of Strichartz type). Hence, the following a priori estimate holds

‖Φ(v)‖L∞t L2
x
� ‖ψ0‖L2 + ‖W v‖L1

tL
2
x

+ ‖F‖L1
tL

2
x

� ‖ψ0‖L2 + ‖W‖L1
tL
∞
x
‖v‖L∞t L2

x
+ ‖F‖L1

tL
2
x
,

and if δ is so small that

‖V ‖L1(J)L∞x
� 1

2
,

we have that Φ is a contraction on C(J)L2
x, and hence has a unique �xed point v, which satis�es

the local-in-time a priori estimate (2.2.16) with some constant K(0) for some bounded time
interval [0, δ].
The same argument can be appled in a small time interval around each point t0 ∈ I. More
precisely, let J = [t0 − δ, t0 + δ] ∩ I, and assume that δ > 0 is so small that

W (t, x) = V (t, x)− V (t0, x)

satis�es

‖W‖L1(J)L∞x
≤ 1

2K(t0)
, (2.2.24)

where K(t0) is the constant that appears in the a priori estimate for the potential V (t0, ·) for
the bounded time interval [0, t0 + 1]. Then one can argue as above, and we obtain that for any
given initial time t1 ∈ J , and for any φ0 ∈ L2 the integral equation

ψ(t, x) = eitH(t0,x)φ0(x) +

∫ t

0

ei(t−s)H(t0,x)[F (s) +W (s)ψ(s)]ds
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whereH(t0, x) = c〈∇〉c+V (t0, x) admits a unique solution in C(J)L2, which satis�es the estimate

‖Φ(v)‖L∞(J)L2
x
≤ 2K(t0)‖ψ0‖L2 + 2K(t0)‖F‖L1

tL
2
x
,

for some constant K(t0) depending on the point t0, but not on the initial time t1 ∈ J .
Now we can argue via a continuation argument, as follows. Extend the local solution constructed
on [0, δ] to a maximal interval [0, T ∗), namely consider the union on all intervals [0, δ] on which
the solution ψ ∈ C([0, δ])L2 exists and saris�es the Strichartz estimate with some constant Kδ.
Assume by contradiction that T ∗ < T . Then the above local argument applied to t0 = T ∗ on an
interval of the form J = [T ∗− ε, T ∗+ ε] (where ε > 0 is su�ciently small) allow us to extend this
maximal solution to [0, T ∗+ε). Moreover, this extended solution satis�es the Strichartz estimate
on [0, T ∗ + ε). Indeed, choose t1 such that T ∗ − ε < t1 < T ∗: then by construction we have that
the a priori estimate (2.2.16) holds both on I1 = [0, t1] with initial datum at t = 0

‖ψ‖L∞(I1)L2 � ‖ψ(t0)‖L2 + ‖F‖L1(I1)L2
x
, (2.2.25)

and on J = [T ∗ − ε, T ∗ + ε] with initial data at t = t1,

‖ψ‖L∞(J)L2 � ‖ψ(t1)‖L2 + ‖F‖L1(J)L2
x
. (2.2.26)

But since ‖ψ(t1)‖L2 can be estimated via (2.2.25), we can deduce the a priori estimate on
[0, T ∗ + ε). This contradicts the assumption T ∗ < T , and we get that T ∗ = T .
The extension to the unbounded time interval I = [0,+∞) is analogous.

2.3 Dispersive properties of the Klein-Gordon equation with

a potential

As in [8], we can deduce Strichartz estimates for the operator H by exploiting the boundedness
of the wave operators for the Schrödinger equation.

Theorem 2.3.1. Let c ≥ 1, and consider the operator

H(x) := c(c2 −∆ + V (x))1/2 = H0(1 + 〈∇〉−2
c V )1/2, (2.3.1)

where V ∈ C(R3,R) is a potential such that

|V (x)|+ |∇V (x)| � 〈x〉−β , x ∈ R3,

for some β > 5, and that 0 is neither an eigenvalue nor a resonance for the operator −∆+V (x).

Let (p, q) be a Schrödinger admissible couple, and assume that ψ0 ∈ 〈∇〉−1/2
c L2 is orthogonal to

the bound states of −∆ + V (x). Then

‖〈∇〉
1
q−

1
p

c eitH(x)ψ0‖LptLqx � c
1
q−

1
p−

1
2 ‖〈∇〉1/2c ψ0‖L2 . (2.3.2)

In order to prove Theorem 2.3.1 we recall Yajima's result on wave operators [89] (where we
denote by Pc(−∆ + V ) the projection onto the continuous spectrum of the operator −∆ + V ).

Theorem 2.3.2. Assume that

• 0 is neither an eigenvalue nor a resonance for −∆ + V ;
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• |∂αV (x)| � 〈x〉−β for |α| ≤ k, for some β > 5.

Consider the strong limits

W± := lim
t→±∞

eit(−∆+V )eit∆, Z± := lim
t→±∞

e−it∆eit(∆−V )Pc(−∆ + V ).

Then W± : L2 → Pc(−∆ + V )L2 are isomorphic isometries which extend into isomorphisms
W± : W k,p → Pc(−∆ + V )W k,p for all p ∈ [1,+∞], with inverses Z±. Furthermore, for any
Borel function f(·) we have

f(−∆ + V )Pc(−∆ + V ) =W±f(−∆)Z±, f(−∆) = Z±f(−∆ + V )Pc(−∆ + V )W±. (2.3.3)

Now, in the case c = 1 one can derive Strichartz estimates for H(x) from the Strichartz
estimates for the free KG equation, just by applying the aforementioned Theorem by Yajima in
the case k = 1 (since 1/p− 1/q + 1/2 ∈ [0, 5/6] for all Schrödinger admissible couples (p, q)). In
the general case, this will follow from the following remark.

Remark 2.3.3. Estimates (2.3.2) clearly follow from Proposition 2.1.1 if we can prove that for
any α ∈ [−1/3, 1/2] and for any q ∈ [2, 6]

‖〈∇〉αcW±〈∇〉−αc ‖Lq→Lq � 1, (2.3.4)

‖〈∇〉αcZ±〈∇〉−αc ‖Lq→Lq � 1. (2.3.5)

Indeed in this case one would have

‖〈∇〉1/q−1/p
c eitH(x)Pc(−∆ + V )ψ0‖LptLqx = ‖〈∇〉1/q−1/p

c W±eit〈∇〉cZ±ψ0‖LptLqx ,

but

‖〈∇〉1/q−1/p
c W±eit〈∇〉cZ±ψ0‖Lqx � ‖〈∇〉

1/q−1/p
c eit〈∇〉cZ±ψ0‖Lqx ,

hence

‖〈∇〉1/q−1/p
c eitH(x)Pc(−∆ + V )ψ0‖LptLqx � c

1
q−

1
p−

1
2 ‖〈∇〉1/2c Z±ψ0‖L2 � c

1
q−

1
p−

1
2 ‖〈∇〉1/2c ψ0‖L2 .

To prove (2.3.5) we �rst show that it holds for α = 2k, k ∈ N. We argue by induction. The case
k = 0 is true by Theorem 2.3.2. Now, suppose that (2.3.5) holds for α = 2(k − 1), then

‖(c2 −∆)kZ±(c2 −∆)−k‖Lq→Lq = ‖(c2 −∆)(c2 −∆)k−1Z±(c2 −∆)−(k−1)(c2 −∆)−1‖Lq→Lq

≤ c2‖(c2 −∆)k−1Z±(c2 −∆)−(k−1)(c2 −∆)−1‖Lq→Lq

+ ‖ −∆(c2 −∆)k−1Z±(c2 −∆)−(k−1)(c2 −∆)−1‖Lq→Lq

≤ c2‖(c2 −∆)k−1Z±(c2 −∆)−(k−1)(c2 −∆)−1‖Lq→Lq

+ ‖ −∆(c2 −∆)−1 (c2 −∆)k−1Z±(c2 −∆)−(k−1)‖Lq→Lq

+ ‖ −∆(c2 −∆)k−1[Z±, (c2 −∆)−1](c2 −∆)−(k−1)‖Lq→Lq
� c2‖(c2 −∆)−1‖Lq→Lq + ‖ −∆(c2 −∆)−1‖Lq→Lq � 1,

since

‖[Z±, (c2 −∆)−1]‖L2→L2 � |ξ|
(c2 + |ξ|2)2

≤ (c2 + |ξ|2)−3/2.
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Similarly we can show (2.3.5) for α = −2k, k ∈ N.
By interpolation theory one can extend the result to any α ∈ R via the following result. Recall
that we denote by

W k,p
c (R3) :=

{
u ∈ Lp : ‖u‖W k,p

c
:=
∥∥c−k 〈∇〉kcu∥∥Lp < +∞

}
, k ∈ R, 1 < p < +∞,

the relativistic Sobolev space of exponents k and p.

Proposition 2.3.4. Let k0 6= k1, 1 < p < +∞, and assume that T : W k0,p
c → W k0,p

c has norm
M0, and that T : W k1,p

c → W k1,p
c has norm M1. Then

T : W k,p
c → W k,p

c , k = (1− θ)k0 + θk1,

with norm M ≤M1−θ
0 Mθ

1 .

The above proposition is a consequence of Corollary C.0.8; we defer the statement and the
proof of Corollary C.0.8 to the appendix, Ch. C.



Chapter 3

Galerkin Averaging

In this chapter we will state an abstract Normal Form Theorem, and we will prove it in Sec. 3.2.
In Sec. 3.3 we will apply the Normal Form theorem to the nonlinear Klein-Gordon equation, and
we will show that the normalized equation will be given by a NLS equation plus higher-order
corrections for the real case, and by a system of two coupled NLS equations for the complex
NLKG.

3.1 Galerkin Averaging Method

Consider the scale of Banach spaces W k,p(M,Cn × Cn) 3 (ψ, ψ̄) (k ≥ 1, 1 < p < +∞, n ∈ N0)
endowed by the standard symplectic form. Having �xed k and p, and Uk,p ⊂ W k,p open, we
de�ne the gradient of H ∈ C∞(Uk,p,R) w.r.t. ψ̄ as the unique function s.t.〈

∇ψ̄H, h̄
〉

= dψ̄Hh̄, ∀h ∈W k,p,

so that the Hamiltonian vector �eld of a Hamiltonian function H is given by

XH(ψ, ψ̄) = (i∇ψ̄H, −i∇ψH).

The open ball of radius R and center 0 in W k,p will be denoted by Bk,p(R).

We brie�y recall some classical notion of Fourier analysis on Rd. We �rst recall the de�nition
of the space of Schwartz (or rapidly decreasing) functions,

S := {f ∈ C∞(Rd,R)| sup
x∈Rd

(1 + |x|2)α/2|∂βf(x)| < +∞, ∀α ∈ Nd,∀β ∈ Nd}.

In the following we will denote by 〈x〉 := (1 + |x|2)1/2.

Now, for any f ∈ S we introduce the Fourier transform of f , f̂ : Rd → R,

f̂(ξ) := (2π)−d/2
∫
Rd
f(x)e−i〈x,ξ〉dx, ∀ξ ∈ Rd,

where 〈·, ·〉 denotes the scalar product in Rd.
Next, we call an admissible family of cut-o� (pseudo-di�erential) operators a sequence (πj(D))j≥0,

where πj(D) : W k,p →W k,p for any j ≥ 0, such that

25
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• for any j ≥ 0 and for any f ∈W k,p

f =
∑
j≥0

πj(D)f ;

• for any j ≥ 0 πj(D) can be extended to a self-adjoint operator on L2, and there exist
constants K1, K2 > 0 such that

K1

∑
j≥0

‖πj(D)f‖2L2

1/2

≤ ‖f‖L2 ≤ K2

∑
j≥0

‖πj(D)f‖2L2

1/2

;

• for any j ≥ 0, if we denote by Πj(D) :=
∑j
l=0 πl(D), there exist positive constants K ′,

(possibly depending on k and p) such that

‖Πjf‖k,p ≤ K ′ ‖f‖k,p ∀f ∈W k,p;

• there exist positive constants K ′′1 , K
′′
2 (possibly depending on k and p) such that

K ′′1 ‖f‖Wk,p ≤

∥∥∥∥∥∥∥
∑
j∈N

22jk|πj(D)f |2
1/2

∥∥∥∥∥∥∥
Lp

≤ K ′′2 ‖f‖Wk,p .

Remark 3.1.1. Let k ≥ 0, M be either Rd or the d-dimensional torus Td, and consider the
Sobolev space Hk = Hk(M). One can readily check that Fourier projection operators on Hk

πjψ(x) := (2π)−d/2
∫
j−1≤|k|≤j

ψ̂(k)eik·xdk, j ≥ 1

form an admissible family of cut-o� operators. In this case we have

ΠNψ(x) := (2π)−d/2
∫
|k|≤N

ψ̂(k)eik·xdk, N ≥ 0.

Remark 3.1.2. Let k ≥ 0, 1 < p < +∞, we now introduce the Littlewood-Paley decomposition
on the Sobolev space W k,p = W k,p(Rd) (see [84], Ch. 13.5).

In order to do this, de�ne the cuto� operators in W k,p in the following way: start with
a smooth, radial nonnegative function φ0 : Rd → R such that φ0(ξ) = 1 for |ξ| ≤ 1/2, and
φ0(ξ) = 0 for |ξ| ≥ 1; then de�ne φ1(ξ) := φ0(ξ/2)− φ0(ξ), and set

φj(ξ) := φ1(21−jξ), j ≥ 2. (3.1.1)

Then (φj)j≥0 is a partition of unity, ∑
j≥0

φj(ξ) = 1.

Now, for each j ∈ N and each f ∈W k,2, we can de�ne φj(D)f by

F(φj(D)f)(ξ) := φj(ξ)f̂(ξ).
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It is well known that for p ∈ (1,+∞) the map Φ : Lp(Rd)→ Lp(Rd, l2),

Φ(f) := (φj(D)f)j∈N,

maps Lp(Rd) isomorphically onto a closed subspace of Lp(Rd, l2), and we have compatibility of
norms ([84], Ch. 13.5, (5.45)-(5.46)),

K ′p‖f‖Lp ≤ ‖Φ(f)‖Lp(Rd,l2) :=

∥∥∥∥∥∥∥
∑
j∈N
|φj(D)f |2

1/2
∥∥∥∥∥∥∥
Lp

≤ Kp‖f‖Lp ,

and similarly for the W k,p-norm, i.e. for any k > 0 and p ∈ (1,+∞)

K ′k,p‖f‖Wk,p ≤

∥∥∥∥∥∥∥
∑
j∈N

22jk|φj(D)f |2
1/2

∥∥∥∥∥∥∥
Lp

≤ Kk,p‖f‖Wk,p . (3.1.2)

We then de�ne the cuto� operator ΠN by

ΠNψ :=
∑
j≤N

φj(D)ψ. (3.1.3)

Hence, according to the above de�nition, the sequence (φj(D))j≥0 is an admissible family of cut-
o� operators.
We point out that the Littlewood-Paley decomposition, along with equality (3.1.2), can be extended
to compact manifolds (see [21]), as well as to some particular non-compact manifolds (see [19]).

Now we consider a Hamiltonian system of the form

H = h0 + ε h+ ε F, (3.1.4)

where ε > 0 is a parameter. We �x an admissible family of cut-o� operators (πj(D))j≥0 on
W k,p(Rd). We assume that

PER h0 generates a linear periodic �ow Φt with period 2π,

Φt+2π = Φt ∀t.

We also assume that Φt is analytic from W k,p to itself for any k ≥ 1, and for any p ∈
(1,+∞);

INV for any k ≥ 1, for any p ∈ (1,+∞), Φt leaves invariant the space ΠjW
k,p for any j ≥ 0.

Furthermore, for any j ≥ 0
πj(D) ◦ Φt = Φt ◦ πj(D);

NF h is in normal form, namely
h ◦ Φt = h.

Next we assume that both the Hamiltonian and the vector �eld of both h and F admit an
asymptotic expansion in ε of the form

h ∼
∑
j≥1

εj−1hj , F ∼
∑
j≥1

εj−1Fj , (3.1.5)

Xh ∼
∑
j≥1

εj−1Xhj , XF ∼
∑
j≥1

εj−1XFj , (3.1.6)

and that the following properties are satis�ed
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HVF There exists R∗ > 0 such that for any j ≥ 1

· Xhj is analytic from Bk+2j,p(R
∗) to W k,p;

· XFj is analytic from Bk+2(j−1),p(R
∗) to W k,p.

Moreover, for any r ≥ 1 we have that

· Xh−
∑r
j=1 ε

j−1hj is analytic from Bk+2(r+1),p(R
∗) to W k,p;

· XF−
∑r
j=1 ε

j−1Fj is analytic from Bk+2r,p(R
∗) to W k,p.

The main result of this section is the following theorem.

Theorem 3.1.3. Fix r ≥ 1, R > 0, k1 � 1, 1 < p < +∞. Consider (3.1.4), and assume PER,
INV (with respect to the Littlewood-Paley decomposition), NF and HVF. Then ∃ k0 = k0(r) > 0
with the following properties: for any k ≥ k1 there exists εr,k,p � 1 such that for any ε < εr,k,p

there exists T (r)
ε : Bk,p(R)→ Bk,p(2R) analytic canonical transformation such that

Hr := H ◦ T (r)
ε = h0 +

r∑
j=1

εjZj + εr+1 R(r),

where Zj are in normal form, namely

{Zj , h0} = 0, (3.1.7)

and

sup
Bk+k0,p(R)

‖XZj‖Wk,p ≤ Ck,p,

sup
Bk+k0,p(R)

‖XR(r)‖Wk,p ≤ Ck,p, (3.1.8)

sup
Bk,p(R)

‖T (r)
ε − id‖Wk,p ≤ Ck,p ε. (3.1.9)

In particular, we have that

Z1(ψ, ψ̄) = h1(ψ, ψ̄) + 〈F1〉 (ψ, ψ̄),

where 〈F1〉 (ψ, ψ̄) :=
∫ 2π

0
F1 ◦ Φt(ψ, ψ̄) dt

2π .

3.2 Proof of Theorem 3.1.3

We �rst make a Galerkin cuto� through the Littlewood-Paley decomposition (see [84], Ch. 13.5).
In order to do this, �x N ∈ N, N � 1, and introduce the cuto� operators ΠN in W k,p by

ΠNψ :=
∑
j≤N

φj(D)ψ,
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where φj(D) are the operators we introduced in Remark 3.1.2.
We notice that by assumption INV the Hamiltonian vector �eld of h0 generates a continuous

�ow Φt which leaves ΠNW
k,p invariant.

Now we set H = HN,r +RN,r +Rr, where

HN,r := h0 + ε hN,r + ε FN,r, (3.2.1)

hN,r :=

r∑
j=1

εj−1hj,N , hj,N := hj ◦ΠN , (3.2.2)

FN,r :=

r∑
j=1

εj−1Fj,N , Fj,N := Fj ◦ΠN , (3.2.3)

and

RN,r := h0 +

r∑
j=1

εjhj +

r∑
j=1

εjFj −HN,r, (3.2.4)

Rr := ε

h− r∑
j=1

εj−1hj

+ ε

F − r∑
j=1

εj−1Fj

 . (3.2.5)

The system described by the Hamiltonian (3.2.1) is the one that we will put in normal form.
In the following we will use the notation a � b to mean: there exists a positive constant K

independent on N and R (but dependent on r, k and p), such that a ≤ Kb.
We exploit the following intermediate results:

Lemma 3.2.1. For any k ≥ k1 and p ∈ (1,+∞) there exists Bk,p(R) ⊂ W k,p s.t. ∀ σ > 0,
N > 0

sup
Bk+σ+2(r+1),p(R)

‖XRN,r (ψ, ψ̄)‖Wk,p � ε

2σ(N+1)
, (3.2.6)

sup
Bk+2(r+1),p(R)

‖XRr (ψ, ψ̄)‖Wk,p � εr+1. (3.2.7)

Proof. We recall that RN,r = h0 +
∑r
j=1 ε

jhj +
∑r
j=1 ε

jFj −HN,r.

Now, ‖id−ΠN‖Wk+σ,p→Wk,p � 2−σ(N+1), since∥∥∥∥∥∥
∑

j≥N+1

φj(D)f

∥∥∥∥∥∥
Wk,p

�

∥∥∥∥∥∥∥
 ∑
j≥N+1

|2jkφj(D)f |2
1/2

∥∥∥∥∥∥∥
Lp

� 2−σ(N+1)

∥∥∥∥∥∥∥
 ∑
j≥N+1

|2j(k+σ)φj(D)f |2
1/2

∥∥∥∥∥∥∥
Lp

� 2−σ(N+1)‖f‖Wk+σ,p ,
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hence

sup
ψ∈Bk+2(r+1)+σ,p(R)

‖XRN,r (ψ, ψ̄)‖Wk,p

� ‖dX∑r
j=1 ε

j(hj+Fj)‖L∞(Bk+2(r+1),p(R),Wk,p)‖id−ΠN‖L∞(Bk+2(r+1)+σ,p(R),Bk+2(r+1),p)

� ε 2−σ(N+1).

The estimate of XRr follow from the hypothesis HVF.

Lemma 3.2.2. Let j ≥ 1. Then for any k ≥ k1 + 2(j − 1) and p ∈ (1,+∞) there exists
Bk,p(R) ⊂W k,p such that

sup
Bk,p(R)

‖Xhj,N (ψ, ψ̄)‖k,p ≤ K(h)
j,k,p2

2jN ,

sup
Bk,p(R)

‖XFj,N (ψ, ψ̄)‖k,p ≤ K(F )
j,k,p2

2(j−1)N ,

where

K
(h)
j,k,p := sup

Bk,p(R)

‖Xhj (ψ, ψ̄)‖k−2j,p,

K
(F )
j,k,p := sup

Bk,p(R)

‖XFj (ψ, ψ̄)‖k−2(j−1),p.

Proof. It follows from

sup
ψ∈Bk,p(R)

∥∥∥∥∥∥
∑
h≤N

φh(D)XFj,N (ψ, ψ̄)

∥∥∥∥∥∥
Wk,p

� sup
ψ∈Bk,p(R)

∥∥∥∥∥∥∥
∑
h≤N

|2hkφh(D)XFj,N (ψ, ψ̄)|2
1/2

∥∥∥∥∥∥∥
Lp

(3.2.8)

≤ 22(j−1)N sup
ψ∈Bk,p(R)

∥∥∥∥∥∥∥
∑
h≤N

|2h[k−2(j−1)]φh(D)XFj,N (ψ, ψ̄)|2
1/2

∥∥∥∥∥∥∥
Lp

(3.2.9)

� 22(j−1)N sup
ψ∈Bk,p(R)

‖XFj,N (ψ, ψ̄)‖k−2(j−1),p (3.2.10)

= K
(F )
j,k,p 22(j−1)N , (3.2.11)

and similarly for Xhj,N .

Next we have to normalize the system (3.2.1). In order to do this we need a slight reformu-
lation of Theorem 4.4 in [4]. Here we report a statement of the result adapted to our context.

Lemma 3.2.3. Let k ≥ k1 + 2r, p ∈ (1,+∞), R > 0, and consider the system (3.2.1). Assume
that ε < 2−4Nr, and that

(K
(F,r)
k,p +K

(h,r)
k,p )r22Nrε < 2−9e−1π−1R, (3.2.12)
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where

K
(F,r)
k,p := sup

1≤j≤r
sup

ψ∈Bk,p(R)

‖XFj (ψ, ψ̄)‖k−2(j−1),p,

K
(h,r)
k,p := sup

1≤j≤r
sup

ψ∈Bk,p(R)

‖Xhj (ψ, ψ̄)‖k−2j,p.

Then there exists an analytic canonical transformation T (r)
ε,N : Bk,p(R)→ Bk,p(2R) such that

sup
Bk,p(R/2)

‖T (r)
ε,N (ψ, ψ̄)− (ψ, ψ̄)‖Wk,p ≤ 4πrK

(F,r)
k,p 22Nrε,

and that puts (3.2.1) in normal form up to a small remainder,

HN,r ◦ T (r)
ε,N = h0 + εhN,r + εZ

(r)
N + εr+1R(r)

N , (3.2.13)

with Z
(r)
N is in normal form, namely {h0,N , Z

(r)
N } = 0, and

sup
Bk,p(R/2)

‖X
Z

(r)
N

(ψ, ψ̄)‖k,p ≤ 4 22Nr ε
(
rK

(F,r)
k,p + rK

(h,r)
k,p

)
r22NrK

(F,r)
k,p

= 4r2K
(F,r)
k,p (K

(F,r)
k,p +K

(h,r)
k,p )24NRε, (3.2.14)

sup
Bk,p(R/2)

‖XR(r)
N

(ψ, ψ̄)‖k,p (3.2.15)

≤ 28e
T

R
(K

(F,r)
k,p +K

(F,r)
k,p )r22Nr (3.2.16)[

4T

R

(
9 · 29e

T

R
(K

(F,r)
k,p +K

(F,r)
k,p )K

(F,r)
k,p r224Nrε+ 5K

(h,r)
k,p r22Nr + 5K

(F,r)
k,p r22Nr

)
r

]r
(3.2.17)

The proof of Lemma 3.2.3 is postponed to the Appendix, Chapter A.

Remark 3.2.4. In the original notation of Theorem 4.4 in [4] we set

P = W k,p,

hω = h0,

ĥ = εhN,r,

f = εFN,r,

f1 = r = g ≡ 0,

F = K
(F,r)
k,p r22Nr ε,

F0 = K
(h,r)
k,p r22Nr ε.

Remark 3.2.5. Actually, Lemma 3.2.3 would hold also under a weaker smallness assumption
on ε: it would be enough that ε < 2−2N , and that

ε

[
K

(F,r)
k,p

1− 22Nrεr

1− 22N ε
+K

(h,r)
k,p

22N (1− 22Nrεr)

1− 22N ε

]
< 2−9e−1π−1R (3.2.18)
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is sati�ed. However, condition (3.2.18) is less explicit than (3.2.12), that allows us to apply
directly the scheme of [4]. The disadvantage of the stronger smallness assumption (3.2.12) is
that it holds for a smaller range of ε, and that at the end of the proof it will force us to choose
a larger parameter σ = 4r2. By using (3.2.18) and by making a more careful analysis, it may be
possible to prove Theorem 3.1.3 also by choosing σ = 2r.

Now we conclude with the proof of the Theorem 3.1.3.

Proof. Now consider the transformation T (r)
ε,N de�ned by Lemma 3.2.3, then

(T (r)
ε,N )∗H = h0 +

r∑
j=1

εjhj,N + εZ
(r)
N + εr+1R(r)

N + εrRGal

where we recall that

εrRGal := (T (r)
ε,N )∗(RN,r +Rr).

By exploiting the Lemma 3.2.3 we can estimate the vector �eld ofR(r)
N , while by using Lemma

3.2.1 and (A.0.10) we get

sup
Bk+σ+2(r+1),p(R/2)

‖XRGal(ψ, ψ̄)‖Wk,p �
(

ε

2σ(N+1)
+

εr+1

σ + 2(r + 1)

)
. (3.2.19)

To get the result choose

k0 = σ + 2(r + 1),

N = rσ−1 log2(1/ε)− 1,

σ = 4r2.

Remark 3.2.6. The compatibility condition N ≥ 1 and (3.2.12) lead to

ε ≤
[
2−9e−1π−1R(K

(F,r)
k,p +K

(h,r)
k,p )−1r−12−2r

] σ
2r

=: εr,k,p ≤ 2−2σ/r ≤ 2−8r.

Remark 3.2.7. We point out the fact that Theorem 3.1.3 holds for the scale of Banach spaces
W k,p(M,Cn × Cn), where k ≥ 1, 1 < p < +∞, n ∈ N0, and where M is a smooth manifold on
which the Littlewood-Paley decomposition can be constructed, for example a compact manifold
(see sect. 2.1 in [21]), Rd, or a noncompact manifold satisfying some technical assumptions (see
[19]).

If we restrict to the case p = 2, and we considerM as either Rd or the d-dimensional torus Td,
we can prove an analogous result for Hamiltonians H(ψ, ψ̄) with (ψ, ψ̄) ∈ Hk := W k,2(M,C×C).
In the following we denote by Bk(R) the open ball of radius R and center 0 in Hk. We recall
that the Fourier projection operator on Hk is given by

πjψ(x) := (2π)−d/2
∫
j−1≤|k|≤j

ψ̂(k)eik·xdk, j ≥ 1.
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Theorem 3.2.8. Fix r ≥ 1, R > 0, k1 � 1. Consider (3.1.4), and assume PER, INV (with
respect to Fourier projection operators), NF and HVF. Then ∃ k0 = k0(r) > 0 with the fol-
lowing properties: for any k ≥ k1 there exists εr,k � 1 such that for any ε < εr,k there exists

T (r)
ε : Bk(R)→ Bk(2R) transformation s.t.

Hr := H ◦ T (r)
ε = h0 +

r∑
j=1

εjZj + εr+1 R(r),

where Zj are in normal form, namely

{Zj , h0} = 0, (3.2.20)

and

sup
Bk+k0 (R)

‖XR(r)‖Hk ≤ Ck, (3.2.21)

sup
Bk(R)

‖T (r)
ε − id‖Hk ≤ Ck ε. (3.2.22)

In particular, we have that

Z1(ψ, ψ̄) = h1(ψ, ψ̄) + 〈F1〉 (ψ, ψ̄),

where 〈F1〉 (ψ, ψ̄) :=
∫ 2π

0
F1 ◦ Φt(ψ, ψ̄) dt

2π .

The only technical di�erence between the proofs of Theorem 3.1.3 and the proof of Theorem
3.2.8 is that we exploit the Fourier cut-o� operator

ΠNψ(x) :=

∫
|k|≤N

ψ̂(k)eik·xdk,

as in [5]. This in turn a�ects (3.2.6), which in this case reads

sup
Bk+σ+2(r+1)(R)

‖XRN,r (ψ, ψ̄)‖Hk �
ε

Nσ
, (3.2.23)

and (3.2.19), for which we have to choose a bigger cut-o�, N = ε−rσ.

