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Abstract

Deuteron-induced nuclear reactions for the generation of '9*Pd were investigated

using the stacked-foil activation technique on rhodium targets at deuteron ener-

gies up to E4 = 33 MeV. The excitation functions of the reactions 1°3Rh(d,xn)!9%103Pq,
103Rh(d,x)!008,cum,101m,g,102me R and 103Rh(d,2p)'%3Ru have been measured,

and the Thick-Target Yield for 1°2Pd has been calculated.

Keywords: palladium-103, '°3Pd, rhodium target, deuteron particle
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1. Introduction

193Pd (t1/2=16.991 d [1]) decays almost exclusively (99.90%) by electron
capture (EC) to 19%mRh (t;,0=56.12 min) which de-excites through internal
P ( 1/2 g

transition (IT). As a result of these processes (EC and IT) Auger-electrons and
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X-rays are emitted which are ideally suited for cancer therapy. Taking into ac-
count also the de-excitation of the “daughter” nuclide '*™Rh, every 100 decays
of '93Pd are accompanied by the emission of about 263 Auger electrons, 188
low-energy conversion electrons and 97 X-rays [2]. These decay features and
the practical absence of high-energy y-rays make '°3Pd particulary suitable for
interstitial brachytherapy: encapsulated in millimetre-size seed implants it is
used in prostate [3], breast [4] or choroidal melanomas [5] cancer brachytherapy.
It has been shown that gold nanoparticles (Au NPs) distributed in the vicinity
of 193Pd radioactive implants can act as radiosensitivers that strongly enhance
the therapeutic dose of radioactive implants [6, [71]. A new strategy under de-
velopment to replace millimetre-size seeds [8], consist in injecting radioactive
nanoparticles in the affected tissues. The development of 'Pd@Au NPs dis-
tributed in the diseased tissue, could increase the uniformity of the treatment
compared to larger seeds, while enhancing the radiotherapeutic dose to the can-
cer cells through Au-mediated radiosensitisation effect.

The synthesis of radiolabeled nanoparticles such as albumin micro- and
nanospheres [9] or 1°3Pd-labeled molecules for targeted therapy [10] require the
highest achievable Specific Activity (Ag), defined as the ratio between the activ-
ity of the radionuclide of interest and the mass of the sum of all radioactive and
stable isotopes of the nuclide [11] (ideally approaching the theoretical carrier
free value of Ag(CF) =2.76 GBq-ug~!). While for the seeds already in use the
specific activity is practically unimportant, the nanomedicine approach involv-
ing the synthesis of nanoparticles as nano-seeds or as drug carriers high specific
activities have to be achieved and only the radioactive component should be
present in the synthesis process. Therefore, a quantitative radiochemical sepa-
ration of the Pd from the Rh target and its co-produced radionuclides is required

which can be achieved by ion-exchange reactions or complexation [12].

Currently, 193Pd is produced in reactors via the 192Pd(n,y) reaction with a
very low Ag or in no-carrier-added form with accelerators using proton induced

reactions [13].
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Irradiation of pure palladium-102 (enriched from 3.2 % natural abundance
to 100 %) to saturation (¢;.. ~ 85d) in a nuclear reactor with a flux of 105 -
ns~t-em™2 will lead to about 6.8 % of 193Pd.

The most widely used accelerator production method based on high-flux 18
MeV proton irradiation of a °3Rh target in cyclotrons |14, [15] allows to reach
a yield [16] equal to 2.40 GBq-C~! and of 3.25 GBq-C~! if protons of 50 MeV
could be used.

The use of a deuteron beam appears to be attractive for the production of
several radionuclides since the (d,2n) reaction cross-section in the medium to
high mass region is generally higher than that of (p,n) reactions [17]. However,
studies on this alternative production methods using deuterons are scarce, and

only two studies were reported at the beginning of this research work |18 |19].

The present work presents experimental results for the cross-sections of the
103Rh(d,2n)'%Pd reaction and of the co-produced radionuclides in the 5-33

MeV energy range.

