
 

 
 

 

Ph.D. in Agriculture, Environment and Bioenergy 

XXIX Cycle 
 

 

 

Integration of components for the 

simulation of biotic and abiotic stresses in 

model-based yield forecasting systems 

 

Ph.D. Thesis 
 

Valentina Pagani 
N° R10644 

 

Supervisor 

Prof. Roberto Confalonieri 

 

 

Academic Year 

2016-2017 

Coordinator 

Prof. Daniele Bassi  

   

 

 

 

 

 

 

SCUOLA DI DOTTORATO  

AGRICOLTURA, AMBIENTE E BIOENERGIA 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Valentina PAGANI 

 

Integration of components for the 

simulation of biotic and abiotic stresses in 

model-based yield forecasting systems 

 

Ph.D. Thesis  

Department of Agricultural and Environmental Sciences – 

Production, Landscape, Agroenergy 

 

University of Milan 

Via Celoria 2, 20133 Milan – Italy 

valentina.pagani@unimi.it 

 

 

Ph.D. in Agriculture, Environment and Bioenergy 

 

 

 

XXIX Cycle, Academic Year 2016-2017 

 

 

 

 

 

 

 



 

Ringraziamenti 

Ringrazio il Prof. Roberto Confalonieri per avermi permesso di 

intraprendere questo percorso e per avermi trasmesso le conoscenze che mi 

hanno aiutato a crescere “professionalmente” durante questi tre anni. 

Ringrazio infinitamente il mio collega e amico Tommaso Guarneri per 

aver contribuito alla buona riuscita di questo lavoro (accollandosi spesso 

anche i lavori più noiosi) e avermi supportata psicologicamente nei momenti 

di massimo stress. 

Ringrazio Mirco Boschetti, Lorenzo Busetto e Gianni Bellocchi per la 

fondamentale collaborazione. 

Ringrazio tutti gli attuali ed ex ragazzi del CassandraLab, che sono 

sempre stati disposti ad aiutarmi e darmi consigli utili quando ne avevo 

bisogno. Un ringraziamento particolare va a Caterina, Francesca e Tommaso 

per i divertentissimi momenti extra-lavorativi passati insieme. 

Ringrazio i miei genitori, senza i quali non sarei mai arrivata a questo 

punto e li rassicuro che questa è veramente l’ultima tesi che riceveranno. 

Un grazie particolare a Manuele che mi ha accompagnata in tutto il mio 

percorso universitario, prima da lontano e da un anno a questa parte da più 

vicino. 



 

 

Pagani, V., 2016. Integration of components for the simulation of biotic 

and abiotic stresses in model-based yield forecasting systems. Ph.D. 

Thesis, University of Milan, Italy. 

 

 

Reference to the contents of Chapters 2 should be made by citing the 

original publication. 



 

ABSTRACT 

The raising global demand for agricultural products and the exacerbated 

inter-annual fluctuations of food productions due to climate change are 

increasing world food price volatility and threatening food security in 

developing countries. In this context, the availability of reliable operational 

yield forecasting systems would allow policy makers to regulate agricultural 

markets. However, the reliability of the current approaches (the most 

sophisticated being based on crop models) is undermined by different 

sources of uncertainty. In particular, large area simulations can be affected 

by errors deriving from the uncertainty in input data (e.g., sowing dates, 

information on cultivar/hybrid grown, management practices) and upscaling 

assumptions, as well as from the incomplete adequacy of crop models to 

reproduce the effects of key factors affecting inter-annual yield fluctuations 

(e.g., extreme weather events, pests, diseases). 

The aim of this Ph.D. project was to reduce the uncertainty affecting the 

existing model-based forecasting systems through: (i) the implementation of 

approaches for the estimation of the impact of biotic and abiotic stressors on 

crop yields (based on dynamic models and on dedicated agro-climatic 

indicators), and (ii) the integration of remote sensing information within 

crop models. Concerning the first objective, the approaches for the 

simulation of transplanting shock and cold-induced spikelet sterility in rice 

included in Oryza2000 and WARM models, respectively, were improved, by 

increasing the model adherence to the underlying systems. Moreover, 

generic approaches for the simulation of the impacts of extreme weather 

events on crop yields were developed and evaluated, as well as approaches 

specific for sugarcane. For the second objective, remote sensing information 

was used to derive rice-cropped areas and sowing dates varying with time 

and space, as well as for the assimilation of exogenous leaf area index data 

using both recalibration and updating techniques (to account for factors not 

explicitly reproduced by the model within large-area applications). 

The application of the improved forecasting systems to different crops 

and agro-climatic contexts worldwide led to marked improvements 

compared to existing approaches. This was achieved through an increase in 



 

 

the percentage of inter-annual yield variability explained. On the one hand, 

the simulation of the impact of weather extremes (cold shocks, heat waves, 

water stress and frost) allowed to reduce the tendency of CGMS (the 

monitoring and forecasting system of the European Commission) to 

overestimate cereal yields in case of unfavorable seasons. Moreover, the 

integration of dynamic crop models and of agro-climatic indicators led to 

enhance the predicting capacity of available approaches. On the other hand, 

the integration of remote-sensing information within high resolution 

simulation chains allowed to decidedly reduce the uncertainty of the 

standard CGMS-WARM system when applied to the main European rice 

districts. 

 

Keywords: agro-climatic indicators; assimilation; blast disease; Brazil; 

Canegro; CGMS; cold damage; crop model; direct sowing; extreme weather 

events; Oryza sativa L.; remote sensing; seedbed; sowing technique; spikelet 

sterility; sugarcane; transplanting, WARM model; WOFOST; yield forecast. 
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1.1. Large area crop monitoring and yield forecasting 

Timely and reliable crop yield forecasts and early warnings in case of 

adverse conditions are increasingly needed by a variety of actors within the 

agricultural sector, and their availability is considered as increasingly 

important in both developed and developing countries (Wang et al., 2010; 

Son et al., 2014). Among the main reasons explaining the interest in crop 

monitoring and forecasting systems, a key role is played by the need of tools 

for supporting the regulation of agricultural markets and the management of 

food-supply chains through procurement, stock management, marketing, and 

distribution networks (Bannayan and Crout, 1999; Atzberger, 2013). Other 

crucial reasons deal with the need of mitigating the volatility of prices of 

food commodities (OECD and FAO, 2011) and of planning post-harvest 

operations (e.g., milling) along the whole production chain (Everingham et 

al., 2002). 

A variety of yield forecasting systems were proposed in the last decades. 

The first methods, based on field surveys, were strongly subjective and 

suffered from a lack of consistency. For this reason, more complex and 

rigorous approaches were developed starting from the mid ‘90s, based on 

information retrieved from agro-climatic indicators, remote sensing and crop 

simulation models (Bouman et al., 1997; Bannayan and Crout, 1999). 

Simple systems – based, e.g., on agro-climatic indicators (Balaghi et al., 

2012) or basic vegetation indices (Fernandes et al., 2011) – demonstrated 

their usefulness under conditions characterized by large year-to-year 

fluctuations in crop yields and where these fluctuations are driven by one or 

two key factors (e.g., rainfall distribution in summer months) severely 

limiting crops productivity. The most complex and reliable approaches – 

used by policy makers for yield forecasts at national and regional levels – 

rely on remote sensing (Mkhabela et al., 2005; Wang et al., 2010; Duveiller 

et al., 2013; Son et al., 2014) or crop simulation models (Vossen and Rijks, 

1995; Supit, 1997; Bezuidenhout and Singels, 2007a-b; de Wit et al., 2005; 

Kogan et al., 2013). 

According to the authors’ knowledge, the most sophisticated operational 

(since 1994) crop yield forecasting system is the Crop Growth and 

Monitoring System (CGMS) of the European Commission. The system was 

developed at the Joint Research Centre within the Monitoring Agricultural 
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ResourceS (MARS) activities to provide short-term (in-season) independent 

forecasts of the yield of the main food crops in Europe (Vossen and Rijks, 

1995; Lazar and Genovese, 2004; de Wit et al., 2005). The MARS system is 

based on the WOFOST model (van Keulen and Wolf, 1986; Rabbinge and 

van Diepen, 2000) for the simulation of the development and growth of all 

crops but rice, for which the rice-specific WARM model (Confalonieri et al., 

2009; Pagani et al., 2014) is used. 

Despite modern forecasting systems are often based on sophisticated 

technologies, their reliability is threatened by different sources of 

uncertainty, which limit their applicability in specific environments and 

decrease their capability to interpret the underlying systems in case of 

unusual conditions, that is, when stakeholders are more interested in their 

predictions (Kogan et al., 2013). These sources of uncertainty strictly depend 

on the type of technology used. Forecasting systems solely based on remote 

sensing are normally unsuitable in contexts characterized by a good yield 

potential, since signal saturates because of the favorable conditions and 

optimized management techniques (Sader et al., 1989; Dobson et al., 1995; 

Zhao et al., 2016) even before the reproductive phase. This type of systems 

normally fails also in contexts where specific abiotic stressors (e.g., cold or 

heat waves during the reproductive period) can severely affect crop yields 

even without relevant damages to the canopy. 

Systems based on crop simulation models, instead, can be affected by 

sources of uncertainty deriving from their incomplete adequacy to reproduce 

the effects of the main factors affecting crops productivity under the 

conditions explored. Other important sources of uncertainty derive from the 

fact that they are used for large-area applications despite they were 

originally developed to perform simulations at point-scale, i.e., on ideal 

spatial units homogeneous for soil, climate, management, pathogen pressure, 

etc. Different authors, indeed, observed how crop models – when applied at 

regional scale – may lead to biased simulations because of aggregation 

assumptions (Hansen and Jones, 2000; Hoffman et al., 2016), which cause 

the so-called nonlinear aggregation error (Cale et al., 1983) or aggregation 

effect (Hoffmann et al., 2015). However, even regardless of output 

aggregation, large-area simulations are affected by errors deriving from the 

uncertainty in input data at the spatial scale (elementary simulation unit) at 
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which simulations are run. Indeed, in case of regional or national forecasting 

systems, it is practically impossible to get high-resolution and reliable 

information on soil, weather and management practices (e.g., sowing dates, 

cultivar/hybrid grown, dates and amounts of irrigation water, nutrients, 

chemicals, etc.). Besides uncertainty in inputs and in information for output 

aggregation, simulations can be affected by uncertainty due to model 

structure (Sándor et al., 2016; Confalonieri et al., 2016a) and to the 

experience of model users (Diekkrüger et al., 1995; Confalonieri et al., 

2016), as well as by the uncertainty in the data used for the calibration of 

model parameters (Kersebaum et al., 2015; Confalonieri et al., 2016). 

The predictive ability of available forecasting systems is also strictly 

dependent on the number and typology of processes simulated with respect 

to the factors affecting seasonal yield fluctuations in the specific context of 

interest like, e.g., nutrient availability, weeds, pests, diseases, extreme 

weather events. As an example, the simulation tools used within forecasting 

systems are largely based on models of plant response to environment that 

were developed for conditions of good adaptation and were often designed 

for temperature and precipitation regimes typical of temperate environments. 

Consequently, the effects of unusual weather events on crop performance – 

including crop failure – are often overlooked or unsatisfactorily reproduced 

by available forecasting systems (Eitzinger et al., 2013; Sanchez et al., 

2013). The fact that they are – although to a different extent – unsuitable to 

handle weather extremes explain their ability to adequately predict mean 

yields but not the related inter-annual variability. 

1.2. Key issues 

1.2.1. Yield forecast and extreme weather events 

The ongoing climate change is expected to increase the year-to-year 

fluctuations in crops productivity and to decrease mean yields in many 

regions of the world (Parry et al., 1999; IPCC, 2007b), thus reducing the 

global food production. The relevance of climate change impact on the 

agricultural sector is demonstrated by the variety of recent studies aimed at 

identifying adaptation strategies to alleviate projected yield losses (Falloon 

and Betts, 2010; Reidsma et al., 2010; Olesen et al., 2011). The significant 

increase in temperature projected for the 2030s is expected to affect winter 
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crops in northern Europe, as well as summer crops in southern and central 

European countries (IPCC, 2007a). Moreover, the increase in the frequency, 

intensity and duration of extreme weather events that severely affected 

yields starting from the late 1990s is expected to further exacerbate in 

Europe. Major events will be related to heat waves (Calanca, 2007; 

Trenberth et al., 2007), heavy rainfall (Christensen and Christensen, 2003), 

and cold shocks, the latter including both chilling and freezing injuries 

(Kasuga et al., 1999; Lang et al., 2005). 

Most of the abiotic stressors affecting plant growth (e.g., heat and cold 

waves, frost events, water shortage) are characterized by dynamics in 

weather variables for which the crop is not able to provide a suitable 

physiological response during the most sensitive phenological phases. In 

recent years, agro-climatic indices (e.g., Confalonieri et al., 2010; 

Rivinngton et al., 2013) and modelling approaches were proposed to 

reproduce the effects of extreme weather events on crop productivity. 

Concerning dynamic impact models, approaches to reproduce cold/heat 

effects on crop growth and yield formation were developed (Challinor et al., 

2005; Shimono et al., 2005; Confalonieri et al., 2009; van Oort et al., 2015). 

Different models were also proposed to account for the effects of frost on 

leaf area development (CERES-Wheat – Jones et al., 2003; InfoCrop – 

Aggarwal et al., 2006), leaf senescence (APSIM – Holzworth et al., 2014), 

and total biomass accumulation (EPIC – Williams et al., 1989). Among 

these approaches, some are detailed enough to include algorithms for the 

effects of hardening/dehardening on winter crops cold tolerance (e.g., 

Ritchie et al., 1991) or for the effects of interval between tiller emission on 

susceptibility to thermal shocks-induced sterility (e.g., Shimono et al., 2005). 

Concerning the stress caused by water shortage, most of the existing 

simulation models include approaches to reproduce soil-water-plant 

dynamics and the resulting effects on crop productivity (Cavero et al., 2000; 

Raes et al., 2006; Singh et al., 2008). For other typologies of extreme 

weather events (e.g., hail, wind-induced lodging, flooding) the relationship 

with crop growth and production may be less straightforward, and the 

circumscribed nature of these events makes difficult to obtain reliable input 

data for large-area simulations. Despite this, a few studies are available 

where approaches for the impact of this kind of weather extremes were 
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proposed, as the approach by Baker et al. (1998) for estimating the risk of 

stem and root lodging. 

However, operational simulation platforms used within crop monitoring 

and yield forecasting systems rarely implement approaches for the impact of 

extreme weather events, being available impact models often unsuitable for 

operational contexts and too demanding in terms of data needs in case of 

regional applications. 

1.2.2. Integration of remote sensing information within crop models 

The integration of remote sensing and crop modelling is considered as a 

powerful system to increase the spatial applicability of simulation tools, 

being able to reduce the uncertainty related with the poor quality of input 

data for regional applications (Launary and Guerif, 2005). The combined use 

of these two kinds of technology, indeed, can markedly reduce their intrinsic 

limits (and related uncertainty), because the potentialities of both 

technologies are maximized by their integration (Fang et al., 2011; Ines et 

al., 2013; Ma et al., 2013). 

Remote sensing information can be directly used as inputs before the 

simulation. As an example, the uncertainty in sowing dates for regional 

modelling studies can be reduced through the analysis of temporal profiles 

of remote sensing products (e.g., Boschetti et al., 2009). Other applications 

refer to the assimilation of remote sensing-derived leaf area index data 

varying in time and space (Launay and Guèrif, 2005; Dorigo et al., 2007) 

during the simulation. This allows implicitly accounting for possible 

differences in vigour between different varieties or for the effects of factors 

not accounted for by simulation models (e.g., insects, Wu and Wilson, 1997; 

weeds, Kropff et al., 1992). In particular, remote sensing information can be 

assimilated into crop models using two main strategies, each presenting pros 

and cons for different species and agroclimatic/operational contexts (Dorigo 

et al., 2007): recalibration and updating. The recalibration method is based 

on the automatic adjustment of model parameters targeting the minimization 

of the error between model outputs and remote sensing-derived state 

variables (e.g., Bouman et al., 1995). The updating method is instead based 

on the update of model state variables when the remote sensing data are 

available, using algorithms to convert them into simulated variables and to 

reinitialize all model state variables accordingly (Mc Laughlin, 2002). If not 
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properly applied, the recalibration method can be considered as more risky, 

since the values of model parameters – likely deriving from calibration 

activities based on many detailed experimental datasets – are changed using 

completely unsupervised optimization algorithms and few uncertain remote 

sensing-derived reference data. This could alter the process-based logic 

behind the crop model itself, and lead to unpredictable errors in model 

outputs. On the other hand, the updating method can be considered as more 

robust, since the biophysical coherence of the simulation is not affected 

between two assimilation events. However, the simulation lose consistency 

from sowing to harvest, since crop state variables appear as discontinuous 

and state variables referring to soil (e.g., water and nutrient contents) cannot 

be updated, since not linked to crop states with strict relationships like those 

existing between, e.g., the biomass of different plant organs. However, under 

specific conditions, each of these technologies – if correctly applied – 

demonstrated its capability of decreasing model uncertainty. Moreover, the 

availability of consistent archives (e.g., long-term MODIS-derived leaf area 

index data; https://modis.gsfc.nasa.gov/data/dataprod/mod15.php) and a new 

generation of remote sensing products (those provided by the Sentinel 

satellites from the Copernicus program; Lefebvre et al., 2016) are increasing 

the potential of forecasting systems based on the integration of crop 

modelling and remote sensing technologies. 

1.3. Objectives and organisation of the research 

The aim of the PhD project was to reduce the uncertainty affecting the 

existing yield forecasting systems through: 

 the development and improvement of modelling approaches for the 

simulation of the impact on crop yield of major abiotic stressors; 

 the integration of the new impact models within yield forecasting 

systems to increase their capability to predict crop yields in case of 

anomalous seasons; 

 the integration of remote sensing information within crop model-

based forecasting systems to reduce errors due to uncertainty in 

management practices (i.e., sowing dates changing in time and 

space) and due to factors not explicitly reproduced by the model 

(e.g., different varieties). 
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The improved yield forecasting systems were evaluated for a variety of 

crops and in different agro-climatic contexts. 

1.4. Outline of the thesis 

The study is articulated in five chapters. 

Chapter 1 presents the development of a yield forecasting system for 

sugarcane based on agro-climatic indicators and on the Canegro model. As a 

case study, the system was evaluated for the Brazilian State of São Paulo, by 

quantifying its forecasting reliability in different stages of the sugarcane 

growth cycle. In particular, given sugarcane is grown under rainfed 

conditions in the study area, the impact of water stress on the inter-annual 

yield fluctuations was analyzed. The Canegro model was linked to existing 

approaches for the simulation of water dynamics in the plant-soil system, 

that is, a cascading model for soil water redistribution and the EPIC 

approach for root water uptake. 

Chapter 2 presents the development of a new algorithm to allow the rice 

specific WARM model to reproduce the effects of both manual and 

mechanical transplanting. Indeed, transplanting (which is still the main 

technique used to establish rice in developing countries, especially in 

tropical and sub-tropical Asia) can largely affect rice productivity, and the 

magnitude of the transplanting shock is strictly dependent from the 

environmental conditions experienced by the plants before and after the 

transplanting event. The new transplanting algorithm improves the approach 

implemented in Oryza2000 by including algorithms for the simulation of the 

effect of the competition for solar radiation on canopy structure, as well as 

for estimating the percentage of mortality in the seedbed. 

Chapter 3 presents the improvement of the spikelet sterility model 

implemented in WARM. In particular, the existing approach for cold-

induced sterility (affecting the crop during the young microspore stage) was 

refined and extended to reproduce damages during anthesis. Moreover, the 

model was extended to account for heat-induced sterility during anthesis. 

The improved approach was evaluated using datasets collected in northern 

Italy between 2004 and 2010, characterized by heterogeneous weather 

conditions and cold-air outbreaks occurring in different moments during the 

reproductive phase. 
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Chapter 4 presents the results of activities aimed at improving the 

European Commission CGMS system for its capability of predicting the 

impact of weather extremes (heat, cold, frost and water stress) on the yields 

of cereal crops (maize, barley, soft and durum wheat) in Europe. The 

developed approaches are based on the hypothesis that yield variations due 

to extreme events are mediated by changes in the harvest index for water, 

heat and cold stresses and by damages to leaf area (or even crop failure) in 

case of frost events. 

Chapter 5 presents the development of a high-resolution rice yield 

forecasting system based on the deep integration of remote sensing 

information within a simulation platform based on the WARM model. 

Remote sensing information were used to derive the rice-cropped area and 

sowing dates varying with time and space, as well as for the assimilation of 

exogenous leaf area index data using both the recalibration and updating 

techniques. The high spatial resolution and the production of forecasts at 

district level (for the main six European rice districts) allowed including 

modelling approaches for the simulation of the key biotic (blast disease) and 

abiotic (cold shocks) factors affecting rice production in temperate 

environments. 

 

Note 

Chapter 1 is submitted to Agricultural Systems. Chapter 2 is published in 

European Journal of Agronomy. Chapter 3 is submitted to Field Crops 

Research. I would like to acknowledge the editorial board of European 

Journal of Agronomy for the permission to include the papers in this thesis.  
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2.1. Abstract 

Timely crop yield forecasts at regional and national level are crucial to 

manage trade and industry planning and to mitigate price speculations. 