3.3 Application to the nonlinear Klein-Gordon equation

3.3.1 The real nonlinear Klein-Gordon equation

We �rst consider the Hamiltonian of the real non-linear Klein-Gordon equation with power-
type nonlinearity on a smooth manifold M (M is such the Littlewood-Paley decomposition is
well-de�ned; take, for example, a smooth compact manifold, or Rd). The Hamiltonian is of the
form

H(u, v) =
c2

2
〈v, v〉+

1

2

〈
u, 〈∇〉2cu

〉
+ λ

∫
u2l

2l
, (3.3.1)
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where 〈∇〉c := (c2 −∆)1/2, λ ∈ R, l ≥ 2.
If we introduce the complex-valued variable

ψ :=
1√
2

[(
〈∇〉c
c

)1/2

u− i
(

c

〈∇〉c

)1/2

v

]
, (3.3.2)

(the associated symplectic 2-form becomes idψ∧dψ̄), the Hamiltonian (3.3.1) in the coordinates
(ψ, ψ̄) is

H(ψ̄, ψ) =
〈
ψ̄, c〈∇〉cψ

〉
+
λ

2l

∫ [(
c

〈∇〉c

)1/2
ψ + ψ̄√

2

]2l

dx. (3.3.3)

If we rescale the time by a factor c2, the Hamiltonian takes the form (3.1.4), with ε = 1
c2 , and

H(ψ, ψ̄) = h0(ψ, ψ̄) + ε h(ψ, ψ̄) + ε F (ψ, ψ̄), (3.3.4)

where

h0(ψ, ψ̄) =
〈
ψ̄, ψ

〉
, (3.3.5)

h(ψ, ψ̄) =
〈
ψ̄,
(
c〈∇〉c − c2

)
ψ
〉
∼
∑
j≥1

εj−1
〈
ψ̄, aj∆

jψ
〉

=:
∑
j≥1

εj−1hj(ψ, ψ̄), (3.3.6)

F (ψ, ψ̄) =
λ

2l+1l

∫ [(
c

〈∇〉c

)1/2

(ψ + ψ̄)

]2l

dx (3.3.7)

∼ λ

2l+1l

∫
(ψ + ψ̄)2ldx

− εb2
∫ [

(ψ + ψ̄)2l−1∆(ψ + ψ̄) + . . .+ (ψ + ψ̄)∆((ψ + ψ̄)2l−1)
]

dx

+O(ε2)

=:
∑
j≥1

εj−1 Fj(ψ, ψ̄), (3.3.8)

where (aj)j≥1 and (bj)j≥1 are real coe�cients, and Fj(ψ, ψ̄) is a polynomial function of the
variables ψ and ψ̄ (along with their derivatives) and which admits a bounded vector �eld from
a neighborhood of the origin in W k+2(j−1),p to W k,p for any 1 < p < +∞.
This description clearly �ts the scheme treated in the previous section, and one can easily check
that assumptions PER, NF and HVF are satis�ed.

Therefore we can apply Theorem 3.1.3 to the Hamiltonian (3.3.4).

Remark 3.3.1. About the normal forms obtained by applying Theorem 3.1.3, we remark that in
the �rst step (case r = 1 in the statement of the Theorem) the homological equation we get is of
the form

{χ1, h0}+ F1 = 〈F1〉 , (3.3.9)

where F1(ψ, ψ̄) = λ
2l+1l

∫
(ψ + ψ̄)2ldx. Hence the transformed Hamiltonian is of the form

H1(ψ, ψ̄) = h0(ψ, ψ̄) +
1

c2

[
−1

2

〈
ψ̄,∆ψ

〉
+ 〈F1〉 (ψ, ψ̄)

]
+

1

c4
R(1)(ψ, ψ̄). (3.3.10)
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If we neglect the remainder and we derive the corresponding equation of motion for the system,
we get

− iψt = ψ +
1

c2

[
−1

2
∆ψ +

λ

2l+1

(
2l

l

)
|ψ|2(l−1)ψ

]
, (3.3.11)

which is the NLS, and the Hamiltonian which generates the canonical transformation is given by

χ1(ψ, ψ̄) =
λ

2l+1l

∑
j=0,...,2l
j 6=l

1

i 2(l − j)

(
2l

j

)∫
ψ2l−jψ̄jdx. (3.3.12)

Remark 3.3.2. Now we iterate the construction by passing to the case r = 2, and for simplicity
we consider just the case l = 2, which at the �rst step yields the cubic NLS. In this case one has
that

χ1(ψ, ψ̄) =

∫ T

0

τ [F1(Φτ (ψ, ψ̄)) − 〈F1〉 (Φτ (ψ, ψ̄))]
dτ

T

=
λ

16

∫ 2π

0

τ

∫ [
|eiτψ + e−iτ ψ̄|4 − 6|ψ|4

]
dx

dτ

2π
.

Since

|eiτψ + e−iτ ψ̄|4 = e4iτψ4 + 4e2iτψ3ψ̄ + 6ψ2ψ̄2 + 4e−2iτψψ̄3 + e−4iτ ψ̄4

and since
∫ 2π

0
τeinτdτ = 2π

i n for any non-zero integer n, we �nally get

χ1(ψ, ψ̄) =
λ

16

∫
ψ4 − ψ̄4

4i
+

2

i
(ψ3ψ̄ − ψψ̄3) dx.

If we neglect the remainder of order c−6, we have that

H ◦ T (1) = h0 +
1

c2
h1 +

1

c4
{χ1, h1}+

1

c4
h2+

+
1

c2
〈F1〉+

1

c4
{χ1, F1}+

1

2c4
{χ1, {χ1, h0}}+

1

c4
F2 (3.3.13)

= h0 +
1

c2
[h1 + 〈F1〉] +

1

c4

[
{χ1, h1}+ h2 + {χ1, F1}+

1

2
{χ1, 〈F1〉 − F1}+ F2

]
,

(3.3.14)

where h1(ψ, ψ̄) = − 1
2

〈
ψ̄,∆ψ

〉
.

Now we compute the terms of order 1
c4 .

{χ1, h1} = dχ1Xh1
=
∂χ1

∂ψ
· i∂h1

∂ψ̄
− i∂χ1

ψ̄

∂h1

∂ψ
(3.3.15)

= − λ

32

∫ [
∆ψ

(
ψ3 + 6ψ2ψ̄ − 2ψ̄3

)
−∆ψ̄(2ψ3 − 6ψψ̄2 − ψ̄3)

]
, (3.3.16)

h2 = −1

8

〈
ψ̄,∆2ψ

〉
, (3.3.17)
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{χ1, F1} =
λ2

32

∫
(4ψ3 + 12ψ2ψ̄ + 12ψψ̄2 + 4ψ̄3)(ψ3 + 6ψ2ψ̄ − 2ψ̄3)+ (3.3.18)

− (4ψ3 + 12ψ2ψ̄ + 12ψψ̄2 + 4ψ̄3)(2ψ3 − 6ψψ̄2 − ψ̄3) dx, (3.3.19)

{χ1, 〈F1〉} =
λ2

2

∫ [
|ψ|2ψ (ψ3 + 6ψ2ψ̄ − 2ψ̄3)− |ψ|2ψ̄ (2ψ3 − 6ψψ̄2 − ψ̄3)

]
dx, (3.3.20)

F2 =
λ

16

∫ [
(ψ3 + 3ψ2ψ̄ + 3ψψ̄2 + ψ3) ∆ψ + (ψ̄3 + 3ψ̄2ψ + 3ψ̄ψ2 + ψ3) ∆ψ̄

]
dx. (3.3.21)

Now, one can easily verify that 〈{χ1, h1}〉 = 〈{χ1, 〈F1〉}〉 = 0, and that

〈{χ1, F1}〉 =
λ2

32

∫
(−8|ψ|6 + 72|ψ|6 + 4|ψ|6) + (4|ψ|6 + 72|ψ|6 − 8|ψ|6) dx (3.3.22)

=
17

4
λ2

∫
|ψ|6 dx, (3.3.23)

〈F2〉 =
λ

16

∫
3ψψ̄2 ∆ψ + 3ψ̄ψ2 ∆ψ̄ dx (3.3.24)

=
λ

16

∫
3|ψ|2(ψ∆ψ + ψ∆ψ̄) dx. (3.3.25)

Hence, up to a remainder of order O
(

1
c6

)
, we have that

H2 = h0 +
1

c2

∫ [
−1

2

〈
ψ̄,∆ψ

〉
+

3

8
λ|ψ|4

]
dx

+
1

c4

∫ [
17

8
λ2|ψ|6 +

3

16
λ|ψ|2(ψ̄∆ψ + ψ∆ψ̄)− 1

8

〈
ψ̄,∆2ψ

〉]
dx, (3.3.26)

which, by neglecting h0 (that yields only a gauge factor) and by rescaling the time, leads to
the following equations of motion

−iψt = −1

2
∆ψ +

3

4
λ|ψ|2ψ

+
1

c2

[
51

8
λ2|ψ|4ψ +

3

16
λ
(
2|ψ|2 ∆ψ + ψ2∆ψ̄ −∆(|ψ|2ψ̄)

)
− 1

8
∆2ψ

]
. (3.3.27)

To the author's knowledge, Eq. (3.3.27) has never been studied before. It is the nonlinear
analogue of a linear higher-order Schrödinger equation that appears in [22] and [23] in the con-
text of semi-relativistic equations. Indeed, the linearization of Eq. (3.3.27) is studied within the
framework of relativistic quantum �eld theory, as an approximation of nonlocal kinetic terms;
Carles, Lucha and Moulay studied the well-posedness of these approximations, as well as the
convergence of the equations as the order of truncation goes to in�nity, in the linear case, also
when one takes into account the e�ects of some time-independent potentials (e.g. bounded po-
tentials, the harmonic-oscillator potential and the Coulomb potential).
To the author's knowledge, very little is known for the nonlinear equation (3.3.27): we just men-
tion [24], in which the well-posedness of a higher-order Schrodinger equation has been studied.
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3.3.2 The complex nonlinear Klein-Gordon equation

Now we consider the Hamiltonian of the complex non-linear Klein-Gordon equation with power-
type nonlinearity on a smooth manifold M (take, for example, a smooth compact manifold, or
Rd)

H(w, pw) =
c2

2
〈pw, pw〉+

1

2

〈
w, 〈∇〉2cw

〉
+ λ

∫
|w|2l

2l
, (3.3.28)

where w : R×M → C, 〈∇〉c := (c2 −∆)1/2, λ ∈ R, l ≥ 2.
If we rewrite the Hamiltonian in terms of u := Re(w) and v := Im(w), we have

H(u, v, pu, pv) =
c2

2
(〈pu, pu〉+ 〈pv, pv〉) +

1

2
(|∇u|2 + |∇v|2) +

c2

2
(u2 + v2) + λ

∫
(u2 + v2)l

2l
.

(3.3.29)

We will consider by simplicity only the cubic case, l = 2, but the argument may be readily
generalized to the other power-type nonlinearities.

If we introduce the variables

ψ :=
1√
2

[(
〈∇〉c
c

)1/2

u− i
(

c

〈∇〉c

)1/2

pu

]
, (3.3.30)

φ :=
1√
2

[(
〈∇〉c
c

)1/2

v + i

(
c

〈∇〉c

)1/2

pv

]
, (3.3.31)

(the associated symplectic 2-form becomes idψ∧dψ̄− idφ∧dφ̄), the Hamiltonian (3.3.28) in the
coordinates (ψ, φ, ψ̄, φ̄) reads

H(ψ, φ, ψ̄, φ̄) =
〈
ψ̄, c〈∇〉cψ

〉
+
〈
φ̄, c〈∇〉cφ

〉
(3.3.32)

+
λ

16

∫
M

[〈
ψ + ψ̄,

c

〈∇〉c
(ψ + ψ̄)

〉
+

〈
φ+ φ̄,

c

〈∇〉c
(φ+ φ̄)

〉]2

dx, (3.3.33)

with associated equations of motion


−iψt = c〈∇〉cψ + 1

4

[〈
ψ + ψ̄, c

〈∇〉c (ψ + ψ̄)
〉

+
〈
φ+ φ̄, c

〈∇〉c (φ+ φ̄)
〉]

c
〈∇〉c (ψ + ψ̄),

iφt = c〈∇〉cφ+ 1
4

[〈
ψ + ψ̄, c

〈∇〉c (ψ + ψ̄)
〉

+
〈
φ+ φ̄, c

〈∇〉c (φ+ φ̄)
〉]

c
〈∇〉c (φ+ φ̄).

If we rescale the time by a factor c2, the Hamiltonian takes the form (3.1.4), with ε = 1
c2 , and

H(ψ, φ, ψ̄, φ̄) = H0(ψ, φ, ψ̄, φ̄) + ε h(ψ, φ, ψ̄, φ̄) + ε F (ψ, φ, ψ̄, φ̄), (3.3.34)
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where

H0(ψ, φ, ψ̄, φ̄) =
〈
ψ̄, ψ

〉
+
〈
φ̄, φ

〉
, (3.3.35)

h(ψ, φ, ψ̄, φ̄) =
〈
ψ̄,
(
c〈∇〉c − c2

)
ψ
〉
−
〈
φ̄,
(
c〈∇〉c − c2

)
φ
〉

∼
∑
j≥1

εj−1 (
〈
ψ̄, aj∆

jψ
〉

+
〈
φ̄, aj∆

jφ
〉
)

=:
∑
j≥1

εj−1(hj(ψ, φ, ψ̄, φ̄)), (3.3.36)

F (ψ, φ, ψ̄, φ̄) =
λ

16

∫
T

[〈
ψ + ψ̄,

c

〈∇〉c
(ψ + ψ̄)

〉
+

〈
φ+ φ̄,

c

〈∇〉c
(φ+ φ̄)

〉]2

dx,

∼ λ

16

∫ [
|ψ + ψ̄|2 + |φ+ φ̄|2

]2
dx

+O(ε)

=:
∑
j≥1

εj−1 Fj(ψ, φ, ψ̄, φ̄), (3.3.37)

where (aj)j≥1 are real coe�cients, and Fj(ψ, φ, ψ̄, φ̄) is a polynomial function of the variables ψ,
φ, ψ̄, φ̄ (along with their derivatives) and which admits a bounded vector �eld from a neighbor-
hood of the origin in W k+2(j−1),p(Rd,C2 × C2) to W k,p(Rd,C2 × C2) for any 1 < p < +∞.
This description clearly �ts the scheme treated in sect. 3.1 with n = 2, and one can easily check
that assumptions PER, NF and HVF are satis�ed.
Therefore we can apply Theorem 3.1.3 to the Hamiltonian (3.3.34).

Remark 3.3.3. About the normal forms obtained by applying Theorem 3.1.3, we remark that in
the �rst step (case r = 1 in the statement of the Theorem) the homological equation we get is of
the form

{χ1, h0}+ F1 = 〈F1〉 , (3.3.38)

where F1(ψ, ψ̄) = λ
16

∫ [
|ψ + ψ̄|2 + |φ+ φ̄|2

]2
dx. Hence the transformed Hamiltonian is of the

form

H1(ψ, φ, ψ̄, φ̄) = h0(ψ, φ, ψ̄, φ̄) +
1

c2

[
−1

2

(〈
ψ̄,∆ψ

〉
+
〈
φ̄,∆φ

〉)
+ 〈F1〉 (ψ, φ, ψ̄, φ̄)

]
+

1

c4
R(1)(ψ, φ, ψ̄, φ̄), (3.3.39)

where

〈F1〉 =
λ

16

[
6ψ2ψ̄2 + 6φ2φ̄2 + 8ψψ̄φφ̄+ 2ψ2φ2 + 2ψ̄2φ̄2

]
=
λ

8

[
3(|ψ|2 + |φ|2)2 + 2(ψφ− ψ̄φ̄)2

]
.

If we neglect the remainder and we derive the corresponding equation of motion for the system,
we get
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−iψt = ψ + 1

c2

{
− 1

2∆ψ + λ
4

[
3(|ψ|2 + |φ|2)ψ + 2(ψφ+ ψ̄φ̄)φ̄

]}
,

iφt = φ+ 1
c2

{
− 1

2∆φ+ λ
4

[
3(|ψ|2 + |φ|2)φ+ 2(ψφ+ ψ̄φ̄)ψ̄

]}
,

(3.3.40)

which is a system of two coupled NLS equations.
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Chapter 4

Approximation of the NLKG

equation in the non-relativistic limit

4.1 Dynamics

Now we want to exploit the result of the previous section in order to deduce some consequences
about the dynamics of the NLKG equation (3.3.4) in the non-relativistic limit. Consider the
simpli�ed system, that is the Hamiltonian Hr in the notations of Theorem 3.1.3, where we
neglect the remainder:

Hsimp := h0 + ε(h1 + 〈F1〉) +

r∑
j=2

εj(hj + Zj).

We recall that in the case of the NLKG the simpli�ed system is actually the NLS (given by
h0 + ε(h1 + 〈F1〉)), plus higher-order normalized corrections. Now let ψr be a solution of

−i ψ̇r = XHsimp(ψr), (4.1.1)

then ψa(t, x) := T (r)(ψr(c
2t, x)) solves

ψ̇a = ic〈∇〉cψa +
λ

2l

(
c

〈∇〉c

)1/2
[(

c

〈∇〉c

)1/2
ψa + ψ̄a√

2

]2l−1

− 1

c2r
XT (r)∗R(r)(ψa, ψ̄a), (4.1.2)

that is, the NLKG plus a remainder of order c−2r (in the following we will refer to equation
(4.1.2) as approximate equation, and to ψa as the approximate solution of the original NLKG).
We point out that the original NLKG and the approximate equation di�er only by a remainder
of order c−2r, which is evaluated on the approximate solution. This fact is extremely important:
indeed, if one can prove the smoothness of the approximate solution (which often is easier to
check than the smoothness of the solution of the original equation), then the contribution of the
remainder may be considered small in the non-relativistic limit. This property is rather general,
and has been already applied in the framework of normal form theory (see for example [7]).

Now let ψ be a solution of the NLKG equation (3.3.4), and set δ := ψ−ψa the error between
the solution of the approximate equation and the original one. One can check that δ ful�lls

δ̇ = ic〈∇〉cδ + [P (ψa + δ, ψ̄a + δ̄)− P (ψa, ψ̄a)] +
1

c2r
XT (r)∗R(r)(ψa(t), ψ̄a(t)),

41
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where

P (ψ, ψ̄) =
λ

2l

(
c

〈∇〉c

)1/2
[(

c

〈∇〉c

)1/2
ψ + ψ̄√

2

]2l−1

. (4.1.3)

Thus we get

δ̇ = i c〈∇〉cδ + dP (ψa(t))δ +O(δ2) +O
(

1

c2r

)
;

δ(t) = eitc〈∇〉cδ0 +

∫ t

0

ei(t−s)c〈∇〉cdP (ψa(s))δ(s)ds+O(δ2) +O
(

1

c2r

)
. (4.1.4)

By applying Gronwall inequality to (4.1.4) we obtain

Proposition 4.1.1. Fix r ≥ 1, R > 0, k1 � 1, 1 < p < +∞. Then ∃ k0 = k0(r) > 0 with the
following properties: for any k ≥ k1 there exists cl,r,k,p,R � 1 such that for any c > cl,r,k,p,R, if
we assume that

‖ψ0‖k+k0,p ≤ R

and that there exists T = Tr,k,p > 0 such that the solution of (4.1.1) satis�es

‖ψr(t)‖k+k0,p ≤ 2R, for 0 ≤ t ≤ T,

then

‖δ(t)‖k,p ≤ Ck,p c−2r, for 0 ≤ t ≤ T. (4.1.5)

Remark 4.1.2. If we restrict to p = 2, and to M = Rd or M = Td, the above result is actually
a reformulation of Theorem 3.2 in [35]. We remark, however, that the time interval [0, T ] in
which estimate (4.1.5) is valid is independent of c.

Remark 4.1.3. By exploiting estimate (3.1.9) about the canonical transformation, Proposition
4.1.1 leads immediately to a proof of Proposition 1.0.8.

In order to study the evolution of the error between the approximate solution and the solution
of the NLKG over longer (namely, c-dependent) time scales, we observe that the error is described
by

δ̇(t) = i c〈∇〉cδ(t) + dP (ψa(t))δ(t); (4.1.6)

δ(t) = eitc〈∇〉cδ0 +

∫ t

0

ei(t−s)c〈∇〉cdP (ψa(s))δ(s)ds, (4.1.7)

up to a remainder which is small, if we assume the smoothness of ψa.
Equation (4.1.6) in the context of dispersive PDEs is known as semirelativistic spinless Salpeter
equation with a time-dependent potential. This system was introduced as a �rst order in time
analogue of the KG equation for the Lorentz-covariant description of bound states within the
framework of relativistic quantum �eld theory, and, despite the nonlocality of its Hamiltonian,
some of its properties have already been studied (see [81] for a study from a physical point of
view; for a more mathematical approach see [51] and the more recent works [22] and [23], which
are closer to the spirit of our approximation).

It seems reasonable to estimate the solution of Equation (4.1.6) by studying and by exploiting
its dispersive properties, and this will be the aim of the following sections. From now on we will
consider by simplicity only the three-dimensional case, d = 3, but the argument may also be
applied to M = Rd for d > 3.
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4.2 Long time approximation

Now we study the evolution of the the error between the approximate solution ψa, namely the
solution of (4.1.2), and the original solution ψ of (3.3.4) for long (that means, c-dependent) time
intervals.

We begin by taking ψ0 ∈W k+k0,q such that the solution ψr of the normalized equation (4.1.1)
with initial datum ψ0 exists for all times. We want to estimate the space-time norm LptW

k,q
x (for

some particular values of the couple (p, q), that we will specify later) of the solution of (4.1.6).

Remark 4.2.1. The assumption of global existence for ψr is actually a delicate matter. For the
case r = 1 Eq. (4.1.1) is the nonlinear Schrödinger equation, for which the question of global
existence has been widely studied, and a lot is known.

For the general case r > 1, in [22] and [23] the authors proved that the linearized system,
namely the one associated to

h0 +

r∑
j=1

εjhj (4.2.1)

admits a unique solution in L∞(R)Hk(R3) (this is a simple application of the properties of the
Fourier transform), and by a perturbative argument they also proved the global existence also for
the higher oder Schrödinger equation with a bounded time-independent potential.
In the nonlinear case little is known (see for example [24] for the well-posedness for a higher-order
nonlinear Schrödinger equation, and also Remark 4.2.9 in the next subsection).

Remark 4.2.2. We point out that the case of the one-dimensional defocusing NLKG is also
interesting, since for λ = 1 the normalized equation at �rst step is the defocusing NLS, which is
integrable. It would be interesting also to understand whether globally well-posedness and scat-
tering hold also the normalized order 2 equation (3.3.27), which we later exploit to approximate
solutions of the NLKG up to times of order O(c2).

Even though there is a one-dimensional integrable 4NLS equation related to the dynamics of
a vortex �lament (see [77] and references therein),

iψt + ψxx +
1

2
|ψ|2ψ − ν

[
ψxxxx +

3

2
|ψ|2ψxx +

3

2
ψ2
xψ̄ +

3

8
|ψ|4ψ +

1

2
(|ψ|2)xxψ

]
= 0, ν ∈ R

(4.2.2)

apparently there is no obvious relation between the above equation and Eq. (3.3.27). Furthermore,
while the issue of local well-posedness for one-dimensional fourth-order Nonlinear Schrödinger has
been quite studied (see for example [43]), there is only a recent result (see [74]) about global well-
posedness and scattering for small radiation solutions of 4NLS, which unfortunately does not
cover Eq. (3.3.27), due to technical reasons.

Therefore it seems di�cult to give an explicit condition for global well-posedness and scattering
for the normalized equation also in the one-dimensional case.

By following the arguments of Theorem 4.1 in [48] and Lemma 4.3 in [23] we obtain the
following dispersive properties for (4.2.1) which will be useful in the sequel.

Proposition 4.2.3. Let r ≥ 1, and denote by Ur(t) the evolution operator associated to (4.2.1)
rescaled back to the original time. Then we have the following local-in-time dispersive estimate

‖Ur(t)‖L1(R3)→L∞(R3) � c3(1− 1
r )|t|−3/(2r), 0 < |t| ≤ c2(r−1). (4.2.3)
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On the other hand, Ur(t) is unitary on L2(R3).
Now let us introduce the following set of admissible exponent pairs:

∆r := {(p, q) : (1/p, 1/q) lies in the closed quadrilateral ABCD, } (4.2.4)

where

A =

(
1

2
,

1

2

)
, B =

(
1,

1

τr

)
, C = (1, 0), D =

(
1

τ ′r
, 0

)
, τr =

2r − 1

r − 1
,

1

τr
+

1

τ ′r
= 1.

Then for any (p, q) ∈ ∆r \ {(2, 2), (1, τr), (τ
′
r,∞)}

‖Ur(t)‖Lp(R3)→Lq(R3) � c3(1− 1
r )( 1

p−
1
q )|t|−

3
2r ( 1

q−
1
p ), 0 < |t| ≤ c2(r−1). (4.2.5)

Figure 4.1: Set of admissible exponents ∆r for di�erent values of r: (a) r=1 (this is the
Schrödinger case); (b) r=2; (c) r=11.

Let r ≥ 1: in the following lemma we will say that (p, q) is an order-r admissible pair when
2 ≤ q ≤ +∞ for r ≥ 2 (2 ≤ q ≤ 6 for r = 1), and

2

p
+

3

rq
=

3

2r
. (4.2.6)

Proposition 4.2.4. Let r ≥ 1, and denote by Ur(t) the evolution operator associated to (4.2.1)
rescaled back to the original time. Let (p, q) and (r, s) be order-r admissible pairs, then for any
T � c2(r−1)

‖Ur(t)φ0‖Lp([0,T ])Lq(R3) � c3(1− 1
r )( 1

2−
1
q )‖φ0‖L2(R3) = c(1− 1

r ) 2r
p ‖φ0‖L2(R3). (4.2.7)

Radiation solution

As an application of Proposition 2.1.1, we consider the following case. Fix r > 1, and let
ψr = ηrad be a radiation solution of (4.1.1), namely such that

ηrad,0 := ηrad(0) ∈W k+k0,p(R3), (4.2.8)

where k0 > 0 and k � 1 are the ones in Theorem 3.1.3, and such that ηrad(c
2t) satis�es (4.2.5)

for any p such that (p, 3) ∈ ∆r \ {(1, τr)}, with Ur replaced by the evolution operator of (4.1.1)
(rescaled back to the original time).

Remark 4.2.5. The assumption r > 1 is due to (4.2.3), and it re�ects the fact that we want to
study the behavior of the error δ for long (c-dependent) timescales.
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Let δ(t) be a solution of (4.1.6); then by Duhamel formula

δ(t) := U(t, 0)δ0 = eitc〈∇〉cδ0 +

∫ t

0

ei(t−s)c〈∇〉cdP (ψa(s))U(s, 0)δ0ds. (4.2.9)

Now �x T � c2(r−1); we want to estimate the local-in-time norm in the space L∞([0, T ])Hk(R3)
of the error δ(t).
By (2.1.2) we can estimate the �rst term. We can estimate the second term by (2.1.3): hence
for any (p, q) Schrödinger-admissible exponents

∥∥∥∥∫ t

0

ei(t−s)c〈∇〉cdP (ψa(s))δ(s)ds

∥∥∥∥
L∞t ([0,T ])Hkx

� c
1
q−

1
p−

1
2 ‖〈∇〉

1
p−

1
q+ 1

2
c dP (ψa(t))δ(t)‖

Lp
′
t ([0,T ])Wk,q′

x

� c
1
q−

1
p−

1
2 ‖〈∇〉

1
p−

1
q+ 1

2
c dP (ηrad(c

2t))δ(t)‖
Lp
′
t ([0,T ])Wk,q′

x

+ c
1
q−

1
p−

1
2 ‖〈∇〉

1
p−

1
q+ 1

2
c [dP (ψa(t))− dP (ηrad(c

2t))]δ(t)‖
Lp
′
t ([0,T ])Wk,q′

x

=: Ip + IIp,

but recalling (4.1.3) one has that

Ip �
|λ|

2l−1/2(2l)(2l − 1)
c

1
q−

1
p+ 1

2

∥∥∥∥∥∥〈∇〉
1
p−

1
q−

1
2

c

[(
c

〈∇〉c

)1/2

(ηrad + η̄rad)

]2(l−1)

δ(t)

∥∥∥∥∥∥
Lp
′
t ([0,T ])Wk,q′

x

,

and by choosing p = 2, q = 6 we get (since ‖(c/〈∇〉c)1/6‖L6/5→L6/5 ≤ 1)

I2 ≤
|λ|

2l−1/2(2l)(2l − 1)

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]2(l−1)

δ(t)

∥∥∥∥∥∥
L2
t ([0,T ])W

k,6/5
x

.

Now, since by Hölder inequality

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]2(l−1)

δ(t)

∥∥∥∥∥∥
L2
t ([0,T ])W

k,6/5
x

≤

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]2(l−1)
∥∥∥∥∥∥
L2
t ([0,T ])Wk,3

x

‖δ(t)‖L∞t ([0,T ])Hkx
,
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and by Sobolev product theorem (recall that l ≥ 2, and that 3k > 3) we can deduce that∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]2(l−1)
∥∥∥∥∥∥
L2
t ([0,T ])Wk,3

x

≤

∫ T

0

∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad(c
2t) + η̄rad(c

2t))

]∥∥∥∥∥
4(l−1)

Wk,3
x

dt

1/2

≤
∥∥ηrad(c2t) + η̄rad(c

2t)
∥∥2(l−1)

L
4(l−1)
t ([0,T ])Wk,3

x
,

but for any 1 ≤ p ≤ 2 such that (p, 3) ∈ ∆r \ {(1, τr)} we have

∥∥ηrad(c2t)∥∥L4(l−1)
t ([0,T ])Wk,3

x
≤ c3(1−1/r)( 1

p−
1
3 )‖ηrad,0‖Wk,p

x
‖|t|−

3
2r ( 1

3−
1
p )‖

L
4(l−1)
t ([0,T ])

≤ c3(1−1/r)( 1
p−

1
3 )‖ηrad,0‖Wk+k0,p

x
‖|t|−

3
2r ( 1

3−
1
p )‖

L
4(l−1)
t ([0,T ])

, (4.2.10)

which is �nite and does not depend on c for

‖ηrad,0‖Wk+k0,p
x

= c−αM, (4.2.11)

α ≥ 3

(
1− 1

r

)(
1

p
− 1

3

)
+

(r − 1)

2(l − 1)
+ 3

r − 1

r

(
1

p
− 1

3

)
= 6

(
1− 1

r

)(
1

p
− 1

3

)
+

(r − 1)

2(l − 1)
:= α∗(l, r, p). (4.2.12)

where M is independent of c. Indeed, under conditions (4.2.11) - (4.2.12) we obtain that for any
c ≥ 1 ∥∥ηrad(c2t)∥∥L4(l−1)

t ([0,T ])Wk,3
x
≤ c−α+α∗(l,r,p)M.