2. Experimental

The excitation functions were determined using the stacked-foil technique.
Stacks of thin foils consisted of alternating high purity aluminium (as energy de-
grader and monitor foils inserted between the Rh and the Ti targets), rhodium
and titanium foils. In particular each stack was composed of four or five couple
of Rh and Al foils, depending on the irradiation energy, and (i) by one Ti foil,
inserted as final monitor foil in the stack for the JRC-Ispra irradiations or (ii)
one Ti foil after each of the Rh/Al foils in the stack for the GIP-ARRONAX

irradiations.

High purity °*Rh targets (99.9%, Goodfellow Cambridge Ltd., Ermine
Business Park, Huntingdon PE29 6WR, UK) had a nominal thickness of 12.5 or
25 ym (~15.1-31.7 mg-cm ™2 with a general relative uncertainty of +2 %: these
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values of target thickness used in the calculation were measured accurately by

weighing).

Low-energy irradiations were carried out on five stacks with the cyclotron
(Scanditronix MC40, K = 38) of the JRC-Ispra at different incident energies
covering the energy range from 16.6 MeV down to 5.2 MeV with a constant
current of 100 nA for a duration of 1 hour.

Each irradiation was carried out in an insulated target holder under vacuum,
which was designed as an elongated Faraday cup to determine the integrated
charge of the deuteron beam. Inside the Faraday cup a strong magnet was
installed to avoid escaping of scattered or backscattered electrons as the loss
of such electrons could lead to a virtually larger deuteron charge on the foil
stacks. Two coaxial Al collimators (5 mm in diameter) were placed in front of
the Faraday cup. Based on the distance between the collimators and the last
couple of quadrupoles, a maximum broadening of the beam of a few ym was
calculated. The charge was integrated by a current integrator (BIC Brookhaven
Instruments Corporation, Austin, TX, USA; model 1000C), calibrated within
2% of uncertainty by an authorized calibration service (Nemko S.p.A., Bias-
sono, MB, Italy). The incident deuteron energy had an uncertainty of +0.20
MeV [20].

The reliability of the integrated current has been validated by the values of the
cross-sections measured for "®'Ti targets used as monitor foils, compared with

the TAEA tabulated monitor reaction " Ti(d,x)*8V [21].

Medium and high-energy irradiations were carried out with an IBA C70
cyclotron of the ARRONAX center, Saint-Herblain (FR). The ARRONAX cy-
clotron delivers deuteron beams at variable energies with an energy uncertainty
of +0.25 MeV [22]. The stacks were irradiated with an external deuteron beam.
A 75 pm thick kapton foil was used as beam exit window, separating the beam
line vacuum from atmospheric pressure in the vault. The stacks were located

68 mm downstream in air.
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Figure 1: Excitation function for "*Ti(d,x)*®V nuclear reactions.

During the irradiation, an instrumented beam stop was used to control the
beam current stability. However, it was not used as a Faraday cup with precise
intensity measurements, since it is not under vacuum and is not equipped with
a magnet to avoid escaping of scattered or backscattered electrons.

In this case, it was mandatory to use titanium and aluminium foils as degraders
and as monitors to determine the experimental beam intensity value and energy
from the "3 Ti(d,x)*®V and 27Al(d,x)?>*Na TAEA tabulated monitor reactions
[21] (Figures [ and ).

Four different stacks were irradiated with a different incident energy in order
to minimize energy straggling in a single experiment and to cover the energy
range from 34 MeV down to 14 MeV, with an overlap of more than 2 MeV with
the irradiations performed at the JRC-Ispra. The irradiations were carried out

with a mean beam intensity of about 170 nA for 1 h.

The mean deuteron beam energy and energy degradation in each foil were
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Figure 2: Excitation function for 27 Al(d,x)?4Na nuclear reactions.

computed by the Monte Carlo based computer code SRIM 2013 [23]. The un-
certainty of the mean energy in each foil (4 0.2-0.4 MeV) includes the energy
uncertainty of the extracted deuteron beam, as well as the uncertainties (+0.1-
0.3 MeV) in the mean mass thicknesses and the beam-energy straggling inside

the target foils.