Sugarcane is responsible for 70% of global sugar supplies, thus making 

yield forecasts essential to regulate the global commodity market. In this 

study, a sugarcane forecasting system was developed and successfully 

applied to São Paulo State, the largest cane producer in Brazil. The system is 

based on multiple linear regressions relating agro-climatic indicators and 

outputs of the sugarcane model Canegro to historical yield records. The 

resulting equations are then used to forecast the yield of the current season 

using 10-day period updated values of indicators and model outputs as the 

season progresses. We quantified the reliability of the forecasting system in 

different stages of the sugarcane cycle by performing cross-validations using 

the 2000-2013 time series of official stalk yields. Agro-climatic indicators 

alone explained from 38% of inter-annual yield variability (at State level) 

during the boom growth phase (i.e., January-April) to 73% during the 

second half of the harvesting period (i.e., September-October). When 

Canegro outputs were added to the regressor set, the variability explained 

increased to 63% for the boom growth phase and 90% after mid harvesting, 

with the best performances achieved while approaching the end of the 

harvesting window (i.e. at the beginning of October, SDEP = 0.8 t ha-1, R2
cv 

= 0.93). It is concluded that the overall performances of the system are 

satisfactory, considering that it was the first attempt based on information 

exclusively retrieved from the literature. Further improvements to 

operationalize the system could be possibly achieved by the use of more 

accurate inputs possibly supplied by the collaboration with local authorities. 

 

Keywords: sugarcane; yield forecast; Canegro; agro-climatic indicators; 

Brazil 
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2.2. Introduction 

Sugarcane (Saccharum spp. L.) is a semi-perennial crop widespread in 

tropical and sub-tropical environments. It is grown on about 27 million ha 

worldwide, for an annual production of 1.89 billion tonnes as fresh cane 

(FAOSTAT, 2014), corresponding to 70% of global sugar supply 

(Lakshmanan et al., 2005). Moreover, it is efficiently used for ethanol 

production (Goldemberg, 2008; Langeveld et al., 2014), contributing for 

60% to the global bioethanol demand (Demirbaş, 2005). The sucrose stored 

in the stalk, which depends on genetic, management and environmental 

factors, is about 12-15% of the fresh weight (Humbert, 2013). 

Brazil is the main sugarcane producing country worldwide, accounting 

for 40% of global production (FAOSTAT, 2014). The cultivated area in the 

country sharply increased from 2002 to 2009, mainly due to incentives 

aimed at replacing or blending gasoline with ethanol in the transport sector 

(Scarpare et al., 2016). After this period, the global financial crisis and the 

fall of international sugar prices slowed down the Brazilian sugar sector 

(Marin, 2016). The State of São Paulo is the most important producer, being 

responsible for more than half of national sugarcane production (UNICA, 

http://www.unicadata.com.br/). 

Its prominent role in global production places emphasis on the timely 

estimation of sugarcane yields in Brazil. Indeed, early warning in case of 

anomalous seasons at regional and national scale allows stakeholders to 

properly assure imports and regulate the agricultural market (Atzberger, 

2013, Bannayan and Crout, 1999). Moreover, the process of sugar 

production involves different sectors, like agriculture, transportation, milling 

and marketing. In such a complex scenario, early knowledge on seasonal 

supplies may support selling strategies and industry competitiveness, 

besides being a valuable information to plan milling operations and sugar 

shipments (Everingham et al., 2002). Finally, transparent forecasts made 

available to the public and early warnings in case of unfavorable conditions 

can mitigate the volatility of prices that often affect the main food 

commodities because of unexpected production falls and speculative actions 

(OECD and FAO, 2011). 

These considerations led to the development of a variety of yield 

forecasting systems in the past decades. The first methods were based on 



                                                                   Sugarcane yield forecasts in Brazil 

23 

farm surveys and crop scouting (Bannayan and Crout, 1999); however, these 

methodologies are strongly subjective and suffer from a lack of consistency. 

Since the 1990s, systems based on information retrieved from agro-climatic 

indicators, remote sensing and crop simulation models became more 

common (Bouman et al., 1997). The latter approaches present major 

advantages regarding coherence and objectiveness, and applicability at the 

regional to global scales. However, these methods also present some 

tenacious constraints, that undermine the accuracy of model-based yield 

forecasting systems: (i) the uncertainty regarding input data at regional scale 

(i.e., agro-management practices, soil properties, weather data, crop 

distribution, cultivated varieties), largely depending on the aggregation 

assumptions (Hoffmann et al., 2016), (ii) the difficulty to simulate all the 

factors that significantly influence crop yield (e.g. nutrient availability, 

competing weeds, pests, diseases, extreme weather events), (iii) the 

uncertainty in parameterizations. In order to reduce the impact of these 

factors on the forecast uncertainty, the European Commission Joint 

Research Centre – within the MARS (Monitoring Agricultural ResourceS) 

activities – supported the development of a forecasting system based on the 

statistical post-processing of model outputs and time series of official yields 

(Vossen and Rijks, 1995), operational at the level of the EU and its Member 

States (https://ec.europa.eu/jrc/en/research-topic/crop-yield-forecasting). 

Regarding sugarcane, various systems have been developed to forecast 

cane yields in the world’s main production regions. These systems are based 

on the estimation of climatic-edaphic parameters (Scarpari and Beauclair, 

2004; Suresh and Krishna Priya, 2009), on information retrieved from 

remote sensing indices (Everingham et al., 2005; Fernandes et al., 2011; 

Gonçalves et al., 2012; Mulianga et al., 2013; Nascimento et al., 2009) and 

on the use of crop simulation models often integrated with climatic outlooks 

(Everingham et al., 2005, Everingham et al., 2002). These methods were 

mostly tested within small areas or over limited time windows, thus without 

evidence of their applicability in operational contexts at national level. 

Notable exceptions are the national-scale systems developed by 

Bezuidenhout and Singels (2007a, 2007b) in South-Africa and by Duveiller 

et al. (2013) in Brazil. In particular, the system developed in South Africa, 
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based on the Canesim model, provides since the early 2000s operationally 

monthly forecasts of sugarcane production at mill and industry level. 

In this paper we present a yield forecasting system for sugarcane based 

on agro-climatic indicators and on the Canegro model (Inman-Bamber, 

1991; Singels and Bezuidenhout, 2002; Singels et al., 2008) as implemented 

in the BioMA framework. As a case study, we evaluated the system for the 

State of São Paulo by quantifying its forecasting reliability in different 

stages of the sugarcane growth cycle. 

2.3. Materials and Methods 

2.3.1. The study area 

The State of São Paulo (44°10’/53°5’W, 19°46’/25°18’S) is located 

along the Atlantic Ocean coast in the south-eastern part of Brazil (Fig. 1.a). 

The State is responsible for 56% of Brazilian sugarcane production, with 

369 million tons harvested in the 2015/2016 season (UNICA, 2015). The 

crop covers about 20% of the State’s surface: according to the 2008 

CANASAT cover map (Fig. 1.b) (CANASAT Project; Rudorff et al., 2010), 

it is concentrated in the central and north-eastern areas, which presents 

optimal climatic conditions for sugarcane. The climate is tropical to 

subtropical, with annual average temperature of 23°C and cumulated rainfall 

of 1400 mm according to the historical weather series for the period 1990-

2009 (Instituto Nacional de Meteorologia, www.inmet.gov.br/). Rainfall 

events are concentrated in the north-eastern part of the State from September 

to March; temperature follows a north-west/south-east decreasing trend, 

with maximum values recorded during January and February. Sugarcane is 

usually harvested 12 or 18 months after sprouting both for planted and 

ratoon crops (i.e., canes resprouting from the stubbles of the previous crop), 

with the latter covering about 80% of cultivated area (Marin et al., 2016). 

On average, the ratoon crop is replanted every five years, due to the 

progressive yield decrease over successive ratoons. Fig. 2 highlights the 

main growth phases of 12 and 18 months sugarcane compared to monthly 

average mean temperature and cumulated rainfall in the State of São Paulo. 

Highest biomass accumulation rates are achieved in the most rainy and 

warmest periods of the year (i.e., boom growth phase in Fig. 2), whereas 

mild water stress (Inman-Bamber et al., 2008) and cooler temperatures 
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(Singels and Inman-Bamber, 2002) reduce crop vegetative growth and favor 

sucrose storage in the stalks (i.e., ripening and harvest periods in Fig. 2). 

Rainfall amounts and distribution in 90% of South-East Brazil allow the 

growing of sugarcane under rainfed conditions. According to the varietal 

census of RIDESA (2014), about 27% of the sugarcane area of the most 

productive Brazilian states (i.e., São Paulo and Mato Grosso do Sul) is 

currently covered by RB867515, a medium-ripening cultivar (Barbosa et al., 

2008). According to the Brazil System of Soil Classification (EMBRAPA, 

2013), the main soil classes characterizing the sugarcane areas are Ferralic 

Acrisols and Rhodic/Haplic Ferralsols, both displaying – although to a 

different extent – a sandy-clay texture. The soil map 

(https://www.embrapa.br/solos) was processed with a GIS software, 

assigning the most representative soil to each simulation unit (see beginning 

of Section 2.3.1 for more details). 

 

Figure 1: a) Position of the State of São Paulo in South America and b) 0.25° 

latitude ×0.25° longitude simulation grid and sugarcane cover map (CANASAT, 

2008). 
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Figure 2: main growth and management phases of 12 and 18-month cycle 

sugarcane plant crops (Source: Castro, 1999) and average monthly temperature 

(black circles) and rainfall (grey bars) in São Paulo state (average of the period 

1990-2009, www.inmet.gov.br/). Pl=Planting; S.G.=slow growth; B.P.=Boom 

growth phase; H.=harvest; R.=ripening; M.H.=medium harvest; L.H.=late 

harvest. 

2.3.2. Simulation environment 

The Canegro model (Inman-Bamber, 1991; Singels et al., 2008) 

dynamically simulates sugarcane growth and development from daily 

weather data, cultivar features, soil properties and agro-management 

information. Phenological development is estimated according to thermal 

time accumulation. After planting or ratooning, germination of primary 

tillers occurs when a specified thermal time has elapsed (longer for plant 

cane than for ratoon cane). Starting from this stage, a number of sequential 

tiller cohorts (i.e., groups of homogeneous tillers) are emitted until a peak 

population is reached and tiller senescence phase begins. Row spacing and 

water stress modify tiller appearance and senescence. Photosynthesis is 

driven by solar radiation interception, calculated according to Beer’s law 

using leaf area index (LAI) and extinction coefficient for solar radiation: 

LAI is derived from thermal time-driven development of individual leaves 

and tiller cohorts. On each tiller, leaf appearance is based on the 

phyllochron, i.e., the thermal time between the emergence of subsequent 

leaves. Increase in individual leaf length and width is derived from plant 

elongation rate, a variable determined by cultivar characteristics, average 



                                                                   Sugarcane yield forecasts in Brazil 

27 

daily air temperature and water stress. Leaves stop expanding once they 

reach a maximum blade area, which varies according to cultivar and leaf 

position on the tiller. Senescence of green leaves is modulated by a variety-

specific maximum number of active leaves: once this number is reached, the 

emission of a new leaf forces the oldest one on the tiller to die. The total 

number of leaves on the primary tiller is used to determine the extinction 

coefficient of solar radiation within the canopy. Tiller leaf area is scaled up 

to canopy level by multiplying, for each cohort, leaf area per tiller by the 

number of elements in the cohort per unit area. Daily increments of total 

biomass depend on the amount of intercepted photosynthetically active 

radiation (PAR), crop water stress, maintenance and growth respirations. 

PAR conversion efficiency and maintenance respiration depend on 

temperature as described by Singels et al. (2008). Partitioning of assimilates 

between above- and below-ground organs is simulated as a non-linear 

function of total biomass, with a large fraction of photosynthates partitioned 

to roots during early growth. Partitioning to roots support increase of both 

root mass and root length density, in turn influencing water uptake and 

water stress. A temperature-dependent fraction of aboveground biomass 

increment is partitioned to stalk; partitioning of stalk dry matter between 

sucrose and stalk structure is regulated by sink capacity for stalk structural 

growth and the source-to-sink ratio (Singels and Bezuidenhout, 2002). Sink 

capacity for structural growth and sucrose storage are modulated by growing 

conditions, stalk mass and cultivar characteristics, considering a variable 

distribution of sucrose within the stalk. 

For this study, a customized modelling solution (MS) was developed for 

potential and water limited (rainfed) simulations. The MS links models 

belonging to different software components and manages their 

communication. Sugarcane growth and development is simulated using the 

algorithms made available by the UNIMI.CaneML component 

(http://www.cassandralab.com/components/2), which provides the MS with 

an implementation of Canegro explicitly designed to be coupled to other 

models (Stella et al., 2015). In particular, those belonging to 

CRA.AgroManagement component (Donatelli et al., 2006) are used to 

trigger crop management events (i.e., planting, harvest), whereas models 

from the UNIMI.SoilW software library 
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(http://www.cassandralab.com/components/6) simulate soil water dynamics 

in order to account for water limitation to crop production. More 

specifically, a cascading model (Ritchie, 1998) and the EPIC approach 

(Williams et al., 1989) estimate, respectively, the downward movement of 

water through the soil profile and root water uptake. Given the target spatial 

scale, such approaches were selected in light of their limited input 

requirements. 

The MS is implemented as a Microsoft C# class library managing the 

interactions between the I/O data produced by models belonging to the 

different software components. The entry point of the MS contains instances 

of Adapter classes (Gamma et al., 1994) and manages their call. Adapter 

classes, in turns, encapsulate the logic to perform dynamic simulation, by 

calling specific models selected among those provided by software 

components. The components implemented in the MS communicate in each 

integration time step (daily), by sharing information produced during the 

simulation. This information is stored in dedicated objects, i.e., DataTypes, 

containing instances of the data structures of all the components. 

2.3.3. Yield forecasting 
 

2.3.3.1. Spatially distributed simulations 

Simulations were run for 0.25° latitude × 0.25° longitude grid cells 

covering the sugarcane area of the State of São Paulo (see Fig. 1b), 

according to the spatial resolution of the weather data obtained from the 

European Center for Medium-Range Weather Forecasts (ECMWF) Era-

Interim database (Dee et al., 2011). Simulations were performed only on 

grid cells with a sugarcane cover greater than 7% (i.e., 215 simulation units). 

For each cell, average physical soil properties were attributed to three soil 

layers (i.e., 0-30 cm, 30-70 cm and 70-120 cm) according to information 

provided by the EMBRAPA soil database (https://www.embrapa.br/solos). 

Soil texture, organic carbon content and soil bulk density allowed estimating 

the parameters of the van Genuchten water retention curve (van Genuchten, 

1980) via the pedotransfer functions proposed by Wösten et al. (1999). 

Canegro was parameterized according to Marin et al. (2011), who calibrated 

model parameters using a set of experimental data for the variety RB867515. 

For each cell, simulations were performed for both 12- and 18-month 
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sugarcane cycles. For the first, resprouting was triggered at the end of 

November, and harvest at the beginning of November in the following year. 

For 18-month cycle, resprouting was set in February and harvest in 

November in the following year. In both cases, crop was harvested at the end 

of harvest window of sugarcane (Fig. 2). Due to its relative abundance, only 

ratoon crop was simulated. Ratooning was reproduced by initializing at 

resprouting root depth and root length density distribution in soil according 

to their values simulated at the previous harvest. Soil water content was 

simulated continuously during the whole period (2000-2013). For each cell 

and for each 10-day period, selected potential and water limited model state 

variables together with two soil-water balance indicators were stored in a 

database for both the 12- and 18-month cycles (Table 1).  

Table 1: List of Canegro model outputs and agro-climatic indicators stored 
each 10-day period and used for yield forecast. 
 

Indicator name Unit Crop cycle 

(months) 
Production 

level 
Description 

Model outputs 

Stalk Dry Mass (SDM) t ha
-1

 12, 18 P*, WL** Total stalk biomass (dry matter, including 

sucrose plus structural biomass) 

Stalk Sucrose Mass (SSM) t ha
-1

 12, 18 P, WL Dry sucrose biomass stocked in the stalk 

LAI m
2
 m

-2
 12, 18 P, WL Total leaf area index 

Water content indicator (WCI) unitless 12, 18 WL Average soil water content in the rooted zone 

from resprouting, as a fraction of plant 

available water  

Water stress indicator (WSI) unitless 12, 18 WL Cumulated water uptake to cumulated 

potential evapotranspiration ratio from 

resprouting 

Agro-climatic indicators 

TMAX °C 12, 18 P,WL Cumulated daily maximum temperature from 

resprouting 

ET0 mm 12, 18 P,WL Cumulated reference evapotranspiration 

(Hargreaves and Samani, 1985) from 

resprouting 

Rain mm 12, 18 WL Cumulated rainfall from resprouting 

 1 
 

*Potential production; **Water-limited production 

In particular, stalk dry and sucrose mass were selected since directly 

related with sugarcane productivity, whereas leaf area index and soil-water 

balance indicators were selected as synthetic representation of crop potential 

and to focus on the importance of water availability for sugarcane growth in 

Brazil. In order to make available yield data for each year, 18-months 

sugarcane was simulated twice by setting resprouting in even and odd years, 

respectively. For forecasting purposes, only the variables and indicators 

related to the crop harvested in the solar year were taken into account. In the 
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same database and with the same frequency, the following agro-climatic 

indicators were stored: daily maximum temperature, rainfall and reference 

evapotranspiration cumulated from resprouting every 10-day period of 

forecast (Table 1). Finally, both Canegro model outputs and agro-climatic 

indicators were aggregated at State level according to the percentage of crop 

cover in each simulation unit obtained overlapping the grid and the 

CANASAT map (Fig. 1b). 

 

2.3.3.2. Statistical analysis 

Model outputs and agro-climatic indicators (Table 1) were related as 

independent variables of multiple linear regressions to the time series 2000-

2013 of stalk biomass yields (IBGE, www.ibge.gov.br) for each of the 10-

day period from January to October. Historical yield statistics were 

previously examined to identify and possibly remove the presence of 

significant technological trends. This allowed removing from the statistical 

analysis the factors not reproduced by the modelling solution (e.g., 

introduction of higher-yielding cultivars, changes in management practices). 

Regressors were first divided in three groups: agro-climatic, Canegro-

potential and Canegro-water limited (Canegro-WL), in order to analyze 

separately the influence of the three categories of factors on sugarcane 

yields. Such categories were merged in a second step, which allowed 

identifying through a step-wise analysis the combinations of regressors able 

to explain the largest inter-annual yield variability. 

A maximum of four independent variables were used in the regressions 

to reduce collinearity and overfitting problems. For each regression model 

the degree of multicollinearity was evaluated with the Variance Inflation 

Factor (VIF, Eq. 1, 1 to +∞, optimum = 1): 

21

1

i

i
R

VIF


  (1) 

where Ri
2 represents the proportion of variance in the ith independent 

variable that is associated with the other independent variables in the model. 

A t-test was applied to verify the significance (p-value) of regression 

coefficients associated to each indicator. The influence of each indicator was 

also evaluated using the standardized coefficients. The absence of serial 
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correlation among the residuals was verified via the Durbin-Watson statistic 

(Durbin and Watson, 1971; Eq. 2): 


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where et is the difference between observed and predicted yield in the tth 

year of the time series; n is the number of years. The null hypothesis (i.e., 

absence of autocorrelation among residuals) is (i) accepted if the result of 

the test is higher than the upper critical value (dU), (ii) rejected if the result is 

smaller than the lower critical value (dL), and (iii) inconclusive if the result 

is between dL and dU (Savin and White, 1977). 

The predictive ability of the regression models was then tested 

performing a leave-one-out cross-validation on the available time series. 

Forecasted yields, obtained by excluding each time a single year during the 

cross-validation, were compared with historical yields. The prediction 

capability of each regression model was then evaluated through the 

calculation of the standard deviation error in prediction (SDEP, t ha-1, 0 to 

+∞, optimum = 0), and the cross validation-coefficient of determination 

(R2
CV) of the linear regression equation between official and predicted 

yields. 

2.4. Results and discussion 

The trend in the historical series of official yields was not significant, 

thus no de-trending was applied to the analysis. 

Figure 3 displays, for each forecasting window, the best statistical model 

selected after the cross-validation among those proposed by the step-wise 

analysis. The significance level for all the combinations of regressors was 

lower than 0.05 regardless of the 10-day period. The only exceptions were 

observed for the first 20 days of January, since in this case the growth stages 

were too early to explain a sufficient part of the variability characterizing the 

season. For this reason, results for the first two 10-day periods are not 

further discussed. 
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VIF values of selected regressors never exceeded five, which is lower 

than the threshold usually recommended to avoid multicollinearity (e.g., 

Hair et al., 2010; Rogerson, 2014) (Fig. 3). The null hypothesis (i.e., absence 

of correlation among residuals) of the Durbin-Watson test was accepted in 

all but two cases (i.e., January, 10th; September, 10th). In these cases, the 

test was inconclusive and null hypothesis could not be rejected (Fig. 3). 

Once verified the absence of serial collinearity and autocorrelation, the 

use of multiple linear regressions allowed to clearly identify the factors (i.e., 

independent variables) influencing the final yield (i.e., dependent variable) 

for each of the 10-day periods when the forecasting events were triggered. 

Both the significance level and the standardized coefficients underlined 

that the largest percentage of inter-annual yield variability was explained by 

WCI simulated for the 18-month sugarcane cycle (Fig. 3). This is consistent 

with conditions affecting sugarcane productivity in São Paulo, which is 

largely influenced by water availability, in turns depending on rainfall and 

on water redistribution in the soil layers explored by roots. Cumulated 

TMAX and ET0 were selected in almost all moments when the forecast was 

triggered, with the addition of some water-limited Canegro outputs in the 

harvesting months (e.g., water-limited state variables related with stalk 

sucrose content). Instead, Canegro outputs simulated under potential 

conditions for water were never selected by the stepwise regression, as 

further demonstrated by the low performance of the models including only 

Canegro-potential state variables in the statistical analysis (Fig. 4.b). 