Furthermore, via (3.1.9) one can show that there exists cr,k,p > 0 su�ciently large such that
for c ≥ cr,k,p the term II2 can be bounded by 1

c2 I2.

This means that we can estimate the L∞([0, T ])Hk norm of the error only for a small (with
respect to c) radiation solution.

Remark 4.2.6. We notice that τr < 3 for r > 2, hence the point (1, 3) is contained in ∆r for
r > 2. The smallness conditions (4.2.11) - (4.2.12) are probably due to the fact that we had no
loss of derivatives in the previous estimates, which in turn is based on the estimates (4.2.5) for
the normalized equation. If one could �nd the analogue of (4.2.5) with loss of derivatives, we
think that such conditions could be improved.

To summarize, we get the following result

Proposition 4.2.7. Consider (3.3.3), let r > 1, and �x k1 � 1. Let 1 ≤ p ≤ 2 be such that
(p, 3) ∈ ∆r \ {(1, τr)} (where ∆r and τr are de�ned as in (4.2.4)). Then ∃ k0 = k0(r) > 0 such
that for any k ≥ k1 the following holds: consider the solution ηrad of (4.1.1) with initial datum
ηrad,0 ∈W k+k0,p, and assume also that ηrad satis�es the decay estimate (4.2.5) for (4.1.1).
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Call δ the di�erence between the solution of the approximate equation (4.1.2) and the original
solution of the Hamilton equation for (3.3.3), and assume that δ0 := δ(0) satis�es

‖δ0‖Hkx �
1

c2
.

Then there exist α∗ := α∗(l, r, p) > 0 and there exists c∗ := c∗(r, k, p) > 1, such that for any
α > α∗ and for any c > c∗, if ηrad,0 satis�es

‖ηrad,0‖Wk+k0,p � c−α,

then

sup
t∈[0,T ]

‖δ(t)‖Hkx �
1

c2
, T � c2(r−1).

By exploiting (3.1.9), we can rewrite Proposition 4.2.7 in terms of the solution of the normal
form equation (4.1.1).

Theorem 4.2.8. Consider (3.3.3), let r > 1, and �x k1 � 1. Let 1 ≤ p ≤ 2 be such that
(p, 3) ∈ ∆r \ {(1, τr)} (where ∆r and τr are de�ned as in (4.2.4)). Then ∃ k0 = k0(r) > 0 such
that for any k ≥ k1 the following holds: consider the solution ψr of (4.1.1) with initial datum
ψr,0 ∈W k+k0,p. Assume also that ψr satis�es the decay estimate (4.2.5) for (4.1.1).
Then there exist α∗ := α∗(l, r, p) > 0 and there exists c∗ := c∗(r, k, p) > 1, such that for any
α > α∗ and for any c > c∗, if ψr,0 satis�es

‖ψr,0‖Wk+k0,p � c−α,

then

sup
t∈[0,T ]

‖ψ(t)− ψr(t)‖Hkx �
1

c2
, T � c2(r−1),

where ψ(t) is the solution of (3.3.4) with initial datum ψr,0.

Remark 4.2.9. For l = 2, which corresponds to the cubic NLKG, by taking r = 2 in Theorem
4.2.7, and this allows one to approximate small radiation solutions up to times of order O(c2),
assuming that the decay (4.2.5) holds also for the simpli�ed equation (4.1.1).

It would be interesting to study in detail Eq. (3.3.27), and to state explicitly some conditions
that ensure scattering for solutions of the order-r normalized equation. Even though some results
for the linearization of Eq. (3.3.27) have already been established (see [16] and [48] for dispersive
estimates, and [23] for Strichartz estimates), the study of the fourth-order NLS-type (4NLS)
equation is still open: while there are some papers dealing with the local well-posedness of 4NLS
(see for example [77] for the one-dimensional case, [44] for the multidimensional case), global
well-posedness and scattering results are much less known. The recent [74] gives the �rst global
well-posedness and scattering result for small radiation solutions of 4NLS in any dimension d ≥ 1,
but unfortunately does not cover Eq. (3.3.27), due to technical reasons. Therefore we cannot give
a more explicit statement for the approximation up to times of order O(c2) for the NLKG on
Rd, d ≥ 3.

Remark 4.2.10. One may ask whether it is possible to prove an approximation result also in
the relativistic Sobolev spaces W k,p

c . A modi�cation of the argument used to prove Proposition
4.2.7 allows to state an approximation result in the space L∞t H k

c . Indeed, by Proposition 2.1.1
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∥∥∥∥∫ t

0

ei(t−s)c〈∇〉cdP (ηrad(s))δ(s)ds

∥∥∥∥
L∞t ([0,T ])H

k+1/2
c

�

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad + η̄rad)

]2(l−1)

δ(t)

∥∥∥∥∥∥
L2
t ([0,T ])W

k+1/3,6/5
c

(C.0.7)

�

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad + η̄rad)

]2(l−1)
∥∥∥∥∥∥
L2
t ([0,T ])W

k+1/3,3
c

‖δ‖L∞t L2
x

+

∥∥∥∥∥∥
[(

c

〈∇〉c

)1/2

(ηrad + η̄rad)

]2(l−1)
∥∥∥∥∥∥
L2
t ([0,T ])L3

x

‖δ‖
L∞t H

k+1/3
c

�

∥∥∥∥∥∥
∥∥∥∥∥
(

c

〈∇〉c

)1/2

(ηrad + η̄rad)

∥∥∥∥∥
2(l−1)

W
k+1/3,3
c

∥∥∥∥∥∥
L2
t ([0,T ])

‖δ‖L∞t L2
x

+

∥∥∥∥∥∥
∥∥∥∥∥
(

c

〈∇〉c

)1/2

(ηrad + η̄rad)

∥∥∥∥∥
2(l−1)

L
6(l−1)
x

∥∥∥∥∥∥
L2
t ([0,T ])

‖δ‖
L∞t H

k+1/3
c

� ( ‖‖ηrad‖2(l−1)

W
k−1/6,3
c

‖L2
t

+ ‖‖ηrad‖2(l−1)

W
−1/2,6(l−1)
c

‖L2
t

) ‖δ‖
L∞t H

k+1/2
c

�
(
‖ηrad‖2(l−1)

L
4(l−1)
t ([0,T ])W

k−1/6,3
c

+ ‖ηrad‖2(l−1)

L
4(l−1)
t ([0,T ])W

−1/2,6(l−1)
c

)
‖δ‖

L∞t H
k+1/2
c

.

Now, the term

‖ηrad‖2(l−1)

L
4(l−1)
t ([0,T ])W

k−1/6,3
c

,

can be bounded as in Proposition 4.2.7, namely by assuming the smallness conditions (4.2.11)-
(4.2.12). The term

‖ηrad‖2(l−1)

L
4(l−1)
t ([0,T ])W

−1/2,6(l−1)
c

,

can also be bounded by exploiting the dispersive estimates (4.2.5). Indeed, for any p1 ∈ [1, 2] such
that (p1, 6(l − 1)) ∈ ∆r one has

‖ηrad‖L4(l−1)
t ([0,T ])W

−1/2,6(l−1)
c

� ‖ηrad‖L4(l−1)
t ([0,T ])L

6(l−1)
x

� c3(1−1/r)
(

1
p1
− 1

6(l−1)

)
‖|t|−

3
2r

(
1

6(l−1)
− 1
p1

)
‖
L

4(l−1)
t ([0,T ])

‖ηrad,0‖Lp1 ,

which is �nite and does not depend on c ≥ 1 for

‖ηrad,0‖Lp1x = c−αM, (4.2.13)

α ≥ 6

(
1− 1

r

)(
1

p1
− 1

6(l − 1)

)
+

r − 1

2(l − 1)
:= α∗1(l, r, p1). (4.2.14)

where M is independent of c. We obtain the following result

Proposition 4.2.11. Consider (3.3.3), let r > 1, and �x k1 � 1. Let 1 ≤ p ≤ 2 be such that
(p, 3) ∈ ∆r \ {(1, τr)}, and let 1 ≤ p1 ≤ 2 be such that (p1, 6(l − 1)) ∈ ∆r (where ∆r and τr
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are de�ned as in (4.2.4)). Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1 the following holds:
consider the solution ηrad of (4.1.1) with initial datum ηrad,0 ∈ W k+k0,p

c ∩Lp1 , and assume also
that ηrad satis�es the decay estimate (4.2.5) for (4.1.1).
Call δ the di�erence between the solution of the approximate equation (4.1.2) and the original
solution of the Hamilton equation for (3.3.3), and assume that δ0 := δ(0) satis�es

‖δ0‖H k
c
� 1

c2
.

Then there exist α∗ := α∗(l, r, p) > 0 and α∗1 := α∗1(l, r, p1) > 0 and there exists c∗ := c∗(r, k, p) >
1, such that for any α > max(α∗, α∗1) and for any c > c∗, if ηrad,0 satis�es

‖ηrad,0‖W k+k0,p
c ∩Lp1 � c

−α,

then

sup
t∈[0,T ]

‖δ(t)‖H k
c
� 1

c2
, T � c2(r−1).

By exploiting (3.1.9), we can rewrite Proposition 4.2.11 in terms of the solution of the normal
form equation (4.1.1).

Theorem 4.2.12. Consider (3.3.3), let r > 1, and �x k1 � 1. Let 1 ≤ p ≤ 2 be such that
(p, 3) ∈ ∆r \ {(1, τr)}, and let 1 ≤ p1 ≤ 2 be such that (p1, 6(l − 1)) ∈ ∆r (where ∆r and τr
are de�ned as in (4.2.4)). Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1 the following holds:
consider the solution ψr of (4.1.1) with initial datum ψr,0 ∈ W k+k0,p

c ∩ Lp1 . Assume also that
ψr satis�es the decay estimate (4.2.5) for (4.1.1).
Then there exist α∗ := α∗(l, r, p) > 0 and α∗1 := α∗1(l, r, p1) > 0 and there exists c∗ := c∗(r, k, p) >
1, such that for any α > max(α∗, α∗1) and for any c > c∗, if ψr,0 satis�es

‖ψr,0‖W k+k0,p
c ∩Lp1 � c

−α,

then

sup
t∈[0,T ]

‖ψ(t)− ψr(t)‖H k
c
� 1

c2
, T � c2(r−1),

where ψ(t) is the solution of (3.3.4) with initial datum ψr,0.

Remark 4.2.13. At the �rst step of Birkho� Normal Form, r = 1, one can show with a similar
argument (where one can exploit Strichartz estimates for NLS, instead of the stronger estimate
(4.2.3)) that the approximation is valid up to O(1)-timescales, hence only locally uniformly in
time, but it does not need any smallness assumption as in (4.2.12)-(4.2.12). An example of such
a result for the cubic case l = 2, which is analogous to Proposition 4.1.1, is the following

Proposition 4.2.14. Consider (3.3.3), and �x k1 � 1. Then ∃ k0 > 0 such that for any
k ≥ k1 the following holds: consider the solution ηrad of the cubic NLS (4.1.1) with initial datum
ηrad(0) ∈ Hk+k0 .
Call δ the di�erence between the solution of the approximate equation (4.1.2) and the original
solution of the Hamilton equation for (3.3.3), and assume that δ0 := δ(0) satis�es

‖δ0‖Hkx �
1

c2
.
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Then there exists c∗ := c∗(k, p) > 0, such that for any c > c∗ there exists T := T (k, p) > 0
independent of c such that

sup
t∈[0,T ]

‖δ(t)‖Hkx �
1

c2
.

Remark 4.2.15. If one considers the linear KG equation (2.1.1) and applies the above argument,
one obtains the following approximation result.
Fix r ≥ 1, k1 � 1. Let 1 ≤ p ≤ 2 be such that (p, 3) ∈ ∆r \ {(1, τr)}.
Then ∃ k0 = k0(r) > 0 such that for any k ≥ k1 the solution ηrad of (4.2.1) with initial datum
η(0) ∈ W k+k0,p satis�es the following property: call δ the di�erence between the solution of the
approximate equation and the original solution of (2.1.1), and assume that δ0 := δ(0) satis�es

‖δ0‖Hkx �
1

c2
.

Then there exists c∗ := c∗(r, k, p) > 0, such that for any c > c∗

sup
t∈[0,T ]

‖δ(t)‖Hkx �
1

c2
, T � c2(r−1).

This result has been proved in the case r = 1 in Appendix A of [23].

Standing waves solutions

Now we consider the approximation of another important type of solutions, the so-called standing
waves solutions. Fix r ≥ 1, and let ψr be a standing wave solution of (4.1.1), namely of the form

ψr(t, x) = eitωηω(x), (4.2.15)

where ω ∈ R, and ηω ∈ S(R3) solves

−ωηω = XHsimp(ηω).

The issue of (in)stability of standing waves and solitons has a long history: for the NLS equation
and the NLKG the orbital stability of standing waves has been discussed �rst in [78]; for the
NLS the orbital stability of one soliton solutions has been treated in [39], while the asymptotic
stability has been discussed in [29] for one soliton solutions, and in [71] and [72] for N-solitons.
For the higher-order Schrödinger equation we mention [56], which deals with orbital stability of
standing waves for fourth-order NLS-type equations. For the NLKG equation, the instability of
solitons and standing waves has been studied in [79], [45] and [65].

As in the case of the radiation, if δ(t) is a solution of (4.1.6), then by Duhamel formula

δ̇ = ic〈∇〉cδ(t) + dP (ψa(t), ψ̄a(t))δ(t).

Since

P (eitωηω, e
−itω η̄ω) = 2l−1/2

(
c

〈∇〉c

)1/2
[(

c

〈∇〉c

)1/2

Re(eitωηω)

]2l−1

,
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we have that

dP (ηω, η̄ω)eitωh = 2l−1/2

(
c

〈∇〉c

)[(
c

〈∇〉c

)1/2

cos(ωt)ηω

]2(l−1)

(eitωh+ e−itωh̄),

and by setting δ = e−itωh, one gets

−iḣ = (c〈∇〉c + ω)h+ 2l−1/2 cos2(l−1)(ωt)

(
c

〈∇〉c

)[(
c

〈∇〉c

)1/2

ηω

]2(l−1)

(h+ e−2itωh̄)

(4.2.16)

+
[
dP (ψa(s), ψ̄a(s))− dP (ηω, η̄ω)

]
h. (4.2.17)

Eq. (4.2.16) is a Salpeter spinless equation with a periodic time-dependent potential; there-
fore, in order to get some information about the error, one would need the corresponding
Strichartz estimates for Eq. (4.2.16). Unfortunately, in the literature of dispersive estimates
there are only few results for PDEs with time-dependent potentials, and the majority of them is
of perturbative nature; for the Schrödinger equation we mention [31] and [38], in which Strichartz
estimates are proved in a non-perturbative framework.

By using Proposition 4.1.1 one can show that the NLKG can be approximated by the sim-
pli�ed equation (4.1.1) locally uniformly in time, up to an error of order O(c−2r). One may
think that arguing in a non-perturbative framework one could derive some almost-global-in-time
Strichartz estimates for Eq. (4.2.16); however, since also Proposition (2.2.7) deals only with
local-in-time Strichartz estimates, we are not able to exploit the techniques of [31] in order to
get a result valid over the O(1)-timescale.

Thus the result we get is the following one

Proposition 4.2.16. Consider (3.3.3), and �x r ≥ 1 and k1 � 1. Assume that ω ∈ R and
ηω ∈ S(R3) are such that (4.2.15) is a solution of the simpli�ed equation (4.1.1).
Then there exists k0 = k0(r) > 0 such that for any k ≥ k1 the following holds. Call δ the
di�erence between the solution of the approximate equation (4.1.2) and the original solution of
the Hamilton equation for (3.3.3), and assume that δ0 := δ(0) satis�es

‖δ0‖Hkx �
1

c2r
.

Then there exists c∗ := c∗(k, k0, ‖ηω‖k+k0) > 0, such that for any c > c∗ there exists T :=
T (k, k0, ‖ηω‖k+k0) > 0 independent of c such that

sup
t∈[0,T ]

‖δ(t)‖Hkx �
1

c2r
.

Remark 4.2.17. Of course the existence of a standing wave for the simpli�ed equation (4.1.1) is
a far from trivial question (see [39] for the NLS equation, and [56] for the fourth-order NLS-type
equation).
For r = 1 and λ = 1 (namely, the defocusing case), we can exploit the criteria in [39] for exis-
tence and stability of standing waves for the NLS: we recall that if we �x ω > 0 and we consider
ηω to be the ground state of the corresponding equation, we have that the standing wave solution
is orbitally stable for 1

2 < l < 7
6 , and unstable for 7

6 < l < 5
2 .
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Remark 4.2.18. One could ask whether one could get a similar result for more general (in
particular, moving) soliton solution of (4.1.1). Apart from the issue of existence and stability
for such solutions, one can check that, provided that a moving soliton solution for (4.1.1) exists,
then the error δ(t) must solve a (4.2.16)-type equation, namely a spinless Salpeter equation with a
time-dependent moving potential. Unfortunately, since Eq. (4.2.16), unlike KG, is not manifestly
covariant, one cannot apparently reduce to an analogue equation, and once again one cannot
justify the approximation over the O(1)-timescale.



Chapter 5

The non-relativistic limit of KG

equation on T

In this chapter we study the non-relativistic limit of the nonlinear Klein-Gordon (NLKG) equa-
tion on compact manifolds. To be de�nite, we consider

1

c2
utt(t, x)−∆u+

m2c2

~2
u+ λf(u) = 0, (5.0.1)

where x ∈ T, u = u(t, x) is a real-valued (or complex-valued) �eld, λ ∈ R, f(u) is a real-valued
function (or f(u) = λg(|u|2)u if u is complex-valued), and m > 0, c > 0, ~ > 0 are respec-
tively the mass, the speed of light and Planck's constant. In the following we will assume that
m = ~ = 1.
For �xed c, the well-posedness of the Klein-Gordon equation is well studied (see [36] and [37]).
We mention also the papers [33], [32] and [9], in which the authors have discussed the time-
existence beyond the timescale controlled by local existence theory for small solutions of (5.0.1):
the main di�culty of such a problem, already when c is �xed, is the fact that dispersive estimates
typically fail on a compact manifold, hence a more re�ned analysis is needed in order to obtain
nontrivial results.
Here we focus on the non-relativistic limit (c → ∞) of the NLKG with real initial data of the
form u(0) := u0 ∈ Hs(T), ut(0) = v0 ∈ Hs−1(T).

The nonrelativistic limit of (5.0.1) on the torus has recently gained a lot of interest, both
from the analytical and from the numerical point of view: Faou and Schratz in [35] proved by
using a normal form method the convergence of solutions in Hk, locally uniformly in time. We
refer also to [14] for some numerical analysis of the nonrelativistic limit of NLKG.

Our aim is to show that for c su�ciently large, the solution of (5.0.1) with initial datum
of size O(c−α) (α > 0) remains of size O(c−α) for large (namely, O(cα(r+1/2)), with r > 1)
timescales.

53
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5.1 The NLKG Equation with a potential

Now consider the following equation:

1

c2
utt − uxx + c2 u + V ∗ u = f(u), (5.1.1)

with c ≥ 1, x ∈ T, f ∈ C∞(R) a real-valued function (f(u) = g(|u|2)u where g ∈ C∞(R) if u is
complex-valued), with Dirichlet boundary condition. The potential has the form

V (x) =
∑
j≥1

vj cos(jx). (5.1.2)

By using the same approach of [10], we �x a positive s, and for any R > 0 we consider the
probability space

V := Vs,R =

{
(vj)j≥1 : v′j := R−1jsvj ∈

[
−1

2
,

1

2

]}
, (5.1.3)

and we endow the space (1,+∞)× V 3 (c, (vj)j) with the product probability measure.
We recall that in this case the frequencies are given by

ωj := ωj(c) = c
√
c2 + λj = c2 +

λj

1 +
√

1 + λj/c2
(5.1.4)

= c2 +
λj
2
−
λ2
j

2c2
1

(1 +
√

1 + λj/c2)2
, (5.1.5)

where λj = j2 + vj . Now, as we have done in sec. 3.3, we introduce the following change of
coordinates,

ψ :=
1√
2

( (c2 −∆ + Ṽ )1/2

c

)1/2

u− i

(
c

(c2 −∆ + Ṽ )1/2

)1/2

ut

 , (5.1.6)

where Ṽ is the operator that maps u to V ∗ u. The Hamiltonian of (5.1.1) now reads

H(ψ̄, ψ) =
〈
ψ̄, c(c2 −∆ + Ṽ )1/2ψ

〉
+
λ

4

∫
T
f

( c

(c2 −∆ + Ṽ )1/2

)1/2
ψ + ψ̄√

2

dx. (5.1.7)

Therefore the Hamiltonian takes the form

H(ψ, ψ̄) = H0(ψ, ψ̄) +N(ψ, ψ̄), (5.1.8)

where

H0(ψ, ψ̄) =
〈
ψ̄, c(c2 −∆ + Ṽ )1/2ψ

〉
, (5.1.9)

N(ψ, ψ̄) =
λ

24

∫
T
f

( c

(c2 −∆ + Ṽ )1/2

)1/2

(ψ + ψ̄)

 dx, (5.1.10)

∼
∑
l≥4

∫
T
Nl(x)

( c

(c2 −∆ + Ṽ )1/2

)1/2

(ψ + ψ̄)

l

dx, (5.1.11)
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where Nl ∈ C∞ for each l (since V ∈ C∞), and(
c

(c2 −∆ + Ṽ )1/2

)1/2

: Hs → Hs

is a smoothing pseudodi�erential operator, which can be estimated uniformly in c ≥ 1.

Theorem 5.1.1. Consider the equation (5.1.1) and �x γ > 0, and τ > 1. Then for any r ≥ 1
there exists s∗ > 0 and, for any s > s∗, there exists a set Rγ := Rγ,s,r ⊂ ]1,+∞[×V satisfying

|Rγ ∩ ([n, n+ 1]× V)| = O(γ) ∀n ∈ N0,

and there exists Rs > 0 such that for any (c, (vj)j) ∈ (]1,+∞[×V) \ Rγ and for any R < Rs
there exist N := N(r,R) > 0, and a canonical transformation

Tc := T (r)
c : Bs(R/3)→ Bs(R)

such that

Hr := H ◦ T (r)
c = H0 + Z(r) +R(r),

where Z(r) is a polynomial of degree (at most) r + 2, which is in (γ, τ,N) - normal form with
respect to ω = (ωj(c))j≥1, namely such that

Z(r)(ψ, ψ̄) =
∑

m,n∈NN

Zm,nψ
mψ̄n,

Zm,n 6= 0 =⇒ |ω · (n−m)| < γ

Nτ
,
∑

l≥N+1

nl +ml ≤ 2, (5.1.12)

and such that

sup
Bs(R/3)

‖XR(r)(ψ, ψ̄)‖Hs ≤ Ks R
r+3/2, (5.1.13)

sup
Bs(R/3)

‖T (r)
c − id‖Hs ≤ Ks R

2. (5.1.14)

and we have that Zm,n depends on the actions I = ψ ψ̄ only. Moreover, there exists K∗s > 0 such
that if the initial datum satis�es

‖(ψ0, ψ̄0)‖Hs ≤ K R (5.1.15)

with K < K∗s , then

‖(ψ(t), ψ̄(t))‖Hs � 2K R, |t| � R−(r+1/2) (5.1.16)

‖(I(t), Ī(t))‖Hs � K R3, |t| � R−(r+1/2). (5.1.17)

Finally, there exists a smooth torus Tc such that for any s1 < s− 1/2

ds1((ψ(t), ψ̄(t)),Tc) � R
r1
2 +1, |t| � R−(r−r1+1/2), (5.1.18)

where r1 ≤ r, and ds1 is the distance in Hs1 .
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Remark 5.1.2. The fact that Z depends only on the actions is a direct consequence of the
non-resonance property established in Theorem 5.1.7.

Remark 5.1.3. By the same argument one can prove that if we �x α > 0, then for any r ≥ 1
there exists a set Rγ,s,α,r ⊂ ]1,+∞[×V such that there exists c∗ > 0 such that for any (c, (vj)j) ∈
(]1,+∞[×V) \ Rγ,s,α,r with c > c∗, if the initial datum satis�es

‖(ψ0, ψ̄0)‖Hs ≤
K

cα

for some K > 0, then

‖(ψ(t), ψ̄(t))‖Hs �
2K

cα
, |t| � cα(r+1/2),

‖(I(t), Ī(t))‖Hs �
K

c3α
, |t| � cα(r+1/2).

Remark 5.1.4. It would also be interesting to study the dependence of the torus Tc on c. One
could expect that it should converge to an invariant torus of the NLS with a convolution potential.
We expect this fact to be true, but it needs further investigation for a proof. This is due to the
fact that the NLS is the singular limit of NLKG and to the fact that c is only allowed to vary in
Cantor like sets, so that one can only expect a Whitney-smooth dependence.

In order to get our result, we need to show some nonresonance properties of the frequencies
ω = (ωj)j>0: it will be crucial that these properties hold uniformly (or at least, up to a set of
small probability) in (1,+∞)×V, since this will allow us to deduce a result which is valid in the
non-relativistic limit regime.

Proposition 5.1.5. Let r ≥ 1, c ≥ 1 be �xed. Then ∀γ > 0 ∃V ′s,R,γ ⊂ V with |V \V ′s,R,γ | = O(γ),
and ∃τ > 1 s.t. ∀(vj)j≥1 ∈ V ′s,R,γ and ∀ N ≥ 1

|ω · k + n| ≥ γ

Nτ
(5.1.19)

for 0 < |k| ≤ r, supp(k) ⊆ {1, . . . , N}, and ∀ n ∈ Z.

Proof. Let pk((vj)j≥1) :=
∑N
j=1 ωjkj , and assume that kh 6= 0 for some h. Then

∣∣∣∣∂pk∂v′h

∣∣∣∣ =

∣∣∣∣∣ khh
s

2
√

1 + λh/c2

∣∣∣∣∣ & 1

2
√

1 + hmax(s,2)
≥ 1

2
√

1 +Nmax(s,2)
> 0,

hence by Lemma 17.2 of [73]∣∣{(v′j)j≥1 : |pk((vj)j≥1)| < γ}
∣∣ ≤ γ Ns+max(s,2)/2;∣∣∣∣∣∣∣∣

⋃
0<|k|≤r

supp(k)⊆{1,...,N}

{(v′j)j≥1 : |pk((vj)j≥1)| < γ}

∣∣∣∣∣∣∣∣ ≤ γ N
s+r+max(s,2)/2 ≤ γ

Nτ

with τ ≥ 1 for γ = γ0
Nτ+s+r+max(s,2)/2

.
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Proposition 5.1.6. Let r ≥ 1 be �xed. Then ∀γ > 0 ∃Rγ := Rγ,s,r ⊂]1,+∞[×V with |Rγ | → 0
as γ → 0, and ∃τ > 1 such that ∀(c, (vj)j) ∈ (]1,+∞[×V) \ Rγ and ∀ N ≥ 1∣∣∣∣∣∣

N∑
j=1

ωjkj + σωl

∣∣∣∣∣∣ ≥ γ

Nτ
(5.1.20)

for 0 < |k| ≤ r, supp(k) ⊆ {1, . . . , N}, σ = ±1, l ≥ N .

Proof. Without loss of generality, we can choose σ = −1.
Now �x k ∈ ZN with 0 < |k| ≤ r, and �x l ≥ N . Set pk,l(c, (vj)j≥1) :=

∑N
j=1 ωjkj − ωl. We

can rewrite the function pk,l in the following way:

pk,l(c, (vj)j≥1) = αc2 +

N∑
j=1

kjλj

1 +
√

1 + λj/c2
− λl

1 +
√

1 + λl/c2
,

where α := (
∑N
j=1 kj)− 1 ∈ {−r − 1, . . . , r − 1}. Now we have to distinguish some cases:

Case α = 0: in this case we have that pk,l can be small only if l2 ≤ 3(N2 + Ns)2r2. So to
obtain the result we just apply Proposition 5.1.5 with N ′ :=

√
3(N2 +Ns)r, r′ = r + 1.

Case α 6= 0, c ≤ λ1/2
N r1/2: we have that

N∑
j=1

c
√
c2 + λjkj ≤ r

√
c4 + c2λN ≤

√
2 r2λN ,

so |
∑N
j=1 ωjkj − ωl| can be small only for l2 < rN2. Therefore, in order to get the thesis we

apply Proposition 5.1.5 with N ′ :=
√
rN , r′ := r + 1.

Case α > 0, c > λ
1/2
N r1/2: �rst notice that if we set f(x) := x2

2
√

1+x(1+
√

1+x)2
, and we put

xj := λj/c
2, in this regime we get∣∣∣∣∣∣

N∑
j=1

kjf(xj)

∣∣∣∣∣∣ ≤ r

2
f(xN ) ≤ 1

2
.

Now de�ne p̃k,l(c
2) := αc2 − λl

1+
√

1+λl/c2
. One can verify that

p̃k,l(c
2) = 0;

c2 = c̃2l,α :=
λl

α(α+ 2)
,

and that

∂p̃k,l
∂(c2)

(c̃2l,α) = α− α2(α+ 2)2

2
√

1 + α(α+ 2)(1 +
√

1 + α(α+ 2))2
> 0.

