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Abstract   

The recent integration of silicene in field-effect transistors (FET) opened new challenges in the comprehension of the 
chemical and physical properties of this elusive two-dimensional allotropic form of silicon. Intense efforts have been 
devoted to the study of the epitaxial Silicene/Ag(111) system in order to elucidate the presence of Dirac fermion in 
analogy with graphene; strong hybridization effects in silicene superstructures on silver have been invoked as 
responsible for the disruption of π and π* bands. In this framework, the measured ambipolar effect in silicene-based FET 
characterized by a relatively high mobility, points out to a complex physics at the silicene-silver interface, demanding for 
a deeper comprehension of its details on the atomic scale. Here we elucidate the role of the metallic support in 
determining the physical properties of the Si/Ag interface, by means of optical techniques combined with theoretical 
calculations of the optical response of the supported system. The silicene/Ag(111) spectra, which turn out to be strongly 
non-additive, are analyzed in the framework of theoretical density functional based calculations allowing us to single out 
contributions arising from different localization. Electronic transitions involving silver states are found to provide a huge 
contribution to the optical absorption of silicene on silver, compatible with a strong Si-Ag hybridization. The results 
point to a dimensionality-driven peculiar dielectric response of the two-dimensional-silicon/silver interface, which is 
confirmed by means of Transient-Reflectance spectroscopy. The latter shows a metallic-like carrier dynamics, (both for 
silicene and amorphous silicon), hence providing an optical demonstration of the strong hybridization arising in 
silicene/Ag(111) systems. 
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1. INTRODUCTION  
A very interesting system with “on demand physical properties” is Silicene. Among 2D materials beyond Graphene, 
Silicene entered the scientific arena as an intriguing option1. Free-standing Silicene is theoretically expected to exhibit 
massless Dirac fermions and tunable electronic properties under a normal electric field1,2. Early experiments showed that 
Silicon atoms arrange on metal surfaces in differently oriented 2D honeycomb lattices3–5. However, electronic band 
structure (EBS) engineering of silicene is jeopardized by the nontrivial Silicene-substrate interaction resulting from 
recent Angle-Resolved Photoemission (ARPES) spectroscopy3–7. Recently, by combining ab-initio density-functional 
theory calculation and pump-probe spectroscopy, we demonstrate how the silicene-silver interface is characterized by an 
intriguing mixing effect affecting silicene and silver electronic wavefunctions8. The resulting metallic-like behaviour 
evidences how epitaxial silicene presents the same drawback of graphene, which is the absence of a band gap. As a 
consequence, in order to draw a roadmap for the integration of silicene-based optoelectronics devices, the opening of a 
band gap is mandatory. In this respect, the pioneering integration of Silicene-based Filed-Effect Transistor (FET) 
showing an ambipolar effect once peeled form the silver substrate9, promoted Silicene as a promising platform for the 
realization of artificial 2D materials with “on demand” physical properties. 
Here we elucidate the role of the metallic support in determining the physical properties of the Si/Ag interface, by means 
of optical techniques combined with theoretical calculations of the optical response of the supported system. The 
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silicene/Ag(111) spectra, which turn out to be strongly non-additive, are analyzed in the framework of theoretical density 
functional based calculations allowing us to single out contributions arising from different localization. Electronic 
transitions involving silver states are found to provide a huge contribution to the optical absorption of silicene on silver, 
compatible with a strong Si-Ag hybridization. The results point to a dimensionality-driven peculiar dielectric response of 
the two-dimensional-silicon/silver interface, which is confirmed by means of Transient-Reflectance spectroscopy. The 
latter shows a metallic-like carrier dynamics, (both for silicene and amorphous silicon), hence providing an optical 
demonstration of the strong hybridization arising in silicene/Ag(111) systems. 
 