The forecasting reliability of the system significantly increased while 

proceeding along the growing season, with the exception of the seventh 10-

day period (i.e., 10th March), for which the achieved uncertainty was 

smaller than the mean for the period (Fig. 3; Fig. 4.d,). The fact that the step-

wise selected three agro-climatic indicators out of the four independent 

variables underlined how the trend of temperature and rainfall in this period, 

i.e., during the boom-growth phase, is – per se – critical for the final 

production. The best performances were achieved during the medium-late 

harvesting period (i.e., September-October), with an average SDEP lower 

than 1 t ha-1 (Fig. 4.d) and an amount of explained inter-annual variability 

that reached 93% on October 10th (Fig. 3). However, the system showed 

satisfactory performances also in early stages, with R2 always exceeding 
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0.48 and RMSE never larger 2.01 t ha-1. Figure 5 shows the system 

performance along the season for each year of the time series. It is 

interesting to note that the variability in forecasted yields along the same 

season tends to be smaller than the inter-annual yield variability. 

  
Figure 4: Standard deviation error in prediction (SDEP) values (averaged for 

all the available years) derived from the comparison between official and predicted 

yields achieved by the forecasting system during the season. The four charts refer 

to cross validation of models from stepwise regressions when the following 

information was used: (a) agro-climatic indicators, (b) Canegro potential outputs, 

(c) Canegro water limited outputs, and (d) agro-climatic indicators + Canegro 

water limited outputs. 

 

The years with the highest yields in the official series (2008, 2009 and 

2010) were identified as the most productive also by the forecasting system 

for the forecasting events triggered at medium-late harvesting time. 

However, yields were slightly underestimated in those cases. The marked 

overestimation observed for 2011 can be attributed to anomalous conditions 

that influenced sugarcane productivity while being uncommon in the 

historical period considered, i.e., prolonged droughts during 2010 winter 

months, occurrence of frost at the beginning of the 2011 harvest season, and 
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abundant flowering (which causes a reduction of the sucrose and an increase 

of fiber) (UNICA, 2015). 

Agro-climatic indicators, when used alone in the regression analysis, led 

to markedly decrease the forecasting error while proceeding along the 

sugarcane growing period (Fig. 4.a). At the end of the growing season, they 

allowed explaining about 80% of inter-annual yield variability, with an 

SDEP slightly lower than 1.5 t ha-1. However, during the boom growth 

phase (before April) when biomass accumulation rates are usually higher, 

the system based on agro-climatic indicators was characterized by larger 

errors, with RMSE ranging between 2.5 and 3 t ha-1. In this early phase, 

instead, water limited outputs of Canegro led to a substantial improvement 

compared to what achieved using only agro-meteorological indicators, with 

SDEP values falling below 2 t ha-1 (Fig. 4.d). The contribution of the water 

limited model outputs to the overall system reliability is less evident after 

the beginning of the harvest period. After this stage, indeed, plant starts to 

allocate resources towards the synthesis of sucrose and to reduce the 

percentage of photosynthates partitioned to the stalk structural components, 

leading water limited model outputs to keep a nearly constant predictive 

power until the end of the sugarcane cycle (Fig. 4.c). 

 

 
Figure 5: Comparison between official stalk yield records (dotted lines) and 

yields forecasted after the cross-validation for each 10-day period within the 

selected window (January-October). 
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The system we developed is based on a simplification of the actual 

management of the 12 and 18-cyle sugarcane in Brazil, a planting schedule 

that has been slightly modified in the last decade to reduce costs. In 

particular, the model configuration could be affected by non-negligible 

sources of uncertainty, since based exclusively on information retrieved 

from the literature. Indeed, the model was parameterized for one variety, the 

same resprouting date was used for all seasons and simulation units, and soil 

data were characterized by low-resolution. The Canesim-based system 

developed for South African millers by Bezuidenhout et al. (2007a,b) is 

more complex and based on more detailed information. As an example, 

input weather data were collected from a network of ground stations and the 

system was tested after the historical series of yield data was de-trended with 

information on mill closures and cane diversions, harvest age, and changes 

in irrigated area. Moreover, forecasting results were provided at industry and 

mill level. For the former, mean error and modelling efficiency were 6.6% 

and 0.57 at harvest. Results are slightly poorer than those obtained in this 

study; however, the system proposed by Bezuidenhout et al. (2007a,b) 

provided information at a spatial scale that makes the information more 

useful for farmers and other actors of the production chain involved, e.g., 

with milling operations and sugar shipments. A different system was 

developed by Duveiller et al. (2013) for the state of São Paulo using 

remotely-sensed information as independent variables of multiple linear 

regressions with official yields. The system achieved satisfactory results, 

with values of the agreement metrics consistent with those achieved in this 

study. However, a forecasting system solely based on remote sensing could 

be partly unsuitable in case of stressors affecting yields or product quality 

without clear damages to the canopy, or in contexts characterized by high 

yields, since the vegetative vigor could saturate the signal (Dobson et al., 

1995; Zhao et al., 2016). 

Considering the performances of the existing approaches, the overall 

predictive ability of our system is satisfactory, proving that sensible 

forecasts can be achieved even by using a simplified system. Moreover, this 

type of approach is quite simple to automate and thus easily transferable to 

other contexts. The performances of the system, especially at the beginning 

of the season, could be further improved by using more accurate information 
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provided by local authorities and institutions. 

2.5. Conclusions 

A forecasting system was developed for sugarcane yields, based on 

outputs from the Canegro simulation model and agro-climatic indicators. As 

case study, the system reliability was quantified for the State of São Paulo, 

Brazil. The overall system performance was satisfactory, with the most 

reliable predictive ability achieved when the forecasting event was triggered 

during the medium-late harvesting period (i.e., September-October). In this 

case, average values for SDEP and R2
CV were 0.92 t ha-1 and 0.90, 

respectively, with the largest amount of inter-annual yield variability (93%) 

achieved at the beginning of October. Despite the discrete performance 

obtained when only agro-climatic indicators were used, the addition of the 

Canegro model outputs allowed getting a marked increase in the system’s 

capability to capture yearly yield fluctuations, especially during the boom 

growth phase of the sugarcane cycle. 

The results achieved by the forecasting system – applied here for one of 

the largest and most productive sugarcane districts worldwide – were 

satisfactory also considering that the historical series of official yields 

(2000-2013) had no significant trend, thus the system itself explained the 

greatest part of the inter-annual yield variability, without portions of 

variance explained by technological trends. 

These observations allow considering the forecasting system we 

developed as suitable for sugarcane yield forecasts in operational contexts in 

Brazil, thus supporting multiple actors in the Brazilian sugarcane sector. 

Marketers are interested in yield predictions both during early stages of the 

sugarcane growing cycle and during harvesting months. Indeed, on the one 

hand, early forecasts of productivity are crucial to plan market operations; 

on the other hand, yield estimates during the harvesting months are 

important as well, since official yield data are not immediately available at 

the end of the season. 

Further improvements to operationalize the system could be possibly 

achieved by the integration within the system of more accurate input data 

provided by the collaboration with local institutions. 
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3.1. Abstract 

WARM is a model for rice simulation accounting for key biotic and a-

biotic factors affecting quantitative and qualitative (e.g., amylose content, 

chalkiness) aspects of production. Although the model is used in different 

international contexts for yield forecasts (e.g., the EC monitoring and 

forecasting system) and climate change studies, it was never explicitly 

evaluated for transplanting, the most widespread rice establishment method 

especially in tropical and sub-tropical Asia. In this study, WARM was tested 

for its ability to reproduce nursery growth and transplanting shock, using 

data on direct sown and transplanted (both manual and mechanical) rice 

collected in 24 dedicated field experiments performed at eight sites in 

Jiangsu in 2011, 2012 and 2013. The agreement between measured and 

simulated aboveground biomass data was satisfactory for both direct sowing 

and transplanting: average R2 of the linear regression between observed and 

simulated values was 0.97 for mechanical transplanting and direct sowing, 

and 0.99 for manual transplanting. RRMSE values ranged from 5.26% to 

30.89%, with Nash and Sutcliffe modelling efficiency always higher than 

0.78; no notable differences in the performance achieved for calibration and 

validation datasets were observed. The new transplanting algorithm – 

derived by extending the Oryza2000 one – allowed WARM to reproduce 

rice growth and development for direct sown and transplanted datasets (i) 

with comparable accuracy and (ii) using the same values for the parameters 

describing morphological and physiological plant traits. This demonstrates 

the reliability of the proposed transplanting simulation approach and the 

suitability of the WARM model for simulating rice biomass production even 

for production contexts where rice is mainly transplanted. 

 

Keywords: direct sowing; Oryza sativa L.; seedbed; sowing technique; 

transplanting. 
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3.2. Introduction 

Rice (Oryza sativa L.) is the staple food for more than three billion people 

worldwide, providing 35-75% of their dietary calories (Krishnan et al., 

2011). Global rice production amounts to more than 720 million tonnes 

(FAO, 2011). The cultivated area is concentrated in Asia, with China 

accounting, alone, for the 28% of the total production (FAO, 2011). 

The two main methods for establishing rice plants are direct sowing and 

transplanting, with the latter implying growing rice seedlings in a nursery 

bed near the main field before manually or mechanically transplanting them 

about 15-40 days after sowing (IRRI, 2009). Although transplanting requires 

significantly more labour than direct sowing, it is still the main technique 

used to establish rice in developing countries, especially in tropical and sub-

tropical Asia. Transplanting, indeed, favours rice over emerging weeds and 

allows a higher degree of intensification because rice takes up the main field 

for less time (IRRI, 2009). In the last two decades, transplanting was 

partially replaced by direct sowing in important producing countries like 

Malaysia and Thailand (Pandey et al., 2000). However, the price of 

herbicides still makes manual transplanting the preferred solution in most 

low-income areas (Chen et al., 2009; IRRI, 2009). 

In some temperate Asian countries like Japan, Korea, Taiwan and part of 

China, the reduced availability of manpower in the countryside and the 

increasing cost of labour are leading to gradual abandonment of manual 

transplanting in favour of mechanical techniques (Pandey et al., 2000). 

Mechanical transplanting is much more efficient than manual in terms of 

manpower use (1-2 ha person-1day-1 compared to 0.07 ha person-1 day-1), 

although it requires more financial and technological resources (IRRI, 2009) 

and is hardly feasible in hilly-terraced regions, like, e.g., those present in 

northern Philippines. 

Among the widespread models for rice simulation, only CERES-Rice 

(Jones et al., 2003), ORYZA2000 (Bouman et al., 2001; Bauman and van 

Laar, 2006), APSIM-Oryza (Gaydon et al., 2012a; 2012b), NIAES-Rice 

(Hasegawa and Horie, 1997) and RIBHAB (Salam et al., 2001) reproduce 

the key processes involved with nursery growth and transplanting shock. 

The latter is crucial because of its effect in arresting the main physiological 

processes involved with crop growth and development after the event, thus 
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extending the length of the crop cycle (Salam, 1992). The duration of the 

shock depends on seedling age, pulling methods, handling during 

transplanting, cultivar characteristics and weather conditions before and after 

transplanting (SARP, 1987). 

It is possible to find in the literature various studies where the 

transplanting algorithms of the above-mentioned rice models were tested 

under different environmental and management conditions. Sudhir-Yadav et 

al. (2011) tested the ability of ORYZA2000 to simulate the effects of 

different water management techniques on transplanted rice in north-western 

India. Mahmood et al. (2004) applied CERES-Rice to 16 locations 

representative of the major rice growing regions in Bangladesh to study the 

effect of water stress on transplanted rice. However, an effective evaluation 

of the algorithms involved with transplanting should be performed by using 

datasets with the same (or similar) cultivars established using both the 

techniques (e.g., Hossain et al., 2002; San-oh et al., 2004), whereas – 

according to the authors’ knowledge – the available studies refer only to 

either direct sowing or transplanting datasets. The risk, in this case, is to 

include the effect of biophysical processes dealing with transplanting in the 

values of parameters that should instead describe only morphological and 

physiological plant features, or – vice versa – to include cultivar features 

involved with, e.g., phenology, in the parameters of the transplanting shock 

algorithms. The assumption behind these considerations is obviously that a 

model should work with exactly the same set of crop parameters for both the 

establishment methods, when cultivars with similar features are used. This 

would demonstrate the reliability of the transplanting algorithm and the 

coherence of the way it is coupled to the crop model. 

WARM (Confalonieri et al., 2009) is a model specific for the simulation 

of rice-based cropping systems, operationally used by the European 

Commission for rice monitoring and yield forecasts since 2006, and adopted 

in different international projects (e.g., EU-FP7 E-AGRI, MODEXTREME, 

ERMES, World Bank AZS) and networks (i.e., AgMIP). The possibility of 

reproducing the interaction between fungal pathogens and the host plant, and 

the impact of abiotic factors (e.g., temperature shocks, lodging) on 

qualitative and quantitative aspects of productions make this model 

particularly suitable for evaluating the impact of climate and management 
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scenarios. The main restriction of the first version of the model was the 

absence of an algorithm for the simulation of processes involved with 

transplanting. 

The objectives of this study were: 

 to develop a new algorithm within WARM to reproduce the dynamics 

involved with both manual and mechanical transplanting; 

 to evaluate WARM using datasets where the same (or similar) varieties 

were grown under both direct sowing and transplanting conditions, in 

order to verify the capability of the model to reproduce – using the same 

parameter set – the effect of different establishing methods on rice growth 

and development. 

 
 

Figure 1: Experimental sites (see Table 1 for details). Calibration datasets are 

enclosed by circles. 
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3.3. Materials and methods 

3.3.1. Experimental data 

Data were collected in the Jiangsu province of the People’s Republic of 

China in 2011, 2012 and 2013, at eight sites located in the central-western 

part of the province (Fig. 1). The climate in the experimental area is humid 

subtropical; mean annual temperature is about 15°C, and daily values often 

exceed 30°C in summer. Cumulated rainfall ranges between 800 and 1200 

mm. During the period when experiments were carried out, 2011 was 

characterized by abrupt temperature fluctuations in the sowing periods and 

temperature slightly lower than the average during the flowering phase; in 

the same year, the highest cumulated rainfall during the crop cycle was 

gauged, whereas the highest temperatures during summer were recorded in 

2013. The soils in the sites located in the southern part of the province 

(experiments 1 to 5) were clay, whereas those in the central part of the 

province (experiments 6 to 8) were clay loam (USDA classification). All the 

soils presented a medium organic matter content, although higher values 

were measured in the southern sites (about 25 g kg-1 against 20 g kg-1 of the 

central sites), and pH was always subacid, ranging from 6.5 to 6.8. For all 

the sites, soils had sufficient available phosphorous and medium potassium 

content. For all the experimental sites, rice was grown under flooded 

conditions, thus soil moisture never limited crop growth and development. 

In the same way, fertilizers (distributed pre-sowing and in one top-dressing 

event), herbicides and pesticides assured potential conditions for plants in all 

sites and years. Information on the main characteristics of the experimental 

sites, on the varieties grown and on management techniques is summarized 

in Table 1. According to the site and year, rice was directly sown between 

the first and the second week of June, or transplanted between the third and 

the fourth week of June. In case of manual transplanting, the mean seedling 

age at transplanting was 40 days and the seed density in the nursery was 

around 3000 seeds m-2, coherent with values normally found in literature 

(e.g., Sharma and Ghosh, 1999; Pasuquin et al., 2008). In case of mechanical 

transplanting, 58 cm × 28 cm plastic plates were used for the nursery, with 

150 g of seeds for each tray (Fisher et al., 2004; FAO, 2012) and seedlings 

transplanted after about 30 days. 
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Table 1: Datasets used for model calibration and evaluation. DS: direct 
sowing; MT: mechanical transplanting; MM: manual transplanting. 

 

Exp. 

ID 
District Town/City 

Lat N 
Long E 

Year Sowing date Hybrid 
Cultivation 

method 
Used in 

calibration 

1 Yangzhou 
Shatou, 

Hanjiang 
32°16' 

119°33' 

2011 26-May 
Yangjing 4227 

MT 

× 

2012 20-May × 

2013 28-May Wuyunjing 24 
 

2 Yangzhou 
Fanchuan, 

Jiangdu 
32°40' 

119°40' 

2011 12-Jun 

Huaidao 5 DS 

× 

2012 6-Jun × 

2013 8-Jun 
 

3 Taizhou 
Lincheng, 

Xinghua 
32°50' 

119°47' 

2011 12-Jun 

Huaidao 5 DS 

 

2012 9-Jun  

2013 10-Jun 
 

4 Taizhou 
Changrong, 

Xinghua 
32°56' 

120°05' 

2011 11-Jun 
Huaidao 5 

DS 

× 

2012 7-Jun × 

2013 8-Jun Zhendao 88 
 

5 Yangzhou 
Xiaji, 

Baoying 
33°02' 

119°32' 

2011 13-Jun 

Huaidao 5 DS 

× 

2012 12-Jun × 

2013 14-Jun 
 

6 Huaian 
Tugou, 

Jinhu 
33°03' 

119°13' 

2011 10-May C Liangyou 608 

MM 

× 

2012 5-May C Liangyou 343 × 

2013 5-May Huiliangyou 3 
 

7 Huaian 
Dailou, 

Jinhu 
33° 

118°53' 

2011 5-May Y Liangyou 1 

MM 
 

2012 8-May Y Liangyou 464 
 

2013 5-May Huiliangyou 996 
 

8 Huaian 
Zhuba, 

Hongze 
33°14' 

118°53' 

2011 20-May Huaidao 5 MT 
 

2012 7-Jun Xudao 3 DS 
 

2013 22-May Huaidao 5 MT 
 

  

Plant state variables were determined eight/nine times during the crop 

cycle on 10 to 20 randomly selected plants per plot according to the variable 

(Gomez, 1972; Confalonieri et al., 2006). Phenological stages of emergence, 

booting, heading, flowering and physiological maturity were determined 

(codes 09, 41, 59, 65 and 92 of the BBCH scale for rice; Lancashire et al., 

1991), and physical and chemical properties of soils were measured at the 

beginning of each experiment. In this study, aboveground biomass (AGB; 

determined on 20 plants) data were used for model calibration and 

validation. 

Available data were split into calibration and validation datasets as shown in 

Fig. 1 and Table 1, with the aim of providing each of the two datasets with 
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data from rice cultivated in the three establishment methods analyzed in this 

work (direct sowing, mechanical and manual transplanting). 

3.3.2. WARM model 

WARM (Confalonieri et al., 2009) is a model specific for rice 

simulations, and reproduces crop growth and development with daily (used 

in this study) or hourly time step. It was developed using a component 

oriented approach, and it is available both as stand-alone package for field 

level simulations (at cassandra.lab@unimi.it) and as a modelling solution 

within the BioMA platform (Donatelli et al., 2012). The model simulates 

quantitative (e.g., biomass, yield) and qualitative (e.g., amylose content, 

chalkiness, percentage of fissured grains; Cappelli et al., 2014) aspects of 

rice production under conditions limited by water availability and by a 

variety of biotic (interaction between rice and fungal pathogens) and a-biotic 

factors (spikelet sterility due to pre-flowering temperature shocks, lodging), 

as well as agrochemicals fate. In case of flooded conditions, the floodwater 

effect on the vertical thermal profile is reproduced via the 

micrometeorological model TRIS (Confalonieri et al., 2005), providing 

temperature at the meristematic apex to routines involved with development 

and spikelet formation, and mid-canopy temperature to photosynthesis and 

leaf aging algorithms. 

Crop development is simulated as a function of thermal time, with an 

option to account for the effect of photoperiod. Aboveground biomass 

accumulation is simulated using the concept of net photosynthesis and a 

monolayer representation of the canopy, with a modified radiation use 

efficiency (RUE) approach based on RUE response to temperature, 

saturation of the enzymatic chains, senescence and diseases. Photosynthates 

are daily partitioned to leaves, stems and panicles using a set of quadratic 

and beta functions driven by development stage and a parameter 

representing the amount of biomass partitioned to leaves at emergence. 

During grain filling, translocation to panicles due to leaf senescence is 

simulated by accounting for the efficiency of the conversion from leaf to 

grain N-rich compounds. Leaf area index (LAI) is derived from leaf biomass 

and specific leaf area (SLA), with the latter varying according to 

development stage and the two input parameters (SLA at emergence and at 

mid-tillering). Daily-emitted leaf units live until a threshold amount of 
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degree-days is reached, and leaf senescence is calculated by subtracting the 

dead LAI units from the total one. 

Further details on the model algorithms are available in the seminal 

literature and in the documentation of the components used in the WARM 

modelling solution (http://agsys.cra-cin.it/tools/help/) 

3.3.3. The transplanting algorithm 

Algorithms for rice transplanting must deal with four key processes: the 

determination of leaf area index when seedlings emerge in the seedbed, the 

proper simulation of post-emergence growth in the seedbed, the dilution of 

photosynthetic area per unit soil surface when plants are transplanted, and 

the duration/impact of the transplanting shock. 

In Oryza2000 (Bouman et al., 2001), the simulation of seedlings growth 

in the nursery is based on the initialization of LAI at emergence, whereas 

Ceres-Rice (Jones et al., 2003) and RIBHAB (Salam et al., 2001) models use 

empirical functions for the simulation of the endosperm mobilization from 

seeds to seedlings. We decided to start from the Oryza2000 approach since it 

was considered as the most coherent with the level of detail used by WARM 

for reproducing emergence and post-emergence dynamics in case of direct 

sown rice. 

The new solution developed for WARM extends the Oryza2000 

algorithm by calculating (i) the initial value of LAI in the seedbed (without 

needing an user-specified initialization value), (ii) changes in plant traits 

(extinction coefficient and specific leaf area at emergence) due to the plant 

adaptation to high seedbed densities, and (iii) the mortality of plants in the 

seedbed. These improvements to the Oryza2000 algorithm refer to Equations 

1 to 4, whereas Equations 5 and 6 refer to steps of the original algorithm that 

were not altered. 