Besides, in an interval
[
c̃2l,α −

%
α(α+2) , c

2
l,α + %

α(α+2)

]
=: [c̃2l,α,−, c

2
l,α,+] we have that

∂p̃k,l
∂(c2)

(c2) >

(
1

2
+

1

2(r + 1)

)
α.
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Then, by exploiting Lemma 17.2 of [73], we get that∣∣∣∣{c2 ∈ B(c2l,α, %

α(α+ 2)

]
: |p̃k,l(c2)| ≤ γ

}∣∣∣∣ ≤ γ 2(r + 1)

(r + 2)α

for any γ > 0 s.t. γ 2(r+1)
(r+2)α <

%
α(α+2) ; γ <

(r+2)%
2(r+1)(α+2) .

Now, since in this regime
∣∣∣∂(pk,l−p̃k,l)

∂c2

∣∣∣ ≤ 1
2 , we can deal with pk,l in a similar way as before,

and we can conclude that

lim
γ→0

∣∣∣∣∣∣∣∣
⋃

0<|k|≤r
supp(k)⊆{1,...,N

⋃
l≥N

{c2 ∈ [c2l,α,−, c
2
l,α,+] : |pk,l(c2)| ≤ γ}

∣∣∣∣∣∣∣∣ = 0. (5.1.21)

Case α < 0, c > λ
1/2
N r1/2: since∣∣∣∣∣∣

N∑
j=1

kjλj

1 +
√

1 + λj/c2

∣∣∣∣∣∣ ≤ rλN
2
≤ c2

2
,

we have that pk,l can be small only if λN < rλN . So, in order to get the result, we apply
Proposition 5.1.5 with N ′ := r1/2N , r′ := r + 1.

Theorem 5.1.7. Let r ≥ 1 be �xed. Then ∀γ > 0 ∃Rγ := Rγ,s,r ⊂]1,+∞[×V with |Rγ | → 0 as
γ → 0, and ∃τ > 1 such that ∀(c, (vj)j) ∈ (]1,+∞[×V) \ Rγ and ∀ N ≥ 1∣∣∣∣∣∣

N∑
j=1

ωjkj + σ1ωl + σ2ωm

∣∣∣∣∣∣ ≥ γ

Nτ
(5.1.22)

for 0 < |k| ≤ r, supp(k) ⊆ {1, . . . , N}, σ1, σ2 ∈ {±1}, m > l ≥ N .

Proof. If σi = 0 for i = 1, 2, then we can conclude by using Proposition 5.1.6.
Now, consider the case σ1 = −1, σ2 = 1, and denote

pk,l,m(c2) :=
N∑
j=1

ωj(c
2)kj − ωl(c2) + ωm(c2).

Now �x δ > 3. If m . Nδ, then we can conclude by applying Proposition 5.1.5 and 5.1.6. So
from now on we will assume that m, l > Nδ.

We have to distinguish several cases:
Case c < λαl : we point out that, since

c
√
c2 + λl = cλ

1/2
l

√
1 +

c2

λl
= cλ

1/2
l

(
1 +

c2

2λl
+O

(
1

λ2
l

))
,

we get (denote m = l + j)

ωm − ωl = jc +
1

2

(vm
m
− vl

l

)
+

c3

2λ
1/2
l

− c3

2λ
1/2
m

+O

(
1

m3

)
+O

(
1

l3

)
,
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that is, the integer multiples of c are accumulation points for the di�erences between the fre-
quencies as l,m→∞, provided that α < 1

6 .
Case c > λm: in this case we have (again by denoting m = l + j) that λm − λl =

j(j + 2l) + (vm − vl) = 2jl + j2 + alm, with |alm| ≤ C
l , so that

pk,l,m =

N∑
h=1

ωhkh ± 2jl ± j2 ± alm.

If l > 2CNτ/γ then the term alm represents a negligible correction and therefore we can conclude
by applying Proposition 5.1.5. On the other hand, if l ≤ 2CNτ/γ, we can apply the same
Proposition with N ′ := 2CNτ/γ and r′ := r + 2.

Case λ
1/6
l ≤ c . λ

1/2
l : if we rewrite the quantity to estimate

pk,l,m(c2) = αc2 +

N∑
h=1

λhkh

1 +
√

1 +
λj
c2

+ ωm − ωl,

where α :=
∑N
h=1 kh, we distinguish three cases:

• if α > 0, then we notice that∣∣∣∣∣∣
N∑
h=1

λhkh

1 +
√

1 +
λj
c2

∣∣∣∣∣∣ ≤ rλN

1 +
√

1 + λN/c2
≤ rλN

1 +
√

1 + λN/λl
≤ rλN

2
,

|ωm − ωl| = c
λm − λl√

c2 + λm +
√
c2 + λl

m>l
≥

cλ
1/2
l√

c2 + λm +
√
c2 + λl

&
Nδ/3λ1/2√

N2δ/3 + λ
1/2
m +

√
N2δ/3 + λ

1/2
l

> 0

thus |pk,l,m| > |λ1/3
l − r

2λN | > 0, since l > N3;

• if α = 0, then we just notice that

|ωm − ωl| ≥ γ(λm − λl)
m>l

& γ0 λ
1/2
l ,

which is greater than γ0/N
τ for τ > −1, since l > N3;

• if α < 0, then we just recall that |ωm − ωl| > γ0λ
1/2
l , and by choosing γ0 su�ciently small

(actually γ0 ≤ |α|) we get that also in this case pk,l,m is bounded away from zero.
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5.2 Proof of Theorem 5.1.1

The proof is based on the method of Lie transform. Let s > s∗ be �xed.
Given an auxiliary function χ analytic on Hs, we consider the auxiliary di�erential equation

ψ̇ = i∇ψ̄χ(ψ, ψ̄) =: Xχ(ψ, ψ̄) (5.2.1)

and denote by Φtχ its time-t �ow. A simple application of Cauchy inequality gives

Lemma 5.2.1. Let χ and its symplectic gradient be analytic in Bs(ρ). Fix δ < ρ, and assume
that

sup
Bs(R−δ)

‖Xχ(ψ, ψ̄)‖s ≤ δ.

Then, if we consider the time-t �ow Φtχ of Xχ we have that for |t| ≤ 1

sup
Bs(R−δ)

‖Φtχ(ψ, ψ̄)− (ψ, ψ̄)‖s ≤ sup
Bs(R−δ)

‖Xχ(ψ, ψ̄)‖s.

The map Φ := Φ1
χ will be called the Lie transform generated by χ.

Given a homogeneous polynomial f of degree m, we denote, following [10], its modulus

bfe(ψ, ψ̄) :=
∑
|j|=r

|fj | zj , (5.2.2)

where fj is given by

f(ψ) =
∑
|j|=r

fjz
j ,

zj := · · · zj−l−l · · · z
j−1

−1 z
j1
1 · · · z

jl
l · · · , zl =

〈
ψ, eil·

〉
, z−l =

〈
ψ̄, e−il·

〉
.

Furthermore, given a multivector

φ := (φ(1), . . . , φ(r)) = (ψ(1), ψ̄(1) . . . , ψ(r), ψ̄(r))

we introduce the following norm

‖φ‖s,1 :=
1

r

r∑
l=1

‖φ(1)‖1 . . . ‖φ(l−1)‖1‖φ(l)‖s‖φ(l+1)‖1 . . . ‖φ(r)‖1. (5.2.3)

De�nition 5.2.2. Let X : Hs ⊕Hs → Hs ⊕Hs be a homogeneous polynomial of degree r,

X(ψ, ψ̄) =
∑

l∈Z\{0}

Xl(ψ, ψ̄)eil·.

Consider the r-linear symmetric form X̃l such that X̃l(ψ, ψ̄, . . . , ψ, ψ̄) = Xl(ψ, ψ̄), and set

X̃ :=
∑

l∈Z\{0}

X̃l(ψ, ψ̄)eil·,
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so that X̃(ψ, ψ̄, . . . , ψ, ψ̄) = Xl(ψ, ψ̄).
Let s ≥ 1, then we say that X is an s-tame map if there exists Ks > 0 such that

‖X̃(φ(1), . . . , φ(r))‖s ≤ Ks

r∑
l=1

‖φ(1)‖1 . . . ‖φ(l−1)‖1‖φ(l)‖s‖φ(l+1)‖1 . . . ‖φ(r)‖1, (5.2.4)

∀ φ(1), . . . , φ(r) ∈ Hs ⊕Hs.

If a map is s-tame for any s ≥ 1, then it will be said to be tame.

De�nition 5.2.3. Let us consider a vector �eld X : Hs⊕Hs → Hs⊕Hs, and denote by Xl its
l-th component. We de�ne its modulus by

bXe(ψ, ψ̄) :=
∑

l∈Z\{0}

bXle(ψ, ψ̄)eil·.

A polynomial vector �eld X is said to hace s-tame modulus if its modulus bXe is an s-tame map.
The set of polynomial functions f , whose Hamiltonian vector �elds has s-tame modulus will be
denoted by T sM . If f ∈ T sM for any s > 1, we will write f ∈ Tm, and say that f has tame modulus.

Remark 5.2.4. The property of having tame modulus depends on the coordinate system.

De�nition 5.2.5. Let X be an s-tame vector �eld homogeneous polynomial of degree r. The
in�mum of the constants Ks such that the inequality

‖X̃(φ(1), . . . φ(r))‖ ≤ Ks‖(φ(1), . . . , φ(r))‖s,1
∀ φ(1), . . . , φ(r) ∈ Hs ⊕Hs

holds will be called tame s norm of X, and will be denoted by |X|Ts .

The tame s norm of a polynomial Hamiltonian f of degree r + 1 is given by

|f |s := sup

∥∥∥X̃bfe(φ)
∥∥∥
s

‖φ‖s,1
, (5.2.5)

where the sup is taken over all multivectors φ = (φ(1), . . . , φ(r)) such that φ(j) 6= 0 for any j.

De�nition 5.2.6. Let f ∈ T sM be a non-homogeneous polynomial, and consider its Taylor ex-
pansion

f =
∑
m

fm,

where fm is homogeneous of degree m. Let R > 0, then we denote

〈|f |〉s,R :=
∑
m≥2

|fr|sRm−1. (5.2.6)

Such a de�nition extends naturally to analytic functions such that (5.2.6) is �nite. The set of
functions of class T sM for which (5.2.6) is �nite will be denoted by Ts,R.
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With the above de�nitions,

sup
Bs(R)

‖Xf (ψ, ψ̄)‖s ≤ 〈|f |〉s,R .

It is easy to check that the set Ts,R endowed with the norm (5.2.6) is a Banach space.
Now we introduce the Fourier projection

ΠNψ(x) :=

∫
|k|≤N

ψ̂(k)eik·xdk,

and we split the variables (ψ, ψ̄) into

(ψl, ψ̄l) := (ΠNψ,ΠN ψ̄),

(ψh, ψ̄h) := ((id−ΠN )ψ, (id−ΠN )ψ̄).

The use of Fourier projection is important in view of the following result, whose proof can be
found in Appendix A of [10].

Lemma 5.2.7. Fix N , and consider the decomposition ψ = ψl + ψh as above. Let f ∈ T sM be
a polynomial of degree less or equal than r + 2. Assume that f has a zero of order three in the
variables (ψh, ψ̄h), then one has

sup
Bs(R)

‖Xf (ψ, ψ̄)‖s �
〈|f |〉s,R
Ns−1

. (5.2.7)

Lemma 5.2.8. Let f, g ∈ T sM be homogeneous polynomial of degrees n+1 and m+1 respectively.
Then one has {f, g} ∈ T sM , and

|{f, g}|s ≤ (n+m)|f |s|g|s. (5.2.8)

The proof of this lemma can be found again in Appendix A of [10].

Remark 5.2.9. Given g analytic on Hs ⊕Hs, consider the di�erential equation

ψ̇ = Xg(ψ, ψ̄), (5.2.9)

where by Xg we denote the vector �eld of g. Now de�ne

Φ∗g(φ, φ̄) := g ◦ Φ(ψ, ψ̄).

In the new variables (φ, φ̄) de�ned by (ψ, ψ̄) = Φ(φ, φ̄) equation (5.2.9) is equivalent to

φ̇ = XΦ∗g(φ, φ̄). (5.2.10)

Using the relation

d

dt
(Φtχ)∗g = (Φtχ)∗{χ, g},

we formally get

Φ∗g =

∞∑
l=0

gl, (5.2.11)

g0 := g, (5.2.12)

gl :=
1

l
{χ, gl−1}, l ≥ 1. (5.2.13)
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In order to estimate the terms appearing in (5.2.11) we exploit the following results

Lemma 5.2.10. Let h, g ∈ Ts,R, then for any d ∈ (0, R) one has that {h, g} ∈ Ts,R−d, and

〈|{h, g}|〉s,R−d ≤
1

d
〈|h|〉s,R 〈|g|〉s,R (5.2.14)

Proof. Write h =
∑
j hj and g =

∑
k gk, with hj homogeneous of degree j and similarly for g.

Then we have

{h, g} =
∑
j,k

{hj , gk},

where {hj , gk} has degree j + k − 2. Therefore

〈|{hj , gk}|〉s,R−d = |{hj , gk}|s(R− d)j+k−3

≤ |hj |s|gk|s(j + k − 2)(R− d)j+k−3

≤ |hj |s|gk|s
1

d
Rj+k−2 =

1

d
〈|hj |〉s,R 〈|gk|〉s,R ,

where we exploited the inequality k(R − d)k−1 < Rk/d, which holds for any positive R and
d ∈ (0, R).

Lemma 5.2.11. Let g, χ ∈ Ts,R be analityc functions; denote by gl the functions de�ned recur-
sively by (5.2.11); then for any d ∈ (0, R) one has that gl ∈ Ts,R−d, and

〈|gl|〉s,R−d ≤ 〈|g|〉s,R
( e
d
〈|χ|〉s,R

)l
. (5.2.15)

Proof. Fix l, and denote δ := d/l. We look for a sequence C
(l)
m such that

〈|gm|〉s,R−mδ � C
(l)
m , ∀m ≤ l.

By (5.2.14) we can de�ne the sequence

C
(l)
0 := 〈|g|〉s,R ,

C(l)
m =

2

δm
C

(l)
m−1 〈|χ|〉s,R

=
2l

dm
C

(l)
m−1 〈|χ|〉s,R .

One has

C
(l)
l =

1

l!

(
2l

d
〈|χ|〉s,R

)l
〈|g|〉s,R ,

and using the inequality ll < l!el one can conclude.

Lemma 5.2.12. Let f ∈ T sM be a polynomial which is at most quadratic in the variables (ψh, ψ̄h).
Then there exist χ,Z ∈ Ts,R in (γ, τ,N)-normal form such that

{H0, χ}+ Z = f. (5.2.16)

Moreover, χ and Z satisfy the following estimates

〈|χ|〉s,R ≤
Nτ

γ
〈|f |〉s,R , (5.2.17)

〈|Z|〉s,R ≤ 〈|f |〉s,R . (5.2.18)
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Proof. Expanding f in Taylor series, namely f(ψ, ψ̄) =
∑
j,l fj,lψ

jψ̄l, and similarly for χ and Z,
equation (5.2.16) becomes an equation for the coe�cients of f , χ and Z,

iω · (j − l)χj,l + Zj,l = fj,l.

Then we de�ne

Zj,l := fj,l, when |ω · (j − l)| < γ

Nτ
, (5.2.19)

χj,l :=
fj,l

iω · (j − l)
, when |ω · (j − l)| ≥ γ

Nτ
. (5.2.20)

By construction we get estimates (5.2.17) and (5.2.18). Furthermore, since f is at most quadratic
in (ψh, ψ̄h), we obtain that

∑
k>N (jk + lk) ≤ 2, and thus Z is in (γ, τ,N)-normal form.

Remark 5.2.13. Let s > s∗, and assume that χ, F are analytic on Bs(R). Fix d ∈ (0, R), and
assume also that

sup
Bs(R)

‖Xχ(ψ, ψ̄)‖s ≤ d/3,

Then for |t| ≤ 1

sup
Bs(R−d)

‖X(Φtχ)∗F−F (ψ, ψ̄)‖s = sup
Bs(R−d)

‖XF◦Φtχ−F (ψ, ψ̄)‖s (5.2.21)

(5.2.14)

≤ 5

d
sup
Bs(R)

‖Xχ(ψ, ψ̄)‖s sup
Bs(R)

‖XF (ψ, ψ̄)‖s (5.2.22)

< 2 sup
Bs(R)

‖XF (ψ, ψ̄)‖s. (5.2.23)

Lemma 5.2.14. Let χ ∈ Ts,R be the solution of the equation (5.2.16), with f ∈ T sM . Denote by
H0,l the functions de�ned recursively via (5.2.11) from H0. Then for any d ∈ (0, R) one has that
H0,l ∈ Ts,R−d, and

〈|H0,l|〉s,R−d ≤ 2 〈|f |〉s,R−d
( e
d
〈|χ|〉s,R

)l
. (5.2.24)

Proof. Using (5.2.16) one gets H0,1 = Z − f ∈ T sM . Then, arguing as for (5.2.15), one can
conclude.

The main step of the proof of Theorem 5.1.1 is the following result, that allows to increase by
one the order of the perturbation. As a preliminary step, we take the Taylor series of N(ψ, ψ̄)
up to order r + 2,

N(ψ, ψ̄) =

r∑
l=1

N̂l(x, ψ, ψ̄) (5.2.25)

+N(ψ, ψ̄)−
r∑
l=1

N̂l(x, ψ, ψ̄) (5.2.26)

=: N (1)(ψ, ψ̄) +N (1,r)(ψ, ψ̄), (5.2.27)
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where Nl is a homogeneous polynomial in ψ and ψ̄ of degree l+2 with variable C∞-coe�cients
(since V ∈ C∞).
Now we consider the analytic Hamiltonian

H(0) := H0 +N (1). (5.2.28)

Then for R su�ciently small one has that

〈
|N (1)|

〉
s,R
� R2, (5.2.29)〈

|N (1,r)|
〉
s,R
� Rr+2. (5.2.30)

Lemma 5.2.15. Consider the Hamiltonian (5.2.28), and �x s > s∗. Then for any m ≤ r there
exists R∗m � 1 and, for any N > 1 there exists an analytic canonical transformation

T (m) : Bs

(
(2r −m)

2Nτr
R∗,2m

)
→ Hs

such that

H(m) := H(0) ◦ T (m) = H(0) + Z(m) + f (m) +R(m)
N +R(m)

T , (5.2.31)

where for any R < R∗m/N
τ the following properties are ful�lled

1. the transformation T (m) satis�es

sup
Bs(R)

‖T (m) − id‖s � Nτ R2; (5.2.32)

2. Z(m) is a polynomial of degree (at most) m + 2 in (γ, τ,N)-normal form; f (m) is a poly-
nomial of degree (at most) r + 2. Moreover

sup
Bs((1−m/(2r))R)

‖XZ(m)(ψ, ψ̄)‖s � R2, ∀m ≥ 1, (5.2.33)

sup
Bs((1−m/(2r))R)

‖Xf(m)(ψ, ψ̄)‖s � Rm+2Nτm, ∀m ≥ 1; (5.2.34)

3. the remainder terms R(m)
N and R(m)

T satisfy

sup
Bs((1−m/(2r))R)

‖XR(m)
T

(ψ, ψ̄)‖s � Rr+2Nτ(r+2), (5.2.35)

sup
Bs((1−m/(2r))R)

‖XR(m)
N

(ψ, ψ̄)‖s �
R2

Ns−1
(5.2.36)

Proof. We argue by induction. The theorem is trivial for the case m = 0, by setting cT (0) = id,

Z(0) = 0, f (0) = N (1), R(r)
N = R(r)

T = 0.
Then we split f (m) into two parts, an e�ective one and a remainder. Indeed, we perform a Taylor
expansion of f (m) only in the variables (ψh, ψ̄h), namely we write

f (m) = f
(m)
0 + f

(m)
N ,
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where f
(m)
0 is the truncation of such a series at second order, and f

(m)
0 is the remainder. Since

both f
(m)
0 and f

(m)
N are truncations of f (m), one has that〈

|f (m)
0 |

〉
s,(1−m/(2r))R

�
〈
|f (m)|

〉
s,(1−m/(2r))R〈

|f (m)
N |

〉
s,(1−m/(2r))R

�
〈
|f (m)|

〉
s,(1−m/(2r))R

.

Now consider the truncated Hamiltonian H0 +Z(m) + f
(m)
0 : we look for a Lie transform Tm that

eliminates the non-normalized part of order m+ 4 of the truncated Hamiltonian. Let χm be the
analytic Hamiltonian generating Tm. Using (5.2.11) we have

(H0 + Z(m) + f
(m)
0 ) ◦ Tm = H0 + Z(m)

+ f
(m)
0 + {χm, H0} (5.2.37)

+
∑
l≥1

Z
(m)
l +

∑
l≥1

f
(m)
0,l +

∑
l≥2

H0,l, (5.2.38)

with Z
(m)
l the l-th term in the expansion of the Lie transform of Z(m), and similarly for the

other quantities. It is easy to see that the terms in the �rst line are already normalized, that the
term in the (5.2.37) is the non-normalized part of order m+3 that will vanish through the choice
of a suitable χm, and that the last lines contains all the terms having a zero of order m + 4 at
the origin.

Now we want to determine χm in order to solve the so-called �homological equation�

{χm, H0}+ f
(m)
0 = Zm+1,

with Zm+1 in (γ, τ,N)-normal form. The existence of χm and Zm+1 is ensured by Lemma 5.2.12,
and by applying (5.2.18) and (5.2.33) we get

〈|χm|〉s,(1−m/(2r))R ≤ N
τ R2 (Nτ R)

m
, (5.2.39)

〈|Zm+1|〉s,(1−m/(2r))R ≤ R
2 (Nτ R)

m
. (5.2.40)

In particular, in view of (5.2.23), we can deduce (5.2.32) at level m+ 1. Now de�ne Z(m+1) :=

Z(m) + Zm+1, and f
(m+1)
C := (A.0.20). By 5.2.39, recalling that R < R∗m/N

τ , we can deduce
(5.2.33) at level m+ 1. Moreover, provided that R∗m < 2−(m+1)/2, one has

δ := e
2r

R
〈|χm|〉s,(1−m/(2r))R ≤ (Nτ R)

m+1
<

1

2
.

By (5.2.15) and (5.2.33) one thus gets〈
|f (m+1)
C |

〉
s,(1−(m+1)/(2r))R

�
∑
l≥1

R2δl +
∑
l≥1

R2δl (Nτ R)
m

+
∑
l≥2

R2δl−1 (Nτ R)
m

� R2 (Nτ R)
m+1

.

Write now f
(m+1)
C = f (m+1) + Rm,T , where f (m+1) is the Taylor polynomial of order r + 2 of

f
(m+1)
C , and where Rm,T has a zero of order r+ 3 at the origin. Clearly f (m+1) satis�es (5.2.34)
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at level m + 1, since it is a truncation of f
(m+1)
C . The remainder may be bounded by using

Lagrange and Cauchy estimates,

sup
Bs((1−m/(2r))R)

‖XRm,T (ψ, ψ̄)‖s �
1

(r + 2)!
Rr+2 sup

Bs(R∗m/(2N
τ ))

‖∂r+2X
f
(m+1)
C

(ψ, ψ̄)‖s

� Rr+2

(
2Nτ

R∗m

)r+2

sup
Bs(R∗m/N

τ )

‖X
f
(m+1)
C

(ψ, ψ̄)‖s

� (Nτ R)
r+2

.

Now de�ne R(m+1)
T := R(m)

T ◦ Tm + Rm,T . By (5.2.23) we can deduce (5.2.35) at level m + 1.

Then set R(m+1)
N := (R(m)

N + f
(m)
N ) ◦ Tm. By (5.2.34) and (5.2.36), together with (5.2.23) we

obtain (5.2.36) at level m+ 1.

Now we conclude the proof of Theorem 5.1.1.
By taking the canonical transformation T (r) de�ned in the iterative Lemma 5.2.15 we have that

H(r) = H0 + Z(r) +R(r)
N +R(r)

T +N (1,r) ◦ T (r), (5.2.41)

where Z(r) is in (γ, τ,N)-normal form, and for any R < R∗m/N
τ the following holds

sup
Bs(R)

‖T (r)(ψ, ψ̄)− (ψ, ψ̄)‖s � N2τ R3,

sup
Bs(R)

‖XR(r)
N

(ψ, ψ̄)‖s �
R2

Ns−1
,

sup
Bs(R)

‖XR(r)
T

(ψ, ψ̄)‖s � (Nτ R)
r+2

,

sup
Bs(R)

‖XN(1,r)◦T (r)(ψ, ψ̄)‖s � (Nτ R)
r+2

.

To conclude we have just to choose N and s sich that R(r)
N and R(r)

T are of the same order of
magnitude. First take N = R−a, with a still to be determined; then, in order to obtain that

R(r)
T is of order O(Rr+3/2) we choose a := 1

2τ(r+2) . By taking s > 2τr(r+ 2) + 1 we get that also

N (1,r) is of the same order of magnitude.
Now take K∗ = 1/24, and construct the canonical transformation (ψ, ψ̄) = T (r)(ψ′, ψ̄′). Denote
by I ′ the actions expressed in the variable (ψ′, ψ̄′), and de�ne the function N (ψ′, ψ̄′) := ‖I ′‖2s.
By (5.1.14) one has that N (ψ′0, ψ̄

′
0) ≤ 32

31R
2, provided that R is su�ciently small. Since

∂N
∂t

(ψ′, ψ̄′) = {R(r),N}(ψ′, ψ̄′),

and therefore, as far as N (ψ′, ψ̄′) < 64
9 R

2,∣∣∣∣∂N∂t (ψ′, ψ̄′)

∣∣∣∣ ≤ K ′s Rr+5/2. (5.2.42)

Denote by Tf the escape time of (ψ′, ψ̄′) from Bs(R/3); observe that for all times smaller than
Tf , (5.2.42) holds. So one has

64

9
R2 = N (ψ′(Tf ), ψ̄′(Tf )) ≤ N (ψ′0, ψ̄

′
0) +K ′s R

r+5/2Tf ,
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which shows that Tf should be of order (at least) Rr+1/2. Going back to the original variables
one gets (5.1.16).
To show (5.1.17), one has to recall that

|I(t)− I(0)| ≤ |I(t)− I ′(t)|+ |I ′(t)− I ′(0)|+ |I ′(0)− I(0)|,

and that by (5.1.14) and (5.1.16) one can estimate the �rst and the third term; the second term
can be bounded by computing the time derivative of ‖I ′‖2s with the Hamiltonian, and observing
that it is of order O(Rr+5/2).
Now, consider the initial actions (I0, Ī0) := (I(0), Ī(0)). By passing to the Fourier transform,

Ij(t) := Î(t)(j), j ≥ 1,

we have that for any r1 ≤ r

|(Ij(t), Īj(t))− (Ij(0), Īj(0))| � R2r1

j2s
, |t| � R−(r−r1+1/2). (5.2.43)

If we de�ne the torus

Tc := {(ψ, ψ̄) ∈ Hs : (Ij(ψ, ψ̄), Īj(ψ, ψ̄) = (Ij(0), Īj(0)), for any j ≥ 1},

we get

ds1((ψ(t), ψ̄(t)),Tc) ≤

∑
j

j2s1

(
|
√
Ij(t)−

√
Ij(0)|2 + |

√
Īj(t)−

√
Īj(0)|2

)1/2

,

and by using (5.2.43) we obtain

ds1((ψ(t), ψ̄(t)),Tc)2 ≤
(

sup
j
j2s|Ij(t)− Ij(0)|2 + j2s|Īj(t)− Īj(0)|2

) ∑
j

1

j2(s−s1)
,

which is convergent for s1 < s− 1/2.



Appendix A

Proof of Lemma 3.2.3

In order to normalize system (3.2.1), we used an adaptation of Theorem 4.4 in [4]. The result is
based on the method of Lie transform, that we will recall in the following.
Let k ≥ k1 and p ∈ (1,+∞) be �xed.
Given an auxiliary function χ analytic on W k,p, we consider the auxiliary di�erential equation

ψ̇ = i∇ψ̄χ(ψ, ψ̄) =: Xχ(ψ, ψ̄) (A.0.1)

and denote by Φtχ its time-t �ow. A simple application of Cauchy inequality gives

Lemma A.0.1. Let χ and its symplectic gradient be analytic in Bk,p(ρ). Fix δ < ρ, and assume
that

sup
Bk,p(R−δ)

‖Xχ(ψ, ψ̄)‖k,p ≤ δ.

Then, if we consider the time-t �ow Φtχ of Xχ we have that for |t| ≤ 1

sup
Bk,p(R−δ)

‖Φtχ(ψ, ψ̄)− (ψ, ψ̄)‖k,p ≤ sup
Bk,p(R−δ)

‖Xχ(ψ, ψ̄)‖k,p.

De�nition A.0.2. The map Φ := Φ1
χ will be called the Lie transform generated by χ.

Remark A.0.3. Given G analytic on W k,p, consider the di�erential equation

ψ̇ = XG(ψ, ψ̄), (A.0.2)

where by XG we denote the vector �eld of G. Now de�ne

Φ∗G(φ, φ̄) := G ◦ Φ(ψ, ψ̄).