The activity of the radionuclides detected in each foil was measured at the
LASA laboratory (INFN and Physics Dept. of University of Milan, Segrate
MI), without any chemical processing, by calibrated high purity germanium
(HPGe) detectors (EG&G Ortec, 15 % relative efficiency, FWHM = 2.2 keV at
1.33 MeV). The detectors were calibrated in energy and efficiency with certi-
fied 2Eu and '**Ba sources (CercaLEA, France and Amersham, UK). All foils
were measured in the same geometrical position as that used for the calibration

sources in order to avoid corrections for different geometries. The distance from
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the detector cap was sufficiently high to reduce dead time and pile up errors to
negligible values (< 0.1 %). The first measurements of the samples were gener-
ally started within a few hours (for the Ispra irradiations) or within 48 hours
(for ARRONAX irradiations) after the end of bombardment (EOB). The mea-
surements continued for about six months in order to follow the decay of the

main radionuclides and to let completely decay eventual “parent” radionuclides.

The overall uncertainty of the determined cross-sections is caused by several
error sources in the measurement and evaluation process. Regarding the mea-
surement, process, a typical component is related to the statistical error in the
peak counts: particular attention is given to reduce this value as low as possi-
ble (< 1%-18 %, depending on the radionuclides and on the energies). Other
significant error sources were: the target thickness and uniformity (< 2 %), the
integrated charge (< 2 %), the uncertainty of the calibration sources (1.5 % and
2.0 %) and the fitting of the detector efficiency curves (< 1 %), with an overall
relative error of 4-20 %.

The published data for the abundance of the gamma emissions and the half-
lives were considered as being exact. Admittedly, especially the uncertainty
of the low values of the abundance of the gamma emission of '°3Pd will add
directly to the overall error in the determination of the reaction cross section
[17]. Decay characteristics for the radionuclides investigated, as summarized in

Table [l were taken from [1] and [24].

3. Results

The thin foils were measured, positioning them on the detector with the
beam-on and the detector cup being face to face. The experimental cross-
sections o(E) [cm?-atom 1] for each target were calculated from the thin-target

yield making use of the relationship:

M-Z-e-AFE

F)= E)-
o(E) =yrors(E) N Naor



Table 1: Decay data |1] of Pd, Rh and Ru radionuclides and contributing reactions with

the energies E~ used for the activity calculation and the corresponding abundancies I,. The

thereshold energy (E;;) evaluation is based on the mass defects reported in [24].

Nuclide t1/2 Contributing reactions  Eg, (MeV) E, (keV) L, (%)
104pg stable 103Rh(d,n)'04Pd 0
103pq 16.991 d 103Rh(d,2n)'93Pd 3.62 357.47 0.0221
102pg stable 103Rh(d,3n)102Pd 11.39
101pg 8.47h 103Rh(d,4n)!0 Pd 22.17 296.29 19.2
102mRhL  3.742 a [25]*  '°3Rh(d,p2n)!°2™Rh 11.91 697.49 43.9
103Rh(d,dn)'9?™Rh 7.91
103Rh(d,t)19?2™Rh 1.53
102gRh 207 d 103Rh(d,p2n)'92eRh 11.77 468.59 2.813
103Rh(d,dn)'928Rh 7.77
103Rh(d,t)1928Rh 1.39
10lmRH 4.34 d 103Rh(d,p3n)'%1™Rh 19.52 306.85 87
103Rh(d,d2n)°"™Rh 17.25
103Rh(d,tn)01mRh 10.87
101gRh 3.3 a 103Rh(d,p3n)'?1eRh 19.36 197.6 70.88
103Rh(d,d2n)!018Rh 17.09
103Rh(d,tn)'018Rh 10.71
100gRh 20.8 h 103Rh(d,p4n)'%%e Rh 29.44 539.51 80.6
103Rh(d,d3n)!°%Rh 27.18
103Rh(d,t2n)1998Rh 20.80
103Ry 39.26 d 103Rh(d,2p)'%3Ru 2.25 497.08 90.9