Initial LAI in the seedbed is estimated using Equation 1: 
 

opt

iniOptini
FD

SBD
LAIFLAISB                                          (1) 

where LAISBini (m2 m-2) is the initial value of LAI in the nursery bed; 

LAIFiniOpt (m
2 m-2) and FDopt are, respectively, the initial LAI and the plant 

density for optimal rice establishment in case of direct sowing; SBD is the 

seedbed density in the nursery (plants m-2). LAIFiniOpt and FDopt were set, 
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respectively, to 0.007 m2 m-2 (unpublished data) and 125 plants m-2 (Ottis 

and Talbert, 2005), whereas SBD ranged – according to the different datasets 

– from 3000 seeds m-2 to 30000 seeds m-2 for manual and mechanical 

transplanting, respectively.  

In order to improve the pre-transplanting simulation, seedbed conditions 

were reproduced by means of Eqs. 2 to 4, derived from unpublished data 

collected in two of the experimental sites. In particular, the effect of the high 

seedbed density on extinction coefficient for solar radiation (k) – important 

especially for the high seedbed density used for mechanical transplanting – 

was simulated using Eq. 2. 
 

  81.0ln054.0  SBDk                                         (2) 
 

Many authors demonstrated how the high competition for solar radiation 

leads plants to increase the leaf area to mass ratio (i.e., SLA, m2 kg-1) (e.g., 

Williams et al., 1965; Asch et al., 1999). This effect was reproduced using 

Eq. 3: 


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where SLASBem (m2 kg-1) and SLAem (m2 kg-1) are, respectively, the value 

of SLA at emergence as affected by seedbed density, and SLA at emergence 

measured/calibrated for direct sowing. 

The mortality (α, %) of plants in the seedbed was estimated using Eq. 4. 
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For the dilution of photosynthetic area per unit soil surface at the 

transplanting event, the Oryza2000 approach was used (Eq. 5): 
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 


1btr

btrtr
SBD

FD
LAISBLAIF                                   (5) 

where LAIFtr and LAISBbtr (m
2 m-2) are the LAI values in the field after 

transplanting and in the seedbed before transplanting, respectively; FD 

(plants m-2) is the plant density in the field after transplanting; SBDbtr is the 

seedlings density, SBDbtr is here assumed to be affected by the survival rate 

1–α. 

When transplanting occurs, rice development and growth stop until the 

end of the shock period. Even in this case, the Oryza2000 algorithm (Eq. 6) 

– based on the relationship between shock duration (TSHCKL, °C days-1) 

and seedling age at the moment of transplanting (SA, °C days-1) – was used: 
 

SHCKDSATSHCKL                                            (6) 
 

where SHCKD is a parameter used to modulate the relationship between 

seedling age and shock duration according to the different cultivar 

sensitivity. The value of SHCKD was here set to 0.5. 

3.4. Results 

Calibrated parameters were those identified with the sensitivity analysis 

performed by Confalonieri et al. (2012), in light of the low model plasticity 

underlined by the authors. For both calibration and validation, simulations 

were performed under potential conditions. Parameter values and sources of 

information are shown in Table 2, whereas Figs. 2 and 3, and Table 3 

present the results of the comparison between measured and simulated 

aboveground biomass data for the calibration and validation datasets. 

The calibration led to good agreement (R2 = 0.97) between measured and 

simulated AGB data in case of direct sowing (Fig. 2.a-f), as confirmed by 

the average relative root mean square error (RRMSE; %, 0 to ∞; optimum = 

0; normalized for the mean of observations) of 20.14%, and by modelling 

efficiencies (EF; unitless, -∞ to +1; optimum +1; if negative indicates that 

the average of observations is a better predictor than the model; Nash and 

Sutcliffe, 1970) always higher than 0.80 (Table 3). Results also highlighted 

the general slight overestimation of the model, although the values of 

coefficient of residual biomass (CRM; unitless, -∞ to +∞, optimum 0; if 

positive indicates underestimation and vice versa; Loague and Green, 1991) 
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were never lower than -0.23. Figs. 2.a-f show that the model overestimation 

especially concerns the final biomass values collected in experiments 2 and 

4 performed in 2012 (Figs. 2.b, 2.d and Table 3). Figs. 2.g-j show that the 

accuracy of the model in reproducing AGB values for transplanting is 

similar to that achieved for direct sown rice. Even in this case, RRMSE 

never exceeded 20% and EF was always higher than 0.90 (Table 3), 

although a slight underestimation was obtained for the 2012 datasets (Figs. 

2.h, 2.j; CRM = 0.15).The performances of the model in reproducing manual 

and mechanical transplanting were very similar, with average RRMSE equal 

to 15.79% and 14.36%. 

Table 2: Parameters values and source of information (C: calibrated 

parameters; L: literature). GDD: growing degree days. AGB: aboveground 

biomass. 
 

Parameter Units Value Description Source 

Development 

TbaseD °C 12 Base temperature for development LSié et al. (1998) 

TmaxD °C 42 Maximum temperature for development LSié et al. (1998) 

GDDem °C-days 90 Thermal time from sowing to emergence C 

GDDem-fl °C-days 1175 
Thermal time from emergence to 

flowering 
C 

GDDfl-mat °C-days 600 Thermal time from flowering to maturity C 

Growth 

RUEmax g MJ
-1 2.50 Maximum radiation use efficiency C 

k unitless 0.47 Extinction coefficient for solar radiation C 

TbaseG °C 13 Base temperature for growth C 

ToptG °C 26 Optimum temperature for growth C 

TmaxG °C 38 Maximum temperature for growth C 

SLAini m
2
 kg

-1 33 Specific leaf area at emergence C 

SLAtill m
2
 kg

-1 19 Specific leaf area at tillering C 

RipL0 unitless 0.77 AGB partition to leaves at emergence C 

LeafLife °C-days 820 Leaf duration C 
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Figure 2: Comparison between measured and simulated aboveground biomass 

(AGB) data for the calibration datasets. Days after sowing on the X-axis. Black 

triangles, white circles and crosses refer to direct sowing, mechanical and manual 

transplanting, respectively. Continuous line represents simulated AGB. For the 

transplanting datasets, the AGB peak before the typical S-shaped curve describing 

AGB accumulation refers to seedling growth in the nursery (before plants are 

diluted in the main field). 
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Figure 3: Comparison between measured and simulated aboveground biomass 

(AGB) data for the validation datasets. Days after sowing on the X-axis. Black 

triangles, white circles and crosses refer to direct sowing, mechanical and manual 

transplanting, respectively. Continuous line represents simulated AGB. 
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The set of parameters obtained from the calibration was tested using the 

remaining 2011 and 2012 datasets, and using all the data collected during 

2013. The results obtained for the validation datasets confirmed the 

satisfactory performances achieved by WARM after calibration. Figs. 3.a-g 

show that the agreement between measured and simulated AGB data for 

direct sown rice reflects the one achieved for calibration, with RRMSE 

ranging from 7.39% to 30.07% and average EF equal to 0.91. For manual 

transplanting, the WARM performances for the validation datasets were 

even better than those achieved after calibration (Figs. 3.k-n), with average 

RRMSE and EF equal to 7.93% and 0.99. The model performances during 

validation for mechanical transplanting (Figs. 3.h-j) confirmed the slight 

underestimation tendency during the pre-harvest phases discussed for some 

of the calibration datasets. However, the model achieved even in these cases 

satisfying results, with average RRMSE and EF equal to 23.68% and 0.88. 

3.5. Discussion 

Calibrated parameter values (Table 2) are in the range of those available 

in the literature. Cardinal temperatures for thermal limitation to 

photosynthesis are consistent with those estimated by Yin and Kropff (1996) 

and Sié et al. (1998), and used in modelling studies by Mall and Aggarwal 

(2002). The value of maximum radiation use efficiency (RUEmax) is 

coherent with those measured by Kiniri et al. (2001) and used for Chinese 

rice varieties by Confalonieri et al. (2009). Parameters involved with leaf 

area evolution, i.e., specific leaf area at emergence (SLAini) and at mid-

tillering (SLAtill), are similar to those proposed by Dingkuhn et al. (1998), 

as well as the extinction coefficient for solar radiation (k). 

In general, the WARM accuracy while reproducing AGB values was 

similar to the one achieved by other rice specific models for the same 

variable (e.g., Salam et al., 2001; Bouman and van Laar, 2006; Belder et al., 

2007), and to what was achieved by the same model under different agro-

climatic and management conditions (Confalonieri et al., 2009). The 

satisfactory reliability of WARM in reproducing growth dynamics for both 

transplanted and direct sown rice was confirmed by the validation activity 

carried out using the eight datasets collected in 2013, characterized by 

weather conditions not explored during calibration. According to the 
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threshold-based classification proposed by Jamieson et al. (1991), RRMSE 

values for the validation datasets can indeed be considered as excellent in six 

out of 14 cases (RRMSE <10%), good in three out of 14 cases (RRMSE 

between 10% and 20%), and acceptable in four out of 14 cases (RRMSE 

between 20% and 30%). Only for one dataset, the 30% threshold was 

slightly exceeded (30.07% for experiment 2 in 2013, direct sowing). The 

satisfying performances are also demonstrated by comparing the values of 

RMSE with the observed experimental variability. RMSE values, indeed, 

were often lower than 1 t ha-1, whereas the standard deviation of 

observations was always larger after flowering. However, the coefficient of 

variation of observed AGB values was always around 15%, in agreement 

with Belder et al. (2007), who considered this as the typical uncertainty in 

yield determination during field experiments. 

The goodness of the new transplanting algorithm – and its suitability for 

different transplanting techniques – is demonstrated by the results obtained 

by performing the calibration and evaluation with the WARM model 

coupled to the original (unmodified) Oryza2000 transplanting algorithm. 

The model, using this configuration, adequately simulated rice growth and 

development for the datasets where rice was manually transplanted (average 

RRMSE and EF equal to 29.12% and 0.80), whereas it completely failed 

while reproducing rice growth in the nursery in case of mechanical 

transplanting, where plants density is decidedly higher than those the 

algorithm was developed for. Indeed, results underline a marked 

underestimation of biomass values (average CRM = 0.77), with average 

RRMSE and EF equal to 93.46% and -0.74. The algorithm proposed in this 

study, instead, succeeded in reproducing crop growth throughout the crop 

cycle even for mechanical transplanting, thanks to an improved 

representation of nursery dynamics in case of the high seedling densities that 

characterize this establishment technique. 

The importance of reproducing seedling growth and post-transplanting 

shock via a dedicated algorithm is demonstrated by the performances of the 

WARM model in case the dynamics involved with transplanting are 

completely ignored. The exclusion of the transplanting algorithms for 

datasets where rice was transplanted, indeed, led to mean RRMSE of about 

70% for both the transplanting methods, with values for this metric ranging 
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from 34.55% to 127.16%. This is confirmed also by negative modelling 

efficiencies achieved in six out of 11 datasets. 

Table 3: Indices of agreement between measured and simulated aboveground 

biomass (t ha-1) values. DS: direct sowing; MT: mechanical transplanting; MM: 

manual transplanting. 
 

Activity 
Establishment 

method 

Exp. 
Year 

RRMSE 
EF CRM Slope 

Intercept 
R2 

ID % t ha-1 

Calibration 

DS 

2 2011 23.73 0.89 -0.12 0.81 0.38 0.97 

4 2011 20.24 0.93 -0.02 0.98 -0.02 0.94 

5 2011 19.92 0.92 0 0.86 0.65 0.94 

2 2012 24.9 0.83 -0.23 0.88 -0.64 0.99 

4 2012 26.01 0.8 -0.23 0.84 -0.3 0.99 

5 2012 6.05 0.99 0.01 1 0.1 0.99 

Mean 20.14 0.89 -0.1 0.9 0.03 0.97 

MT 
1 2011 10.84 0.97 0.04 0.9 0.6 0.99 

1 2012 20.83 0.92 0.15 1.21 -0.14 0.99 

MM 
6 2011 13.68 0.97 0.1 1.07 0.28 0.99 

6 2012 17.89 0.9 0.15 1.2 -0.25 1 

Mean 15.81 0.94 0.11 1.09 0.12 0.99 

Validation 

DS 

3 2011 19.86 0.94 -0.05 0.95 0.03 0.94 

3 2012 10.92 0.97 -0.06 0.93 0.05 0.98 

8 2012 22.27 0.85 -0.2 0.9 -0.69 0.98 

2 2013 30.07 0.78 -0.25 0.87 -0.65 0.95 

4 2013 7.39 0.99 -0.05 0.97 -0.13 0.99 

3 2013 23.19 0.87 -0.17 0.92 -0.7 0.95 

5 2013 9.38 0.98 0.04 1.08 -0.36 0.99 

Mean 17.58 0.91 -0.11 0.95 -0.35 0.97 

MT 

8 2011 30.89 0.8 0.25 1.31 0.16 0.99 

1 2013 21.82 0.92 0.05 1.2 -1.05 0.95 

8 2013 18.33 0.92 0.07 1.16 -0.71 0.95 

MM 

7 2011 9.97 0.98 0.08 1.03 0.3 0.99 

7 2012 5.26 0.99 -0.03 1 -0.27 0.99 

6 2013 7.1 0.99 0.06 1.03 0.24 1 

7 2013 9.39 0.99 -0.05 0.99 -0.33 0.99 

Mean 14.68 0.94 0.06 1.1 -0.24 0.98 
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3.6. Conclusions 

WARM was here calibrated and evaluated on data collected in eight sites 

and three seasons in Jiangsu under potential conditions, with the aim of 

testing its suitability for different rice establishment techniques, i.e., direct 

sowing, manual and mechanical transplanting. Overall, the effect of 

transplanting shock on rice growth and development – mainly due to a 

reduction of leaf area expansion rate after the event – was correctly 

reproduced. 

The good performances obtained by the model when the same parameter 

set was used to describe rice growth for both direct sowing (average 

RRMSE for AGB = 18.76%) and transplanting (RRMSE = 15.09%) datasets 

demonstrate the suitability of the transplanting algorithm implemented, and 

provide guarantees on the general coherence on the way processes are 

formalized. The need for modifying the original transplanting algorithm 

implemented in Oryza2000 (Bouman et al., 2001) was due to its incomplete 

suitability in case of the high seedbed densities that characterize the 

advanced mechanical transplanting techniques adopted in the study area. 

The improved version of the algorithm, instead, allowed the model to 

properly reproduce rice establishment for both manually and mechanically 

transplanted rice. 

The results obtained in this study demonstrate the model suitability for 

aboveground biomass simulation for all the establishment techniques used 

for rice, thus extending the applicability of the model to most of the 

production contexts worldwide. 
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4.1. Abstract 

Cold is one of the most important abiotic stressors affecting rice that 

could cause substantial yield losses especially in temperate environments. 

While many physiological and genetic studies have been carried out in order 

to improve rice cold tolerance, few existing works are focused on the 

development of models for the simulation of cold-induced sterility. In this 

study, an existing approach for the simulation of cold shocks effects on 

spikelet fertility was improved in order simulate cold stress during the entire 

most sensitive period of rice cycle (i.e., from panicle initiation to flowering). 

The model was calibrated using data collected in Vercelli and Castello 

d’Agogna by Ente Nazionale Risi in the period 2004-2010 for Japonica and 

Tropical Japonica types. First, rice phenology was differentially calibrated 

for each variety group using the WARM model; then the threshold 

temperature below which cold damages occurred was fixed. The agreement 

between measured and simulated values of percentage of spikelets sterility 

was satisfactory with an average R2 and MAE of 0.65 and 1.9%, 

respectively, with overall performances slightly better in calibration than 

validation. Despite all the key factors involved with temperature-induced 

sterility are explicitly considered, the proposed approach needs only few 

easily accessible inputs, thus resulting particularly suitable for operational 

contexts. 

 

Keywords: cold damage; extreme weather event; Oryza sativa L.; spikelet 

sterility; WARM model. 
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4.2. Introduction 

Cold and freezing are among the most important abiotic stressors 

affecting growth and development of cultivated plants (Kasuga et al., 1999; 

Lang et al., 2005). Among herbaceous crops, rice is particularly exposed to 

low temperatures because of its tropical origin and its frequent cultivation in 

temperate environments (e.g., northern districts in Italy, Japan, China, and 

southern ones in Australia). As an example, rice yield losses due to spikelet 

sterility (the main cold-injury during the reproductive phase) caused by 2-3 

days summer cold-air outbreaks can reach 25–50% in northern Italy for 

susceptible varieties (Confalonieri et al., 2005). Like for most damages 

caused by weather extremes, the degree and type of injury depend on the 

phenological stage and on the severity/duration of the cold event (Li et al., 

1981). According to most authors, the young microspore stage (around 

booting) is the most susceptible to cold temperatures (Imin et al., 2004; 

Gothandam et al., 2007; Shimono et al., 2007; Sakata et al., 2014) that, in 

this case, may cause the abortion of pollen (Mackill et al., 1996). However, 

other authors reported how low temperatures can also affect rice around 

anthesis (Pereira da Cruz et al., 2006; Sánchez et al., 2014) because of 

problems to anther development or to pollen ripening/germination (Ito et al., 

1970). 

The threshold temperature inducing sterility largely depends on the rice 

cultivars adopted in the different environments. As an example, 

temperatures lower than 20°C are considered as cold enough to cause 

sterility in southern Japan (Satake, 1976, Shimono et al., 2005), whereas 

Mariani et al. (2009) suggested 14°C for the cultivars grown in the Po 

Valley (northern Italy). The floodwater effect in smoothing thermal 

extremes is one of the reasons why rice growers were used to increase 

floodwater level in the first part of the reproductive phase (Confalonieri et 

al., 2005). However, the young panicle is below the water surface – where 

the smoothing effect is maximum – only for a few days (panicle initiation – 

beginning of stem elongation), whereas the floodwater effect on temperature 

is perceived by the plant only in the first centimeters above the air/water 

interface (Confalonieri et al., 2005). This means that, for most of the 

susceptible phase, the sensitive organs are exposed to air temperatures 

regardless to the water management. 

Among the rice models classified by Confalonieri et al. (2016) within the 

activities of the AgMIP (Agricultural Model Intercomparison and 
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Improvement Project) rice team, ten include the reproduction of cold-

induced spikelet sterility. The most reliable approaches are based on the 

concept of cooling degree-day (Uchijima, 1976), applied on a daily basis 

during the most cold-sensitive period (i.e., before flowering). Shimono et al. 

(2005) added a “weighting” function to account for changes in the 

sensitivity of the panicle in the different growth stages of reproductive 

period. Available approaches use – as driving variable – average (e.g., 

Godwin et al., 1994) or minimum (e.g., Dingkuhn et al., 1995) daily 

temperatures, others provide estimates with a hourly time-step, generating 

hourly temperatures from daily values (e.g., Confalonieri et al., 2009). Input 

temperature can refer to the air or to floodwater, being water temperature 

estimated using energy balance models (e.g., Godwin et al., 1994); other 

approaches select water or air temperature according to the young panicle 

height (e.g., Shimono et al., 2005) or to the development stage (e.g., van 

Oort et al., 2015). Despite floodwater affects the vertical thermal profile 

throughout the canopy, the magnitude of this effect is often considered as 

not relevant enough compared to the uncertainty of energy balance models 

to justify the use of canopy temperature when the young panicle is above the 

water surface (Confalonieri et al., 2005). However, regardless of the 

algorithms, the evaluation of most of these models was performed under 

controlled environment (greenhouses or growth chambers) through the 

application of cool treatments, or tested on limited field datasets. 

The aims of this study were (i) improving the sterility model 

implemented in the WARM model (Confalonieri et al., 2009; Pagani et al., 

2014) and (ii) evaluating it using datasets collected in northern Italy between 

2004 and 2010, characterized by heterogeneous weather conditions and 

cold-air outbreaks occurring in different moments during the reproductive 

phase. 

4.3. Materials and methods 

4.3.1. The sterility model 

The model derives from the one available in the WARM model 

(Confalonieri et al., 2009; Pagani et al., 2014), which estimates daily stress 

values (in turn calculated from hourly ones) and weights them using a bell-

shape function representing the combined effect of the different 

susceptibility to low temperatures along the period between panicle 

initiation and heading, and the within- and between-plant heterogeneity in 
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panicle development. The new approach includes the simulation of cold-

induced damages around anthesis (pollen ripening/germination) and presents 

a quadratic function instead of a bell-shape one, the former considered more 

suitable to represent the underlying processes because of the actual 

differences in flowering dates of secondary and tertiary culms compared to 

the main one. The model is described in Eq. 1: 
 

   

   
























































 

 

 

 

elsewhere

TfTDVSDVSDVSTfT

TpTDVSDVSDVSTpT

S
hiTh

d

di

ii

h

hiTh

hiTh

d

di

ii

h

hiTh

1

1.29.1399400100

9.16.11.1355.1554.44

,

1.2

9.1

2
24

1

,

,

9.1

6.1

2
24

1

,

 (1) 

 

where TThp (°C) and TThf (°C) are the pre-flowering and flowering sterility 

threshold temperatures; Th,i (°C) are the hourly air temperatures for the ith 

day generated from daily values according to Denison and Loomis (1989); 

DVS is a development stage code (unitless; 0: sowing, 1: emergence, 2: 

flowering; 3: maturity, 4: harvestable; 1.6, 1.9, 2.1 correspond to panicle 

initiation, heading, end of flowering); DVSi is the DVS at the ith day; d1.6 is 

the day when DVS = 1.6 (the same for d1.9 and d2.1). As shown in Eq. 1, 

the quadratic functions used to weight the daily sterility values have the axes 

of symmetry in the middle of the pre-flowering and flowering periods (DVS 

= 1.75 and DVS = 2, respectively). The use of air temperature is here 

considered an admissible approximation, given that floodwater level was 

around 5 cm during the experiments, and thus the young panicle was 

exposed to air temperature for most of the duration of the sensitive periods. 