In the new variables (φ, φ̄) de�ned by (ψ, ψ̄) = Φ(φ, φ̄) equation (A.0.2) is equivalent to

φ̇ = XΦ∗G(φ, φ̄). (A.0.3)

Using the relation

d

dt
(Φtχ)∗G = (Φtχ)∗{χ,G},

69
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we formally get

Φ∗G =

∞∑
l=0

Gl, (A.0.4)

G0 := G, (A.0.5)

Gl :=
1

l
{χ,Gl−1}, l ≥ 1. (A.0.6)

In order to estimate the terms appearing in (A.0.4) we exploit the following results

Lemma A.0.4. Let R > 0, and assume that χ, G are analytic on Bk,p(R).
Then, for any d ∈ (0, R) we have that {χ,G} is analytic on Bk,p(R− d), and

sup
Bk,p(R−d)

‖X{χ,G}(ψ, ψ̄)‖k,p �
2

d
. (A.0.7)

Lemma A.0.5. Let R > 0, and assume that χ, G are analytic on Bk,p(R). Let l ≥ 1, and
consider Gl as de�ned in (A.0.4); for any d ∈ (0, R) we have that Gl is analytic on Bk,p(R− d),
and

sup
Bk,p(R−d)

‖XGl(ψ, ψ̄)‖k,p �
(

2e

d

)l
. (A.0.8)

Proof. Fix l, and denote δ := d/l. We look for a sequence C
(l)
m such that

sup
Bk,p(R−mδ)

‖XGm(ψ, ψ̄)‖k,p � C(l)
m , ∀m ≤ l.

By (A.0.7) we can de�ne the sequence

C
(l)
0 := sup

Bk,p(R)

‖XG(ψ, ψ̄)‖k,p,

C(l)
m =

2

δm
C

(l)
m−1 sup

Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p

=
2l

dm
C

(l)
m−1 sup

Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p.

One has

C
(l)
l =

1

l!

(
2l

d
sup

Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p

)l
sup

Bk,p(R)

‖XG(ψ, ψ̄)‖k,p,

and by using the inequality ll < l!el we can conclude.

Remark A.0.6. Let k ≥ k1, p ∈ (1,+∞), and assume that χ, F are analytic on Bk,p(R). Fix
d ∈ (0, R), and assume also that

sup
Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p ≤ d/3,
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Then for |t| ≤ 1

sup
Bk,p(R−d)

‖X(Φtχ)∗F−F (ψ, ψ̄)‖k,p = sup
Bk,p(R−d)

‖XF◦Φtχ−F (ψ, ψ̄)‖k,p (A.0.9)

(A.0.7)

≤ 5

d
sup

Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p sup
Bk,p(R)

‖XF (ψ, ψ̄)‖k,p. (A.0.10)

Lemma A.0.7. Let k ≥ k1, p ∈ (1,+∞), and assume that G is analytic on Bk,p(R), and that
h0 satis�es PER. Then there exists χ analytic on Bk,p(R) and Z analytic on Bk,p(R) with Z in
normal form, namely {h0, Z} = 0, such that

{h0, χ} + G = Z. (A.0.11)

Furthermore, we have the following estimates on the vector �elds

sup
Bk,p(R)

‖XZ(ψ, ψ̄)‖k,p ≤ sup
Bk,p(R)

‖XG(ψ, ψ̄)‖k,p, (A.0.12)

sup
Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p � sup
Bk,p(R)

‖XG(ψ, ψ̄)‖k,p. (A.0.13)

Proof. One can check that the solution of (A.0.11) is

χ(ψ, ψ̄) =
1

T

∫ T

0

t
[
G(Φt(ψ, ψ̄))− Z(Φt(ψ, ψ̄))

]
dt,

with T = 2π. Indeed,

{h0, χ}(ψ, ψ̄) =
d

ds |s=0
χ(Φs(ψ, ψ̄))

=
1

2π

∫ 2π

0

t
d

ds |s=0

[
G(Φt+s(ψ, ψ̄))− Z(Φt+s(ψ, ψ̄))

]
dt

=
1

2π

∫ 2π

0

t
d

dt

[
G(Φt(ψ, ψ̄))− Z(Φt(ψ, ψ̄))

]
dt

=
1

2π

[
tG(Φt(ψ, ψ̄))− tZ(Φt(ψ, ψ̄))

]2π
t=0
− 1

2π

∫ 2π

0

[
G(Φt(ψ, ψ̄))− Z(Φt(ψ, ψ̄))

]
dt

= G(ψ, ψ̄)− Z(ψ, ψ̄).

Finally, (A.0.12) follows from the fact that

Xχ(ψ, ψ̄) =
1

T

∫ T

0

tΦ−t ◦XG−Z(Φt(ψ, ψ̄)dt

by applying property (3.1.2).

Lemma A.0.8. Let k ≥ k1, p ∈ (1,+∞), and assume that G is analytic on Bk,p(R), and that h0

satis�es PER. Let χ be analytic on Bk,p(R), and assume that it solves (A.0.11). For any l ≥ 1
denote by h0,l the functions de�ned recursively as in (A.0.4) from h0. Then for any d ∈ (0, R)
one has that h0,l is analytic on Bk,p(R− d), and

sup
Bk,p(R−d)

‖Xh0,l
(ψ, ψ̄)‖k,p ≤ 2 sup

Bk,p(R)

‖XG(ψ, ψ̄)‖k,p

(
5

d
sup

Bk,p(R)

‖Xχ(ψ, ψ̄)‖k,p

)l
. (A.0.14)
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Proof. By using (A.0.11) one gets that h0,1 = Z −G is analytic on Bk,p(R). Then by exploiting
(A.0.10) one gets the result.

Lemma A.0.9. Let k1 � 1, p ∈ (1,+∞), R > 0, m ≥ 0, and consider the Hamiltonian

H(m)(ψ, ψ̄) = h0(ψ, ψ̄) + εĥ(ψ, ψ̄) + εZ(m)(ψ, ψ̄) + εm+1F (m)(ψ, ψ̄). (A.0.15)

Assume that h0 satis�es PER and INV, that ĥ satis�es NF, and that

sup
Bk,p(R)

‖Xĥ(ψ, ψ̄)‖k,p ≤ F0,

sup
Bk,p(R)

‖XF (0)(ψ, ψ̄)‖k,p ≤ F.

Fix δ < R/(m+ 1), and assume also that Z(m) are analytic on Bk,p(R−mδ), and that

sup
Bk,p(R)

‖XZ(0)(ψ, ψ̄)‖k,p = 0,

sup
Bk,p(R−mδ)

‖XZ(m)(ψ, ψ̄)‖k,p ≤ F
m−1∑
i=0

εiKi
s, m ≥ 1,

sup
Bk,p(R−mδ)

‖XF (m)(ψ, ψ̄)‖k,p ≤ F Km
s , m ≥ 1, (A.0.16)

with Ks := 2π
δ (18F + 5F0).

Then, if εKs < 1/2 there exists a canonical transformation T (m)
ε analytic on Bk,p(R− (m+ 1)δ)

such that

sup
Bk,p(R−mδ)

‖T (m)
ε (ψ, ψ̄)− (ψ, ψ̄)‖k,p ≤ 2πεm+1F, (A.0.17)

H(m+1) := H(m) ◦ T (m) has the form (A.0.15) and satis�es (A.0.16) with m replaced by m+ 1.

Proof. The key point of the lemma is to look for T (m)
ε as the time-one map of the Hamiltonian

vector �eld of an analytic function εm+1χm. Hence, consider the di�erential equation

(ψ̇, ˙̄ψ) = Xεm+1χm(ψ, ψ̄); (A.0.18)

by standard theory we have that, if ‖Xεm+1χm‖Bk,p(R−mδ) is su�ciently small and (ψ0, ψ̄0) ∈
Bk,p(R − (m + 1)δ), then the solution of (A.0.18) exists for |t| ≤ 1. Therefore we can de�ne
T tm,ε : Bk,p(R − (m + 1)δ) → Bk,p(R −mδ), and in particular the corresponding time-one map

T (m)
ε := T 1

m,ε, which is an analytic canonical transformation, εm+1-close to the identity. We have

(T (m+1)
ε )∗ (h0 + εĥ+ εZ(m) + εm+1F (m)) = h0 + εĥ+ εZ(m)

+ εm+1
[
{χm, h0}+ F (m)

]
+

+
(
h0 ◦ T (m+1) − h0 − εm+1{χm, h0}

)
+ ε(ĥ ◦ T (m+1) − ĥ) + ε

(
Z(m) ◦ T (m+1) − Z(m)

)
(A.0.19)

+ εm+1
(
F (m) ◦ T (m+1) − F (m)

)
. (A.0.20)
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It is easy to see that the �rst three terms are already normalized, that the term in the second
line is the non-normalized part of order m+1 that will vanish through the choice of a suitable
χm, and that the last lines contains all the terms of order higher than m+1.

Now we want to determine χm in order to solve the so-called �homological equation�

{χm, h0}+ F (m) = Zm+1,

with Zm+1 in normal form. The existence of χm and Zm+1 is ensured by Lemma A.0.7, and by
applying (A.0.12) and the inductive hypothesis we get

sup
Bk,p(R−mδ)

‖Xχm(ψ, ψ̄)‖k,p ≤ 2πF, (A.0.21)

sup
Bk,p(R−mδ)

‖XZm+1(ψ, ψ̄)‖k,p ≤ 2πF. (A.0.22)

Now de�ne Z(m+1) := Z(m) + εm Zm+1, and notice that by Lemma A.0.1 we can deduce the
estimate of XZ(m+1) on Bk,p(R− (m+1)δ) and (A.0.17) at level m+1. Next, set εm+2F (m+1) :=
(A.0.19) + (A.0.20). Then we can use (A.0.10) and (A.0.14), in order to get

sup
Bk,p(R−(m+1)δ)

‖Xεm+2F (m+1)(ψ, ψ̄)‖k,p (A.0.23)

≤

(
10

δ
εmKm

s εF +
5

δ
εF0 +

5

δ
εF

m−1∑
i=0

εiKi
s +

5

δ
εF εmKm

s

)
εm+1 sup

Bk,p(R−mδ)
‖Xχm(ψ, ψ̄)‖k,p

= εm+2

(
10

δ
εmKm

s F +
5

δ
F0 +

5

δ
F

m−1∑
i=0

εiKi
s +

5

δ
F εmKm

s

)
sup

Bk,p(R−mδ)
‖Xχm(ψ, ψ̄)‖k,p.

(A.0.24)

If m = 0, then the third term is not present, and (A.0.24) reads

sup
Bk,p(R−δ)

‖Xε2F (1)(ψ, ψ̄)‖k,p ≤ ε2
(

15

δ
F +

5

δ
F

)
2πF < ε2KsF.

If m ≥ 1, we exploit the smallness condition εKs < 1/2, and (A.0.24) reads

sup
Bk,p(R−(m+1)δ)

‖Xεm+2F (m+1)(ψ, ψ̄)‖k,p <
(

18

δ
εF +

5

δ
εF0

)
2π εF εmKm

s = εm+2 FKm+1
s .

Now �x R > 0.

Proof. (of Lemma 3.2.3) The Hamiltonian (3.2.1) satis�es the assumptions of Lemma A.0.9 with

m = 0, FN,r in place of F (0) and hN,r in place of ĥ, F = K
(F,r)
k,p r22Nr, F0 = K

(h,r)
k,p r22Nr (for

simplicity we will continue to denote by F and F0 the last two quantities). So we apply Lemma
A.0.9 with δ = R/4, provided that

8π

R
(18F + 5F0)ε <

1

2
,

which is true due to (3.2.12). Hence there exists an analytic canonical transformation T (1)
ε,N :

Bk,p(3R/4)→ Bk,p(R) with

sup
Bk,p(3R/4)

‖T (1)
ε,N (ψ, ψ̄)− (ψ, ψ̄)‖k,p ≤ 2πF ε,
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such that

HN,r ◦ T (1)
ε,N = h0 + εhN,r + εZ

(1)
N + ε2R(1)

N , (A.0.25)

Z
(1)
N := 〈FN,r〉 , (A.0.26)

ε2R(1)
N := ε2F (1)

=
(
h0 ◦ T (1)

ε,N − h0 − ε{χ1, h0}
)

+ ε(ĥN,r ◦ T (1)
ε,N − ĥN,r) + ε

(
Z

(1)
N ◦ T

(1)
ε,N − Z

(1)
N

)
+ ε2

(
FN,r ◦ T (1)

ε,N − FN,r
)
, (A.0.27)

sup
Bk,p(3R/4)

‖X
hN,r+Z

(1)
N

(ψ, ψ̄)‖k,p ≤ F0 + F =: F̃0, (A.0.28)

sup
Bk,p(3R/4)

‖XR(1)
N

(ψ, ψ̄)‖k,p ≤
8π

R
(18F + 5F0)F =: F̃ . (A.0.29)

Again (A.0.25) satis�es the assumptions of Lemma A.0.9 with m = 0, and hN,r +Z
(1)
N and R(1)

N

in place of F (0) and ĥ.
Now �x δ := δ(R) = R

4r , and apply r times Lemma A.0.9; we get an Hamiltonian of the form
(3.2.13), such that

sup
Bk,p(R/2)

‖X
Z

(r)
N

(ψ, ψ̄)‖k,p ≤ 2F̃ , (A.0.30)

sup
Bk,p(R/2)

‖XR(r)
N

(ψ, ψ̄)‖k,p ≤ F̃ . (A.0.31)
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Properties of the Klein-Gordon and

Spinless Salpeter equations

B.1 Formula for the action of the eitc〈∇〉c

We now derive an explicit formula for the action of the unitary group generated by c〈∇〉c. To
the author's knowledge, it is not easy to �nd in the literature such a formula. We proceed as in
[68] for the corresponding massless case.
Consider f ∈ C∞c (R3), g ∈ S(R3) with ĝ ∈ C∞c (R3), and set

ζ±(z) :=

∫
R3

e±izc〈k〉c f̂(k)ĝ(k)d3k.

Notice that ζ± is an entire function on C, and one has ζ±(∓t) =
〈
e−itc〈∇〉cf, g

〉
for any t ∈ R.

By [52] (Sec. 7.11) one has that for any t > 0

ζ±(±it) =
〈
e−tc〈∇〉cf, g

〉
=

∫
R3

[
c2

2π2

∫
R3

ctK2(c[c2t2 + |x− y|2]1/2)

c2t2 + |x− y|2
f(y)d3y

]
g(x)d3x,

where K2 denotes the modi�ed Bessel function of the third kind of order 2. We recall that the
modi�ed Bessel functions of the third kind are de�ned in the following way (see [1], formulae
9.6.10 and 9.6.2)

Iν(z) :=

∞∑
k=0

1

k!Γ(ν + k + 1)

(z
2

)2k+ν

, (B.1.1)

Kν(z) :=
π

2

I−ν(z)− Iν(z)

sin(νπ)
, (B.1.2)

when for integer ν the right hand side of (B.1.2) is replaced by its limiting value.

Now, set η±(z) :=
∫
R3

[
c2

2π2

∫
R3

∓iczK2(c[|x−y|2−c2z2]1/2)
|x−y|2−c2z2 f(y)d3y

]
g(x)d3x.

By exploiting the following formula (see [34], section 7.2.2, formula (16)),

Kν(iz) = − iπ
2
e−iνπ/2H(2)

ν (z),

75
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(H
(2)
ν denotes the Hankel function of the second kind of order ν) we get

η±(z) =

∫
R3

[
c2

2π

∓czH(2)
2 (c[c2z2 − |x− y|2]1/2)

c2z2 − |x− y|2
f(y)d3y

]
g(x)d3x.

One can observe that, since the Hankel functions are analytic in the complex plane cut along the
negative real axis, η+ is holomorphic on C+ := C \ (R∪ (0, i]) (respectively η− is holomorphic on
C− := C \ (R ∪ [−i, 0)) ). Furthermore, since ζ±(±it) = η±(±it) for t > 1, one has that ζ± = η±
on C± by analytic continuation.
Therefore for t > 1

〈
e−it〈∇〉cf, g

〉
= ζ−(t) = lim

ε→0
ζ−(t− iε) = lim

ε→0
η−(t− iε)

=
c2

2π
lim
ε→0

∫
R3
x

[∫
R3
y

c(t− iε)H(2)
2 (c[ct− icε− |x− y|]1/2[ct− icε+ |x− y|]1/2)

(ct− icε− |x− y|)(ct− icε+ |x− y|)
f(y)d3y

]
·

· g(x)d3x

=
c2

2π

∫
R3
x

∫
R3
y

(ct− i0)H
(2)
2 (c[ct− i0− |x− y|]1/2[ct− i0 + |x− y|]1/2)

(ct− i0− |x− y|)(ct− i0 + |x− y|)
f(y)d3y g(x)d3x

where the distributions s → (s ± i0)a are de�ned for example in [41], Sec. 3.2. On the other
hand, for t < −1

〈
e−itc〈∇〉cf, g

〉
= lim
ε→0

η(|t|+ iε)

=
c2

2π

∫
R3
x

∫
R3
y

(ct+ i0)H
(2)
2 (c[ct+ i0− |x− y|]1/2[ct+ i0 + |x− y|]1/2)

(ct+ i0− |x− y|)(ct+ i0 + |x− y|)
f(y)d3y g(x)d3x

Corollary B.1.1. For any f ∈ C∞c (R3), g ∈ S(R3) with ĝ ∈ C∞c (R3) and t > 1 (respectively
t < −1), one has

〈
eitc〈∇〉cf, g

〉
=
c2

2π

∫
R3
x

∫
R3
y

(ct± i0)H
(2)
2 (c[ct± i0− |x− y|]1/2[ct± i0 + |x− y|]1/2)

(ct± i0− |x− y|)(ct± i0 + |x− y|)
f(y)d3y g(x)d3x

(B.1.3)

Remark B.1.2. In [52] (Sec. 7.11) one also can �nd the explicit formula for the action of
e−tc〈∇〉c also for dimension d > 3. Since the expression is based on the modi�ed Bessel functions
K(d+1)/2, the previous argument applies also to higher dimensions. By exploiting this formula
one may derive the decay in weighted energy norm for the free equation arguing as in Proposition
2.1.5.

B.2 Resolvent estimates

B.2.1 Free resolvent

Now we study the resolvent of the equation (2.1.1). Since we are interested in the non-relativistic
limit, we assume throughout this section that c ≥ 1. The resolvent of the operator H0 := c〈∇〉c
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(which in the literature is sometimes called relativistic Schrödinger operator) will be denoted by

R0,c(z) = (H0 − z)−1, z ∈ C \ [c2,+∞).

Recall that we can write the resolvent through the Fourier transform F : L2 → L2,

R0,c(z) = F−1(c 〈ξ〉c − z)
−1F

(in [86], [30], [49] and [6] the resolvent of the KG equation is handled by using the well known
Jensen-Kato estimates for the Schrödinger resolvent); however, in order to write the resolvent
kernel, we will not use this formula. Arguing as in [87], we will use the explicit expression of
the semigroup generated by −c〈∇〉c as a convolution with the following Poisson kernel ([52], sec.
7.11)

e−tc〈∇〉cψ(x) = Pt,c ∗ ψ(x) =

∫
R3

Pt,c(x− y)ψ(y)d3y, t > 0, ψ ∈ L2, (B.2.1)

Pt,c(x) =
c2

2π2

ctK2

(
c[|x|2 + c2t2]1/2

)
c2t2 + |x|2

, (B.2.2)

where Kν is the modi�ed Bessel function of third kind of order ν (see (B.1.2)). We also recall
the following properties of modi�ed Bessel functions (see formulae 9.6.6, 9.6.26 and 9.6.28 in [1])
that we will use in the sequel,

Kν+1(z) = Kν−1(z) +
2ν

z
Kν(z), (B.2.3)

K ′ν(z) = −Kν−1(z)− ν

z
Kν(z), (B.2.4)(

1

z

d

dz

)k
(zνeiπνKν(z)) = zν−keiπ(ν−k)Kν−k(z), k = 0, 1, 2, . . . , (B.2.5)(

1

z

d

dz

)k
(z−νeiπνKν(z)) = z−ν−keiπ(ν+k)Kν+k(z), k = 0, 1, 2, . . . . (B.2.6)

We then take the Laplace transform of e−tc〈∇〉c to get the free resolvent ([47], ch. 9, (1.28)):

R0,c(z) =

∫ +∞

0

etze−tc〈∇〉cdt, for Re(z) < 0. (B.2.7)

By integration by parts and by exploiting (B.2.6)-(B.2.4), we obtain that for any a > 0 and for
Re(z) < 0

c2

2π2

∫ +∞

0

etz
ctK2

(
c[a2 + c2t2]1/2

)
c2t2 + a2

dt =
c2

2π2

[
K1(ca)

c2a
+

z

c2

∫ +∞

0

etz
K1(c[a2 + c2t2]1/2)

[a2 + c2t2]1/2
dt

]
=

1

2π2

[
K1(ca)

a
+ z

∫ +∞

0

etz
K1(c[a2 + c2t2]1/2)

[a2 + c2t2]1/2
dt

]
,

(B.2.8)

where the last Laplace transform is well-de�ned for Re(z) < c2. In order to study the dis-
persive properties of equation (4.1.6) we need the asymptotics of the free resolvent for |z| → ∞
and for |z| → c2. These will be obtained by using the so-called Abel theorems for the Laplace
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transform (see for example [88], ch. 5, theorem 1 and corollary1a and corollary 1b).
First we de�ne, for any z ∈ C with Re(z) < c2, the function gz,c : R3 → R,

gz,c(x) := =
1

2π2

[
K1(c|x|)
|x|

+ z

∫ +∞

0

etz
K1(c[|x|2 + c2t2]1/2)

[|x|2 + c2t2]1/2
dt

]
,

and the associated operator Gz,c on L
2(R3) given by

Gz,cψ(x) := gz,c ∗ ψ(x) =

∫
R3

gz,c(x− y)ψ(y)d3y.

Notice that for Re(z) < 0 one has that gz,c(x) =
∫ +∞

0
etzPt,c(x)dt.

Proposition B.2.1. If z ∈ C with Re(z) < c2, then R0,c(z)ψ = Gz,cψ for all ψ ∈ C∞c (R3).

Proof. Without loss of generality it su�ces to show that

〈R0,c(z)ψ, φ〉L2 = 〈Gz,cψ, φ〉L2 ,

for all z ∈ C \ [c2,+∞), and all ψ, φ ∈ C∞c (R3). Since

〈R0,c(z)ψ, φ〉L2 =

∫ +∞

0

〈
e−tH0ψ, φ

〉
L2 dt

=

∫ +∞

0

etz

[∫
R3
x

(∫
R3
y

Pt,c(x− y)ψ(y)d3y

)
φ(x)d3x

]
dt (B.2.9)

for Re(z) < 0, in order to make a change of integration in the previous formula, we have to show
that etzPt,c(x− y)ψ(y)φ(x) is absolutely integrable with respect to x, y and t for Re(z) < 0 and
ψ, φ ∈ C∞c (R3). Indeed, by integration by parts

∫ +∞

0

et Re(z)
ctK2

(
c[a2 + c2t2]1/2

)
c2t2 + a2

dt =
K1(ca)

c2a
+
Re(z)

c2

∫ +∞

0

et Re(z)
K1(c[a2 + c2t2]1/2)

[a2 + c2t2]1/2
dt

� K1(ca)

c2a
+
Re(z)K1(ca)

c2a

∫ +∞

0

et Re(z)dt

� K1(ca)

c2a
.
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Therefore, this implies∫
R6×(0,+∞)

∣∣∣etzPt,c(x− y)ψ(y)φ(x)
∣∣∣ d3xd3y dt � 1

2π2

∫
R6

|ψ(y)φ(x)|
|x− y|

K1(c|x− y|)d3xd3y

=
1

2π2

∫
R3

|φ(x)|

(∫
|x−y|≤1

|ψ(y)

c|x− y|2
d3y +

∫
|x−y|>1

|ψ(y)|e−c|x−y|

c1/2|x− y|3/2
d3y

)
d3x

� 1

2π2

∫
R3

|φ(x)|

(
c−1

∫
|x−y|≤1

|ψ(y)|
|x− y|2

d3y + c−1/2e−c‖ψ‖L1

)
d3x

� 1

2π2

∫
R3

|φ(x)|

(
c−1‖ψ‖L∞

∫
|y|≤1

1

|y|2
d3y + c−1/2e−c‖ψ‖L1

)
d3x

c≥1

� ‖φ‖L1 (‖ψ‖L∞ + ‖ψ‖L1) < +∞.

Hence we can make a change of integration in (B.2.9),

〈R0,c(z)ψ, φ〉L2 =

∫
R3
x

[∫
R3
y

(∫ +∞

0

etzPt,c(x− y)dt

)
ψ(y)d3y

]
φ(x)d3x,

and if we apply (B.2.8) to the integral with respect to the t variable, we get that

〈R0,c(z)ψ, φ〉L2 = 〈Gz,cψ, φ〉L2 , for Re(z) < 0.

Finally, di�erentiating ∫
R3
x

∫
R3
y

gz,c(x− y)ψ(y)φ(x)d3y d3x

with respect to z under the integral sign, and by applying the properties of the Laplace transform,
we obtain that 〈Gz,cψ, φ〉L2 is a holomorphic function for Re(z) < c2. Since 〈R0,c(z)ψ, φ〉L2 is
also a holomorphic function for Re(z) < c2, we �nally get

〈R0,c(z)ψ, φ〉L2 = 〈Gz,cψ, φ〉L2 , for Re(z) < c2.

Remark B.2.2. By exploiting the de�nition of the free resolvent through the Fourier transform,

R0,c(z)f := F−1[(c 〈ξ〉c − z)
−1f̂(ξ)], ∀ f ∈ L2, z ∈ C \ [c2,+∞),

we can show the boundedness of R0,c : L2 → L2. Indeed, since the symbol of the free resolvent
for z ∈ C \ [c2,+∞) satis�es

|(c 〈ξ〉c − z)
−1| � N0,c(z) :=

{
|Im(z)|−1 if Im(z) > 0,

|c2 − z|−1 if Im(z) ≤ 0,
(B.2.10)

for any ξ ∈ R3, we can deduce that for z ∈ C \ [c2,+∞) the free resolvent R0,c(z) : L2 → L2

exists and is continuous. Similarly one can show that also R0,c(z) : L2 → H1 is continuous.
Furthermore, (B.2.10), combined with the previous proposition, implies that also Gz,c : L2 →

L2 is bounded for Re(z) < c2. On the other hand, the function x 7→ K1(c|x|)/|x| does not de�ne
a bounded operator on L2, and it would have been di�cult to verify directly from (B.2.8)-(B.2.9)
the boundedness of Gz,c.
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Remark B.2.3. By using the same technique of [17] one can prove that for any c ≥ 1 and
for any σ > 1/2 the resolvent R0,c(z) : L2

σ(R3) → L2
−σ(R3) for z ∈ C \ [c2,+∞) is a bounded

operator, and that for σ > 1/2 the following limiting absorption principle (LAP) holds

lim
ε→0+

‖R0,c(λ± iε)−R0,c(c
2 ± i0)‖L2

σ→L2
−σ

= 0, λ > c2. (B.2.11)

(Just set f(θ) :=
√
c2 + θ2 in [17], Theorem 2A).

Remark B.2.4. From the resolvent identities

R′0,c(z) = F−1[(c 〈ξ〉c − z)
−2F ] = R0,c(z)

2,

R′′0,c(z) = F−1[2(c 〈ξ〉c − z)
−3F ] = 2R0,c(z)

3

one can derive the boundedness of R′0,c(z) and R′′0,c(z) from L2
σ(R3) to L2

−σ(R3) (for su�ciently
large σ > 0) from the boundedness of R0,c(z). Indeed, for σ > 1

‖R′0,c(z)‖L2
σ→L2

−σ
= ‖ 〈·〉−σR0,c(z)

2 〈·〉−σ ‖L2→L2

≤ ‖ 〈·〉−σ/2R0,c(z) 〈·〉−σ/2 〈·〉−σ/2R0,c(z) 〈·〉−σ/2 ‖L2→L2 (B.2.12)

+ ‖ 〈·〉−σ/2 [〈·〉−σ/2 ,R0,c(z)]R0,c(z) 〈·〉−σ ‖L2→L2 (B.2.13)

+ ‖ 〈·〉−σ/2R0,c(z) 〈·〉−σ/2 [R0,c(z), 〈·〉−σ/2] 〈·〉−σ/2 ‖L2→L2 (B.2.14)

(notice that (B.2.12) is �nite for σ > 1) and since [R0,c, 〈x〉−σ/2] = Op(b(x, ξ)), where

b(x, ξ) = −σ
2

(c 〈ξ〉c − z)
−2 〈ξ〉−1

c ξ 〈x〉−(σ+4)/2
x,

we have that |b(x, ξ)| ≤ N0,c(z)
2 〈x〉−1−σ/2

, and that Op(b(x, ξ)) is an integral operator with
kernel

k(x, y) := (Fξb)(x, y − x) = (2π)−3/2

∫
R3

ei(x−y)b(x, ξ)d3ξ.

Furthermore, by the previous computation one may observe that the PDO in (B.2.13) is a Hilbert-
Schmidt operator if and only if −2σ − 1 < −3; σ > 1.
A similar argument leads to the boundedness of ‖R′′0,c(z)‖L2

σ(R3)→L2
−σ(R3) for σ > 3/2.

For the Schrödinger operator, estimates for the derivatives of the free resolvent were found in
[46] by exploiting a Lavine-type identity that links the resolvent to its derivatives. To the best of
our knowledge, there is no analogue of such an identity for the relativistic Schrödinger operator.

Lemma B.2.5. For z ∈ C with Re(z) < c2 we have

‖R0,c(z)‖L2
σ→L2

−σ
= O(1/c2), z → c2, σ > 3/2. (B.2.15)

‖R(k)
0,c (z)‖L2

σ→L2
−σ

= O(|z − c2|1/2− k), z → c2, σ > 3(k + 1)/2, k = 1, 2. (B.2.16)

Proof. Again, observe that for any σ > 0, k = 0, 1, 2, the quantity

‖R(k)
0,c (z)‖L2

σ→L2
−σ

= ‖∂(k)
z R0,c(z)‖L2

σ(R3)→L2
−σ(R3),

is �nite for σ > 3(k + 1)/2, and that for Re(z) < c2 the operator 〈x〉−σ ∂(k)
z R0,c(z) 〈x〉−σ :

L2(R3)→ L2(R3) is the integral operator with kernel

g̃(k)
z,c (x, y) := 〈x〉−σ ∂(k)

z gz,c(x− y) 〈y〉−σ ,
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where gz,c is given by

gz,c(x− y) =
1

2π2

[
K1(c|x− y|)
|x− y|

+ z

∫ +∞

0

etz
K1(c[|x− y|2 + c2t2]1/2)

[|x− y|2 + c2t2]1/2
dt

]
.