*The value reported in [1l] is ~2.9 a: in this case we prefer to use a more precise value

from another database



where yporp(E) is the thin-target yield [Bq-C~!-Mev~!] at the End Of Instan-
taneous Bombardment, M denotes the atomic mass [gmol~!], N4 Avogadro’s
constant [atom-mol~!|, E = (E) denotes the mean deuteron beam energy cross-
155 ing the “thin” foil [MeV], e the electron charge [C], Z the atomic number of the
projectile, AE the beam energy loss in the target [MeV], A the decay constant
[s7!] of the investigated radionuclide, and px the mass thickness [g-cm™2].

yrorp(E) was calculated using the equation:

COUNTS, 1
e -1, LT Q-AE
where () is the integrated deuteron charge [C], COUNTS., denotes the net

yeors(E) = D(RT) - G(tirr) - et (2)

10 photo-peak counts at energy F, above the continuum background, I, the ~-
emission absolute abundance, €, the experimental efficiency of the HPGe de-
tector at the y-energy considered, LT the Live counting Time [s], RT the Real
counting Time, which is the sum of LT and the Dead counting Time DT (RT
=LT + DT [s]), At denotes the waiting time from the EOB [s], ¢;;, the irradi-

1es  ation time [s] and AE the beam energy loss in the foil [MeV]. The quantities
D(RT) (the decay factor to correct decay during counting time) and G(t;,)
(the growing factor to correct decay during irradiation) with the dimension 1

are defined as:

A RT
D(RT) = 1_ o—NRT ¥
and
A f/'h"r
G(tirr) = 1 e Atirr @

170

The measured excitation functions are compared in Figures @HI3] with avail-
able literature data. The numerical data are collected in Table 2l and Table B
The cross-sections for Pd isotopes were also theoretically calculated with EMPIRE-

175 3.2.2|26] in order to evaluate the best energy of irradiation to obtain '°*Pd with
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Figure 3: Example of y-ray spectrum. The counting uncertainty of the 357.47 keV emission

is ~ 1.5%. The ~-ray emissions of 193Pd are clearly visible in spite of their low intensities.

the highest Ag (Section [B7).
In spite of the differences in the irradiation conditions (see Section B]) there is a
very good overlap between the experimental data obtained from the JRC-Ispra

and the ARRONAX facilities.

3.1. 19%Rh(d,2n)!%3 Pd

193Pd has a half-life of t;/o = 16.991 d and can be produced by the (d,2n)
reaction. The activity was determined from the 357.47 keV emission (I, =
0.0221 %). In some cases (e.g. FigureB)), we could verify the activity using the
294.978 keV emission (I, = 0.00280 %). The results are in very good agreement
and provide some confidence in the tabulated ~y-intensities in spite of their small
values.

Due to the small y-ray intensities, which suggest that they may exhibit a

10



Table 2: Experimental

cross-sections

(£1 Standard Deviation, = 1SD)

103Rh(d,xn)'03:101 pq, 103Rh(d,2p)'°3Ru and '°3Rh(d,p5n)'°°8Rh reactions

Energy 101pg 103pg 103Ry 100g R,
(MeV) (mb) (mb) (mb) (mb)