2. METHODS  
Fabrication and morphological characterization: Samples were grown in ultra-high vacuum system with base pressure 
in the 1010 mbar range. The Ag(111) on mica substrates were cleaned by cycles of Ar+ ion sputtering (1 keV, 106 mbar) 
and subsequent annealing at 530 °C, until STM showed clean and well-ordered Ag terraces. Si was deposited by 
molecular beam epitaxy from a heated crucible with the substrate held at 250 °C, 270 °C, and room temperature for the 
mixed phase (Fig. S1a), 2√3 × 2√3 (Fig. S1b), and amorphous phase (Fig. S1c), respectively. The deposition rate (1.1 
× 10−2 ML/min) was estimated by means of a quartz microbalance and by x-ray pho- toelectron spectroscopy. STM 
topographies were obtained at room temperature using an Omicron STM setup equipped with a chemically etched 
tungsten tip. Ex-situ measurements were performed on Al2O3 capped samples. Al2O3 capping layers were grown by 
means of Al deposition in O2 atmosphere as reported in Ref. 5. 
Raman spectroscopy: ex situ Raman characterization by using a Renishaw Invia spectrometer equipped with the 2.5 
eV/488 nm line of an Ar+ laser line focused on the sample by a 50 × 0.75 N.A. Leica objective providing a spot diameter 
of about 0.8 μm. The power at the sample was maintained at 1 mW in order to prevent laser induced sample heating, and 
we acquired hundreds of spectra in order to get the highest signal to noise ratio. We carried out all the measurements in a 
z-backscattering geometry. 
Density Functional Theory (DFT) calculations: Optimized coordinates for the adsorbed silicene phases (4 × 4, √13 × √13, and 2√3 × 2√3) were determined by some of us in a previous paper 5 and are taken here as a reference. 
They are depicted in Figs. 2(a), 2(b), and 2(c), respectively. Structural models consist of a five-layer Ag(111) slab, with 
silicon atoms adsorbed on one side only. Periodic boundary conditions are imposed, with a vacuum separation between 
adjacent slabs of at least 17 Å. We also considered structural models for amorphous silicon overlayers, using the same 
computational setup. In this case, the initial structures were obtained by slicing the atomic positions at a cubic-
Si/amorphous-Si interface, as determined by tight-binding molecular dynamics simulations 10, placing it on a 4 × 4 
Ag(111) supercell, and performing further geometrical relaxation. This resulted in the structural model shown in Fig. 
2(d). The ground state charge density and potential were computed at fixed atomic coordinates by using pseudopotentials 
and a plane wave basis set, as implemented in the Quantum-ESPRESSO package11. We adopt the local density 
approximation (LDA) to the exchange and correlation functional12, with a kinetic energy cutoff of 32 Ry and a 3 × 3 
surface Brillouin zone sampling. We finally evaluate the optical properties using the Yambo software13. We focus on the 
optical absorbance at normal incidence in the visible-near UV range, which for a silicene/Ag(111) slab reads14: 
ሺ߱ሻܣ  = ఠ௅௖  ெሺ߱ሻ        (1)ߝ݉ܫ
 
Here L is the thickness of the three-dimensional supercell (slab and vacuum space) in the direction orthogonal to the 
surface, and εm its macroscopic dielectric constant. In the independent particle random phase approximation (IP-RPA) 
εM is given by a sum of individual valence (v) to conduction (c) transitions involving the velocity operator v15: 
ெሺ߱ሻߝ݉ܫ  = ଵ଺ఠమ ∑ ሺ߳௖௞ߜఔ௖|࢜|߰௖௞ۧ|ଶ߰ۦ| − ߳ఔ௞ − ߱ሻఔ,௖,௞     (2) 
 
By v and c, we label the LDA eigenvalues (ε) and eigen- functions (ψ), with k spanning a 12 × 12 mesh in the two- 
dimensional Brillouin zone for the 4 × 4 case (increased to 18 × 18 for unsupported silicene in the same unit cell). 
Intraband transitions, responsible for the infrared absorbance (Drude peak) in metallic systems, were not included. It 
must be stressed that the inclusion of self-energy and excitonic effects has been shown to lead to a large compensation 
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between the latter (electron-hole interaction) and the modification of the single-particle excitation energies16; also other 
silicon low-dimensional systems mostly exhibit a blue shift of the absorption peaks when going beyond IP-RPA17. 
Ultrafast spectroscopy measurements: We excited the sample with a broadband visible pulse, spectrally peaked around 
500 nm, obtained from a visible optical parametric amplifier (OPA)18. We used as a probe the second harmonic of 
another OPA. Both OPAs were driven by an amplified Ti:sapphire laser system (500 μJ, 150 fs, 1 kHz). After chirped 
mirror compression, the duration of the pump pulse was less than 15 fs. We measured the probe reflection of the sample 
with an optical multichannel analyser working at the full repetition rate of the laser source. The acquisition of the pump-
perturbed and pump-unperturbed probe spectra allowed us to extract the sample differential reflectivity ∆ܴ ܴ⁄ . 
 

 

 
Figure 1. STM image showing the coexisting phases 4 × 4 and √13 × √13. (b) STM image of the 2√3 ×2√3. (c) STM image showing the amorphous Si grown at room temperature. Images are 30 × 30 nm2 wide and 
were acquired at sample bias Ubias = −1.5 V, −1 V, and −1.3 V and tunneling current I = 0.35 nA, 0.64 nA, and 
0.4 nA, respectively. 