Furthermore, by simple computations we have that for σ > 3(k + 1)/2 and Re(z) < c2

‖R(k)
0,c (z)‖L2

σ→L2
−σ

= ‖ 〈x〉−σR(k)
0,c (z) 〈x〉−σ ‖L2(R3)→L2(R3) = sup

‖f‖L2=1

‖ 〈x〉−σR(k)
0,c (z)(〈x〉−σ f)‖L2

(B.2.17)

= sup
‖f‖L2=1

∫
R3
x

〈x〉−2σ

∣∣∣∣∣
∫
R3
y

∂(k)
z gz,c(x− y) 〈y〉−σ f(y)d3y

∣∣∣∣∣
2

d3x

1/2

.

(B.2.18)

Now, one can relate the asymptotic of a function with the asymptotic of its Laplace transform
via the so-called Abelian Theorems (read [88], chapter V, Theorem 1 and Corollary 1a and 1b);
these results generalize the remark that if f(s) is de�ned for real s > 0 by the convergent integral

f(s) =

∫ ∞
0

e−stdα(t),

then
lim
s→0+

f(s) = lim
t→∞

α(t),

provided that the limit on the right-hand side exists.
We apply the Abelian Theorems for the Laplace transform to gz,c and to its derivatives.

We exploit Corollary 1b in ([88], Chap. 5); since

K1(c(|x|2 + c2t2)1/2)

(|x|2 + c2t2)1/2

t→∞∼ c−1/2(|x|2 + c2t2)−3/4e−c(|x|
2+c2t2)1/2 ,

we get ∫ +∞

0

etz
K1(c(|x|2 + t2)1/2)

(|x|2 + t2)1/2
dt

z→c2∼ c−2(z − c2)1/2.

Hence

gz,c(x)
z→c2∼ 1

2π2

[
K1(c|x|)
|x|

+ (z − c2)1/2

]
. (B.2.19)

Since
∫
R3

K1(c|x|)
|x| dx = π

2c2 , for σ > 3/2 we can apply the weighted Young inequality for convolu-

tion, in order to estimate (B.2.17) by a constant times

sup
‖f‖L2=1

‖gz,c‖L1‖ 〈·〉−σ f(y)‖L2 ≤ ‖gz,c‖L1 sup
‖f‖L2=1

‖f‖L2
z→c2∼ O(1/c2), (B.2.20)

and this proves (B.2.15).
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In the case k = 1, by exploiting the l.h.s. in (B.2.7) and through the same kind of argument
of Proposition B.2.1 we have that for Re(z) < c2

∂zgz,c(x) =
c2

2π2

∫ +∞

0

etzt
ct

c2t2 + |x|2
K2(c(|x|2 + c2t2)1/2)dt

=
1

2π2
L
[
K1(c[|x|2 + c2 ]2]1/2)

[|x|2 + c2 ]2]1/2

]
(z) +

z

2π2
L
[
]
K1(c[|x|2 + c2 ]2]1/2)

[|x|2 + c2 ]2]1/2

]
(z),

and that for Re(z) < 0∫ +∞

0

etz
tK1(c(|x|2 + c2t2)1/2)

(|x|2 + c2t2)1/2
dt =

∫ +∞

0

etz
d

dt

[
−c−3K0(c(|x|2 + c2t2)1/2)

]
dt

=
K0(c|x|)

c3
+

z

c3
L
[
K0(c(|x|2 + c2 ]2)1/2)

]
(z).

By Proposition B.2.1 we get that

∂zgz,c(x) =
1

2π2
L
[
K1(c[|x|2 + c2 ]2]1/2)

[|x|2 + c2 ]2]1/2

]
(z) +

z

2π2c3
K0(c|x|) +

z2

2π2c3
L
[
K0(c(|x|2 + c2 ]2)1/2)

]
(z),

and similarly

∂(2)
z gz,c(x) =

1

2π2
L
[
]K1(c[|x|2 + ]2]1/2)

[|x|2 + ]2]1/2

]
(z) +

K0(c|x|)
2π2c3

+
z

π2c3
L
[
K0(c(|x|2 + ]2)1/2)

]
(z)

+
z2

2π2c3
L
[
]K0(c(|x|2 + ]2)1/2)

]
(z).

To prove (B.2.16) for the case k = 1, 2, we can argue as before, and Corollary 1b in ([88],
Chap. 5) gives us that

∂zgz,c(x)
z→c2∼ O(c−2|z − c2|1/2) + c−3K0(c|x|) +O(|z − c2|−1/2), (B.2.21)

∂(2)
z gz,c(x)

z→c2∼ O(c−2|z − c2|−1/2) + c−3K0(c|x|) +O(c−1|z − c2|−1/2) +O(|z − c2|−3/2),
(B.2.22)

and by replacing gz,c with ∂
(k)
z gz,c in (B.2.20) we can conclude.

B.2.2 Asymptotic behavior of the resolvent of H0

In this section we want to prove the asymptotic of the resolvent of H0 as |z| → ∞, by generalizing
the approach of [86] and [67]. These allow us to deduce the asymptotic (B.2.35). Here we deal
only with the 3-dimensional case, but a slight modi�cation of the argument works also for Rd
(d ≥ 3).

Remark B.2.6. In order to deduce the asymptotic for |z| → ∞ one cannot apply the Abelian
Theorems for the Laplace transform to gz,c and to its derivatives, as we did in Lemma B.2.5.
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Indeed, in the case k = 0, since as t→ 0+

K1(c[|x|2 + c2t2]1/2)

[|x|2 + c2t2]1/2
∼ K1(c|x|)

|x|
−
[
c3K0(c|x|)
|x|2

+ 2
c2K1(c|x|)
|x|3

+
c3K2(c|x|)
|x|2

]
t2

4
+O(t4)

=
K1(c|x|)
|x|

− c3K2(c|x|)
2|x|2

t2 +O(t4),

by the Abel theorem for the Laplace transform we would get that

L
[
K1(c[|x|2 + t2]1/2)

[|x|2 + t2]1/2

]
:=

∫ +∞

0

etz
K1(c[|x|2 + t2]1/2)

[|x|2 + t2]1/2
dt

|z|→+∞∼ −K1(c|x|)
|x|z

+ c3
K2(c|x|)
|x|2z3

+O(|z|−5),

hence

gz,c(x) ∼ c3z−2K2(c|x|)
2π2|x|2

, |z| → ∞, Re(z) < c2, (B.2.23)

but the function x 7→ K2(c|x|)
|x|2 , unlike the functions we considered in Lemma B.2.5, is not inte-

grable on R3. One can check that such a problem persists also for the derivatives of R0,c(z).

First, we will prove the following:

Proposition B.2.7. Let c ≥ 1 and z ∈ C \ [c2,+∞). Then

lim inf
|z|→∞

‖R(k)
0,c (z)‖L2

σ→L2
−σ
≥ O(1/c2), σ > 3(k + 1)/2, k = 0, 1, 2. (B.2.24)

The previous proposition will readily follow from

Lemma B.2.8. For each k = 0, 1, 2 and for c ≥ 1 there exist sequences (hk,c,j)j∈N0
⊂ S(R3),

(zk,c,j)j∈N0
⊂ R with |zk,c,j |

j→∞→ +∞ such that

(i) supj ‖hk,c,j‖L2
σ
< +∞ for every σ ≥ 0;

(ii) limj→∞

〈
R(k)

0,c (zk,c,j)hk,c,j , hk,c,j

〉
6= 0.

In the proof of this lemma we will need the following result of residue calculus (often found
as Sokhotski-Plemelj theorem on the line):

Lemma B.2.9. Let a < 0 < b, and let φ ∈ C([a, b],R). Then

lim
µ→0

∫ b

a

φ(σ)

σ ∓ iµ
dσ = ±iπφ(0) + p.v.

∫ b

a

φ(σ)

σ
dσ,

where p.v. denotes the principal value of an integral.
Furthermore, if φ ∈ C1([−1, 1],R) and φ(0) = 0, then the last integral may be replaced by the term

∫ 1

−1

(∫ 1

0

φ′(σθ)dθ

)
dσ.
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Finally, if k > 0 and φ ∈ Ckc ((a, b),R), then by integration by parts we get

∫ b

a

φ(σ)

(σ ∓ iµ)k+1
dσ =

1

k

∫ b

a

φ′(σ)

(σ ∓ iµ)k
dσ =

1

k!

∫ b

a

φ(k)(σ)

σ ∓ iµ
dσ,

hence

lim
µ→0

∫ b

a

φ(σ)

(σ ∓ iµ)k+1
dσ = ± iπ

k!
φ(k)(0) +

1

k!
p.v.

∫ b

a

φ(k)(σ)

σ
dσ.

Proof. (Lemma B.2.8) Choose an even function φ0 such that

supp(φ0) ⊂ (−1, 1),

φ0(0) = 1.

De�ne the sequence (zj)j ⊂ R by

zj := j + 2, j ∈ N0, (B.2.25)

and the sequence of functions (h0,j)j := (h0,c,j)j ∈ S(R3) by

ĥ0,j(ξ) := c−1/2|ξ|−1φ0(c−1 〈ξ〉c − zj), j ∈ N0. (B.2.26)

It is easy to check that

supp(ĥ0,j) ⊂ {ξ ∈ R3 : |ξ| ∈ (c
√
z2
j − 2zj , c

√
z2
j + 2zj)}.

Let α ∈ N3 be a given multi-index: by the Plancherel theorem, we have

‖xαh0,j‖2L2 = (2π)−3

∫
R3

∣∣∣∣(i ∂∂ξ
)α

ĥ0,j(ξ)

∣∣∣∣2 d3ξ

� Kα,φ0
c−1

∫
c
√
z2j−2zj<|ξ|<c

√
z2j+2zj

|ξ|−2d3ξ,

where Kα,φ0
is a constant depending only on α and φ0. Furthermore, a simple calculation shows

that the last integral may be bounded by a constant independent both of j and c. Thus we obtain

sup
j≥1
‖xαh0,j‖L2 < +∞,

and by the arbitrariness of α we get (i).
Next we show (ii). Passing to polar coordinates, we get

〈R0,c(z)h0,j , h0,j〉 = (2π)−3ω3 c
−1

∫ ∞
0

1

c
√
c2 + r2 − z

φ0(c−1
√
c2 + r2 − zj)2dr,
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where ω3 denotes the surface area of the unit sphere in R3. By setting σ := c−1
√
c2 + r2− zj we

get

〈R0,c(z)h0,j , h0,j〉 = (2π)−3ω3 c
−1

∫ 1

−1

1

c2σ + c2zj − z
φ0(σ)2c

σ + zj√
(σ + zj)2 − 1

dσ, (B.2.27)

where we have used that supp(φ0) ⊂ (−1, 1). Now take z = c2(zj + iµ) with µ > 0; taking the
limit as µ→ 0 and exploiting the prevoius lemma we obtain

(2π)3

ω3

〈
R0,c(c

2zj)h0,j , h0,j

〉
= c−2

iπφ0(0)
zj√
z2
j − 1

+

∫ 1

−1

(∫ 1

0

ψ′j(σθ)dθ

)
dσ

 ,
where ψj(σ) := φ0(σ)2 σ+zj√

(σ+zj)2−1
.

Now, from Lebesgue dominated convergence theorem we have

lim
j→∞

∫ 1

−1

(∫ 1

0

ψ′j(σθ)dθ

)
dσ =

∫ 1

−1

(∫ 1

0

(φ2
0)′(σθ)dθ

)
dσ,

and since φ2
0 is an even function, the integral on the r.h.s. vanishes. Hence

lim
j→∞

(2π)3

ω3

〈
R0,c(c

2zj)h0,j , h0,j

〉
= iπc−2, (B.2.28)

and by setting z0,c,j := c2zj we obtain the thesis for k = 0.

To discuss the case k = 1, we again exploit Lemma B.2.9. Indeed, choose an even function
φ1 such that

supp(φ1) ⊂ (−1, 1),

φ1(0) = 1,∫ 1

0

φ1(σ2)dσ 6= 0,

and de�ne

ĥ1,j(ξ) := c−1/2|ξ|−1φ1((c−1 〈ξ〉c − zj)
2), j ∈ N0. (B.2.29)

Arguing as before we get

〈
R′0,c(z)h1,j , h1,j

〉
= (2π)−3ω3 c

−1

∫ ∞
0

1

(c
√
c2 + r2 − z)2

φ1((c−1
√
c2 + r2 − zj)2))2dr

= 2πω3c
−1

∫ 1

−1

1

(c2σ + c2zj − z)2
φ1(σ2)2c

σ + zj√
(σ + zj)2 − 1

dσ,
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and choosing as before z := c2(zj + iµ) we obtain

〈
R′0,c(c2(zj + iµ))h1,j , h1,j

〉
= (2π)−3ω3 c

−1

∫ ∞
0

1

σ − iµ
ψ1,j(σ)dσ

=: I1,j(µ),

where

ψ1,j(σ) := 2φ1(σ2)2σ
σ + zj√

(σ + zj)2 − 1
+ φ1(σ2)2

(
1√

(σ + zj)2 − 1
− (σ + zj)

2

[(σ + zj)2 − 1]3/2

)
.

Now,

lim
µ→0

I1,j(µ) = (2π)−3ω3 c
−2

[
iπφ1(0)2 (−1)

[z2
j − 1]3/2

+

∫ 1

−1

σ−1ψ
(1)
k,j(σ)dσ

]
, (B.2.30)

and by passing to limj→∞ we get by Lebesgue dominated convergence

lim
j→∞

〈
R′0,c(c2zj)h1,j , h1,j

〉
=

ω3

(2π)3
c−2 4

∫ 1

−1

φ1(σ2)dσ =
ω3

c2π3

∫ 1

0

φ1(σ2)dσ, (B.2.31)

which is non-zero by de�nition of φ1.

Finally, for the case k = 2 choose an even function φ2 such that

supp(φ2) ⊂ (−1, 1),

φ2(0) = 1,∫ 1

0

φ2(σ3)φ′′2(σ3)dσ 6= 0,

and de�ne

ĥ2,j(ξ) := c−1/2|ξ|−1φ2((c−1 〈ξ〉c − zj)
3), j ∈ N0. (B.2.32)

By using the same approach as before we get

〈
R′′0,c(c2(zj + iµ))h2,j , h2,j

〉
= (2π)−3ω3 c

−2

∫ ∞
0

1

σ − iµ
ψ2,j(σ)dσ

=: I2,j(µ),

where

ψ2,j(σ) := − 2(σ + zj)

[(σ + zj)2 − 1]3/2
+

(σ + zj)[1 + 2(σ + zj)
2]

[(σ + zj)2 − 1]5/2
φ2(σ3)2+

− 12σ2 φ2(σ3)φ′2(σ3)

[(σ + zj)2 − 1]3/2
+

+
(σ + zj)[12σφ2(σ3)φ′2(σ3) + 18σ4(φ′2(σ3))2 + 18σ4φ2(σ3)φ′′2(σ3)]

[(σ + zj)2 − 1]1/2
,
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hence

lim
j→∞

〈
R′′0,c(c2zj)h2,j , h2,j

〉
=

6ω3

(2π)3
c−2

∫ 1

−1

[
2φ2(σ3)φ′2(σ3) + 3σ3(φ′2(σ3))2 + 3σ3φ2(σ3)φ′′2(σ3)

]
dσ

(B.2.33)

=
3ω3

c2π3

∫ 1

−1

φ2(σ3)φ′2(σ3)dσ (B.2.34)

which is non-zero by de�nition of φ2.

At this stage it is easy to deduce (B.2.24). Fixed k = 0, 1, 2 take the sequences (zk,c,j)j∈N0
⊂ R

and (hk,c,j)j∈N0 ⊂ S(R3); for σ > 3(k + 1)/2 we have

|
〈
R(k)

0,c (zk,c,j)hk,c,j , hk,c,j

〉
| ≤ ‖‖R(k)

0,c (zk,c,j)‖L2
σ→L2

−σ
‖hk,c,j‖2L2

σ
,

and the last inequality, combined with Lemma B.2.8, implies that

lim inf
j→∞

‖R(k)
0,c (zk,c,j)‖L2

σ→L2
−σ
≥ O(1/c2).

Inequality (B.2.24) gives us a lower bound to ‖R0,c(z)‖L2
σ→L2

−σ
as |z| → ∞. On the other

hand, via an argument similar to the proof of Theorem 2.3 in [67], one can deduce the following
upper bound.

Proposition B.2.10. Let c ≥ 1 and z ∈ C \ [c2,+∞). Then

‖R(k)
0,c (z)‖L2

σ→L2
−σ
≤ O(1/c), |z| → ∞, σ > 3(k + 1)/2, k = 0, 1, 2. (B.2.35)

In order to prove Proposition B.2.10 we begin by noticing that

(c 〈ξ〉c − z)(c 〈ξ〉c + z) = (c2 〈ξ〉2c − z
2),

and that

R0,c(z) = F−1

[
1

c2 〈ξ〉2c − z2
(c 〈ξ〉c + z)

]
F, z ∈ C \ ((−∞,−c2] ∪ [c2,+∞)).

Proposition B.2.10 is a consequence of the following lemma.

Lemma B.2.11. Let c ≥ 1 and σ > 3/2, then

sup{‖R0,c(z)‖L2
σ→L2

−σ
: |Re(z)| ≥ 2c2, 0 < |Im(z)| < 1} ≤ O(1/c). (B.2.36)

Proof. Let c ≥ 1, and set Jc := {z ∈ C||Re(z)| ≥ 2c2, 0 < |Im(z)| < 1}.
Now choose ρ ∈ C∞(R) such that

ρ(t) = 1, for |t| < 1/2,

ρ(t) = 0, for |t| > 1.
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Now, for each z ∈ Jc, we de�ne a cuto� function γz,c : R3 → R,

γz,c(ξ) := ρ(c 〈ξ〉c −Re(z)), for Re(z) ≥ 2c2,

γz,c(ξ) := ρ(c 〈ξ〉c +Re(z)), for Re(z) ≤ −2c2.

Using the cuto� γz,c we decompose the resolvent R0,c(z) into three parts:

R0,c(z) = (−c2∆ + c4 − z2)−1Az,c +Bz,c + z(−c2∆ + c4 − z2)−1,

where

Az,c = F−1 [γz,c(ξ) c 〈ξ〉c]F,

Bz,c = F−1

[
1− γz,c(ξ)
c2 〈ξ〉2c − z2

c 〈ξ〉c

]
F.

Note that for c ≥ 1, z ∈ Jc and for ξ ∈ supp(γz,c)

|ξ|2 ≤ c−2(Re(z) + 1)2 − c2;

this implies that for any multi-index α ∃Kα > 0 such that∣∣∣∣( ∂α

∂ξα

)
(γz,c(ξ) c 〈ξ〉c)

∣∣∣∣ � Kα|(c4 − z2)1/2|,

hence

‖Az,cψ‖L2
σ
� |(z2 − c4)1/2|‖ψ‖L2

σ
. (B.2.37)

On the other hand, by the well-known estimate for the Schrödinger resolvent, we have that for
z ∈ Jc

‖(−c2∆ + c4 − z2)−1‖L2
σ→L2

−σ
� c−2

(
z2

c2
− c2

)−1/2

= c−1(z2 − c4)−1/2, (B.2.38)

and by combining (B.2.37) and (B.2.38), we get

‖(−c2∆ + c4 − z2)−1Az,c‖L2
σ→L2

−σ
� c−1, z ∈ Jc. (B.2.39)

Furthermore, since for c ≥ 1, z ∈ Jc, and ξ ∈ supp(1− γz,c)

|c 〈ξ〉c − (z2 − c4)| ≥ 1

2
c 〈ξ〉 ,

we can deduce that also

‖Bz,c‖L2
σ→L2

−σ
� c−1, z ∈ Jc. (B.2.40)

By combining (B.2.39) and (B.2.40) we �nally get (B.2.36).

Analogous estimates for the derivatives R(k)
0,c (z) of the free resolvent follow by exploiting

resolvent identities, and by arguing as before.

Remark B.2.12. We just remark that the behavior of the resolvent of the pseudo-relativistic
Schrödinger operator is quite di�erent from the one of the resolvent of the Schrödinger operator,
since the latter decays like O(|z|−1/2) as |z| → ∞. This di�erence was already reported in the
case c = 1 in [49].
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B.2.3 Resolvent of equation (4.1.6) with a time-independent potential

Now, consider the operator

H(x) := c(c2 −∆)1/2 + V (x) = H0(1 + c−1 〈∇〉−1
c V ), (B.2.41)

where V ∈ C(R3,R) is a potential such that

|V (x)|+ |∇V (x)| � 〈x〉−β , x ∈ R3, (B.2.42)

for some β > 0 su�ciently large (we will specify more precise conditions on V later).
Let V0 := minx∈R3 V (x). Then we can de�ne the perturbed resolvent

Rc(z) = (H(x)− z)−1, z ∈ Γ := C \ [V0,+∞). (B.2.43)

One can construct Rc from the free resolvent R0,c using the decomposition formula

H(x)− z = H0(1 + c−1 〈∇〉−1
c V (x))− z

= (H0 − z){1 +R0,c(z)c 〈∇〉c [(1 + c−1 〈∇〉−1
c V (x))− 1]} (B.2.44)

= (H0 − z){1 +R0,c(z)V (x)} (B.2.45)

= {1 + V (x) R0,c(z)}(H0 − z). (B.2.46)

In order to deduce the boundedness of the perturbed resolvent we perform a variant of the
Jensen-Kato approach for the Schrödinger operator (see [46]).

Theorem B.2.13. For z ∈ Γ the operators

1 +R0,c(z)V (x), 1 + V (x)R0,c(z)

are invertible in L2.

Proof. We show the thesis only for 1 + V (x) R0,c(z); the estimate for the other operator follow
from the fact that

1 +R0,c(z)V (x) = {1 + V (x) R0,c(z̄)}∗.

First step: we prove that equation (H− z)ψ = 0 for ψ ∈ L2 admits only the trivial solution
ψ = 0 for z ∈ Γ̃.
First, (H− z)ψ = 0 implies

(c 〈∇〉c + 1)ψ = (V (x) + z + 1)ψ.

Then (c 〈∇〉c + 1)ψ ∈ L2, hence ψ ∈ D(H0). Therefore,

〈(H− z)ψ,ψ〉 = 〈Hψ,ψ〉 − z‖ψ‖2L2 .

Consider the case z ∈ C \ R. Then

Im(〈(H− z)ψ,ψ〉) = −Im(z‖ψ‖2L2) 6= 0
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for ψ 6= 0, since the scalar product 〈Hψ,ψ〉 is real (because 〈∇〉c is symmetric and ψ ∈ D(H0)).
Hence, (H− z)ψ 6= 0 for ψ 6= 0.
Now consider the case z ∈ R, Re(z) < V0. Then

Re(〈(H− z)ψ,ψ〉) = 〈H0ψ,ψ 〉+ 〈(V (x)−Re(z))ψ,ψ〉
≥ 〈(V0 −Re(z))ψ,ψ〉 6= 0,

since 〈H0ψ,ψ 〉 ≥ 0 ∀ψ ∈ D(H0).
Second step: the above decomposition for the perturbed resolvent, together with the previous
step, allows us to deduce that also the equation

[1 + V (x) R0,c(z)]ψ = 0, z ∈ Γ

with ψ ∈ L2 admits only the trivial solution ψ = 0.
Third step: one shows, via an approximation argument and Sobolev Embedding Theorem, that
V (x)R0,c(z) is compact in L2 for z ∈ Γ.
Indeed, for any δ > 0 we can write V (x) = Vδ(x) + rδ(x), with Vδ ∈ C∞c (R3) and ‖rδ‖L∞ ≤ δ.
Then, by (B.2.10) and pseudo-di�erential calculus we have

lim
δ→0
‖V (x)R0,c(z)− Vδ(x)R0,c(z)‖L2→L2 = 0,

i.e. VR0,c(z) is the limit of the operators VδR0,c(z) in the operator norm, and therefore VR0,c(z)
is compact as an operator from L2 to itself if VδR0,c(z) is compact. Since the multiplication by Vδ
is continuous in L2 and since R0,c(z) is continuous from L2 to H1, we have that the composition
VδR0,c(z) is bounded, and also

supp(VδR0,c(z)) ⊆ supp(Vδ), (B.2.47)

and supp(Vδ) is bounded because Vδ ∈ C∞c (R3). Now, by using (B.2.47) and recalling that
R0,c(z) : L2 → H1 is bounded, we can deduce by compact Sobolev Embedding Theorem the
compactness of VδR0,c(z).
Fourth step: We exploit Fredholm Theorem in order to invert the operator

VδR0,c(z).

Indeed, Fredholm Theorem states that, given a Hilbert space X and a compact operator K :
X → X, then the operator 1 + K : X → X is invertible i� the equation (1 + K)ψ = 0, ψ ∈ X,
admits only the trivial solution ψ = 0.
The result follows by choosing X = L2 and K = VδR0,c(z), for z ∈ Γ.

Now, recalling (B.2.44), we have

Rc(z) = [1 +R0,c(z)V (x)]−1 R0,c(z) (B.2.48)

= R0,c(z) [1 + V (x) R0,c(z)]
−1. (B.2.49)

This splitting, combined with the previous proposition, leads to

Corollary B.2.14. Let z ∈ Γ, then

‖Rc(z)‖L2→L2 � Nc(z) :=
1

dist(z,Γ)
(B.2.50)

=

{
|Im(z)|−1 if Re(z) ≥ V0,

|V0 − z|−1 if Re(z) ≤ V0.
(B.2.51)
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Actually, we may argue by standard arguments from complex analysis in order to extend
the resolvent Rc(z) as an holomorphic operator for z ∈ C \ ([c,+∞) ∪ Σ(V )), where Σ(V ) is a
discrete subset of [V0, c).

Using the estimate in the previous subsection, and the fact that the multiplication by

V (x) : L2
−σ → L2

σ

is compact for β ≥ 2σ, we can deduce the following

Lemma B.2.15. Let (B.2.42) hold for some β > 2. Then for any c ≥ 1

(i) For λ > c2 the operators

R0,c(λ± i0)V (x) : L2
−σ → L2

−σ

are compact for σ ∈ (1/2, β/2].

(ii) The operators

R0,c(c)V (x) : L2
−σ → L2

−σ,

V (x)R0,c(c) : L2
σ → L2

σ,

are compact for σ ∈ (1, β/2].

Now consider the space

Mσ := {ψ ∈ L2
−σ : [1 + V (x) R0,c(c)]ψ = 0}, σ ∈ (1, β/2).

One can show that Mσ does not depend on σ (just consider the space de�ned through the
adjoint operator 1 + R0,c(c)V (x)), hence we can denote the space Mσ by M. Functions in
M∩ L2 are the zero eigenfunctions of the operator H, while functions inM\ L2 are called the
zero resonances of the operator H.

As usual in this framework ([66], [49]), we will assume that the point z = c2 is neither an
eigenvalue nor a resonance for the operator H, ie

M = 0. (B.2.52)

The above spectral condition (B.2.52) ensures the invertibility of

1 +R0,c(c)V (x) : L2
−σ → L2

−σ, σ ∈ (1, β/2),

and it holds for generic potentials V satisfying (B.2.42).
One can also deduce

Lemma B.2.16. Let the potential V (x) satisfy (B.2.42) for some β > 2, and let the spectral
condition (B.2.52) hold. Then for any σ > 1

lim
z→c2

‖Rc(z)−Rc(c2)‖L2
σ→L2

−σ
= 0, z ∈ C \ [c2,+∞). (B.2.53)



92APPENDIX B. PROPERTIES OF THE KLEIN-GORDONAND SPINLESS SALPETER EQUATIONS

Remark B.2.17. By using (B.2.50) and pseudo-di�erential calculus, one can show that the
perturbed resolvent is bounded not only from L2 to L2, but also (for any c ≥ 1) from L2

σ to L2
−σ

for σ > 1/2. Indeed, just notice that for z ∈ Γ

‖Rc(z)‖L2
σ→L2

−σ
= ‖R0,c(z)[1 + V (x) R0,c(z)]

−1‖L2
σ→L2

−σ

≤ ‖R0,c(z)‖L2
σ→L2

−σ

+
∥∥R0,c(z)

{
[1 + V (x) R0,c(z)]

−1 − 1
}∥∥

L2
σ→L2

−σ

but for c ≥ 1 the last term can be bounded (up to a remainder which is smoother) by∥∥∥〈·〉−σR0,c(z) [−V (x) R0,c(z)] 〈·〉−σ
∥∥∥
L2→L2

�
∥∥∥〈·〉−σR0,c(z)V (x)R0,c(z) 〈·〉−σ

∥∥∥
L2→L2

,

and the P.D.O. in the last norm has symbol

〈x〉−σ (c 〈ξ〉c − z)
−1V (x)(c 〈ξ〉c − z)

−1 〈x〉−σ
(B.2.10),(B.2.42)

� N0,c(z)
2 〈x〉−(2σ+β)

.

The above argument may be easily extended to R(k)
c (z) (k = 1, 2); thus for any c ≥ 1 one obtains

‖R(k)
c (z)‖L2

σ→L2
−σ

< +∞, z ∈ Γ, σ > k + 1/2, k = 0, 1, 2. (B.2.54)

The previous remark allows us to deduce the asymptotics for the perturbed resolvent.

Corollary B.2.18. For any c ≥ 1 su�ciently large

‖R(k)
c (z)‖L2

σ→L2
−σ
≤ O(1/c), |z| → ∞, σ > 3(k + 1)/2, k = 0, 1, 2; (B.2.55)

‖Rc(z)‖L2
σ→L2

−σ
= O(1/c2), z → c2, σ > 3/2. (B.2.56)

‖R(k)
c (z)‖L2

σ→L2
−σ

= O(|z − c|1/2− k), z → c2, σ > 3(k + 1)/2, k = 1, 2. (B.2.57)

Finally, we recall that the free resolvent R0,c(z) and the perturbed resolvent Rc(z) are related
through the Born perturbation series,

Rc(z) = R0,c(z)−R0,c(z)V Rc(z)
= R0,c(z)−R0,c(z) V R0,c(z) (B.2.58)

+R0,c(z) V R0,c(z) V Rc(z), (B.2.59)

which follows by iterating the formula (B.2.48). An important property in order to deduce
dispersive estimates for H(x) is the asymptotics for large |z| of the following operator which
appears in (B.2.58),

Wc(z) := R0,c(z) V R0,c(z) V.