5.2 4+ 0.3 22.5 £ 2.9

6.5+ 0.3 131.2 £ 7.8 0.0108 £ 0.0016

7.4 +0.2 325 + 18 0.0204 £ 0.0013

7.8+ 0.3 317 £ 21 0.0271 £ 0.0040

8.4 + 0.2 516 + 30 0.0370 £ 0.0031

8.9 + 0.3 604 £ 35 0.0513 £ 0.0053

9.5 + 0.2 681 £ 41 0.0567 £ 0.0047

10.0 £ 0.3 800 £ 45 0.0639 £ 0.0054

10.5 £+ 0.2 845 + 49 0.0780 £ 0.0062

11.1 £ 0.3 0.0870 £ 0.0047

11.5 £+ 0.3 0.090 £ 0.011

12.2 £ 0.3 0.1019 £ 0.0063

12.5 £ 0.3 1166 + 64 0.1063 £ 0.0063

13.2 + 04 1127 £+ 64 0.1076 £ 0.0055

13.6 £ 0.3 1141 + 70 0.1085 £ 0.0069

13.9 £ 0.3 1253 + 72 0.1200 £ 0.0063

14.3 £ 0.3 1140 £+ 110 0.125 £+ 0.014

14.5 £+ 0.3 1210 £+ 110 0.146 + 0.012

15.0 = 0.4 1261 £ 71 0.1491 £ 0.0080

15.5 + 0.4 1108 £ 62 0.1404 £ 0.0071

15.7 £ 0.3 1090 + 96 0.157 £ 0.013

16.1 + 0.4 1127 £+ 53 0.196 + 0.010

16.5 £+ 0.3 1044 4+ 93 0.180 + 0.015

16.6 + 0.4 1040 4+ 59 0.1747 £+ 0.0088

18.7 £ 0.3 743 £ 66 0.326 £ 0.028

21.3 £ 0.3 393 £ 66 0.628 £ 0.052

21.7 £ 0.4 374 £ 37 0.625 £ 0.052

23.8 £ 0.4 240 + 28 1.002 £+ 0.082

25.8+£0.3 123+ 1.1 208 £+ 25 1.37 £ 0.11

27.7 £ 0.3 56.6 + 4.7 189 + 24 1.68 £+ 0.14

28 + 0.4 46.9 + 3.9 169 + 24 1.59 £+ 0.13

29.8 £ 0.4 122 + 10 143 + 24 1.92 £+ 0.16 0.233 £+ 0.031

31.5 £0.4 195 + 16 141 + 31 2.17 £ 0.18 0.684 + 0.067

33.1 £ 0.4 266 + 22 96 + 20 2.39 £ 0.19 1.36 + 0.12

11

of the



Table 3: Experimental cross-sections (4 1SD) of the 13Rh(d,pxn)®Rh

Energy 102mRh 102 Rh 10ImRh 10leRh
(MeV) (mb) (mb) (mb) (mb)

74402 1.40 £ 0.32

8.9+ 0.3 1.91 & 0.18

9.5 £ 0.2 2.04 £ 0.18

10.0 £ 0.3 0.230 £ 0.079  3.35 £ 0.55

10.54£0.2  0.161 &+ 0.064  3.77 £ 0.22

11.1£03 0664012  7.83 +0.47

122 4£03 0814020  9.69 + 0.60

12.5 £ 0.4 0.407 £ 0.055  10.37 & 0.72

1324+04  051£0.10  11.09 & 0.53

136 £ 03  0.74 £0.18 11.0 £ 1.2

13.9+£03  0.67+£0.08 13.51 + 0.69

143 £03  1.56 & 0.27 141414

150 £ 04 146 £0.20  15.40 + 0.88

155+ 04  1.39£0.11 1521 £ 0.74

16.1 £ 0.4  2.35+0.29 16.8 + 1.0

16.5 £ 0.3 2.21 £ 0.26 17.6 £ 1.5

166 £ 04  219+0.16  16.89 & 0.88

18.7+£03 8224083 23.7 + 2.1

21.3 £ 0.3 33.6 £ 28 32.7 + 4.8

21.7 404 357 +3.0 39.1+£3.3  1.074 £ 0.089  0.50 £ 0.13
23.8£04  73.0%6.0 63.4 £ 53  0.950 £ 0.078 1.08 £ 0.23
25.8 £0.3 1134 £ 9.2 85.1 £ 7.1 17.7£1.6  1.58 £0.16
27.7£0.3 148 £ 12 105.0 + 8.6 76.9 £ 6.6  1.86 % 0.17
28.0 + 0.4 138 £ 11 97.4 £ 8.0 64.7 £ 5.6  1.97 +0.18
29.7 + 0.4 167 + 14 112.8 £9.2 114 £ 10 3.85 4 0.34
31.5 + 0.4 186 + 15 119.8 £ 9.8 268 + 23 7.35 & 0.66
33.1 £ 0.4 191 + 16 121.8 £ 9.9 371 & 32 143+ 1.3