The new sterility model was tested in the WARM simulation environment. 

4.3.2. Evaluation datasets 

Data for model evaluation were collected by the National Rice Authority 

(Ente Nazionale Risi; www.enterisi.it) in Castello d’Agogna (45°14’ N, 

8°41’ E) and Vercelli (45°19’ N, 8°25’ E) during the seasons 2004-2010. 

Four cultivars were grown: Thaibonnet (Tropical Japonica ecotype, long 

cycle), Gladio, Sirio (Tropical Japonica ecotype, medium-length cycle), and 

Loto (Japonica ecotype, short cycle). For all the experiments, rice was 

scatter seeded and grown under flooded conditions and unlimited nutrients 

supply; management allowed keeping the fields weed, pest and disease free. 
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Table 1: Datasets used for the calibration and validation of crop phenology and 

of the model for the simulation of cold-induced sterility. 
 

Variety group Variety Site Year Sowing/flowering/ 

harvest dates 

Sterility 

(%) 

Cal* 

Japonica  

short cycle 

Loto Castello d'Agogna 2004 17 May/8 Aug/6 Oct 1.2  

Vercelli 2005 27 May/17 Aug/8 Oct 11.5 ● 

2007 18 May/8 Aug/4 Oct 6.1  

Tropical Japonica 

long cycle 

Thaibonnet Castello d'Agogna 2004 7 May/18 Aug/7 Oct 8.6 ● 

2005 29 Apr/8 Aug/27 Sep 8.2  

2006 2 May/10 Aug/29 Sep 5.6 ● 

Tropical Japonica 

medium-length cycle 

Gladio Castello d'Agogna 2009 19 May/5 Aug/30 Sep 0 ● 

2010 24 May/12 Aug/16 Oct 9.3 ● 

Sirio Vercelli 2009 28 May/19 Aug/5 Oct 0  

*Cal: ● indicates datasets used for calibration (the others were used for validation). 

  
Available data were split into calibration and validation datasets as shown 

in Table 1. First, the values of the WARM parameters involved with plant 

phenology were defined for the three variety groups using observed dates of 

flowering/harvest. Then, the threshold temperature for sterility was 

calibrated using the measured percentage of fertility (Table 1). 

Meteorological data were collected by the weather stations of the 

Regional Agency for Environmental Protection (ARPA,  

www.arpalombardia.it and www.arpa.piemonte.it), placed in the close 

proximity of the experimental fields in Vercelli and Castello d’Agogna. 
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4.4. Results and discussion 

Datasets collected in 2005 and 2010 were characterized by the highest 

percentage of sterility, regardless of the site and cultivar. Concerning the 

season 2004, cultivars Loto and Thibonnet showed different responses to 

cold, the latter being more affected by cold-induced sterility. This was 

caused by the longer duration of the Thaibonnet vegetative phase, which led 

the flowering to fall during a period of a cold air outbreak. Intermediate 

sterility values were observed for the datasets collected in 2006 and 2007. 

Table 2 shows the values for the WARM parameters involved with crop 

development and sterility. The flowering date, which is one of the two 

periods when the crop is susceptible to cold shocks, was satisfactory 

reproduced during calibration, with a mean absolute error (MAE) of 3.2 

days. The performances for the validation datasets were less reliable, with a 

value of MAE of 6.5 days. 

Table 2: WARM parameters involved with crop development and the cold-

induced sterility. (J = Japonica; TJL = Tropical Japonica, long cycle; TJM = 

Tropical Japonica, medium-length cycle). 
 

Parameter Unit Description Value 

J TJL TJM 

GDDem °C-day Growing degree days from sowing to emergence 70 70 70 

GDDem-fl °C-day Growing degree days from emergence to flowering 880 1008 740 

GDDfl-mat °C-day Growing degree days from flowering to maturity 370 460 350 

Tbase °C Base temperature for development  11 12 

Tmax °C Maximum temperature for development 42 

TThp °C Threshold temperature for pre-flowering cold-induced 

sterility 

13.3 

TThf °C Threshold temperature for cold-induced sterility around 

flowering 
13.3 

 1 
 

The same value of threshold temperature for sterility (13.3°C) was used 

for the two sensitive periods (pre-flowering and flowering) and for all the 

groups of cultivars, without differences for Japonica and Tropical Japonica. 

The calibrated value for the sterility threshold is coherent with values found 

in the literature for Italian varieties (Mariani et al., 2009; Dreni et al., 2012) 

and, in general, for rice varieties grown in temperate environments (e.g., 

Satake et al., 1987). 

Figure 1 shows the comparison between measured and simulated 

percentage of sterility. The inter-annual variability of spikelets fertility was 

satisfactory reproduced by the model, with the highest damages simulated 

for 2005, 2010 and 2004 (the latter only for Thaibonnet). Lower sterility 
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values were simulated for 2006 and 2007 for Japonica and Tropical Japonica 

long cycle varieties, respectively, despite a slight underestimation compared 

to measured data. The model simulated a low percentage of sterility because 

of cold events during pre-flowering period in 2009 for Tropical Japonica 

medium-length cycle varieties in Castello d’Agogna and Vercelli, although 

no empty spikelets were detected in the field experiments. 

 
Figure 1: Comparison between measured (black bars) and simulated (grey 

bars) percentage of cold-induced spikelet sterility (J = Japonica; TJL = Tropical 

Japonica, long cycle; TJM = Tropical Japonica, medium-length cycle; * = datasets 

used for calibration). 

Despite the young microspore stage is considered as the most critical for 

rice (Gothandam et al., 2007; Sakata et al., 2014), damages were mainly due 

to events occurred around flowering for most combinations site × year × 

varieties. Figure 2 shows the time trend of daily air minimum temperature 

measured in Vercelli in 2005 and in Castello d’Agogna in 2010, i.e., the two 

datasets characterized by the highest measured percentage of cold-induced 

sterility. In 2005 at Vercelli minimum temperatures fell below the sterility 

threshold for seven days (with a minimum of 11.6° C) around flowering, i.e., 

between DVS 1.9 and DVS 2.1. The situation was similar for Castello 

d’Agogna in 2010 (minimum temperature below the threshold for four days 

around flowering), although in this case slight damages were also caused by 

a cold event occurred at the young microspore stage. 
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Figure 2: Trend of daily minimum temperature within DVS windows 1.6-1.9 

(dark grey bars) and 1.9-2.1 (light grey bars) at a) Vercelli station in 2005 and b) 

Castello d’Agogna station in 2010. Black bars show days with minimum 

temperature lower than the threshold (black horizontal line). 

 

The overall performances of the model during calibration were 

satisfactory: the relative root mean square error (RRMSE %, 0 to +∞, 

optimum = 0) was 35.2%, and the modelling efficiency (EF, unitless, -∞ to 

+1, optimum = +1, if negative indicates that the average of observations is a 

better predictor than the model, Nash and Sutcliffe, 1970) and the coefficient 

of determination (R2) were 0.61 and 0.64, respectively. The model accuracy 

during validation was slightly lower; however, EF was positive (0.48), more 

than 50% of the total variance was explained (R2 = 0.53), and the absolute 

error was around 2.4%. The lower accuracy during validation was probably 

caused by the lower reliability in the simulation of flowering occurrence. 

Model performances are coherent with those reported in other studies. 

van Oort et al. (2015) tested approaches for heat- and cold-induced sterility 

in two sites in Senegal during 2006-2007. In this study, authors estimated 

cold sterility damages using a linear model based on air and water 

temperature, the latter being calculated using an empirical model. The 

comparison between measured and simulated sterility led to achieve good 

values for the evaluation metrics (EF = 0.7). The approach developed by 

Shimono et al. (2005) is based on a logistic function that includes air or 

water temperature according to the panicle height. The model was tested on 

23 datasets collected in nine sites from 1996 to 1999. Despite the approach 

is more complex than the one presented in this study and requires empiric 

coefficients to be defined, the performances obtained using air temperature 

as a driver (R2 = 0.65, RRMSE = 33.4%) are similar to those we achieved. 

However, when the authors used as driving variables both air and water 

temperature, with the latter directly measured with dedicated sensors, their 
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model showed a decidedly high accuracy (R2 = 0.94, RRMSE = 9.6%). This 

indirectly demonstrates the uncertainty affecting approaches for estimating 

water temperature. 

4.5. Conclusions 

A new approach for the simulation of spikelets sterility caused by cold 

shocks during the young microspore stage and flowering was calibrated and 

evaluated using nine datasets collected in six different seasons and two sites 

in Northern Italy for Japonica and Tropical Japonica rice cultivars. 

Compared to the original model proposed by Confalonieri et al. (2009), the 

extension to the simulation of cold-induced sterility around flowering (the 

original model was targeting only the young microspore stage) proved to be 

essential for the correct reproduction of the underlying processes. The 

results achieved in this study also confirmed the relevance of the effects of 

cold shocks on spikelet fertility around anthesis, as observed and discussed 

by Pereira da Cruz et al. (2006). Despite the model proposed in this study 

requires less inputs (i.e., daily minimum temperature and the threshold 

temperature inducing sterility) compared to other approaches available in the 

literature, it allowed achieving satisfactory performances. Moreover, the 

approach proposed does not include empirical coefficients difficult to 

measure or estimate. The consideration of all the key factors and the 

reliability in reproducing observations makes this model suitable for being 

used in research and operational contexts like, e.g., for yield forecasts and 

early estimate of damages in case of extreme weather events. Further studies 

will target the evaluation of the model also for heat-induced sterility, a type 

of damage which is expected to increase its relevance even in temperate 

environments because of the rise in temperatures characterizing most 

climate change projections. 
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5.1. Abstract 

A model-based yield forecasting system is presented that accounts for the 

impact of extreme weather events on crop production. It is motivated by a 

key observation, i.e., the impact of extreme events (such as prolonged 

droughts, heat waves and cold shocks) is poorly represented by most crop 

simulation models, and by a corollary expectation, that is, extreme drought 

and heat wave events are projected to increase in frequency and intensity 

with climate change. Simple relations – consistent in the degree of 

complexity with most generic crop simulators – impacting on leaf 

development and yield formation are proposed to explicitly model the 

impact of these events as well as cold shocks and frost. The incorporation of 

these relations into the Crop Growth Monitoring System (CGMS) of the 

European Commission is proposed as a way to improve yield forecasts. The 

system was assessed for the main micro- and macro-thermal cereal crops 

grown in highly productive European countries. The forecasting reliability 

of selected agro-climatic indicators (accounting for drought and cold/heat 

stress), used alone or integrated with model outputs, was also evaluated. 

Based on the statistical post-processing of model outputs aggregated at 

national level with historical series (1995-2013) of official yields, the 

workflow was evaluated via cross-validation (CV) for forecasting events 

triggered at flowering, maturity and at an intermediate stage. The system 

based on agro-climatic indicators showed satisfactory performances limited 

to crop production systems mainly driven by rainfall distribution, such as 

microthermal crops grown in Mediterranean environments (e.g., R2
CV = 0.82 

for soft wheat in Spain at maturity). The CGMS-standard system showed 

satisfactory predictive ability with maize, which appeared not to be 

particularly impacted by extreme weather events (e.g., R2
CV = 0.89 for maize 

in Germany at flowering). In most cases where CGMS-standard system 

performed poorly, the explicit simulation of extreme impacts by water, frost, 

cold and heat stress improved the reliability of forecasts by explaining a 

large part of the interannual variability (up to 44% for spring barley in 

Poland). The addition of agro-climatic indicators to the workflow mostly 

enhanced the forecasting reliability, adding accuracy to an already 

satisfactory forecasting system. 

 

Keywords: agro-climatic indicators; CGMS; crop model; extreme weather 

events; WOFOST; yield forecasting. 
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5.2. Introduction 

The agricultural sector needs timely and reliable crop production 

forecasting and early warning systems, which are increasingly becoming 

important in both developed and developing countries (Bouman, 1995; 

Atzberger, 2013). This need reflects increasing pressures from food demand, 

price-competition induced by market globalization as well as food price 

levels and volatility (G20 Agriculture Action Plan, http://www.amis-

outlook.org/fileadmin/user_upload/amis/docs/2011-agriculture-plan-en.pdf). 

In addition to several agronomic and economic factors, agricultural 

production strongly depends on the varying weather conditions from season 

to season and year to year (Supit, 1997). Policy decisions relating to food 

security (that is, food-supply chains through procurement, stock 

management, marketing, and distribution networks) would be enhanced if 

supported by a reliable system for food crop production forecasting (Lazar 

and Genovese, 2004). For instance, early warning in case of anomalous 

seasons (e.g., owing to severe heat and water stress) may enhance the 

capacity of regional and national decision makers to assure food imports and 

regulate the agricultural market (Bannayan and Crout, 1999; Atzberger, 

2013). The variety of systems developed in the last decades for the 

forecasting of crop yields are usually nationwide (e.g., Bezuidenhout and 

Singels, 2007a, b; Duveiller et al., 2013). Most of these systems are based on 

the single or combined use of agro-climatic indicators (e.g., Balaghi et al., 

2012), remote-sensing information (Wang et al., 2010; Fernandes et al., 

2011; Son et al., 2014) and crop models (Vossen and Rijks, 1995; de Wit et 

al., 2010; Kogan et al., 2013). The effect of weather conditions on 

agricultural production can be quantified by predictive models built on 

statistical relationships between a few agro-climatic indicators and crop 

yields. However, only where crop production fluctuations are driven by a 

few main meteorological factors these simple relationships can accurately 

explain the inter-annual variability of crop productivity and reliably forecast 

final yields (Balaghi et al., 2012). Other, more reliable methods, are used by 

policy makers in the provision of crop yield forecasts based on simulation 

modelling. To the best of authors’ knowledge, the most sophisticated 

forecasting system in agriculture at present is the Crop Growth and 

Monitoring System (CGMS). It was developed by the European 

Commission Joint Research Centre, within the Monitoring Agricultural 

ResourceS (MARS) activities, to provide short-term (in-season) forecasts of 
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the yield of the main food crops in Europe (Vossen and Rijks, 1995; Lazar 

and Genovese, 2004; de Wit et al., 2005). The MARS system is based on the 

WOFOST crop model (van Keulen and Wolf, 1986; Rabbinge and van 

Diepen, 2000), used to simulate development and growth for all crops but 

rice. For the latter, the rice-specific WARM model (Confalonieri et al., 

2009) is used. 

The simulation tools used within forecasting systems are based on models 

of plant response to environment, which were developed for conditions of 

good adaptation and often designed for seasonal patterns reflecting 

temperature and precipitation regimes of temperate environments. 

Consequently, the effects of unusual meteorological events over crop 

performance – including crop failure – are thus often overlooked or 

unsatisfactorily simulated by the available crop models. In general, they are 

able to adequately predict mean yields but not the inter-annual variability of 

productivity, due to their inability to handle climate extremes (Eitzinger et 

al., 2013; Sanchez et al., 2013). This limitation is critical to investigate the 

crop response under ongoing climatic change, which is expected to bring 

increased levels of extreme weather and problems for the agricultural sector 

in many regions of the world (Parry et al., 1999; IPCC, 2007b). Europe (the 

focus of this study) is one of the most productive food suppliers in the 

world. The harvested production of cereals in the EU-28 represented about 

13% of global production in 2014 (FAO; http://www.fao.org/faostat/en), 

making EU a major world producer of cereal grains. Many studies have been 

focused on the impacts and adaptation of European crop productivity to 

climate change (Falloon and Betts, 2010; Reidsma et al., 2010; Olesen et al., 

2011). Significant warming is projected by the 2030s, affecting winter 

season in the North of Europe, and summer months in southern and central 

European countries (IPCC, 2007a). Moreover, an increase in the frequency, 

intensity and duration of extreme weather events, which have already caused 

huge yield losses in the past years, is expected in Europe. An increased 

occurrence of heat waves and related drought events have already been 

registered in large parts of western and eastern countries, especially in the 

Mediterranean belt (Trenberth et al., 2007). As an example, in 2003, the 

combined occurrence of heat and drought in large parts of Europe led to 

considerable losses in agriculture (Ciais et al., 2005). It is very likely that the 

frequency and severity of drought spells and heat waves will further increase 

especially in southern and central parts of the continent (Beniston et al., 

2007; Calanca, 2007). An increase of the intensity of rainfall events has been 
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observed in most parts of the continent with severe damages caused by 

summertime flooding (Christensen and Christensen, 2003). In spite of the 

warming climate, cold shocks, including both chilling and freezing injuries, 

is still an important abiotic stress factor for agricultural plants (Kasuga et al., 

1999; Lang et al., 2005). Indeed, the current trend toward an increased 

number of days with frost events in some areas is expected to remain stable 

until the mid-2030s (Crimp, 2014). 

Most of the abiotic shocks affecting plant growth (e.g., heat and cold 

waves, frost events, water shortage) are caused by dynamics in weather 

variables for which the crop is not able to provide a suitable physiological 

response during the most sensitive phenological phases. Studies do exist in 

which models have been developed to better reproduce the effects of 

extreme weather events on crop yields. For instance, the effect of high 

(Prasad et al., 2008) and low (Thakur et al., 2010) temperatures on spikelet 

sterility during the reproductive phase of crop plants were extensively 

studied. Different approaches were developed to reproduce cold/heat effects 

on crop growth and yield formation (Challinor et al., 2005; Shimono et al., 

2005; Confalonieri et al., 2009; van Oort et al., 2015). Damages on winter 

crops caused by frost stress have been observed at each growing stage 

(Fuller et al., 2007), with increased frost sensitivity during new shoot 

development (vegetative recovery) in spring. Different approaches were 

developed which account for frost effects on leaf area development 

(CERES-Wheat – Jones et al., 2003; InfoCrop – Aggarwal et al., 2006), leaf 

senescence (APSIM – Holzworth et al., 2014) and total biomass 

accumulation (EPIC – Williams et al., 1989). The crop model STICS 

(Brisson et al., 2003) quantifies the impact of frost on seedling density, leaf 

senescence and grain number. For other extreme weather events (e.g., hail, 

wind-induced lodging, flooding) the relation with crop growth and 

production may be less straightforward. The circumscribed nature of these 

events makes difficult to obtain reliable input data for the modelling purpose 

and it is essentially for these reasons that only a few studies are available 

that look at the impact of weather extremes on crop production. For instance, 

the approach by Baker et al. (1998) calculates the risk of stem and root 

lodging from crop parameters and soil characteristics. 

In this paper, we present novel approaches for the simulation of the 

impacts of extreme weather events (i.e., heat, cold, frost and water stress), as 

developed within the activities of the EU FP7 project MODEXTREME - 
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Modelling vegetation response to extreme events (http://modextreme.org) 

and incorporated within the CGMS forecasting system. 

We evaluated the new system for the most representative cereal crops in 

Europe. 

5.3. Materials and methods 

5.3.1. Study crops and countries 

The CGMS forecasting system was applied to major cereal crops grown 

in Europe, i.e., wheat (soft and durum), grain maize and spring barley. These 

crops cover 47% (about 45% and 2% for soft and durum wheat, 

respectively), 23% and 9% of the cereal production in EU-28 (Eurostat, 

2014; http://ec.europa.eu/eurostat/web/agriculture). For each crop, the main 

producing countries were selected (Fig. 1). Notably, France accounts for 

more than one fifth (i.e., 21.8%) of the EU-28’s cereal production (Eurostat, 

2014), followed by Germany, for which statistics show high production 

levels for winter cereals. 

Countries located along the Mediterranean belt (i.e., France, Italy, Spain, 

Romania) have milder weather conditions than central and northern 

European countries. 

 
Figure 1: Main European cereal (wheat, barley and maize) producing countries 

(Faostat, 2014). 
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5.3.2. Models of the impact of extreme weather events 

A general framework was developed based on the hypothesis that yield 

variations due to extreme events are mediated (i) by changes in the harvest 

index (HI, proportion of harvested biomass on the total aboveground 

biomass) for water, heat and cold stresses (e.g., Stöckle et al., 1994; 

Edmeades et al., 1999; Prasad et al., 2006), and (ii) by damages to leaf area 

(or even crop failure) in case of frost damages (e.g., Porter and Gawith, 

1999), whereas the main effects of weather on crop performance (e.g., 

thermal limitation to photosynthesis) are already captured by existing crop 

models. Extreme events affect crop performance differentially because crop 

susceptibility changes during the crop cycle (e.g., Li et al., 1981). This was 

accounted for by using different thresholds for inducing the damage at 

different development stages. The latter is represented in this study using a 

SUCROS-type numerical code (DVS; unitless; 0: emergence; 1: anthesis; 2: 

maturity; van Keulen et al., 1982). 

The response function to extreme water stress (FW, unitless) around 

anthesis (i.e., 0.9 ≤ DVS ≤ 1.1) is calculated using Eq. 1. 
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where FE (unitless) is the fraction of transpiration that is not reduced 

(depending on the actual to potential transpiration ratio and on the allowable 

soil water depletion); FEcrit (unitless) is a crop dependent parameter, set to 

0.7 for all the study crops. 

The approach used for simulating the impact of heat shocks (FHT, 

unitless; Eq. 2) is a linear response to maximum canopy temperature (TCmax, 

°C) driven by threshold (T0heat, °C) and critical (T100heat, °C) temperatures 

during the crop reproductive phase (i.e., 0.9 ≤ DVS ≤ 2). 
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A similar approach was used to simulate the impact of cold shocks (FCD, 

unitless; Eq. 3) during the crop reproductive phase (i.e., 0.9 ≤ DVS ≤ 2). In 

this case, minimum canopy temperature (TCmin, °C) is used as input. 
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Canopy temperatures (TCmax and TCmin in Eqs. 2 and 3) used to modulate 

temperature-related damages are derived using a dedicated energy balance 

model (Villalobos et al, 2015; Villalobos et al., 2017). 