Proposition B.2.19. Let the potential V satisfy (B.2.42) with β > 2δ + 3(k + 1), where δ > 0
and k = 0, 1, 2. Then for any c ≥ 1

‖W(k)
c (z)‖L2

−δ→L
2
−δ

= O(|z|−2), |z| → ∞, Re(z) < 0. (B.2.60)
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Proof. By recalling that R0,c(z) commutes with powers of 〈∇〉c, we have

‖W(k)
c (z)‖L2

−δ→L
2
−δ

=

=
∥∥∥∂(k)

z [R0,c(z) V (x) R0,c(z) V (x)]
∥∥∥
L2
−δ→L

2
−δ

,

which reduces to estimate terms of the form

‖R(k1)
0,c (z)V (x)R(k2)

0,c (z)V (x)‖L2
−δ→L

2
−δ

with k1, k2 ∈ {0, 1, 2}, k1 + k2 = 2; but these may be bounded by

‖R(k1)
0,c (z)V (x)‖L2

−δ→L
2
−δ
‖R(k2)

0,c (z)V (x)‖L2
−δ→L

2
−δ
.

The asymptotics (B.2.60) follows from

‖R(k)
0,c (z)V (x)‖L2

−δ→L
2
−δ

= O
(
|z|−1

)
, |z| → ∞, Re(z) < 0. (B.2.61)

Now we want to show (B.2.61) under the assumptions (B.2.42) for V , for δ > 0, β >
2δ + 3(k + 1), k = 0, 1, 2 and for c ≥ 1. We have∥∥∥R(k)

0,c (z)V
∥∥∥
L2
−δ→L

2
−δ

�
∥∥∥R(k)

0,c (z) 〈·〉−β
∥∥∥
L2
−δ→L

2
−δ

(B.2.62)

=
∥∥∥〈·〉−δR(k)

0,c (z) 〈·〉−β 〈·〉δ
∥∥∥
L2→L2

β>2δ
=

∥∥∥〈·〉−δR(k)
0,c (z) 〈·〉−β/2+δ 〈·〉−β/2−δ 〈·〉δ

∥∥∥
L2→L2

≤
∥∥∥R(k)

0,c (z)
∥∥∥
L2
β/2
→L2
−β/2

+
∥∥∥〈·〉−δ [R(k)

0,c (z), 〈·〉−β/2+δ
]
〈·〉−β/2−δ 〈·〉δ

∥∥∥
L2→L2

=: I + II. (B.2.63)

First we estimate I for the case k = 0. In this case we exploit the trivial identity

c 〈∇〉cR0,c(z) = 1 + zR0,c(z),

R0,c(z) = z−1c 〈∇〉cR0,c(z)− z−1,

in order to get

‖R0,c(z)‖L2
β/2
→L2
−β/2

= O
(
|z|−1

)
, |z| → ∞, Re(z) < 0.

Next we estimate I for the cases k = 1, 2. This follows from

‖R(k)
0,c (z)‖L2

β/2
→L2
−β/2

� ‖R0,c(z)
k+1‖L2

β/2
→L2
−β/2

= ‖R0,c(z)R0,c(z)
k‖L2

β/2
→L2
−β/2

� ‖R0,c(z)‖L2
β/2
→L2
−β/2
‖R0,c(z)

k‖L2
β/2
→L2

β/2

� ‖R0,c(z)‖L2
β/2
→L2
−β/2
‖R0,c(z)‖kL2

β/2
→L2

β/2
,
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and

‖R0,c(z)‖L2
β/2
→L2

β/2
= ‖ 〈·〉β/2R0,c(z) 〈·〉−β/2 ‖L2→L2 (B.2.64)

� ‖R0,c(z)‖L2→L2 +
∥∥∥〈·〉β/2 [R0,c(z), 〈·〉−β/2

]∥∥∥
L2→L2

(B.2.65)

� N0,c(z) +N0,c(z)
2 (B.2.66)

because
[
R0,c(z)

(k), 〈·〉−β/2
]

= Op(b(x, ξ; z)), where

|b(x, ξ; z)| � 〈x〉−β/2−1
N0,c(z)

k+2.

Therefore, by recalling the de�nition of N0,c(z), we can conclude that

‖R(k)
0,c (z)‖L2

β/2
→L2
−β/2

= O
(
|z|−1

)
, |z| → ∞, k = 1, 2. (B.2.67)

Finally, we point out that term II in (B.2.63) may be bounded by N0,c(z)
k+2, by using

standard theorems of PDO calculus.



Appendix C

Interpolation theory for relativistic

Sobolev spaces

In this section we show an analogue of Theorem 6.4.5 (7) in [18] for the relativistic Sobolev spaces
W k,p
c , k ∈ R, 1 < p < +∞.

They have been used in Theorem 2.3.1, in order to get Strichartz estimates for (4.1.6).
We begin by reporting the so-called Phragmén-Lindelöf principle (see Chapter 4, Theorem 3.4
in [80]).

Proposition C.0.1. Let F be a holomorphic function in the sector S = {α < arg(z) < β},
where β − α = π/λ. Assume also that F is continuous on S̄, that

|F (z)| ≤ 1 ∀z ∈ ∂S,

and that there exists K > 0 and ρ ∈ [0, λ) such that

|F (z)| ≤ eK|z|
ρ

∀z ∈ S.

Then |F (z)| ≤ 1 ∀z ∈ S.

By Proposition C.0.1 one can prove the 3 lines theorem.

Lemma C.0.2. Let F be analytic on {0 < Re(z) < 1} and continuous on {0 ≤ Re(z) ≤ 1}. If

|F (it)| ≤M0 ∀t ∈ R,
|F (1 + it)| ≤M1 ∀t ∈ R,

then |F (θ + it)| ≤M1−θ
0 Mθ

1 for all t ∈ R and for any θ ∈ (0, 1).

Proof. Let ε > 0, λ ∈ R. Set

Fε(z) = eεz
2+λzF (z).

Then Fε(z)→ 0 as |Im(z)| → +∞, and

|Fε(it)| ≤M0 ∀t ∈ R,
|Fε(1 + it)| ≤M1e

ε+λ ∀t ∈ R,

95
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By Phragmén-Lindelöf principle we get that |Fε(z)| ≤ max(M0,M1e
ε+λ), namely

|F (θ + it)| ≤ e−ε(θ
2−t2) max(M0e

−θλ,M1e
(1−θ)λ+ε), ∀θ, t.

By taking the limit ε→ 0 we deduce that

|F (θ + it)| ≤ max(M0e
−θλ,M1e

(1−θ)λ).

The right-hand side is as small as possible for M0e
−θλ = M1e

(1−θ)λ, i.e. for eλ = M0/M1. Thus,
if we choose λ = log(M0/M1), we get

|F (θ + it)| ≤M1−θ
0 Mθ

1 .

Now we introduce some notation used in the framework of complex interpolation method
(read [18], chapter 4).
Let A = (A0, A1) be a couple of Banach spaces, and denote by A0 +A1 the space for which the
following norm is �nite,

‖a‖A0+A1 := inf
a=a0+a1

(‖a0‖A0 + ‖a1‖A1) .

The space A0 +A1, endowed with the above norm, is also a Banach space.
We then de�ne the space F (A) of all functions f : C→ A0 +A1 which are analytic on the open
strip S := {z : 0 < Re(z) < 1}, continuous and bounded on S̄ = {z : 0 ≤ Re(z) ≤ 1}, such that
the functions

t 7→ f(j + it) ∈ C(R, Aj), j = 0, 1,

and such that lim|t|→∞ f(j + it) = 0 for j = 0, 1.
The space F (A), endowed with the norm

‖f‖F(A) := max(sup
t
‖f(it)‖A0

, sup
t
‖f(1 + it)‖A1

),

is a Banach space (Lemma 4.1.1 in [18]).
Next we de�ne the interpolation space

Aθ := {a ∈ A0 +A1 : a = f(θ) for some f ∈ F (A)},
‖a‖θ := inf{‖f‖F(A) : f ∈ F (A), f(θ) = a}.

Now we show a classical result of complex interpolation theory (Theorem 5.1.1. in [18]).

Theorem C.0.3. Let p0, p1 ≥ 1, and 0 < θ < 1. Then

(Lp0 , Lp1)θ = Lp for
1

p
=

1− θ
p0

+
θ

p1
. (C.0.1)

Proof. We prove that ‖a‖(Lp0 ,Lp1 )θ = ‖a‖Lp for all a ∈ C∞c (Rd). Set

f(z) := eεz
2−εθ2 |a|p/p(z)a/|a|,

where 1/p(z) = (1− z)/p0 + z/p1.
Assume that ‖a‖Lp = 1, then f ∈ F (Lp0 , Lp1), and ‖f‖F ≤ eε. Since f(θ) = a, we conclude
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that ‖a‖(Lp0 ,Lp1 )θ ≤ eε, hence ‖a‖(Lp0 ,Lp1 )θ ≤ ‖a‖Lp .
On the other hand, since

‖a‖Lp = sup{| 〈a, b〉 | : ‖b‖Lp′ = 1, b ∈ C∞c (Rd)},

we can de�ne

g(z) := eεz
2−εθ2 |b|p

′/p′(z)b/|b|,

where 1/p′(z) = (1 − z)/p′0 + z/p′1. Writing F (z) := 〈f(z), g(z)〉, we have |F (it)| ≤ eε and
|F (1 + it)| ≤ e2ε, provided that ‖a‖(Lp0 ,Lp1 )θ = 1. Hence, by the three line theorem it follows
that | 〈a, b〉 | ≤ |F (θ)| ≤ e2ε. This implies that ‖a‖Lp ≤ ‖a‖(Lp0 ,Lp1 )θ .

In order to study the relativistic Sobolev spaces, we have to introduce the notion of Fourier
multipliers.

De�nition C.0.4. Let 1 < p < +∞, and ρ ∈ S ′. We call ρ a Fourier multiplier on Lp(Rd) if
the convolution (F−1ρ) ∗ f ∈ Lp(Rd) for all f ∈ Lp(Rd), and if

sup
‖f‖Lp=1

‖(F−1ρ) ∗ f‖Lp < +∞. (C.0.2)

The linear space of all such ρ is denoted by Mp, and is endowed with the above norm (C.0.2).

One can check that for any p ∈ (1,+∞) one has Mp = Mp′ (where 1/p+ 1/p′ = 1), and that
by Parseval's formula M2 = L∞. Furthermore, by Riesz-Thorin theorem one gets that for any
ρ ∈Mp0 ∩Mp1 and for any θ ∈ (0, 1)

‖ρ‖Mp
≤ ‖ρ‖1−θMp0

‖ρ‖θMp1
,

1

p
=

1− θ
p0

+
θ

p1
. (C.0.3)

In particular, one can deduce that ‖ · ‖Mp decreases with p ∈ (1, 2], and that Mp ⊂ Mq for any
1 < p < q ≤ 2.

More generally, if H0 and H1 are Hilbert spaces, one can introduce a similar de�nition of
Fourier multiplier.

De�nition C.0.5. Let 1 < p < +∞, let H0 and H1 be two Hilbert spaces, and consider ρ ∈
S ′(H0, H1). We call ρ a Fourier multiplier if the convolution (F−1ρ) ∗ f ∈ Lp(H1) for all
f ∈ Lp(H0), and if

sup
‖f‖Lp(H0)=1

‖(F−1ρ) ∗ f‖Lp(H1) < +∞. (C.0.4)

The linear space of all such ρ is denoted by Mp(H0, H1), and is endowed with the above norm
(C.0.4).

Next we state the so-called Mihlin multipier theorem (Theorem 6.1.6 in [18]).

Theorem C.0.6. Let H0 and H1 be Hilbert spaces, and assume that ρ : Rd → L(H0, H1) be
such that

|ξ|α‖Dαρ(ξ)‖L(H0,H1) ≤ K, ∀ξ ∈ Rd, |α| ≤ L

for some integer L > d/2. Then ρ ∈Mp(H0, H1) for any 1 < p < +∞, and

‖ρ‖Mp
≤ CpK, 1 < p < +∞.
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Now, recall the Littlewood-Paley functions (φj)j≥0 de�ned in (3.1.1), and introduce the maps
J : S ′ → S ′ and P : S ′ → S ′ via formulas

(J f)j := φj ∗ f, j ≥ 0, (C.0.5)

Pg :=
∑
j≥0

φ̃j ∗ gj , j ≥ 0, (C.0.6)

where g = (gj)j≥0 with gj ∈ S ′ for all j, and

φ̃0 := φ0 + φ1,

φ̃j := φj−1 + φj + φj+1, j ≥ 1.

One can check that P ◦J f = f ∀f ∈ S ′, since φ̃j ∗φj = φj for all j. We then introduce for c ≥ 1
and k ≥ 0 the space

l2,kc := {(zj)j∈Z : c−k
∑
j∈Z

(c2 + |j|2)k|zj |2 < +∞}.

Theorem C.0.7. Let c ≥ 1, k ≥ 0, 1 < p < +∞. Then 〈∇〉kcLp is a retract of Lp(l2,kc ), namely
that the operators

J : W k,p
c → Lp(l2,kc )

P : Lp(l2,kc )→ W k,p
c

satisfy P ◦ J = id on W k,p
c .

Proof. First we show that J : W k,p
c → Lp(l2,kc ) is bounded.

Since J f = (F−1χc) ∗ J kc f , where

(χc(ξ))j := (c2 + |ξ|2)−k/2φ̂j(ξ), j ≥ 0

J kc f := F−1((c2 + |ξ|2)k/2f̂),

we have that for any α ∈ Nd

|ξ|α‖Dαχc(ξ)‖L(C,l2,kc ) ≤ |ξ|
α
∑
j≥0

(2jkck|Dα(χc(ξ))j | ≤ Kα

because the sum consists of at most two non-zero terms for each ξ. Thus J ∈Mp(W k,p
c , Lp(l2,kc ))

by Mihlin multiplier Theorem.
On the other hand, consider P : Lp(l2,kc )→ W k,p

c .
Since J kc ◦ Pg = (F−1δc) ∗ g(k), where

g = (gj)j≥0,

g(k) := (2jkgj)j≥0,

δc(ξ)g :=
∑
j≥0

2−jk(c2 + |ξ|2)k/2φ̃j(ξ)gj ,

we have that for any α ∈ Nd

|ξ|α‖Dαδc(ξ)‖L(l2,kc ,C) ≤ |ξ|
α

∑
j≥0

(2−jkc−k|Dα(c2 + |ξ|2)k/2φ̃j(ξ)|)2

1/2

≤ Kα,

because the sum consists of at most four non-zero terms for each ξ. Thus P ∈Mp(L
p(l2,kc ),W k,p

c )
by Mihlin multiplier Theorem, and we can conclude.
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Corollary C.0.8. Let θ ∈ (0, 1), and assume that k0, k1 ≥ 0 (k0 6= k1) and p0, p1 ∈ (1,+∞)
satisfy

k = (1− θ)k0 + θk1,

1

p
=

1− θ
p0

+
θ

p1
.

Then (W k0,p
c ,W k1,p

c )θ = W k,p
c .

Proof. It follows from the abstract result that if B = (B0, B1) is a retract of A = (A0, A1), then
Bθ is a retract of Aθ (Theorem 6.4.2 in [18]).

The previous corollary, combined with Lemma C.0.2, immediately gives a proof of Proposition
2.3.4.

We also give a formulation of the Kato-Ponce inequality for the relativistic Sobolev spaces.

Proposition C.0.9. Let f, g ∈ S(R3), and let c > 0, 1 < r <∞ and k ≥ 0. Then

‖f g‖W k,r
c
� ‖f‖

W
k,r1
c
‖g‖Lr2 + ‖f‖Lr3‖g‖W k,r4

c
, (C.0.7)

with

1

r
=

1

r1
+

1

r2
=

1

r3
+

1

r4
, 1 < r1, r4 < +∞.

Remark C.0.10. For c = 1 Eq. (C.0.7) reduces to the classical Kato-Ponce inequality.

Proof. We follow an argument by Cordero and Zucco (see Theorem 2.3 in [28]).
We introduce the dilation operator Sc(f)(x) := f(x/c), for any c > 0.
Then we apply the classical Kato-Ponce inequality to the rescaled product Sc(fg) = Sc(f) Sc(g),

‖Sc(fg)‖Wk,r � ‖Sc(f)‖Wk,r1‖Sc(g)‖Lr2 + ‖Sc(f)‖Lr3‖Sc(g)‖Wk,r4 , (C.0.8)

where

1

r
=

1

r1
+

1

r2
=

1

r3
+

1

r4
, 1 < r1, r4 < +∞.

Now, combining the commutativity property

〈∇〉kSc(f)(x) = c−kSc(〈∇〉kc f)(x),

with the equality ‖Sc(f)‖Lr = c−3/r‖f‖Lr , we can rewrite (C.0.8) as

‖〈∇〉k(f g)‖Lr � ‖〈∇〉kf‖Lr1 ‖g‖Lr2 + ‖f‖Lr3‖〈∇〉kg‖Lr4 ,

and this leads to the thesis.
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Appendix D

Analytical tools

In this chapter we give an outline of the theory of pseudodi�erential operators. This theory has
been developed since 1960s to treat problems in linear and nonlinear PDEs. We will not prove
all the results in detail; for the interested reader we will address to the literature ([42], [84]; see
also [3] for a nonlinear PDEs-oriented approach).
We de�ne pseudodi�erential operators with symbols in Hörmander's classes Smρ,δ; then we derive
some useful properties of their Schwartz kernels, and discuss their properties. We proceed to
a discussion of mapping properties on L2 and on the Sobolev spaces Hk; we also discuss Lp

estimates, in particular some fundamental results of Calderon-Zygmund, and applications to
Littlewood-Paley Theory of �dyadic decomposition�. This decomposition, which is based on
frequency space localization, allows one to rapidly obtain interesting properties of operators on
Sobolev spaces.

D.1 Fourier Transform

In this section we brie�y recall some classical notion of Fourier analysis on Rd. We �rst recall
the de�nition of the space of Schwartz (or rapidly decreasing) functions,

S(Rd) := {f ∈ C∞(Rd,R)| sup
x∈Rd

(1 + |x|2)α/2|∂βf(x)| < +∞, ∀α ∈ Nd,∀β ∈ Nd}. (D.1.1)

In the following we will denote by 〈x〉 := (1 + |x|2)1/2. The space S(Rd), endowed with the
above family of semi-norms for α, β ∈ Nd, is complete. Now, for any f ∈ S(Rd) we introduce the
Fourier transform of f , f̂ : Rd → R,

f̂(ξ) := (2π)−d/2
∫
Rd
f(x)e−i〈x,ξ〉ddx, ∀ξ ∈ Rd, (D.1.2)

where 〈·, ·〉 denotes the scalar product in Rd. Using the above seminorms one can show that the

linear mapping F : f 7→ f̂ is continuous from S(Rd) to itself. The map F is also continuous from
L1(Rd) to L∞(Rd), since

‖f̂‖L∞(Rd) ≤ (2π)−d/2‖f‖L1(Rd).

101
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Now, introduce the operator Dj := −i ∂
∂xj

for 1 ≤ j ≤ d, and more generally

Dα := Dα1
1 . . . Dαd

d , α ∈ Nd,

and let us introduce also the translation operator τyf(·) := f(·−y), y ∈ Rd. We can easily check
the fundamental properties of the Fourier transform,

D̂jf(ξ) = ξjf(ξ), ∀ξ ∈ Rd, (D.1.3)

τ̂yf(ξ) := f(ξ − y) = e−i 〈y,ξ〉f̂(ξ), (D.1.4)

êi 〈y,·〉f(ξ) = τy f̂(ξ), (D.1.5)

x̂ju(ξ) = −Dj f̂(ξ). (D.1.6)

A linear form on S(Rd) which is continuous with respect to the semi-norms de�ned in (D.1.1)
is called a tempered distribution on Rd. The space of tempered distributions is is denoted by
S ′(Rd). In particular, by de�ning the following endomorphism of S(Rd) into itself

T : S(Rd)→ S ′(Rd),

T (u) : v 7→ 〈u, v〉 :=

∫
Rd
u(x)v(x) dx, ∀v ∈ S(Rd),∀u ∈ S(Rd),

we can deduce that S(Rd) ⊂ S ′(Rd) (actually, it is well known that S(Rd) is dense in S ′(Rd)).
As for all linear maps, one can observe that by Fubini's theorem

∫
Rd
û(ξ)v(ξ)dξ =

∫
Rd
u(ξ)v̂(ξ)dξ, ∀u, v ∈ S(Rd),

hence the formula

〈û, v〉 = 〈u, v̂〉 , ∀u ∈ S ′(Rd), v ∈ S(Rd)

de�nes a linear map F : S ′(Rd) → S ′(Rd), which is the unique continuous extension of F :
S(Rd)→ S ′(Rd). In particular, F satis�es (D.1.3) - (D.1.6).
Moreover, using (D.1.4) and (D.1.5), one gets

ˆ̂
f(x) = f(−x), ∀f ∈ S(Rd).

Another well-known result is the Fourier inversion formula,

Lemma D.1.1. The Fourier transform F : φ→ φ̂ is an isomorphism from S(Rd) to itself, with
inverse given by the following formula

f(x) = (2π)−d/2
∫
Rd
f̂(ξ)ei 〈x,ξ〉dξ. (D.1.7)

Proof. See the proof of Theorem 7.1.5 in [41], Ch. VII.

By the Fourier inversion formula one can deduce the Plancherel inequality,〈
f̂ , ĝ
〉

= 〈f, g〉 , ∀f, g ∈ L2(Rd). (D.1.8)
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D.2 Symbols

We begin by noting that if one di�erentiates the above Fourier inversion formula (D.1.7), one
gets

Dαf(x) = (2π)−d/2
∫
Rd
ξαf̂(ξ)ei〈x,ξ〉dξ, ∀α ∈ Nd. (D.2.1)

Hence, if

pm(x,D) =
∑
|α|≤m

aα(x)Dα (D.2.2)

with aα ∈ C∞(Rd) for all α, is a di�erential operator of order m, we have that

pm(x,D)f(x) = (2π)−d/2
∫
Rd
pm(x, ξ)f̂(ξ)ei〈x,ξ〉dξ (D.2.3)

=
∑
|α|≤m

(2π)−d/2
∫
Rd
aα(x)ξαf̂(ξ)ei〈x,ξ〉dξ.

The above computation suggests that if we consider a suitable class of functions, called
symbols, we can write the action of the associated (pseudo-)di�erential operators acting on
L2(Rd) by using the Fourier integral representation (D.2.3).

De�nition D.2.1. Let ρ, δ ∈ [0, 1], m ∈ R. We de�ne the class of symbols Smρ,δ as the set of

functions a ∈ C∞(Rd × Rd) such that for all α, β ∈ Nd there exists Kα,β > 0 such that

|∂αξ ∂βxa(x, ξ)| ≤ Kα,β 〈ξ〉m−ρ|α|+δ|β| . (D.2.4)

The real number m is called order of the symbol.
Furthermore, if there exist smooth functions am−j(x, ξ) homogeneous in ξ of degree m − j for
|ξ| ≥ 1, i.e.

am−j(x, rξ) = rm−jam−j(x, ξ), for r, |ξ| ≥ 1,

and if

a(x, ξ) ∼
∑
j≥0

am−j(x, ξ), namely (D.2.5)

a−
N∑
j=0

am−j ∈ Sm−N1,0 ∀N ∈ N, (D.2.6)

we will write that a ∈ Sm := Sm1,0. We will also denote by S−∞ = ∩m∈RSm.

Remark D.2.2. • Any di�erential symbol of order m, pm(x, ξ) =
∑
|α|≤m aα(x)ξα with

aα ∈ C∞(Rd) for all α, is clearly in Sm.

• Let a ∈ C∞(Rd \ {0}) be a positively homogeneous function of degree m. If χ ∈ C∞0 , with
χ ≡ 1 in a neighborhood of 0, then the function

ã(ξ) := (1− χ(ξ))a(ξ)

is a symbol of order m.
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• Let Ω be an open subset of Rd, and let pm be a di�erential symbol of order m de�ned on
Ω. Assume that pm is elliptic in Ω, namely

pm(x, ξ) 6= 0, ∀x ∈ Ω,∀ξ ∈ Rd \ {0}.

Let φ ∈ C∞0 (Ω), and χ ∈ C∞0 (Rd) with χ ≡ 1 in a neighborhood of 0, then for su�ciently
large K > 0 the function

a(x, ξ) := φ(x)(1− χ(ξ/K))/pm(x, ξ)

is a symbol of order −m.

• Let a ∈ S(Rd), then a(ξ) ∈ S−∞.

• The function a(x, ξ) = ei〈x,ξ〉 is not a symbol.

• A symbol a(x, ξ) with x, ξ ∈ Rd is not necessarily a symbol in the variables y = (x, x′),
η = (ξ, ξ′) with x′, ξ′ ∈ Rk, k ≥ 1, except when it is di�erential.

The following properties follow readily from the de�nition of symbol.

Remark D.2.3. • Let a ∈ Smρ,δ, then ∂αξ ∂βxa ∈ S
m−ρ|α|+δ|β|
ρ,δ .

• Let a ∈ Smρ,δ, b ∈ Snρ,δ, then ab ∈ S
m+n
ρ,δ .

Lemma D.2.4. If a1, . . . , ak ∈ S0, and F ∈ C∞(Ck), then F (a1, . . . , ak) ∈ S0.

Now let us de�ne the following family of semi-norms on Sm,

|a|mα,β := sup
(x,ξ)∈Rd×Rd

〈ξ〉−(m−|α|) |∂αξ ∂βxa(x, ξ)|, α, β ∈ Nd. (D.2.7)

Space Sm, endowed with the above family of seminorms, is complete; the convergence an
n→∞→ a

in Sm means that for every α, β ∈ Nd we have that |an − a|mα,β
n→ 0.

Lemma D.2.5. Let a ∈ S0(Rd × Rd), and set aδ(x, ξ) = a(x, δξ). Then aδ is bounded in S0,
and limδ→0 aδ = a0 in Sm for all m > 0.

Proof. We will show that for 0 ≤ m ≤ 1, 0 ≤ δ ≤ 1, and for any α, β ∈ Nd |aδ − a0|mα,β ≤
Kα,β,mδ

m. Indeed, for α = 0

∂βx (aδ − a0)(x, ξ) = δξ

∫ 1

0

∂ξ∂
β
xa(x, tδξ) dt,

thus

|∂βx (aδ − a0)(x, ξ)| ≤ Kβ

∫ δs

0

ds

〈s〉

≤ KdKβ

∫ δs

0

ds

1 + s
= KdKβ log(1 + sδ),
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and the estimate follows directly from the inequality log(1 + x) ≤ Kmx
m (which holds for any

x ≥ 0, and for any m > 0).
On the other hand, for α 6= 0 we have that ∂αξ ∂

β
xa0 = 0, while

|∂αξ ∂βxaδ(x, ξ)| ≤ Kα,βδ
|α| 〈δξ〉|α| ,

and the result follows, since 〈ξ〉 ≥ 〈δξ〉.

Just observe that the convergence aδ → a0 does not take place in S0. In particular, if
χ ∈ S(Rd), χ = 1 in a neighbourhood of 0, and a ∈ Sm, then the symbols aδ(x, ξ) = χ(δξ)a(x, ξ)
are of order −∞, and aδ → a in Sm

′
for all m′ > m.

In De�nition D.2.1 we have already introduced the notion of asymptotic expansion of a symbol
a ∈ Sm; we will say that a admits the asymptotic (in the sense of the behaviour of symbols as
|ξ| → ∞) expansion,

a(x, ξ) �
∞∑
j=0

aj

if there exists a decreasing sequencemj → −∞, and a sequence of symbols (aj)j∈N with aj ∈ Smj
for all j such that for any N ≥ 0

a−
N∑
j=0

aj ∈ SmN+1 .

In practice, one will often have that mj = m − δj for some δ > 0. In order to beccome
familiar with the notion of asymptotic sum, we �rst show the following result proved by Borel.

Lemma D.2.6. Let (bj)j∈N be a sequence of complex numbers. Then there exists f ∈ C∞(R)
such that f (j)(0) = bj for all j, or equivalently such that

f(x) �
∑
j≥0

bj
xj

j!
, x→ 0.

Proof. Let χ ∈ C∞c (R) be such that χ = 1 if |x| ≤ 1, and such that supp(χ) ⊆ B(0, 2], and
let (λj)j∈N be a sequence of positive numbers such that λj → +∞. We will prove that we can
choose (λj)j∈N such that the function f de�ned by

f(x) :=

∞∑
j=0

bj
xj

j!
χ(λjx)

has the properties of the statement. First note that the above series is simply convergent by
properties of (λj)j and χ.
Let k ∈ N; if j ≥ k, then the k-th derivative of the term of rank j is given by

f
(k)
j (x) =

∑
0≤l≤k

(
k

l

)
bj

xj−l

(j − l)!
χk−l(λjx)λk−lj .

Since λjx remains bounded on the support of χ and its derivatives, we get that there exists a
constant Ck > 0 such that

|f (k)
j (x)| ≤ Ck|bj |

λk−jj

(j − k)!
,
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and if we choose λj ≥ 1 + |bj |, then the series
∑
j |f

(k)
j (x)| converges uniformly for x ∈ R, which

ensures that f is of class C∞, and that we can compute its derivatives by di�erentiating term
by term. Hence for all k we have f (k)(0) = bk.

By adapting the previous lemma, we get

Proposition D.2.7. There exists a ∈ Sm such that a ∼
∑
j aj.