12
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large uncertainty, Sudar et al. [27] based their quantification of °3Pd on the
X-ray emissions of 19°Pd. More recently Hussain et al. |28] pointed out that
also the abundance of the emitted X-rays exhibits an uncertainty of up to 20 %
which might require a renormalization of the reaction cross sections derived
by Sudar et al. [27]. Additionally, also the quantification via X-rays is not
straightforward due to interfering X-ray emissions from co-produced nuclides
and due to self-absorption effects [27]. Where our quantification was based on
the 357.47 keV and the 294.978 keV emissions both, of which the latter exhibits
an even lower intensity, the results agreed very well. This seems to corroborate
the statement made by Hussain et al. [28] that the intensity of the 357.4 keV
gamma-ray is low but still appears to be correct. Therefore, in the present work
we assume that the 357.47 keV and 294.978 keV emissions have an intensity

uncertainty of 3.2 % of 2.5 %, respectively |1, 29].

The measured experimental cross-sections are shown in Figure @ together
with the data determined in the earlier studies and curves of theoretical cal-
culations with EMPIRE-II [30], EMPIRE-3.2.2 and TENDL-2015 [31] codes.
Our cross-sections are in good agreement with the results of Hermanne et al.
[18] (v data), while they are in the maximum about 15 % higher than those of
Ditroi et al. [19]. The prediction of EMPIRE-3.2.2 and EMPIRE-II and the
recommended set of Hussain et al. [2&] are close to the experimental data, while
TENDL-2015 underestimates the reaction cross-sections at energies above 10

MeV.

In order to enable quantitative considerations for the production of 1°3Pd,
it is useful to calculate the Thick-Target Yield (TTY). This was done using the
polynomial fit result of the experimental thin-target yields presented in Figure
and integrating it up to a given deuteron energy. Figure[@ shows the resulting
Thick-Target Yield in comparison with four experimental Thick-Target Yields
presented in literature (Dmitrievet al. [32,133] and Mukhammedov et al. [34])

and the TAEA recommended ones [15] for deuteron (solid line) and proton (dash

13
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Figure 4: Comparison of the excitation function for the '93Rh(d,2n)!1°3Pd nuclear reaction

with literature data and simulation codes.

line) irradiations.

A very good agreement between the experimental data sets and the curve
related to the present work can be recognized. The increasing discrepancies
between the TAEA curve and the present work at energies above 15 MeV still

remain inside the error bars of the experimental data sets.

A comparison between our curve for the deuteron production and the IAEA
curve for the proton production of '°Pd shows that the Yields are comparable
up to 12 MeV. For higher particle energies the achievable Thick-Target Yield

with deuterons is higher than with protons.

3.2. 19%Rh(d 4n)%! Pd

191Pd has a half-life of t;/» = 8.47 h and can be produced by the (d,4n)
reaction. The activity was assessed through the 296.29 keV gamma line (I, =

19.2%).

14
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Figure 7: Excitation function for 1°3Rh(d,4n)'% Pd nuclear reaction.

Our cross-sections are in good agreement with the results of Ditroi et al. [19]

(Figure ). The prediction of EMPIRE-3.2.2 is generally higher than experi-

235 mental values.

3.8. 195 Rh(d,x)19%™9 Rh

102Rh can be produced via the (d,p2n), (d,dn) and (d,t) reactions.

102mRh has a half-life of t1 /5 = 3.742 a and the activity was assessed through
2a0  the 697.49 keV gamma line (I, = 43.90 %).

Our cross-sections are in reasonable agreement with the results of Ditroi et al.

[19] and Hermanne et al. [18] (Figure ).

1926Rh has a half-life of t1/,5 = 207 d and its activity was determined from
2es  the 468.59 keV gamma line (I, = 2.813 %). Under our experimental conditions

1026Rh is mainly formed directly because the contribution of the decay of the
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Figure 8: Excitation function for 1°3Rh(d,x)'°2™Rh nuclear reactions.

metastable level is negligible (only 0.233 % IT and low ratio between the half-
lives).