Both FHT and FCD range between 0 and 1, and modulate HI in a different 

way if the extreme event occurs around flowering (Eq. 4) or from anthesis to 

maturity (Eq. 5). 
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where HIAA, HImax and HI (unitless) are the actual (after anthesis), 

potential and final (at maturity) harvest index, respectively; t is any time 

(e.g., days) after anthesis; dA and dPA are the duration of the flowering and 

anthesis-maturity phases, respectively. Around flowering, the effects of 

water stress are averaged, whereas the effects of heat and cold stresses are 

multiplied. During the reproductive phase, each event of cold or heat stress 

has an impact on the HI. 

The same equation used for the simulation of cold shocks on HI was used 

to reproduce the effect of frost on leaf area index from emergence to 

ripening, by defining different threshold and critical temperatures on the 

basis of the phenological stage. The effects of hardening and de-hardening 

on the critical temperature are also simulated (Pomeroy et al., 1975). 

A customized modelling solution was built by coupling the impact 

models for extreme weather events to the crop model WOFOST. 
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5.3.3. Agro-climatic indicators 

Five agro-climatic indicators were selected to reflect the effects of 

extreme temperatures and drought. The indicators for heat and cold are 

simple counts of days with maximum/minimum temperatures above/below 

fixed thresholds (Rivington et al., 2013). The effect of water shortage was 

evaluated using the ARID – Agricultural Reference Index for Drought – 

(Woli et al., 2012) and Fu (Fu, 1981; Zhang et al., 2004) indicators. The 

former is a simple, general, soil-plant-atmosphere metric (Narasimhan and 

Srinivasan, 2005), whereas the latter is based on the assumption that the 

equilibrium water balance is controlled by water availability and 

atmospheric demand. 

5.3.4. The forecasting methodology 

For each combination crop × country, WOFOST simulations were run 

according to the standard MARS workflow  

(http://marswiki.jrc.ec.europa.eu/agri4castwiki/index.php/Main_Page; 

Vossen and Rijks, 1995). In particular, the model was run on elementary 

simulation units defined by homogeneous weather, soil and crop 

characteristics. Meteorological data were acquired by weather stations 

irregularly distributed over Europe, and then interpolated on a regular grid 

with spatial resolution of 25 km × 25 km. Soil properties (e.g., depth, 

texture, water capacity) were retrieved from the version 4 of the Soil 

Geographical Database of Europe at 1:1,000,000  

(http://eusoils.jrc.ec.europa.eu/esbn/SGDBE.html), as documented by 

Lambert et al. (2003). Data for crop characterization (including information 

on morphological and physiological features and crop calendars; Djaby et 

al., 2013) were provided by the MARS team of the Joint Research Centre 

(JRC). 

After the simulations, model outputs were aggregated at NUT0 level by 

using information on crop masks, soil suitability and regional statistics. 

Two different modelling solutions were run: 

 CGMS-WOFOST (CGMS, hereafter) for potential (driven by 

temperature, day length, solar radiation) and water-limiting (including 

possible water shortages) conditions. This solution is the standard one 

used at the JRC-MARS for crop yield forecast in Europe; 
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 CGMS-WOFOST-MODEXTREME (MODEXTREME, hereafter), 

including the impact models for extreme weather events described in 

section 2.2. This solution was run for water-limiting conditions. 

Agro-climatic indicators were aggregated at national level using the same 

methodology used for crop model outputs. 

For each combination crop × country group (i.e., Mediterranean and 

northern countries), forecasting events were triggered at three moments 

during the growing season, i.e., around flowering, at maturity and at an 

intermediate moment. For each forecasting moment, model outputs and 

agro-climatic indicators were related as independent variables of multiple 

linear regressions (with a maximum of four regressors) to the 1995-2013 

series of official Eurostat yields. Before the regression analysis, historical 

yield statistics were analyzed to identify and remove significant 

technological trends. This allowed removing from the statistical analysis 

factors not reproduced by the two modelling solutions (e.g., improved 

genotypes and/or management practices). 

Four groups of regressors were analyzed separately to quantify the role of 

each category in explaining inter-annual crop yield fluctuations (Table 1): 

- agro-climatic indicators; 

- CGMS outputs (standard system, hereafter); 

- CGMS outputs together with MODEXTREME outputs (improved 

system, hereafter); 

- all the outputs of the three previous categories (hybrid system, 

hereafter). 

A step-wise analysis followed by a cross-validation allowed selecting the 

best-predicting regression model for each combination crop × country × 

moment when the forecasting event was triggered. Forecasted yields, 

obtained by excluding each time a single year during the cross-validation, 

were compared with historical yields. The prediction capability of each 

regression model was then evaluated through the calculation of the cross 

validation (CV)-relative root mean square error of prediction (%, 0 to +∞, 

optimum = 0), modelling efficiency (unitless, -∞ to +1, optimum = +1; Nash 

and Sutcliffe, 1970) and coefficient of determination (R2
CV) of the linear 

regression equation between official and predicted yields. 
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Table 1: Agro-climatic indicators (Type: AI), crop and soil state variables 

simulated by CGMS-WOFOST (Type: CW), state variables and response functions 

for extreme events simulated by CGMS-WOFOST-MODEXTREME (Type: MW). 

Variables included in each of the four forecasting systems: A=agro-climatic; 

S=standard CGMS; I=improved system (including MODEXTREME impact 

models); H=hybrid (including regressors from all systems). 
 

Type Regressor Description A S I H 

AI TMAXcr No of days with Tmax higher than a fixed threshold (°C) ● 
  

● 

TMINcr No of days with Tmin lower than a fixed threshold (°C) ● 
  

● 

ARIDmean Average value of the ARID indicator (Woli et al., 2012) (-) ● 
  

● 

ARIDcr No of days with ARID higher than a fixed threshold (-) ● 
  

● 

Fu Average value of the Fu indicator (Fu, 1981) (-) ● 
  

● 

CW DVS Development stage code (-) 
 

● ● ● 

AGB Aboveground biomass (t ha-1) 
 

● ● ● 

YIELD Storage organs biomass (t ha-1) 
 

● ● ● 

LAI Leaf area index (-) 
 

● ● ● 

AGBWL Aboveground biomass limited by water stress (t ha-1) 
 

● ● ● 

YIELDWL Storage organs biomass limited by water stress (t ha-1) 
 

● ● ● 

LAIWL Leaf area index limited by water stress (-) 
 

● ● ● 

WC 
Crop total water consumption (sum of water-limited transpiration) 

(mm)  
● ● ● 

WR Crop total water requirement (sum of potential transpiration) (mm) 
 

● ● ● 

FSM Volumetric soil moisture content in rooted zone (%) 
 

● ● ● 

MW AGBFL Aboveground biomass limited by frost stress (t ha-1) 
  

● ● 

YIELDFL Storage organs biomass limited by frost stress (t ha-1) 
  

● ● 

LAIFL Leaf area index limited by frost stress (-) 
  

● ● 

ƒHT Heat stress response function (-) 
  

● ● 

TCmax Cumulated maximum crop temperature (°C) 
  

● ● 

ƒCD Cold stress response function (-) 
  

● ● 

TCmin Cumulated minimum crop temperature (°C) 
  

● ● 

ƒW Water stress response function (-) 
  

● ● 

 1 
 

 

5.4. Results and discussion 

Tables from 2 to 5 show the performances of the regression models 

identified by the step-wise procedure as the most reliable for the forecasting 

system evaluated: based on agro-climatic indicators (A), standard CGMS 

(S), improved with MODEXTREME impact models (I) and hybrid systems 

(H). Results are shown for the 66 combinations crop × country × forecasting 

moment analyzed. The regressors selected were sorted on the basis of the 

regression coefficients. Models for which the values of R2
CV between 

official yield statistics and predicted values were lower than 0.01 are not 

shown. The best performances were obtained for maize (Table 2), for which 

the values of R2
CV and EF were always higher than 0.65 when the forecast 

was triggered after the flowering stage. For the same crop the most 

satisfactory results were achieved in Spain and Germany, although for the 
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former a large part of the inter-annual variability in official yields was 

explained by the introduction of technological innovations (technological 

trend). The worst performances were obtained for spring barley (Table 3) in 

Germany, France and Denmark, although EF was always positive. For the 

same crop, results were better for United Kingdom, Poland and Spain, 

regardless of the moment when the forecasting event was triggered (e.g., in 

Spain, R2
CV and EF were larger than 0.7 and 0.8, respectively). 

Concerning wheat (both durum and soft), more than 50% of the inter-

annual variability in yields was explained in at least one of the moments 

when the forecast event was triggered in all the selected countries (Tables 4 

and 5). 

In general, the standard, improved and hybrid systems achieved the best 

forecasting performances in 4, 36 and 24 combinations crop × country × 

forecasting moment, respectively (gridded, stripped and dotted items in Fig. 

2). In two cases (i.e., the 1st and 2nd forecasting moment for spring barley in 

Germany; indicated by items without dithering) the R2
CV of all forecasting 

systems was lower than 0.01. However, results showed that the 

improvement in terms of predictive capability of the best option compared to 

simpler systems was frequently slight. In eight combinations crop × country 

× forecasting moment, the improvement of the R2
CV of the best system 

compared to the system based on agro-climatic indicators was lower than 

0.10. In particular, most of the cases occurred when the system based on 

agro-climatic indicators was applied to microthermal crops (barley and 

wheat) in Spain. Indeed, three out of five agro-climatic indicators used as 

regressors were related with plant available water and, in Spain (mainly 

characterized by a Mediterranean climate), crop production for winter and 

spring cereals is mainly driven by rainfall volumes and distribution during 

the growing season. Under those conditions, the system based on agro-

climatic indicators explained 79%, 81% and 82% of the inter-annual 

variability of soft wheat yields in the three moments when the forecasting 

events were triggered. 
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Table 2: Performance metrics derived from the comparison between 20-year 

series of official and predicted maize yields achieved when the forecasting event 

was triggered at flowering (1), maturity (3) and an intermediate moment (2). 

Results achieved by the most reliable regression model for each system (i.e., based 

on agro-climatic indicators (A); standard CGMS (S); improved (I, by including 

MODEXTREME impact models); hybrid (H, including all regressors) are shown. 
 

Country Moment Syst. Regression model RRMSE EF R
2
 R

2
 R

2
 

 
% model trend TOT 

France 1 I LAIWL, WC, YIELDPot, AGBFL  4.45 0.61 0.63 0 0.63 

2 S LAIWL, LAIPot, AGBWL, YIELDWL 3.79 0.72 0.72 0 0.72 

3 H ƒCD, ƒHT, ƒW, TMINcr 3.17 0.80 0.8 0 0.80 

Romania 1 I ƒCD, ƒHT, LAIWL 16.4 0.57 0.58 0 0.58 

2 I FSM, WR, TCmax, YIELDWL 12.8 0.74 0.74 0 0.74 

3 I ƒW, YIELDPot 13.1 0.73 0.73 0 0.73 

Italy 1 I ƒW, TCmax, YIELDPot, AGBWL  5.23 0.40 0.41 0 0.41 

2 H Fu, ƒHT, ƒCD, WC 3.94 0.66 0.67 0 0.67 

3 I ƒHT, ƒCD, WR, DVS 4.39 0.58 0.59 0 0.59 

Hungary 1 I LAIWL, WC, WR, TCmin 15.4 0.47 0.49 0 0.49 

2 I TCmax, YIELDPot, AGBWL, AGBPot 9.44 0.80 0.81 0 0.81 

3 S LAIPot, DVS, AGBWL, YIELDWL  10.3 0.76 0.77 0 0.77 

Spain 1 H Fu, WR, ƒW, TCmin 3.30 0.86 0.12 0.75 0.87 

2 I LAIPot, ƒCD, DVS, WC 3.33 0.86 0.11 0.75 0.86 

3 H LAIPot, ƒCD, DVS, TMINcr 2.83 0.90 0.15 0.75 0.90 

Germany 1 I FSM, LAIFL, YIELDPot, AGBPot 3.45 0.88 0.43 0.46 0.89 

2 I DVS, AGBWL, AGBFL, YIELDPot 2.94 0.91 0.46 0.46 0.92 

3 I LAIFL, TCmin, YIELDPot, AGBWL 3.15 0.90 0.44 0.46 0.90 

 1  

 

Table 3: Performance metrics derived from the comparison between 20-year 

series of official and predicted spring barley yields achieved when the forecasting 

event was triggered at flowering (1), maturity (3) and an intermediate moment (2). 

Results achieved by the most reliable regression model for each system (i.e., based 

on agro-climatic indicators (A); standard CGMS (S); improved (I, by including 

MODEXTREME impact models); hybrid (H, including all regressors) are shown. 
 

Country Moment Syst. Regression model RRMSE 

% 

EF R
2
 R

2
 R

2
 

 
model trend TOT 

Germany 1  -  -  -  -  -  -  - 

2  -  -  -  -  -  -  - 

3 H FSM, TMINcr, YIELDWL 10.40 0.1 0.18 0 0.18 

France 1 I LAIWL, WR, TMINCrop 9.10 0 0.13 0 0.13 

2 I FSM, ƒCOLD, TMINCrop, YIELDWL 9.26 0 0.12 0 0.12 

3 H ƒWS, ,DVS, ARIDcr, TMINCrop 8.00 0.3 0.29 0 0.29 

Spain 1 S LAIPot, WR, YIELDWL, AGBWL 10.4 0.8 0.81 0 0.81 

2 H WC, FSM, ARIDcr, AGBFL 9.69 0.8 0.82 0 0.82 

3 H FSM, ARIDmean, TMAXcr, AGBFL 11.5 0.8 0.75 0 0.75 

United 

Kingdom 

1 H Fu, ƒCOLD, TMAXCrop 5.35 0.5 0.24 0.25 0.49 

2 I LAIWL, LAIPOT, ƒHEAT 4.75 0.6 0.36 0.25 0.61 

3 I LAIPot, ƒCOLD, DVS, ƒWS 5.87 0.4 0.17 0.25 0.42 

Denmark 1 S WC, AGBWL  5.60 0.2 0.19 0 0.19 

2 H LAIWL, TMAXcr, YIELDPot, AGBWL 6.13 0 0.10 0 0.10 

3 H ARIDmean, Fu, ƒWS 4.78 0.4 0.41 0 0.41 

Poland 1 H FSM, ƒHEAT, ƒCOLD, TMINcr 5.71 0.7 0.65 0 0.65 

2 H WC, TMINcr, TMAXCrop, AGBPot 5.57 0.7 0.67 0 0.67 

3 I ƒCOLD, WC, YIELDWL, AGBWL 6.94 0.5 0.50 0 0.50 
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Table 4: Performance metrics derived from the comparison between 20-year 

series of official and predicted soft wheat yields achieved when the forecasting 

event was triggered at flowering (1), maturity (3) and an intermediate moment (2). 

Results achieved by the most reliable regression model for each system (i.e., based 

on agro-climatic indicators (A); standard CGMS (S); improved (I, by including 

MODEXTREME impact models); hybrid (H, including all regressors) are shown. 
 

 

Country Moment Syst. Regression model RRMSE EF R
2
 R

2
 R

2
 

 model trend TOT 

France 1 I FSM, DVS, TMAXCrop 4.62 0.38 0.4 0 0.4 

2 I WR, DVS, TMAXCrop, AGBWL 4.38 0.4 0.46 0 0.46 

3 I FSM, ƒHEAT, AGBWL, YIELDPot 3.86 0.6 0.59 0 0.60 

Germany 1 I LAIFL, ƒHEAT, TMINCrop, AGBFL 5.66 0.1 0.18 0 0.18 

2 I ƒHEAT, WR, DVS, TMINCrop 4.27 0.5 0.51 0 0.51 

3 H LAIFL, DVS, ARIDcr, AGBPot 4.26 0.5 0.51 0 0.51 

Italy 1 I LAIPot, DVS, ƒMIN, AGBWL 5.49 0.6 0.04 0.55 0.60 

2 H ARIDmean, Fu, TMAXcr, AGBFL 2.84 0.9 0.34 0.55 0.89 

3 H ARIDmean, FSM, Fu, AGBWL 3.89 0.8 0.26 0.55 0.81 

Romania 1 I FSM, TMINCrop, YIELDPot, AGBFL 15.17 0.6 0.61 0 0.61 

2 H ƒCOLD, WR, TMAXcr, YIELDFL 15.68 0.6 0.57 0 0.57 

3 I ƒCOLD, WR, YIELDWL, YIELDFL 14.13 0.6 0.65 0 0.65 

Spain 1 I FSM, LAIPot, WC, TMINCrop, AGBWL 7.92 0.8 0.81 0 0.81 

2 H ARIDmean, WC, ƒCOLD, AGBPot 5.47 0.9 0.91 0 0.91 

3 H ARIDmean, Fu, ƒCOLD, AGBFL 6.22 0.9 0.88 0 0.88 
 

 

Table 5: Performance metrics derived from the comparison between 20-year 

series of official and predicted durum wheat yields achieved when the forecasting 

event was triggered at flowering (1), maturity (3) and an intermediate moment (2). 

Results achieved by the most reliable regression model for each system (i.e., based 

on agro-climatic indicators (A); standard CGMS (S); improved (I, by including 

MODEXTREME impact models); hybrid (H, including all regressors) are shown. 
 

Country Moment Syst. Regression model RRMSE EF R
2
 R

2
 R

2
 

 model trend TOT 

France 1 I LAIWL, LAIPot, ƒCOLD, ƒHEAT 5.07 0.75 0.51 0.24 0.75 

2 I DVS, TMAXCrop, YIELDFL 7.65 0.4 0.18 0.24 0.42 

3 H ARIDmean, FSM, Fu, YIELDPot 7.95 0.4 0.16 0.24 0.40 

Germany 1 I WC, AGBFL 6.84 0.3 0.30 0 0.30 

2 I ƒCOLD, DVS, TMINCrop 5.49 0.5 0.54 0 0.54 

3 I LAIFL, DVS, WC, AGBWL 6.67 0.4 0.33 0 0.33 

Italy 1 I LAIPot, ƒCOLD, DVS, AGBWL 8.68 0.5 0.06 0.43 0.49 

2 H FSM, ARIDcr, TMAXcr, TMAXCrop 5.23 0.8 0.39 0.43 0.82 

3 H ARIDmean, FSM, Fu, AGBWL 4.42 0.9 0.45 0.43 0.88 

Romania 1 I FSM, LAIFL, ƒCOLD, WC 25.30 0.3 0.38 0 0.38 

2 I ƒHEAT, ƒWS, AGBFL  28.60 0.2 0.19 0 0.19 

3 H FSM. Fu, WC, YIELDFL 18.99 0.6 0.66 0 0.66 

Spain 1 I DVS, TMAXCrop, YIELDFL, AGBFL 19.49 0.6 0.64 0 0.64 

2 H LAIFL, DVS, TMAXcr, AGBFL 17.77 0.7 0.70 0 0.70 

3 I LAIWL, DVS, YIELDPot, AGBFL 21.07 0.6 0.59 0 0.61 
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Figure 2: Forecasting performances for maize (a), spring barley (b), soft wheat 

(c), and durum wheat (d). Green shades indicate four classes of R2
CV improvement 

compared to the standard CGMS system: 1-25%, 26-50%, 51-75%, 76-100% for 

green shades ranging from the lightest to the darkest. Gridded (standard CGMS 

system), stripped (improved system, including new impact models for weather 

extremes) and dotted (hybrid system, including agro-climatic indicators) items 

refer to the forecasting system that achieved the best performance. Grey items refer 

to the combinations crop × country × forecasting moment for which the final R2
CV 

was lower than 0.20. Items without dithering indicate that R2
CV for all systems was 

lower than 0.01. 

Considering the cases where the final R2
CV was higher than 0.20, the 

standard system achieved the best performance in three combinations crop × 

country × forecasting moment: two for maize and one for spring barley 

(gridded white items in Fig. 2), with more than 60% of inter-annual 

variability explained. Concerning the improvement in the forecasting 

reliability (compared to the standard system) obtained by the 
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MODEXTREME and the hybrid systems, results can be divided in four 

main categories (indicated with four shades of green in Fig. 2). For these 

categories, the percentage increase in the systems’ capability of explaining 

the inter-annual yield fluctuations was between 1% and 25% (lightest 

green), 26% and 50%, 51% and 75%, and 76% and 100%. Grey squares 

represent the combinations crop × country × forecasting moment for which 

the value of R2
CV for the best forecasting system was lower than 0.20. 

In 20 out of the 32 cases when the improved system showed the best 

performances (stripped items in Fig. 2) – most of which referring to grain 

maize (Fig. 2.a) – the inclusion in the regressor set of outputs from the 

impact models for weather extremes allowed obtaining less than 25% 

increase in the amount of variance explained (lightest green in Fig. 2). 