Furthermore, we have supp(a) ⊆
⋃
j supp(aj).

Proof. By taking the asymptotics for 1
|ξ| → 0, we take

a =
∑
j

ãj =
∑
j

(1− χ(εjξ)) aj ,

with χ ∈ C∞c (Rd), χ = 1 near 0, for a suitable (εj)j → 0. More precisely, we require that∣∣∂αξ ∂βx ãj∣∣ ≤ 2−j 〈ξ〉1+mj−|α| if |α|+ |β| ≤ j;

the existence of such (εj)j is ensured by the approximation Lemma D.2.5, since 1− χ(εξ) tends
to 0 in S1. Then the sum is locally �nite, and therefore a ∈ C∞. Now, given α, β and k, we
have that for N ≥ |α|+ |β| and mN + 1 ≤ mk+1∣∣∣∣∣∣∂αξ ∂βx

a− ∑
j≤N−1

ãj

∣∣∣∣∣∣ ≤ 〈ξ〉mk+1−|α| .

Hence a−
∑
j≤k aj = a−

∑
j≤N−1 ãj +

∑
k+1≤j≤N−1 ãj +

∑
j≤k(aj − ãj) satis�es∣∣∣∣∣∣∂αξ ∂βx

a−∑
j≤k

ãj

∣∣∣∣∣∣ ≤ Cα,β,k 〈ξ〉mk+1−|α| ,

because aj − ãj ∈ S−∞, and ãj ∈ Smj .

The above proposition suggests the following de�nition.

De�nition D.2.8. A symbol a ∈ Sm is called classical if a ∼
∑
j aj, where the functions aj are

homogeneous of degree m− j for |ξ| ≥ 1, namely aj(x, λξ) = λm−jaj(x, ξ) for |ξ| ≥ 1, λ ≥ 1.

D.3 Action of pseudo-di�erential operators in S(Rd) and

S ′(Rd)

Lemma D.3.1. Let δ ∈ [0, 1) and a ∈ Smρ,δ, then a(x,D) := Op(a) : S ′(Rd)→ S ′(Rd).
Moreover, the linear mapping Op from Smρ,δ to S ′(Rd) is injective, and satis�es

[Op(a), Dj ] = i Op(∂xja), 1 ≤ j ≤ d, (D.3.1)

[Op(a), xj ] = −i Op(∂ξja), 1 ≤ j ≤ d, (D.3.2)

where xj denotes the multiplication by the function x 7→ xj.
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Proof. Given u ∈ S ′(Rd), v ∈ S(Rd), we have formally

〈v, a(·, D)u〉 = 〈av, û〉 , (D.3.3)

where

av(ξ) = (2π)−d/2
∫
Rd
v(x)a(x, ξ)ei〈x,ξ〉dx. (D.3.4)

Now, by integration by parts we obtain

ξαav(ξ) = (2π)−d/2
∫
Rd
Dα
x (v a(·, ξ)) ei〈x,ξ〉dx,

hence

|av(ξ)| ≤ Kα 〈ξ〉m+δ|α|−|α|
,

thus for δ < 1 we have that pv is decreasing, and the same is true also for its derivatives. There-
fore av ∈ S(Rd), and the right-hand-side of (D.3.3) is well-de�ned.

Relations (D.3.1) follow from integration by parts: indeed,for example

Op(a)Dju(x) = (2π)−d/2
∫
Rd
ei〈x,ξ〉a(x, ξ)D̂ju(ξ)dξ

= (2π)−d/2
∫
Rd
ei〈x,ξ〉a(x, ξ)ξj û(ξ)dξ,

while

Dj(Op(a)u)(x) = −i
[
(2π)−d/2

∫
Rd
ei〈x,ξ〉iξja(x, ξ)û(ξ)dξ +Op(∂xja)u(x)

]
,

so we get the �rst formula of (D.3.1).

Arguing as before, one can show that if a ∈ Smρ,δ with ρ, δ ∈ [0, 1], then a(x,D) is bounded

as an operator from S(Rd) to itself.

De�nition D.3.2. For a ∈ Smρ,δ the operator Op(a) is the pseudo-di�erential operator with
symbol a. A pseudo-di�erential operator is called of order m if its symbol in Smρ,δ for some ρ, δ.
We denote the space of pseudo-di�erential operators with associated symbol in Smρ,δ by OPS

m
ρ,δ.

An altenative representation for a pseudo-di�erential operator can be obtained via the family
of unitary operators

ei〈q,X〉ei〈p,D〉u(x) = ei〈q,x〉u(x+ p). (D.3.5)

Indeed, given a ∈ S(Rd × Rd), we have∫
R2d

â(q, p)ei〈q,X〉ei〈p,D〉u(x)dqdp

= (2π)−d
∫
R4d

a(y, ξ)e−i〈q,y〉ei〈q,x〉e−i〈p,ξ〉u(x+ p)dydξdqdp

= (2π)−d/2
∫
R2d

a(x, ξ)e−i〈p,ξ〉u(x+ p)dξdp

= (2π)−d/2
∫
Rd
a(x, ξ)ei〈x,ξ〉û(ξ)dξ,



108 APPENDIX D. ANALYTICAL TOOLS

hence

a(x,D)u(x) =

∫
R2d

â(q, p)ei〈q,X〉ei〈p,D〉u(x)dqdp;

this is analogous to the Weyl calculus, where

a(x,D)u(x) =

∫
R2d

â(q, p)ei〈q,X〉+〈p,D〉u(x)dqdp

= (2π)−d/2
∫
R2d

a

(
1

2
(x+ y), ξ

)
ei〈x−y,ξ〉u(y)dydξ.

However, we will not use Weyl calculus: we defer to Ch. 18.5 of [42] for a more detailed exposi-
tion of this topic.

To an operator a(x,D) ∈ OPSmρ,δ de�ned by

a(x,D)u(x) = (2π)−d/2
∫
Rd
a(x, ξ)û(ξ)ei〈x,ξ〉dξ (D.3.6)

corresponds a Schwartz kernel K ∈ S ′(Rd × Rd), satisfying

〈u(x)v(y),K〉 = (2π)−d/2
∫
R2d

u(x)a(x, ξ)v̂(ξ)ei〈x,ξ〉dξdx

= (2π)−d
∫
R3d

u(x)a(x, ξ)ei〈x−y,ξ〉v(y)dydξdx.

Thus, the kernel K of the operator a(x,D) corresponds to the oscillatory integral

K(x, y) = (2π)−d
∫
Rd
a(x, ξ)ei〈x−y,ξ〉dξ. (D.3.7)

Proposition D.3.3. Let ρ > 0, then K is C∞ o� the diagonal in Rd × Rd.

Proof. For given α ≥ 0

(x− y)αK(x, y) =

∫
Rd
ei〈x−y,ξ〉Dα

ξ a(x, ξ)dξ. (D.3.8)

The last integral is absolutely convergent for |α| so large such that m − ρ|α| < −d. Similarly
one can check that applying l derivatives to (D.3.8) gives an absolutely convergent integral,
provided that m + l − ρ|α| < −d, hence in that case (x − y)αK ∈ Cl(Rd × Rd). This allows us
to conclude.

More generally, if T has the mapping property

T : D(Rd) := C∞c (Rd)→ E(Rd) := C∞(Rd),
T : E ′(Rd)→ D′(Rd),

and its Schwartz kernel K is C∞ o� the diagonal, it follows that

sing supp Tu ⊆ sing supp u, for u ∈ E ′(Rd). (D.3.9)

This is called pseudolocal property. By Lemma D.3.1 it holds for any T ∈ OPSmρ,δ for ρ > 0 and
δ ∈ (0, 1]. By arguing as in the proof of Proposition D.3.3 one gets also that

|Dβ
x,yK(x, y)| � |x− y|−k,

where k is any integer strictly greater than ρ−1(m+ d+ |β|).



D.4. ADJOINTS AND PRODUCTS OF PSEUDO-DIFFERENTIAL OPERATORS 109

Proposition D.3.4. If a(x,D) ∈ OPSm1,δ, then its Schwartz kernel K satis�es

|Dβ
x,yK(x, y)| � |x− y|−m−d−|β|. (D.3.10)

provided that m+ |β| > −d.

The results follows easily from the case a(x,D) = a(D), for which its kernel is given by
K(x, y) = â(y−x). It su�ces to prove Proposition D.3.4 for such a case, for β = 0 and m > −d,
by exploiting the following

Lemma D.3.5. Let p ∈ C∞(Rd). Then p ∈ Sm if and only if

pr(ξ) := r−mp(rξ)

is bounded in C∞(1 ≤ |ξ| ≤ 2), for any r ≥ 1.

For further details we defer to [83], ch. 7, �2.

D.4 Adjoints and products of pseudo-di�erential operators

Given a ∈ Smρ,δ(Rd × Rd), one readily obtains

a(x,D)∗u(x) = (2π)−d/2
∫
Rd
ā(y, ξ)ei〈x−y,ξ〉u(y)dydξ,

but this is not in the form (D.3.6), since ā(y, ξ) is not a function of x and ξ. In order to tackle
this problem, we study a more general class of operators of the form

Au(x) = (2π)−d/2
∫
R2d

a(x, y, ξ)ei〈x−y,ξ〉u(y)dydξ, (D.4.1)

where we assume that

|Dγ
yD

β
xD

α
ξ a(x, y, ξ)| ≤ Kα,β,γ 〈ξ〉m−ρ|α|+δ1|β|+δ2|γ| ;

we will denote this class by Smρ,δ1,δ2 . By exploiting the unitary operators (D.3.5) one gets

Au(x) = (2π)−d/2
∫
R2d

q(x, ξ)ei〈x−y,ξ〉u(y)dydξ,

where

q(x, ξ) = (2π)−d/2
∫
R2d

a(x, y, η)ei〈x−y,η−ξ〉dydη

= eiDξ·Dya(x, y, ξ)|y=x.

Note that a formal expansion eiDξ·Dy = Id+ iDξ ·Dy − 1
2 (Dξ ·Dy)2 + . . . leads to

q(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
y a(x, y, ξ)|y=x. (D.4.2)

Let a ∈ Smρ,δ1,δ2 with 0 ≤ δ2 < ρ ≤ 1, then the general term in (D.4.2) is in S
m−(ρ−δ)|α|
ρ,δ with

δ = min(δ1, δ2), hence the sum on the right is formally asymptotic.
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Proposition D.4.1. Let a ∈ Smρ,δ1,δ2 with 0 ≤ δ2 < ρ ≤ 1, then the operator (D.4.1) is in
OPSmρ,δ with δ = max(δ1, δ2). Indeed, A = q(x,D), where q admits the asymptotic expansion
(D.4.2).

Proof. To prove the proposition, one can show that the Schwartz kernel

K(x, y) = (2π)−d/2
∫
Rd
a(x, y, ξ)ei〈x−y,ξ〉dξ

satis�es Proposition D.3.3, and therefore, up to an operator in OPS−∞, we can assume a is
supported on |x− y| ≤ 1. Let

b̂(x, η, ξ) = (2π)−d/2
∫
Rd
a(x, x+ y, ξ)e−i〈y,η〉dy,

hence

a(x, ξ) =

∫
Rd
b̂(x, η, ξ + η)dη.

Our assumptions on a imply that

|Dβ
xD

α
η b̂(x, η, ξ)| ≤ Kα,β,ν 〈ξ〉m+δ|β|+δ2ν−ρ|α| 〈η〉−ν ,

where δ = max(δ1, δ2), and for any ν > 0. Since δ2 < 1, it follows that a and its derivatives can

be bounded by some power of 〈ξ〉. Now, an asymptotic expansion of b̂(x, η, ξ + η) in the last
argument about ξ gives that for any N > 0∣∣∣∣∣∣b̂(x, η, ξ + η)−

∑
|α|<N

1

α!
(iDξ)

αb̂(x, η, η)ηα

∣∣∣∣∣∣ ≤ Kν |η|N 〈η〉−ν sup
0≤t≤1

〈ξ + tη〉m+δ2ν−Nρ .

With η = N the right-hand side is bounded by a constant times 〈ξ〉m−(ρ−δ2)N
for |η| ≤ |ξ|/2,

and if ν is large we get a bound by any power of 〈η〉−1
for |ξ| ≤ 2|η|. Hence,∣∣∣∣∣∣a(x, ξ)−

∑
|α|<N

1

α!
(iDξ)

αDα
y a(x, x+ y, ξ)|y=0

∣∣∣∣∣∣ � 〈ξ〉m+d−(ρ−δ2)N
,

that leads to the thesis.

If we apply Proposition D.4.1 to a(x,D)∗, one gets

Proposition D.4.2. Let a(x,D) ∈ OPSmρ,δ, 0 ≤ δ < ρ ≤ 1, then

a(x,D)∗ = ā(x,D) ∈ OPSmρ,δ,

with

a∗(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξD

α
x ā(x, ξ). (D.4.3)

The results for products of PDOs is the following
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Proposition D.4.3. Let aj(x,D) ∈ OPSmρj ,δj for j = 1, 2. Assume that

0 ≤ δ2 < ρ ≤ 1,

where ρ = min(ρ1, ρ2). Then

a1(x,D)a2(x,D) = b(x,D) ∈ OPSm1+m2

ρ,δ ,

with δ = max(δ1, δ2), and

b(x, ξ) ∼
∑
α≥0

i|α|

α!
Dα
ξ a1(x, ξ) Dα

xa2(x, ξ). (D.4.4)

Also a result for the commutator of two PDOs holds.

Proposition D.4.4. Let aj(x,D) ∈ OPSmρj ,δj for j = 1, 2. Assume that

0 ≤ δ < ρ ≤ 1,

where δ = max(δ1, δ2), ρ = min(ρ1, ρ2). Then

[a1(x,D), a2(x,D)] =: {a1, a2}q(x,D) ∈ OPSm1+m2−1
ρ,δ ,

with

{a1, a2}q(x, ξ) ∼ −i{a1, a2}(x, ξ), mod Sm1+m2−2
ρ,δ , (D.4.5)

where

{a1, a2}(x, ξ) =

d∑
j=1

(
∂a1

∂ξj
(x, ξ)

∂a2

∂xj
(x, ξ)− ∂a1

∂xj
(x, ξ)

∂a1

∂ξj
(x, ξ)

)

is the Poisson bracket of the two symbols a1 and a2, and mod Sm1+m2−2
ρ,δ denotes that such an

expansion holds up to a symbol in Smρ,δ.

Remark D.4.5. The above commutator of two PDOs, {a1, a2}q, sometimes called the Moyal
bracket between a1 and a2, has a very concrete physical interpretation. Indeed, if one considers a
quantum particle in a box, then the canonical commutation relation between the position operator
Q and the momentum operator P

[Q,P ] = i~

can be simply regarded as the commutation relation between a PDO of order 0 (the operator
Q) and an operator of order 1 (the operator P ), which gives as a result a multiplication-by-a-
constant operator, which clearly belongs to S0. Similarly, asymptotic expansions of operators can
be studied within the context of the semi-classical limit ~→ 0.

D.5 Action of pseudo-di�erential operators on Sobolev spaces

Here we want to obtain Hk-estimates for pseudo-di�erential operators. We begin with a simple
estimates, which holds also for Lp spaces.
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Proposition D.5.1. Let ρ > 0, m < −d+ ρ(d− 1), and let a(x,D) ∈ OPSmρ,δ. Then

a(x,D) : Lp(Rd)→ Lp(Rd), 1 ≤ p ≤ +∞. (D.5.1)

Furthermore, if a(x,D) ∈ OPSm1,δ, then (D.5.1) holds for any m < 0.

Proposition D.5.1 follows from the following measure theory result.

Lemma D.5.2. Let (X,µ) be a measure space. Assume that k : X ×X → R is measurable, and
that ∫

X

|k(x, y)|dµ(x) ≤ C1, ∀y,∫
X

|k(x, y)|dµ(y) ≤ C2, ∀x.

Then Tu(x) :=
∫
X
k(x, y)u(y)dµ(y) satis�es

‖Tu‖Lp ≤ C1/p
1 C

1/p′

2 ‖u‖Lp , 1 ≤ p ≤ ∞,

where p and p′ are conjugate exponents, namely 1
p + 1

p′ = 1.

For the proof of the Lemma, we refer to section 5 of Appendix A in [82].
To prove Proposition D.5.1 apply the previous Lemma with X = Rd, and k = K as the Schwartz
kernel of a(x,D) ∈ OPSmρ,δ, which by Proposition D.3.3 satis�es

|K(x, y)| ≤ CN |x− y|−N , for |x− y| ≥ 1, ∀N,

when ρ > 0, whereas

|K(x, y)| � |x− y|−(d−1), for |x− y| ≤ 1,

for m < −d+ ρ(d− 1).

Theorem D.5.3. Let 0 ≤ δ < ρ ≤ 1, and let a(x,D) ∈ OPS0
ρ,δ. Then

a(x,D) : L2(Rd)→ L2(Rd). (D.5.2)

Proof. First step: we begin by proving (D.5.2) for a PDO a(x,D) ∈ OPS−aρ,δ , with 0 ≤ δ < ρ ≤ 1,

and a > 0. Since ‖a(x,D)u‖2L2 = 〈a∗au, u〉, it su�ces to prove that some power of p(x,D) :=

a(x,D)a(x,D)∗ is bounded on L2; but pk ∈ OPS−2ka
ρ,δ , so for k large enough this follows from

Proposition D.5.1.
Second step: in order to prove the Theorem, we now consider

p(x,D) = a(x,D)∗a(x,D) ∈ OPS0
ρ,δ,

and assume that |p(x, ξ)| ≤M − b, b > 0, so that

M −Re(p(x, ξ)) ≥ b > 0.

In the matrix case, take Re(p(x, ξ)) = 1
2 (p(x, ξ) + p(x, ξ)∗). Hence

A(x, ξ) = (M −Re p(x, ξ))1/2 ∈ S0
ρ,δ,
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and

A(x,D)∗A(x,D) = M − p(x,D) + r(x,D), r(x,D) ∈ OPS−(ρ−δ)
ρ,δ .

By applying the �rst step to r(x,D), we have that there exists K > 0 such that

M‖u‖2L2 − ‖a(x,D)u‖2L2 = ‖A(x,D)u‖2L2 − 〈r(x,D)u, u〉
≥ −K‖u‖2L2 ,

or

‖a(x,D)u‖2L2 �M‖u‖2L2 .

and we can conclude.

Now PDO-calculus, namely (D.4.4) and Theorem D.5.3, gives

Theorem D.5.4. Let 0 ≤ δ < ρ ≤ 1, let k,m ∈ R, and let a(x,D) ∈ OPSmρ,δ. Then

a(x,D) : Hk(Rd)→ Hk−m(Rd). (D.5.3)

D.6 Lp estimates

As shown in Proposition D.3.4, if 0 ≤ δ < 1 and a(x,D) ∈ OPS0
1,δ, then its Schwartz kernel K

satis�es

|K(x, y)| � |x− y|−d, (D.6.1)

|∇x,yK(x, y)| � |x− y|−d−1, (D.6.2)

‖a(x,D)u‖L2 � ‖u‖L2 ; (D.6.3)

also the smoothing of the PDO a(x,D) have smooth Schwartz kernel satisfying (D.6.1)-(D.6.3).
We want to prove the following result, due to Calderon and Zygmund.

Theorem D.6.1. Assume that a(x,D) : L2(Rd) → L2(Rd) is a weak limit of operators with
smooth Schwartz kernel satisfying (D.6.1)-(D.6.3) uniformly. Then

a(x,D) : Lp(Rd)→ Lp(Rd), 1 < p < +∞. (D.6.4)

Actually, the hypotheses imply a stronger property, namely that a(x,D) is of weak type (1, 1).
An operator P is of weak type (p, p) if for any λ > 0

meas({x : |Pu(x)| > λ}) �
‖u‖qLq
λq

.

Note that any bounded operator on Lp is of weak type (p, p), due to the Markov inequality

meas({x : |v(x)| > λ}) � ‖v‖L
1

λ
.

Hence, in order to prove (D.6.4), we just prove

Proposition D.6.2. Assume that a(x,D) : L2(Rd)→ L2(Rd) is a weak limit of operators with
smooth Schwartz kernel satisfying (D.6.1)-(D.6.3) uniformly. Then a(x,D) is of weak type (1, 1).
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Once Proposition D.6.2 is proved, then one can readily prove (D.6.4) via Macinkiewicz Inter-
polation Theorem (see ch. 1.3 of [18] for a proof of this result).

Theorem D.6.3. Let r < p < q, and assume that T is both of weak type (r, r) and (q, q). Then
T : Lp(Rd)→ Lp(Rd).

Now we deal with the proof of Proposition D.6.2: we exploit the following intermediate results
(whose proofs can be found in ch. 13.5 of [84]).

Lemma D.6.4. Let u ∈ L1(Rd), and λ > 0 be given. Then there exists v, wk ∈ L1(Rd), and
disjoint cubes Qk with centers xk, 1 ≤ k < +∞, such that

u = v +

∞∑
k=1

wk,

‖v‖L1 +

∞∑
k=1

‖wk‖L1 ≤ 3‖u‖L1 ,

|v(x)| � 2dλ,∫
Qk

wk(x)dx = 0, supp wk ⊆ Qk,

∞∑
k=1

meas(Qk) ≤ λ−1‖u‖L1 .

Note that the function v of the previous lemma can be estimated by ‖v‖2L2 ≤ 2dλ‖u‖L1 , hence

‖a(x,D)v|2L2 � ‖v‖2L2 ≤ 22dλ‖u‖L1 , (D.6.5)

which gives (
λ

2

)2

meas

({
x : |a(x,D)v(x)| > λ

2

})
� λ‖u‖L1 .

In order to estimate the action of a(x,D) on w =
∑
k wk, we exploit

Lemma D.6.5. There exists a positive constant K0 such that, for any t > 0, |y| ≤ t, and
x0 ∈ Rd ∫

|x|≥2t

|K(x, x0 + y)−K(x, x0)|dx ≤ K0.

Note that

a(x,D)wk =

∫
Rd
K(x, y)wk(y)dy

=

∫
Qk

[K(x, y)−K(x, xk)]wk(y)dy. (D.6.6)

Now let Q∗k be the cube concentric with Qk, enlarged by a factor 2d1/2. For some tk > 0, we
have

Qk ⊆ {x : |x− xk| ≤ tk},
(Q∗k)c ⊆ {x : |x− xk| > 2tk}.
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Furthermore, if we set Q∗ := ∪kQ∗k, we have

meas Q∗ ≤ 2ddd/2

λ
‖u‖L1 ; (D.6.7)

from (D.6.6) we can deduce∫
(Q∗k)c

|a(x,D)wk(x)|dx

≤
∫
|y|≤tk

∫
|x|≥2tk

|K(x+ xk, y + xk)−K(x+ xk, xk)| |wk(y + xk)|dxdy

� ‖wk‖L1 ,

where the last inequality follows from Lemma D.6.5. Therefore∫
(Q∗k)c

|a(x,D)w(x)|dx � 3‖u‖L1 .

The last inequality, combined with (D.6.7), gives

λ

2
meas

{
x : |a(x,D)w(x)| > λ

2

}
� ‖u‖L1 ,

which, along with (D.6.5), allows us to deduce the weak (1, 1) estimate

meas {x : |a(x,D)u(x)| > λ} � ‖u‖L
1

λ
.

We just point out that Theorem D.6.1 can be restated in a more general context. Indeed, let
H1 and H2 be Hilbert spaces, and assume that

A(D) : L2(Rd,H1)→ L2(Rd,H2).

The operator A admits an L(H1,H2)-operator valued Schwartz kernel K. If one assumes the
hypotheses of Theorem D.6.1, and replaces |K(x, y)| with the L(H1,H2) norm of K(x, y), one
obtains

Proposition D.6.6. Let A ∈ C∞(Rd, L(H1,H2)), and assume that

‖Dα
ξ A(ξ)‖L(H1,H2) ≤ Kα 〈ξ〉−|α|

for all α. Then

A(D) : Lp(Rd,H1)→ Lp(Rd,H2), 1 < p < +∞.

D.7 Pseudodi�erential operators on a manifold

Now we consider a C∞ manifold M , and a continuous linear operator A : C∞c (M) → C∞(M).
We want to extend the de�nition of pseudo-di�erential operator by imposing that the expression
of A in any coordinate system is of the form a(x,D), for some local symbol a. By simplicity we
will consider only operators in OPSm := OPSm1,0.

We �rst de�ne the PDOs in an open subset of Rd, and then we study how the expression of a
PDO behaves under change of variables.
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De�nition D.7.1. Let Ω ⊂ Rd be an open set, then we de�ne Smloc(Ω × Rd) to be the set of
A ∈ C∞(Ω× Rd) such that φA ∈ Sm(Rd × Rd) for all φ ∈ C∞c (Ω).

Proposition D.7.2. Let A : C∞c (Ω) → C∞(Ω) be a continuous linear operator such that for
all φ, ψ ∈ C∞c (Ω) we have that φAψ ∈ OPSm. Then there exists A′ ∈ Smloc(Ω × Rd) with
A(x, ξ) = A′(x, ξ) + R(x, ξ), where R is the symbol of an operator with kernel in C∞(Ω × Ω).
The symbol A′ is determined up to a remainder in S−∞loc (Ω× Rd).

Proof. Omitted (see, for example, Ch. I, § 6 of [3]).

If A satis�es Proposition D.7.2, we say that A is a pseudo-di�erential operator of order m on
Ω, and the class of A′ in Smloc/S

−∞
loc is called the symbol of A.

Proposition D.7.3. Let χ : Ω → Ω′, y = χ(x), be a smooth di�eomorphism between two open
subsets of Rd. Let us assume that the PDO A(x,D) has kernel with compact support in Ω× Ω.
Then

i. the function

A′(y, η) = A′(χ(x), η) = e−iχ(x)ηA(x, η)eiχ(x)η

(A′ = 0 for y /∈ Ω′) is a symbol in Sm. Moreover,

A′(χ(x), η) ∼
∑
α

1

α!
∂αξ A(x, χ′(x)η)Dα

y (eiρx(y)η)|y=x,

where ρx(y) = χ(y)− χ(x)− χ′(x)(y − x);

ii. the kernel of A′(x,D) has compact support in Ω′ × Ω′;

iii. for any u ∈ S ′(Ω′) we have A(x,D)(u ◦ χ) = (A′(x,D)u) ◦ χ.

Proof. Omitted (see, for example, Ch. I, § 7 of [3]).

Remark D.7.4. We remark that if A ∈ Sm, then A(x,D)eixξ = eixξa(x, ξ). Indeed, if û ∈ C∞c ,

A(x,D)u(δx)eixξ = eixξ(2π)−d/2
∫
Rd
eiδxηA(x, χ+ εη)û(η)dη,

which, if u(0) = (2π)−d/2
∫
Rd û(η)dη = 1, tends to

eixξA(x, ξ) ∈ S ′(Rd);

as δ → 0; moreover, u(δx)eixξ → eixξ in S ′(Rd) as δ → 0.
Note also that in iii. A(x,D)(u ◦ χ) is well-de�ned, since the kernel of A(x,D) is compactly
supported in Ω× Ω.

De�nition D.7.5. The operator A : C∞c (M)→ C∞(M) is called a pseudo-di�erential operator
of order m if for any coordinate system φ : V → V ′ ⊂ Rd the transported operator Ã : u 7→
[A(u ◦ φ)] ◦ φ−1 from C∞c (V ′) to C∞(V ′) is pseudodi�erential of order m in V ′, namely for any
φ, ψ ∈ C∞c (V ′) we have that φAψ ∈ OPSm. In this case we write A ∈ Ψm(M).
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Now we have de�ned the notion of PDO on M , but there is still an issue with the associated
symbols: indeed, in each coordinate system, the transported operator has an associated sym-
bol determined mod S−∞, but this depends on the given coordinate system. It is therefore
relevant to study whether for a PDO A of order m on M there exists an intrinsecally de�ned
function, whose expression in local coordinates is the symbol of the operator.
We brie�y show that it is possible to de�ne such a function, but under the restriction that the
associated symbols coincide mod Sm−1, namely, only the principal symbol may be de�ned
intrinsecally.

We recall that for a manifold M the cotangent bundle T ∗M is the set of points (p, ω) such
that p ∈ M , and ω ∈ (TpM)∗. The projection π : T ∗M → M is given by π(p, ω) = m, while we
denote by π−1(p) the dual space of TpM .
If (x1, . . . , xd) are the local coordinates on V ⊂ M , then the vector �elds (∂1, . . . , ∂d) form
a basis of TpM at any point p ∈ V , while the forms (dx1, . . . ,dxd) form a basis for π−1(p).

Denoting a 1-form by ω =
∑d
i=1 ξidxi, we obtain local coordinates (x, ξ) on π−1(V ). In another

coordinate system x′ = χ(x), the point m will have coordinates x′(p) = χ(x(p)), whereas the

form ω =
∑d
i=1 ξidxi wil be written as

∑
i

ξi

∑
j

∂χi
∂x′j

(x)∂x′j

 ,

hence

ξ′j =

d∑
i=1

∂χi
∂x′j

(x)ξi;

therefore, the same point (p, ω) will be written as (x, χ′(x)T η) and (χ(x), η) in the coordinate
systems (x, ξ) and (x′, ξ′) respectively.

Now, let A = Am mod Sm−1, where am is homogeneous of degree m; the same holds for
A′, and

A′m(χ(x), η) = Am(xχ′(x)T η).

We say in this case that A has principal symbol Am. If, in any local map, the representative of
A ∈ Ψm(M) admits a principal symbol, then the previous considerations allow us to deduce that
these di�erent principal symbols are the expressions in local coordinates of a unique function on
T ∗M , which we call the principal symbol of A.

Theorem D.7.6. Let Ai ∈ Ψmi(M), i = 1, 2, be properly supported and assume that they admit
principal symbols ai, i = 1, 2, then A = A1A2 ∈ Ψm1+m2(M) is properly supported and admits
principal symbol a1a2.
Furthermore, the commutator [A1, A2] admits principal symbol {a1, a2}.

Proof. Omitted (see, for example, Ch. I, § 7 of [3]).
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