Our cross-sections are in good agreement with the results of Hermanne et al.
[18] (Figure[@). The discrepancy with Ditroi et al. [19] may be explained taking
into account that Ditroi et al. used the 628.05 keV gamma line to determine the
activity but also '>™Rh contributes to this emission (I, = 8.5%) which may
result in an overestimation of the '926Rh activity. It is possible to appreciate
this contribution at energies greater than 18 MeV: it is shown in Figure [§] that
the 193Rh(d,x)'92™Rh cross-section starts to increase rapidly exceeding this en-

ergy value.

3.4. 193Rh(d,z)10t™9 R}

101Rh can be produced by the (d,p3n), (d,d2n) and (d,tn) reactions.

17
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Figure 9: Excitation function for 1°3Rh(d,x)'°26Rh nuclear reactions.

19ImRh has a half-life of t; /o = 4.34 d and the activity was determined from
the 306.85 keV emission (I, = 87 %); '°!™Rh is also formed by the decay of the
much shorter lived '°'Pd (8.47 h, 99.731 %). Therefore, the measurements for
this radionuclide were done once that '°'Pd was completely decayed in order to
subtract this contribution. OQur cross-sections are quite smaller than the results

of Ditroi et al. [19] (Figure [I0) because Detroi et al. measured the cumulative

production of 19'™Rh.

1918Rh has a half-life of t; /o = 3.3 a and the activity was determined quan-
tifying the 197.6 keV emission (I, = 70.88%). ''8Rh is also formed by the
de-excitation of the shorter lived metastable level 1°'™Rh and, also in this case,
the measurements for this radionuclide were done once that its metastable level
was completely de-excited. Our cross-sections are in quite good agreement with

the few data points of Ditroi et al. [19] (Figure [IT]).
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Figure 10: Excitation function for 1°3Rh(d,x)101™:¢"mRh nuclear reactions.
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Figure 12: Excitation function for 1°3Rh(d,x)!008:cmRh nuclear reactions.

3.5. 199 Rh(d,x)"00%-cvm Ry

100Rh can be produced by the (d,p4n), (d,d3n) and (d,t2n) reactions.

190¢Rh has a half-life of t1,» = 20.8 h and the activity was determined
analysing the 539.51 keV gamma emission (I, = 80.6 %)
The determined cross-section includes a contribution from the not measured
short lived and totally decayed '°°™Rh isomer (t1/, = 4.7 m).
The derived cross-section data are in good agreement with the results of Ditroi

et al. [19] (Figure [12)).

3.6. 193Rh(d,2p)'%% Ru

193Ru has a half-life of t;/, = 39.26 d and can be produced via the (d,2p)
reaction. The activity was determined from the 497.08 keV gamma emission (I,

~=90.9%).
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Figure 13: Excitation function for '°3Rh(d,2p)'%3Ru nuclear reaction.

The determined cross-sections are in good agreement with the results of Ditroi

et al. [19] (Figure d3)).

3.7. Specific Activity for 19° Pd production

In spite of the good agreement between the presented experimental data for
the production of '°Pd and the theoretical calculations using EMPIRE-3.2.2
code there is a certain uncertainty in the calculation of the stable '%4Pd via the
(d,n) reaction due to difficulties to incorporate the deuteron breakup process in
the simulation codes. However, the uncertainties associated with these difficul-
ties are less for heavier nuclei (such as '°*Rh) when compared with light nuclei
such as '%F where the effects may be dominating. In any case they are more
pronounced for (d,p) reactions [35] and do also contribute up to 50 % to (d,2n)
reactions [36] which are in the present case acceptably described by EMPIRE-

3.2.2 code. It may therefore be justified to assume that this effect is not critical
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for the derivation of the achievable specific activity.

Based on the EMPIRE simulation (Figure [Id)) and in case of a thick target
with total energy absorption, in order to obtain the highest Ag of 13Pd (90 %),
the best incident energy is 13.3 MeV (Figure [[H)). The curve presented in Fig-
ure[I5lis exact for an Instantaneous Bombardment but, for an incident deuteron
energy smaller than 22 MeV (the energy threshold for the production of 1°1Pd),
1

it is a very good description at the End of Bombardment for ¢;.,. < (Awspg)~
(i.e. tirr < 588 H).