Indeed, the standard system demonstrated satisfactory performances for 

grain maize in most of the countries, with forecasting reliability usually 

increasing after the flowering stage. As an example, in Hungary (ranked 

third in Europe according to grain maize production), CGMS explained 

46%, 71% and 77% of interannual yield fluctuations in the three moments 

when the forecasting event was triggered, even without the presence of a 

significant technological trend. The inclusion of regressors from the 

MODEXTREME models for the impact of extreme weather events further 

increased the predictive capacity of the system. The minor improvement 

achieved for grain maize is likely due to the already good performance of 

the standard system and to the lower impact of weather extremes on maize 

compared to the other crops analyzed. Indeed, grain maize is mostly 

irrigated in the study areas and – where it is grown under rainfed conditions 

– crop water demand is normally satisfied by rainfall (both for amounts and 

seasonal distribution). This contributes to the lower susceptibility to thermal 

extremes around anthesis compared to other species grown in Europe 

(Spiertz et al., 2006; Shimono et al., 2007), given yield losses normally 

deriving from the combined effect of temperature and water stress (Carter et 

al., 2016). However, in some cases, the improvement in the predictive 

performances derived from the inclusion of the outputs simulated by the 

MODEXTREME modelling solution was relevant, as in the case of the 

combined occurrence of heat and drought which characterized large parts of 

Europe in 2003, causing considerable yield losses. In that season, the crop 

most affected in Italy was maize, that is grown in the north of the Country 

where extremely high temperatures were recorded (Ciais et al., 2005; grey 

circles in Fig. 3). The standard system, which explained 53% of the inter-
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annual yield variability, showed a marked overestimation in 2003 (Fig. 3.a). 

The slight increase in the predictive ability of the improved system (59% of 

variance explained) was almost totally explained by the complete 

elimination of the 2003 overestimation. 
 

 
 

Figure 3: Comparison between official statistics (grey circles) and predicted 

yields (black crosses) for maize in Italy. a) standard system; b) improved system. 

The forecasting event was triggered at maturity. 

In eight out of 32 cases (all referring to soft and durum wheat, Figs. 2.c 

and 2.d), the improved system increased the explained variability in yields 

for more than 50% compared to standard one (the two darkest green shades 

in Fig. 2). 

Concerning the hybrid system, the combined use of agro-climatic 

indicators and variables simulated by the MODEXTREME solution allowed 

achieving the best performances in 22 cases (dotted items in Fig. 2). 

However, the addition of agro-climatic indicators led to a slight 

enhancement (increase in R2
CV lower than 0.10) of the forecasting 

performances of the improved approach in most of the study cases, thus 

revealing a predominant role of dynamic models compared to agro-climatic 

indicators. The only combinations crop × country × forecasting moment for 

which the hybrid system assured a considerable improvement in the 

predictive capability were the cases where agro-climatic indicators alone 

explained more variance than the model outputs. As an example, the hybrid 

system explained more than 80% of the yield variability for soft and durum 

wheat in Italy when the forecast event was triggered after the flowering 

stage; the improvement compared with the system purely based on agro-

climatic indicators ranged between 15 and 26%. 

In most of the cases referring to durum wheat, the system including the 

outputs of the impact models for weather extremes led to R2
CV values lower 

than 0.60. However, in these cases, the inter-annual variability was 
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explained almost entirely by the variables simulated by the 

MODEXTREME modelling solution. These results should be considered as 

relevant in light of the poor performances obtained with the standard system, 

for which the R2
CV was frequently lower than 0.01. Concerning soft wheat, 

the values of R2
CV for the improved systems were larger than 0.60 in most of 

the combinations crop × country × forecasting moment. However, similar 

results were sometimes achieved also for spring barley. Indeed, looking at 

this crop in Poland as an example (Fig. 4), the use of variables affected by 

extreme weather events (improved solution) allowed increasing the amount 

of variance explained from 22% to 66%. In particular, Fig. 4.a distinctly 

shows that the poor performances of the standard system were caused by the 

marked overestimation of 2000 yield, which was instead correctly 

reproduced by the system based on the MODEXTREME impact models 

(Fig. 4.b). The spring barley season in Poland in 2000 was characterized by 

a severe heat wave with maximum temperature exceeding 30°C (with a peak 

of 34°C) for some consecutive days in the mid of June (corresponding to the 

flowering period). Different studies demonstrated that temperature higher 

than 27 -31°C around anthesis (in particular during stem elongation and the 

booting-anthesis phases) are responsible for sterile grains in microthermal 

cereals, by reducing grain number and size and thus limiting the sink size 

(Ferris, 1998; Ugarte et al., 2007; Deryng et al., 2014). 
 

  

Figure 4: Comparison between official statistics (grey circles) and predicted 
yields (black crosses) for spring barley in Poland. a) standard system; b) improved 
system. The forecasting event was triggered between flowering and maturity. 

The regressors most frequently selected by the step-wise procedure were 

the response function to cold (ƒCD) and the minimum temperature of the 

canopy (TCmin). This is explained by considering that spikelets sterility 

caused by low temperatures is more frequent than damages caused by heat 

shocks in most of the European countries for which the analysis was 
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performed. Moreover, for the winter crops (i.e., soft and durum wheat), state 

variables influenced by frost (LAIFL, AGBFL, YIELDFL) were often selected 

as independent variables. 

The overall forecasting performances for each crop (including results 

from all the study countries) demonstrated the usefulness of the activities 

performed for improving the standard CGMS system (Fig. 5). Graphs in left 

and right columns refer to the standard and improved systems, respectively. 

In general, the most reliable forecasting systems explained more than 70% 

of the inter-annual variability in crops yields. Figures 5.a and 5.b confirm 

that the best performances were achieved for maize and that the 

enhancement due to the improved and hybrid systems was mostly light 

(R2
CV = +0.06). On the other side, the improvement was decidedly more 

relevant for spring barley (Figs. 5.c and 5.d), soft wheat (Figs. 5.e and 5.f), 

and durum wheat (Figs. 5.g and 5.h). For these crops, indeed, both the 

increase in R2
CV (+0.12, +0.13 and +0.19, respectively) and the parameters 

of the linear regression equation between official and predicted yields (slope 

and intercept) were consistently closer to those of the ideal 1:1 line. 

It is important to notice that the improvement compared to the standard 

CGMS was mostly explained by the higher capability of predicting yields in 

unfavorable years (Fig. 5), i.e., the years characterized by yields lower than 

the average. This is a crucial feature for crop yield forecasting systems, since 

stakeholders are mostly interested in early yield forecasts in case of adverse 

conditions (e.g., Kogan et al., 2013). 
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Figure 5: Comparison between official records of all the study countries and 

yields obtained from the cross-validation applied to the 20-year series applying the 

CGMS system (a, c, e, g) and the most reliable system (b, d, f, h) to maize (a,b), 

spring barley (c,d), soft wheat (e,f) and durum wheat (g,h). Yields for each county 

are normalized on the highest value of the series. 
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5.5. Conclusions 

The inclusion of (i) process models for the simulation of the impacts of 

extreme weather events (i.e., cold, heat, water and frost stress) on crop 

productivity and (ii) specific agro-climatic indicators (for cold, heat and 

drought) within the CGMS-standard system allowed improving the 

forecasting reliability for cereals in Europe in 62 out of 66 combinations 

crop × country × moment when the forecasting event was triggered. For 

maize, the CGMS system showed satisfactory performances in most of the 

study countries, and the inclusion of variables simulated by the 

MODEXTREME impact models led only to a slight increase in the 

forecasting reliability. For microthermal cereals, the improved system led, in 

most of the countries, to a marked increase (up to 44%) of the amount of 

variance explained compared to the standard system. In particular, with the 

simulation of the impact of weather extremes the inter-annual yield 

fluctuations were better captured by the crop forecasting system. As a 

consequence, it was reduced the marked overestimation observed with the 

standard system in some combinations crop × year. The performances 

achieved suggest that the forecasting system using process models and 

indicators specifically addressing impacts of extreme weather events on crop 

productivity can be used for operational forecasting purpose in Europe. This 

is even more important considering the need to secure food in a warming 

world, more likely producing extreme weather patterns. Our contribution to 

the challenges related to food security research is particularly relevant for 

policy implementation in Europe because the forecasting system evaluated 

here is consistent, and fully compatible, with the operational requirements of 

the MARS forecasting system already in use at the European Commission. It 

can therefore readily be applied to crop yield foresting in Europe though 

more evaluation is needed to confirm the results obtained in the current 

study with a wider set of crops, countries and climate conditions. The results 

of this study demonstrate the challenge of using 25-km spatially aggregated 

weather data to capture thresholds of extreme weather conditions and their 

effects on crop yields. However, considering the sparse resolution of 

weather extremes, the reliability of the system need to be assessed with 

higher spatial resolution (e.g. at finer administrative levels) that would better 

capture the distribution of extreme weather events. 
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6.1. Abstract 

To meet the growing demand from public and private stakeholders for 

early yield estimates, a high-resolution (2 km × 2 km) rice yield forecasting 

system based on the integration between the WARM model and remote 

sensing (RS) technologies was developed. RS was used to identify rice-

cropped area and to derive spatially distributed sowing dates, as well as for 

the dynamic assimilation of exogenous leaf area index (LAI) data within the 

crop model. The system – tested for the main European rice production 

districts in Italy, Greece and Spain – allowed achieving satisfactory 

performances: more than 66% of inter-annual yield variability was 

explained in six out of eight combinations ecotype × district, with a 

maximum of 89% of variability explained for Tropical Japonica cultivars in 

the Vercelli district (Italy). In seven out of eight cases, the assimilation of 

RS-derived LAI allowed improving the forecasting capability, with minor 

differences due to the assimilation technology used (updating or 

recalibration). In particular, RS allowed reducing the uncertainty by 

capturing factors not properly reproduced by the simulation model (given 

the uncertainty due to large-area simulations). As an example, the season 

2003 in the Serres (Greece) district was characterized by severe blast 

epidemics, whose effect on canopy vigor was captured by RS-derived LAI 

products. The system – extending the one used for rice within the MARS 

project – was pre-operationally used in 2015 and 2016 to provide early yield 

estimates to private companies and institutional stakeholders within the EU-

FP7 ERMES project. 

 

Keywords: assimilation; blast disease; Oryza sativa L.; remote sensing; 

WARM model. 
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6.2. Introduction 

There is an increasing demand for systems able to provide timely yield 

forecasts, given the potential interest for a variety of actors within the 

agricultural sector, including private companies and institutional 

stakeholders (e.g., Supit, 1997; Bannayan and Crout, 1999; Wang et al., 

2010; Fang et al., 2011). While industries and private companies are 

interested in crop yield forecast for reasons such as the need of defining 

selling strategies or of planning milling operations (Everingham et al., 

2002), the interest of public institutions deals with the need of regulating 

agricultural markets and mitigating volatility of prices in case of speculative 

actions on food commodities (e.g., OECD and FAO, 2011; Kogan et al., 

2013, G20 initiative Agricultural Market Information System" -AMIS, 

http://www.amis-outlook.org/ and "Global Agricultural Geo-monitoring 

Initiative" - GEOGLAM, http://www.geoglam-crop-monitor.org/). Simple 

forecasting systems – based, e.g., on agroclimatic indicators (Balaghi et al., 

2012) – demonstrated their usefulness under conditions characterized by 

large year-to-year fluctuations in yields and when those fluctuations are 

driven by one or two key drivers or, in general, in contexts where crops are 

grown under severely limiting conditions. Other approaches are more 

complex, relying on remote sensing (Mkhabela et al., 2005; Wang et al., 

2010; Duveiller et al., 2013; Son et al., 2014) or crop simulation models 

(Vossen and Rijks, 1995; Supit, 1997; Bezuidenhout and Singels, 2007a/b; 

de Wit et al., 2010; Kogan et al., 2013). Crop models – if properly used – are 

indeed able to interpret reality in quite a fine way, thus being able to capture 

the effect of weather anomalies or other factors affecting crop yields better 

than simpler systems. As an example, they are able to simulate the effect of 

thermal shocks-induced spikelet sterility (Shimono et al., 2005), which, for 

some cereals, can lead to relevant yield losses. A forecasting system solely 

based on remote sensing – for its own nature – would fail in contexts where 

sterility is an issue, since sterility can severely affect yields even without any 

damage to the canopy. Forecasting systems solely based on remote sensing 

are unsuitable also in contexts characterized by a good yield potential, 

because the favourable conditions for soil and climate and the optimized 

management techniques lead vegetative vigour to saturating signal (both in 

case of optical and radar techniques) (Sader et al., 1989; Dobson et al., 1995; 
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Zhao et al., 2016) even before the reproductive phase. However, crop model-

based forecasting systems are quite demanding in terms of data needs and, 

when applied on large areas, they can be affected by many sources of 

uncertainty, due to the poor quality of input data (weather, soil), to the lack 

of information on management (e.g., sowing dates, irrigation practices, 

cultivars/hybrids grown) variable in space and time, as well as to the model 

structure (Sándor et al., 2016; Confalonieri et al., 2016a), to the experience 

of the model users (Diekkrüger et al., 1995; Confalonieri et al., 2016b) and 

to the uncertainty in the data used for their calibration (Kersebaum et al., 

2015; Confalonieri et al., 2016c). 

The availability of powerful platforms for gridded model runs and for 

automatic calibration of parameters, as well as the availability of consistent 

archives (e.g., leaf area index estimates for the period 2000 - 2016 from ESA 

- Copernicus http://land.copernicus.eu/global/products/lai or NASA – 

MODIS https://modis.gsfc.nasa.gov/data/dataprod/mod15.php) and new 

generation (e.g., Sentinel satellites from the Copernicus program; Lefebvre 

et al., 2016) of remote sensing products is increasing the potential of 

forecasting systems integrating crop models and remote sensing 

technologies. 

The combined use of these two kinds of technology can markedly reduce 

their intrinsic limits and forecasting uncertainty when exploited in single 

use, because the potentialities of both technologies are maximized by their 

integration (Fang et al., 2011; Ines et al., 2013; Ma et al., 2013). As an 

example, the uncertainty in the sowing dates provided to crop models can be 

reduced through the analysis of temporal profile or remote sensing products 

(e.g., Boschetti et al., 2009) or differences in vigour between different 

varieties or effects of factors not accounted for by simulation models (e.g., 

insects, Wu and Wilson, 1997; weeds, Kropff et al., 1992) can be implicitly 

included in the simulation via the assimilation of remote sensing-derived 

leaf area index data varying in time and space (Launay and Guèrif, 2005; 

Dorigo et al., 2007). 

Two main strategies are available to integrate remote sensing information 

into crop simulators, each presenting pros and cons for different species and 

agroclimatic/operational contexts (Dorigo et al., 2007): calibration and 

forcing. The calibration method is based on the automatic adjustment of 
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model parameters targeting the minimization of the error between model 

outputs and remote sensing-derived state variables (e.g., Bouman et al., 

1995). The forcing method is instead based on the update of model state 

variables when the remote sensing data are available, using algorithms to 

convert them into simulated variables and to redefine all model outputs 

accordingly (McLaughlin, 2002). 

The aim of this study was to develop and test a high-resolution rice yield 

forecasting system targeting the main European rice districts, and based on 

the deep integration of remote sensing information in crops models. This 

was achieved in the framework of the EU-FP7 ERMES project, whose aim 

was developing services and disseminating added-value information for the 

rice sector (www.ermes-fp7space.eu). 

6.3. Materials and methods 

6.3.1. Study areas 

The system was developed targeting Italy, Spain and Greece, which are 

responsible of 52%, 25% and 7% of the total European rice production, 

respectively (FAOSTAT, 2014). The rice production districts selected for 

each of the three countries are shown in Fig. 1. For the Italian district 

“Lombardo-Piemontese”, we considered the province of Vercelli and the 

area of Lomellina (located in the Pavia province), including 31% and 27% of 

the Italian rice area (National Rice Authority [Ente Nazionale Risi]; 

www.enterisi.it). For Spain, the system included the areas of the Ebro delta 

and of the “Parc natural de l’Albufera”, with the two rice districts located in 

the provinces of Tarragona and Valencia representing about 30% of the 

Spanish rice production. In Greece, the Central Macedonia region was 

selected, with rice districts located around Thessaloniki (the main Greek 

producing site), and Serres. According to the Koppen climate classification, 

Spanish and Greek areas are characterized by a Mediterranean climate, with 

hot and dry summers, whereas the climate in the Italian district is temperate 

with warm and humid conditions during the summer months. In general, the 

rice season in the three countries starts in March/April and ends in 

September/October, even though the length of the cycle strictly depends on 

the cultivated variety and on the seasonal weather conditions. The most 

common water management adopted in the three countries is based on 
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continuous flooding; however, dry sowing (usually coupled with delayed 

flooding at the 3rd-5th leaf stage) is increasingly used in Italy. According to 

data made available by Italian National Rice Authority, Japonica varieties 

belonging to the market category “Lungo A” are the most cultivated in Italy, 

followed by Japonica varieties “Tondo” and the Tropical Japonica varieties 

“Lungo B”, with the latter – especially grown in the province of Vercelli – 

representing about 15% of the national rice production. In Spain and Greece, 

the most cultivated varieties belong to Japonica and Tropical Japonica 

groups, respectively, with the exception of the Greek district of Serres, 

where the colder climate is more suitable for the cultivation of Japonica 

varieties. 

 

Figure 1: rice production districts and related 2016 rice distribution maps for 

the a) Spanish (Valencia district), b) Italian (Lomellina and Vercelli districts) and 

c) Greek (Thessaloniki district) study areas. 

6.3.2. Crop model and assimilation tool 

This study was carried out using the rice-specific model WARM (e.g., 

Confalonieri et al., 2009; Pagani et al., 2014), fully described in the seminal 

literature. The model is used since years in both research and operational 
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contexts (e.g., it is one of the rice models used within the AgMIP project and 

it is used by the European Commission for rice yield forecasts in Europe; 

http://ies-webarchive-ext.jrc.it/mars/mars/About-us/AGRI4CAST/Models-

Software-Tools/Crop-Growth-Modelling-System-CGMS.html). 

WARM estimates biomass accumulation using a net photosynthesis 

approach, based on the concept of radiation use efficiency, the latter being 

modulated according to temperature limitation, saturation of enzymatic 

chains in case of high radiation levels, senescence, sterility, and diseases. 

Daily accumulated biomass (using alternatively a daily or hourly time step) 

is partitioned to the different plant organs using a set of beta and parabolic 

functions driven by a single parameter (partitioning to leaves at emergence). 

Green leaf area index increase is daily computed by multiplying daily 

increase in leaf biomass by a development stage-dependent specific leaf 

area. Each day, leaf senescence is calculated by subtracting the dead leaf 

area index (because of daily-emitted leaf area units reaching a thermal time 

threshold) to the total one. Radiation interception is based on the Beer’s law. 

Spikelet sterility due to cold shocks around young microspore stage and at 

flowering, as well as due to heat stress at flowering, are simulated by 

calculating hourly stresses and weighting them using development-

dependent bell-shape functions to reproduce the between- and within- plant 

heterogeneity in development. Concerning leaf and neck blast, disease onset 

is estimated based on hydrothermal time (Arai and Yoshino, 1987; Kim, 

2000), whereas the daily infection efficiency is computed according to 

Magarey et al. (2005). Duration of the phases of latency, incubation and 

infectious is based on hourly air temperature. Leaf area affected by blast 

lesions (reducing radiation absorption) is estimated using a compartmental 

susceptible-infected-removed model. Effects of neck blast are reproduced by 

reducing the fraction of assimilates partitioned to panicles after the panicle 

initiation stage (Bregaglio et al., 2016). 

The assimilation of remote sensing information was carried out using 

recalibration and updating techniques. The former is theoretically most 

advanced and provides a fully consistent and coherent simulation after each 

assimilation event (Bouman et al., 1995). However, it could expose to risks 

(Dorigo et al., 2007), since parameter values – normally calibrated using 

data from many field experiments – are changed using very few uncertain 

http://ies-webarchive-ext.jrc.it/mars/mars/About-us/AGRI4CAST/Models-Software-Tools/Crop-Growth-Modelling-System-CGMS.html
http://ies-webarchive-ext.jrc.it/mars/mars/About-us/AGRI4CAST/Models-Software-Tools/Crop-Growth-Modelling-System-CGMS.html
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data (normally leaf area index values derived from low resolution remote 

sensing images). The optimization method used is a multi-start and bounded 

(for parameter ranges) version of the downhill simplex (Nelder and Mead, 

1965). The simplex has N+1 vertices interconnected by line segments and 

polygon faces in an N-dimensional parameter hyperspace, and it moves 

through this space according to three basic rules: reflection, contraction, and 

expansion. Although other optimization methods not using derivatives are 

available (e.g., Kirkpatrick et al., 1983; Glover, 1986), the simplex 

guarantees a very favourable ratio between performance and complexity 

(Matsumoto et al., 2002; Press et al., 2007). 

Using the updating method, instead, parameter values are not changed 

during the simulation, thus lowering the risk of degrading the process-based 

logic behind the biophysical model. Using the updating assimilation method, 

indeed, exogenous leaf area index data and model specific leaf area can be 

used to derive leaf biomass. Then, the relationships between relative weight 

of different plant organs at the previous time step can be used to update all 

state variables related to the simulated plant. Of course, this method cannot 

guarantee a coherent simulation after updating events, since simulated state 

variables are discontinuous by definition. Moreover, it cannot be used to 

update soil-related state variables, such as contents of water or mineral 

nitrogen in the different soil layers. However, this does not represent a 

constraint here, since simulations were carried out under potential conditions 

for water and nutrients. 

Regardless of the assimilation methods, the procedure was triggered only 

(i) before flowering (to avoid uncertainty due to green or senescent leaf 

area), (ii) in case at least three exogenous data were available for each 

elementary simulation unit, and (iii) for leaf area index data within a 

biophysical range for rice in each specific phenological stage. Concerning 

recalibration method, parameters whose values were optimized were specific 

leaf area at emergence and at mid-tillering and radiation use efficiency. 