Additionally we calculated the Specific Activity of '°3Pd for the produc-
tion using protons using the cross-section data for the °3Rh(p,n)'°3Pd nuclear
reaction recommended by the TAEA [15] and the cross-section data for the

103Rh(p,xn)!0%101Pd nuclear reactions reported in TENDL-2015 |31]

Normalizing the calculated Specific Activity at the end of bombardment to
its theoretical carrier free value it can be recognized from Figure that for
proton energies up to about 8.5 MeV the value of Aggoms/As(CF) stays at
nearly 100 % and drops below the value for deuteron activation when a proton
energy of 10.7 MeV is exceeded. Thus, the achievement of higher Thick-Target
Yields making use of the °*Rh(p,n)!°®*Pd reaction is compromised above 8.5
MeV proton energy by the achievable specific activity and drops above 10.7 MeV

below the values for the specific activity that can be obtained with deuterons.
It should be noted that a co-production of Rh and Ru isotopes does not

compromise the radiochemical purity as these elements can be separated from

Pd easily [12].
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4. Conclusions

In the present study the excitation functions for the radionuclides produced
by cyclotron irradiation of Rh targets with deuteron beams have been experi-
mentally determined in the energy range from 5 to 33 MeV. In particular, the
cross-section for 193Pd production by 193Rh(d,2n)'°*Pd nuclear reactions have
been determined.

In the energy range presented here, the only radio-isotopic impurity is the
101p( radionuclide that has an energy threshold of 22 MeV and an half-life of
8.47 h.

In order to achieve a high Specific Activity Ag it is mandatory to take into
account also the production of stable palladium isotopes (cf. Figure [[5). The
presented excitation curves allow the calculation of the optimized 1°3Pd batch
yield and Specific Activity. For deuteron activations using the 1°*Rh(d,2n)!%3Pd
reaction the highest specific activity can be achieved with an incident deuteron
energy of 13.3 MeV, and it is possible to produce 2.6 GBqC~! of 193Pd at the
EOIB. The same product quality can be obtained by proton irradiations making
use of the 193 Rh(p,n)1%®Pd reaction with an incident proton energy of about 10.5
MeV however at the expense of an about 3 times lower Thick-Target Yield (see
Figure[@). This could be compensated by a combination of higher proton beam
current and longer irradiation time. Unfortunately, at least at the moment, the
number of cyclotrons that can provide deuterons with an energy above 13 MeV
(taking into account losses in beam entrance windows etc.) is very limited.

The radiochemical separation of the '93Pd from the target material is easier
the smaller the target mass, which points to deuterons having a higher stop-
ping power than protons and hence a shorter range in the target material. For
13.3 MeV deuterons a thick target would correspond to a 188 um thick Rh foil.
Comparing this with the optimized irradiation conditions for protons we have to
compare with the range of 10.5 MeV protons in Rh which requires a thickness of

about 214 pym to slow the protons to the energy threshold for the production of
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103pd, Therefore, no decisive advantage can be derived from this consideration.
However, using a proton energy around 17 to 18 MeV, which is the maximum for
many cyclotrons used in medical environments, a thick Rh target needs to have
a thickness of at least 500 um and only about 30 % of the theoretical specific

activity can be obtained.

So, the use of deuteron beams leading to high TTYs, high radionuclidic
purity, high specific activity is accompanied by the co-production of a small
amount of rhodium to be removed by the radiochemical separation. Due to
larger —dE/dz in the case of deuteron more '9*Pd is formed when compared
over proton irradiations which reduces the required mass of '°3Rh for the tar-
gets: this is the major advantage of using deuteron beams because of the high

cost of the high pure rhodium targets.

The main issue with the production of 1°3Pd by deuteron irradiations is the
scarce availability of cyclotrons providing high deuteron energies with reasonable
intensity. But due to the not so short half-life of '1°>Pd radionuclide, nothing

prevents to produce it now and in future in adequate Centres.
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