6.3.3. Input data 

Dedicated processing chains were developed to produce the near real-

time weather data and RS-derived information used to feed the WARM 

simulation model. 
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6.3.3.1. Weather data 

An archive (continuously updated for near real-time simulations) of 

weather data at 2 km × 2 km spatial resolution was created starting from 1st 

of January 2003 to provide daily input to the WARM model. Source data 

were derived from the European Centre for Medium-Range Weather 

Forecast ERA-Interim (for the historical series) and TIGGE (for near real-

time) databases (ECMWF; www.ecmwf.int; de Wit et al., 2010) for the 

following daily variables: maximum and minimum air temperatures, 

maximum and minimum air relative humidity, rainfall, average wind speed, 

global solar radiation. Leaf wetness duration, needed for the simulation of 

blast infections, was estimated according to Sentelhas et al. (2008). The 

spatial resolution of the ECMWF database used in this study was 0.125° 

(about 17 km). Data were downscaled to a regular 2 km × 2 km grid based 

on kriging methodology (Cressie, 1993). To allow correcting biases detected 

for some of the variables, dedicated calibration procedures were developed 

by targeting the EC-JRC MARS weather database as a reference 

(http://agri4cast.jrc.ec.europa.eu/DataPortal/Index.aspx). 

6.3.3.2. Satellite remote sensing data 

Satellite data were exploited to retrieve information on (i) rice cultivated 

area (for identifying the area covered by rice in each 2 × 2 km elementary 

unit) to perform the upscaling of model outputs), (ii) spatially distributed, 

season-specific sowing dates, and (iii) leaf area index (LAI) for the 

updating/recalibration of the model. 

6.3.3.2.1. Rice distribution maps 

Spatial explicit information on rice cultivated areas for the three study 

sites was derived at 20 m resolution from Sentinel 1 SAR data processing 

(Fig.1.a,b,c). The map was produced using the processing chain module 

within MAPscape-RICE (Sarmap®). The mapping method involved two 

main steps: automatic pre-processing of SAR data and rule-based 

classification. Firstly, the multi-temporal spaceborne SAR Single Look 

Complex data were converted into terrain geocoded backscattering 

coefficient (σ0) following strip mosaicking, co-registration, time-series 

speckle filtering, Terrain geocoding, radiometric calibration and 

normalization, anisotropic Non-Linear Diffusion (ANLD) Filtering, 

Removal of atmospheric attenuation. Secondly, a SAR specific multi-
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temporal σo rule-based rice detection algorithm (MSRD) was then applied 

(Nelson at al. 2014). In this work, for Greece and Spain exclusively 

Sentinel-1A 12 days VV/VH Ascending (12 in Greece, 13 in Spain) and 

Descending (12 in Greece, 13 in Spain) data have been used (hence enabling 

an almost weekly monitoring) to produce the maps. For Italy, due to the 

complex agricultural system, 4 Landsat-8 images acquired between March 

2016 and June 2016 were additionally used. In this second case, EVI (Huete 

et al. 2002) and NDFI (Boschetti et al., 2014) were used as additional info to 

improve the differentiation between rice and other summer crops (maize, 

sunflower, soybean). 

6.3.3.2.2. Sowing dates maps 

Spatially distributed estimates of sowing date at district level were based 

on the use of the PhenoRice algorithm (Boschetti et al., 2009). Currently the 

method works on integrated time series of TERRA and AQUA 250 m 16-

days composite MODIS vegetation indices products (MOD13Q1 and 

MYD13Q1, respectively). The algorithm identifies a MODIS pixel as a rice 

crop when 1) a clear and unambiguous flood condition is detected using 

NDFI, and 2) a consistent rapid crop growth is recognized analyzing EVI. In 

synthesis, sowing date was estimated in correspondence of agronomic 

flooding and a minimum in the EVI curve, more details can be found in 

Boschetti et al. (2009). The PhenoRice approach was applied in three study 

areas (Italy, Greece and Spain) to estimate dates of crop establishment to be 

used primarily as direct input to crop modelling solutions, providing 

spatially and temporally dynamic crop calendars. MODIS imageries 

acquired from 2003 to 2014 were used to analyze the inter-annual and 

spatial variability of rice growth dynamics. Fig. 2 provides the statistics 

derived for sowing dates in Italy (a), Spain (b) and Greece (c). It is 

interesting to notice that the method was able to detect the anomalous 

condition that occurred in Italy in 2013 (Fig. 2.a), when crop establishment 

was 1-month delayed compared to the 10-year average. This observation 

was confirmed by the National Rice Authority in the 2013 Rice Season 

Report, that described how an extremely rainy and cold spring forced 

farmers to delay rice sowing up to mid-June (ENR, 2013). 
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Figure 2: Inter-annual variability of rice sowing from 2003 to 2014 in a) Italy, 

b) Spain and c) Greece. 

6.3.3.2.3. Leaf Area Index maps 

LAI values (Fig. 3) – used for being assimilated into the WARM model – 

were derived from operational multi-temporal biophysical products derived 

from SPOT/VEGETATION and PROBA-V in the framework of the 

Copernicus Global Land Services. The GEOV1 dataset is a multisensory 

product, developed to guarantee temporal continuity of biophysical variables 

over the globe on the near real-time basis. The GEOV1 LAI retrieval 

processing chain relies on neural networks trained using MODIS and 

CYCLOPES products (Baret et al., 2013) to generate remote sensing LAI 

estimates from SPOT/VEGETATION (1999 to May 2014) and PROBA-V 

(June 2014 up to date) sensors at 1/112° spatial resolution in a Plate Carrée 

projection (regular latitude/longitude grid) every 10 days. LAI maps were 

downloaded from Copernicus servers and downscaled at the 2 km × 2 km 

regular grid used as elementary simulation unit. The downscaling was 

performed using only values with quality flags indicating the best 

confidence estimates and using dedicated crop masks for the study areas. 
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Figure 3: LAI map over the Greek rice area derived from Proba-V on 2 July 

2016 and the time-trend of LAI in 2016 (from the ERMES geoportal, 

http://ermes.dlsi.uji.es/). 

6.3.4. Spatially distributed simulations and forecasting methodology 

WARM model simulations were run on 2 × 2 km elementary units, 

according to the spatial resolution of the weather database (see section 

2.3.1). The model parameters for Japonica varieties (Confalonieri et al., 

2009) were used for the simulations carried out in Spain (both districts) and 

in the Greek district of Serres, whereas the WARM parameters for Tropical 

Japonica varieties were used for Thessaloniki. Concerning the Italian 

districts, simulations were run for both the market categories “Lungo B” 

(belonging to the Tropical Japonica group) and “Tondo” (belonging to the 

Japonica group). For the latter, the available set of parameters was refined 

using data on phenological development, LAI and final yield provided by 

“Ente Nazionale Sementi Elette” (ENSE) between 2006 and 2012, and 

collected during dedicated experiments carried out within the ERMES 

project (www.ermes-fp7space.eu) in 2014-2015 in the Pavia Province. The 

market category “Lungo A” (belonging to the Japonica group) was excluded 

from the analysis since specific datasets were not available for the 

calibration of WARM parameters. 

According to the agro-management practices in the study areas, 

simulations were carried out under potential conditions for water and 

nutrients, whereas the effects of blast disease and cold shocks around 
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flowering (inducing spikelet sterility) were taken into account by means of 

dedicated WARM modules. For each elementary simulation unit (regular 

grid of 2 km× 2 km) and for each 10-day period, a variety of information 

was aggregated at district level based on the percentage of rice cover, as 

derived by rice maps, for each elementary simulation unit. This information 

included potential, blast- and cold shock-limited crop model state variables, 

the same state variables for model runs including the assimilation of remote 

sensing information (for both the updating and recalibration assimilation 

methods), and key agro-climatic indicators (Table 1). According to the 

forecasting methodology developed and used within the MARS forecasting 

system of the European Commission (Vossen and Rijks, 1995; 

https://ec.europa.eu/jrc/en/scientific-tool/agri4cast-mars-crop-yield-

forecasting-system-wiki) and in related yield forecasting systems (de Wit et 

al., 2010; Kogan et al., 2013), model outputs and agro-climatic indicators 

were then related to official yield statistics for the time series 2003-2014 

using multiple linear step-wise regressions. To avoid losing robustness 

because of overfitting, the maximum allowed number of regressor was four. 

The forecasting event was triggered at the10-day period corresponding to the 

physiological maturity. Official yield statistics for the rice ecotypes 

considered (with the exception of Tarragona, for which only global rice 

statistics were available) were supplied by the Spanish and Greek Ministries 

of agriculture and by the Italian National Rice Authority. Before the 

analysis, yield statistics were examined to identify and possibly remove the 

presence of significant technological trends due to, e.g., improved 

machineries or genotypes (not reproduced by the crop model). The 

predictive ability of each regression model was tested by performing a leave-

one-out cross-validation on the available time series of historical yields. 
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Table 1: List of crop model outputs and agro-climatic indicators used as 
independent variables within the forecasting system (P=potential conditions; B-
l=blast-limited; C-l=cold shock-limited; U=updated; R=recalibrated). 

 

Indicator 

name 

Unit Description Model 

configuration 

Model outputs   

DVS  - Development stage code P 

AGB t Aboveground biomass P, B-l, U, R 

SB t Stem biomass P, B-l, U, R 

YIELD t ha
-1

 Storage organs biomass P, B-l, U, R 

LAI m
2
 m

-2
 Leaf area index P, B-l, U, R 

GLAI m
2
 m

-2
 Green leaf area index P, B-l, U, R 

BlastInf  - Cumulated efficiency percentage of potential blast infections B-l 

Coldster  - Cumulated efficiency percentage of potential cold-induced spikelets 

sterility 
C-l 

Agro-climatic indicators   

TMAX °C Cumulated daily maximum temperature  - 
TMIN °C Cumulated daily minimum temperature  - 

Rain mm Cumulated rainfall   - 

 1  

6.4. Results and discussion 

The cross validation allowed identifying the best statistical models for 

each combination ecotype × production district identified among those 

proposed by the step-wise regression analysis (Table 2). The significance 

level for all regression models – sorted on the basis of the beta coefficients – 

was lower than 0.05. 

The forecasting system achieved satisfactory performances in six out of 

eight cases. Unsatisfying forecasting reliability was indeed obtained only for 

Tropical Japonica varieties in Thessaloniki and Japonica varieties in 

Lomellina. Without considering these two cases, average RRMSECV and 

R2
CV (relative root mean square error and coefficient of determination of the 

cross validation, respectively) of the most reliable regression models were 

equal to 2.9% and 0.78, respectively. The best results were obtained for the 

Japonica ecotype in Valencia and the Tropical Japonica ecotype (market 

category “Lungo B”) in Vercelli, for which the amount of inter-annual yield 

variability explained was, respectively, 89% (33% of which explained by a 

technological trend) and 83%. 

Despite the poor results obtained in terms of R2 for Tropical Japonica in 

Thessaloniki and Japonica in Lomellina (Fig. 4), the values of modelling 

efficiency (EF; Nash and Sutcliffe, 1970) were positive (0.24 and 0.16, 

respectively) indicating that the forecasting system – even in these cases, is a 

better predictor than the mean of official yield statistics (Table 2). The 
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marked over- and underestimations showed in some years (i.e., 2012-2014 

for Thessaloniki, and 2009-2010 for Lomellina; Fig. 4.a) were mostly caused 

by factors not accounted for by the simulation model. As an example, the 

low yield recorded in Thessaloniki for 2012 was caused by an extreme heat 

wave during the reproductive period (process not simulated by the current 

modelling solution), whereas the high yields in 2013 and 2014 were due to 

the introduction of the successful high yielding variety Ronaldo (DEMETER 

– Cereal Institute of the Hellenic Agricultural Organization, personal 

communication). 
 

 
b) a) 

 
 

Figure 4: Comparison between official (grey circles) and forecasted (black 

crosses) yields for the cross-validation for a) Tropical Japonica cultivars in 

Thessaloniki and b) Japonica cultivars (market category “Tondo”) in Lomellina. 

In seven out of eight cases, the assimilation of remote sensing-derived 

LAI allowed improving the forecasting capability; in particular, the updating 

and recalibration assimilation methods led to improving forecasts in two and 

five cases, respectively. This is in agreement with results obtained by other 

authors: e.g., Ma et al. (2013) almost halved the error on yield estimates by 

assimilating MODIS-derived LAI into a forecasting system based on the 

WOFOST crop model. Similar results were obtained by Ines et al. (2013) for 

maize yield forecast using a DSSAT-based system. 

For the rice district of Tarragona, simulated state variables (including 

blast-limited conditions) allowed achieving satisfactory predictions even 

without the assimilation of remote sensing information (Table 2), with EF 

and R2 for cross-validation equal to 0.60 and 0.71, respectively, although 

37% of the inter-annual yield variability was explained by a significant 

technological trend. For other combinations ecotype × district, instead, the 

assimilation of remote sensing information allowed to increase the 
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predicting capability, although the forecasting system solely based on the 

crop model explained a relevant part of yield fluctuations in the series of 

historical yields series. As an example, assimilation led to increasing R2 

from 0.70 to 0.83 for Tropical Japonica in the province of Vercelli (Table 2). 

In other cases, the reduction of uncertainty due to the assimilation of remote 

sensing-derived LAI led to a substantial improvement in yield forecasts. As 

an example, the model showed marked under- and overestimations in most 

of the years for Japonica varieties in Serres, even under blast-limiting 

conditions (negative EF, R2=0.09; Table 2 and Fig. 5.a), for which some of 

the model outputs achieved significant values when used as regressors. In 

particular, the yield forecasted for 2003 was in line with the average values 

for the time series, whereas official yield statistics for the same year were 

severely affected by blast disease (DEMETER – Cereal Institute of the 

Hellenic Agricultural Organization). Among the reasons for explaining the 

crop model failure in identifying 2003 as a year particularly affected by blast 

disease, a key role is likely played by the lower resistance of varieties grown 

at the beginning of the 2000s and by the general uncertainty due to the lack 

of information on fungicides distribution for large-area simulations. 

Concerning the former, indeed, given the pathogen pressure change 

greatly between years, the effect of improved varieties is hardly detectable 

by medium-term technological trends. The assimilation of remote sensing 

LAI allowed reducing the uncertainty in simulations by detecting the overall 

lower vigor of rice canopies in the district due to the disease. Indeed, 

assimilation led to markedly increase the system capability to reproduce the 

inter-annual yield fluctuations (a value of 0.80 was achieved for both EF and 

R2), including the correct estimate of the poor yields recorded for 2003 (Fig. 

5.b). 
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b) a) 

 
 

Figure 5: Comparison between official (grey circles) and forecasted (black 
crosses) yields for the cross-validation for Japonica varieties in Serres. 
Forecasting system was based on a) crop model outputs and agro-climatic 
indicators, and on b) model outputs updated using remote sensing-derived LAI and 
agro-climatic indicators. 

 
In most of the cases, the statistical post-processing of simulated outputs 

was important for reducing the different sources of uncertainty (in model 

structure, parameterizations, management, upscaling procedure, etc.) 

affecting large area simulations and, thus, to allow the system to correctly 

reproducing the fluctuations along the historical series of yield statistics. 

However, when the model was run in contexts not severely affected by 

extreme weather conditions or by unreproducible (given the scale) season- 

or site-specific effects involved with the application of management 

practices, good results were obtained from the combined use of crop 

modelling and remote sensing technologies, even without post-processing 

results. As an example, in the rice district of Valencia, yields simulated by 

WARM under potential conditions for Japonica cultivars were sufficiently 

coherent – in terms of overall time trend – with official yield statistics, 

although they were characterized by a general underestimation during the 

whole time series (Fig. 6.a). The assimilation of remote sensing-derived LAI 

values (via recalibration of model parameters) allowed to greatly improve 

the forecasting capability of the crop model even in absolute term, especially 

in the second part of the series (Fig. 6.b). However, the statistical post-

processing of simulated results led to further improve forecasts (Fig. 6.b) by 

including in the regression model – besides simulated yield – a second 

variable, i.e. the cumulated rainfall, that presented a negative correlation 

with official yields. The reason for the importance of cumulated rainfall is 

related with its role in affecting rice productivity because of less radiation 
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available for photosynthesis (in turn due to more cloudy days) and because 

of higher humidity, that favored blast infections. A further negative effect of 

abundant rainfall in the last part of the crop cycle is the possible problems 

during harvesting procedures. 
 

a) b) 

 
 

Figure 6: Comparison between official (grey circles) and yields forecasted for 
Japonica cultivars in Valencia using a) only the crop model (grey triangles), b) the 
crop model with assimilation of remote sensing LAI (grey triangles) and the 
statistical post-processing of simulated results (including LAI assimilation) (black 
crosses). 

 
The forecasting reliability obtained for Italy is in line with (or better than) 

the best results obtained by de Wit et al. (2010) using the CGMS-WOFOST 

model for grain yield estimates in Europe, whereas the results we obtained 

for Japonica cultivars in Valencia (56% of the variance explained without 

considering the trend) are slightly better than those achieved by de Wit et al. 

(2010) for barley, field beans and sugar beets. Results achieved for other 

combinations rice ecotype × district are less reliable, although they can be 

considered as in agreement with most of the results normally obtained using 

generic and crop-specific (e.g., Kogan et al., 2013; Ines et al., 2013) yield 

forecasting systems. Comparing our system with other rice specific ones, the 

values of R2 obtained by Son et al. (2014) with an approach based on 

MODIS-derived vegetation indices for the Mekong River Delta (Vietnam) 

ranged from 0.40 to 0.71. These values are similar to the ones we found, 

although the inter-annual yield fluctuations in Vietnam are larger than those 

characterizing rice cultivation in Europe, and the mean error obtained by 

Son et al. (2014) was often higher than those achieved in this study. 

However, the approach proposed by Son et al. (2014) is simpler and easier to 

be set-up and maintained. 
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6.5. Conclusions 

A high-resolution rice yield forecasting system based on the WARM 

model was run on 2 km × 2 km elementary simulation units covering the 

main European rice districts in Italy, Spain and Greece. The system 

integrated remote sensing information to define rice-cropped area and to 

derive sowing dates varying in time and space, as well as for assimilating 

exogenous LAI information into the simulation (using both updating and 

recalibration techniques). Forecasting performances at maturity were 

satisfactory for most of the combinations ecotype × production district. The 

average values for mean absolute error, RRMSE and R2 obtained from the 

comparison with official yield statistics were 0.23 t ha-1, 4% and 0.66, 

respectively. The assimilation of remote sensing LAI led to improvements in 

seven out of eight cases, with the increase in the amount of variability 

explained ranging from 7% to 71%. 

Although further studies are needed to increase the predicting capability 

in some of the districts (i.e., Thessaloniki and Lomellina), the system 

demonstrated its usefulness during 2015 and 2016, when it was used under 

pre-operational conditions during the activities performed within the EU-

FP7 ERMES project (http://www.ermes-fp7space.eu/). In this context, yield 

forecast bulletins were regularly issued to public authorities and private 

companies in Italy, Greece and Spain. Feedbacks received encourage to go 

on running the forecasting system operationally in the next seasons. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 

The main objective of the PhD project was to improve the reliability of 

existing model-based yield forecasting through the reduction of the impact 

of sources of uncertainty related with the quality of spatially-distributed 

input data, the absence of approaches for biotic and abiotic stressors, and the 

assumptions behind upscaling procedures.  

The development or improvement of approaches for the simulation of 

abiotic factors affecting crop productivity allowed to better capture the inter-

annual yield fluctuations, especially in case of unfavourable seasons, that is, 

when stakeholders are more interested in early yield estimates. Most of the 

approaches developed for weather extremes allowed improving the 

reliability of CGMS, the forecasting system of the European Commission, 

and will be transferred to the operational CGMS chain. In particular, the new 

system allowed improving the accuracy of CGMS in 93% of the analysed 

combinations crop × country × forecasting moments. These results have to 

be considered of particular interest given the projected increase in the 

frequency and intensity of weather anomalies. 

Besides the development of dedicated approaches for extreme weather 

events, the research focused on increasing the capability of large-area 

forecasting systems to reproduce the effect of water stress on the 

productivity of high-yielding rainfed crops. As a case study, the integration 

of the dynamic Canegro model with dedicated agro-climatic indicators for 

sugarcane yield estimates in São Paulo (Brazil) allowed to markedly 

increase the predicting capability (up to 93% of the inter-annual variability 

explained) compared to existing approaches. 

The integration of remote sensing information and crop modelling for rice 

yield forecasts in Europe allowed obtaining the maximum benefits from 

these two different technologies. Indeed, remote sensing data (used for 

model initialization or for the dynamic integration of exogenous 

information) allowed to greatly reduce the impact of the uncertainty 

affecting information on rice distribution, management practices, and 

cultivated varieties. Moreover, the system benefited from the 

implementation of dedicated approaches for plant-pathogen interactions. 
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The satisfactory results achieved allow considering the systems 

developed during the PhD project as suitable for operational contexts. 

However, further researches would allow to overcome limits that still affect 

the predicting capability of available systems. The integration of remote 

sensing information in crop modelling platform was here facilitated by the 

specific crop. Rice, indeed, is still mainly grown under flooded conditions in 

Europe, and flooded fields are clearly detected by satellite sensors. This 

allows deriving crop-specific remote sensing products to be used within crop 

models without the uncertainty due to the presence of mixed pixels. 

Researches are needed to evaluate the reliability of the technologies applied 

here on rice when extended to other species. Other areas of improvement 

deal with the development of more approaches for the simulation of the 

effects of abiotic/biotic stressors on crop productivity. However, the impact 

of most of the extreme events affecting crop yields is hardly reproducible 

within spatially-distributed simulations. Indeed, many of them (e.g., 

flooding, wind gusts, hail) are characterized by high-resolution spatial 

patterns, which are difficult to be captured by large-area agrometeorological 

networks. In any case, the evaluation of crop yield forecasting systems takes 

the highest advantage from the interaction with local stakeholders. Indeed, 

official yield statistics are normally recorded without metadata explaining 

year-to-year fluctuations, and this is a critical constraint that limits the 

evaluation and improvement of existing approaches. 
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