 
 

3. RESULTS AND DISCUSSION  

 
Fig. 3compares the typical Raman spectrum of multiphase epitaxial Silicene (where the 4 × 4, the 2√3 × 2√3 and √13 × √13 superstructures coexists), with those of an isolated 2√3 × 2√3 Silicene phase and of an amorphous 
silicon (a-Si) control sample. It is worth to notice how the Raman spectrum of the Silicene/Ag(111) system is completely 
different from the one of 1 ML equivalent a-Si, reported as a continuous curve in Fig. 3. This discrepancy can be easily 
understood if we take into account that silicene possess a crystalline order responsible for the narrow Raman peak (516 
cm-1 and 522 cm-1 for the mixed phase and the isolated 2√3 × 2√3 phase respectively), whereas the a-Si bears only 
short-range order resulting in the typical broad Raman feature peaked at 480 cm-1. 
As reported elsewhere5, the spectrum in Fig. 3reflects the presence of differently oriented Silicene superstructures having 
slightly different atomic arrangements. The spectrum shows a sharp and intense E2g mode in the 515-522 cm-1 spectral 
range plus additional Raman-active and breathing-like A1g modes having different Raman intensities, accordingly with 
the buckling distribution of each silicene superstructure. Each Ag-supported silicene phase causes a perturbation of the 
D3d point group symmetry of the FS silicene that activates phase specific A1g modes and bears a phase dependent Raman 
behaviour as a function of the excitation wavelength5. Even tiny modifications on the bond length and bond angle 
distributions cause remarkable differences in the lattice response following the interaction with an external electric field.  
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Figure 3. Raman spectra of the mixed phase and 2√3 × 2√3 silicene/Ag(111) samples (dotted and dash-
dotted curve, respectively) compared to a-Si one (solid curve). The strong structure at about 520 cm−1 
corresponds to the Raman-active optical modes (stretching modes) of silicene. 

 
Figure 4 shows the calculated absorption spectra of both supported and unsupported 4 × 4 and a-Si. It must be stressed 
that the absence of many-body effects in the modelling, mostly reflects in a blue shift of the absorption peaks, as showed 
for instance by S. Cahangirov et al. concerning silicon low dimensional systems17. 
For the unsupported 4 × 4 case (dotted curve in Figure 4, an emerging evidence is that the van Hove feature at 1.6 eV 
at the M point of the FBZ is still present, indicating that the singularity in the band structure at this energy is preserved 
despite the lower symmetry of the honeycomb lattice. Conversely, the sharp interband peak at 4 eV characterizing FS-
silicene absorbance broadens in the 2-6 eV spectral range indicating a modified band structure.  
It is worth to notice that, if the symmetry is totally reduced down to the amorphous limit, as for the unsupported a-
Silicon (dashed line in Figure 4, then all the absorption peaks disappear and the absorbance is almost flat all over the 
spectral region with a slight maximum at 2 eV. 
The effect of the silver substrate is not trivial and reflects the special physics of the 2D Silicene/Ag(111) interface. The 
dash-dotted curve in Figure 4reports the imaginary part of the dielectric function of the bare silver, which makes 
evidence of a negligible contribution in the visible spectral range and a significant absorbance above 4 eV. Interestingly, 
the presence of the substrate does not trivially recast as a modified background with respect of the unsupported case, as 
one can expect from the absorbance of the bare Ag(111). The continuous curve in Figure 4 is the absorbance of 4 × 4 
Silicene on Ag(111). Beyond an increased background in the Uv spectral region, two main effects are evident, the 
absence of the van Hove peak at 1.6 eV combined with the sharpening and the redshifting of the main absorption peak. 
The former fact highlights how the presence of silver hugely impacts the band structure of the adsorbed silicon, and 
consequently its absorbance: this finding is consistent with a strong hybridization between Ag and Si states, as discussed 
in the recent literature6,7,21. The latter observation makes further evidence that the electronic transitions involved in the 
optical absorption cannot be trivially attributed to silicon states only, but include strong Ag contributions extending 
within the substrate. These effects are apparently absent for the a-Si case, whose absorption profile is weakly influenced 
by the presence of the underlying silver substrate. 
In order to elucidate the role of silver in determining the optical response of epitaxial silicene, we developed a method, 
which enabled us to single out the contribution to the optical properties of the silicene/silver interface according to the 
localization of the valence and conduction states involved in the transitions, either on Si or Ag atoms. Such analysis is a 
clear advantage of the independent-particle approximation that would not be as straightforward for more refined 
treatments, and allows a qualitative understanding of the spectral features. Hence, we obtain for the slab absorption a 
factorization into pure Ag-Ag, Si-Si and mixed Ag-Si and Si-Ag electronic transitions. These are defined by assigning to 
each of the valence-to-conduction transition in Eq. (2) a weight equal to the amplitude of the Kohn-Sham states on the 
respective part. Here, such localization is determined by Lowdin population analysis, namely projecting the Bloch 
orbitals onto atomic states. Since such projection is not complete in practical applications, a remainder contribution is 
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absence of modification in the spectrum of supported and unsupported a-Silicon is straightforward, the huge contribution 
to the absorption of Ag wavefunctions is remarkable. In complete analogy with the silicene case, a-Silicon optical 
absorption is dominated by pure Ag and mixed Ag-Si/Si-Ag contributions, making evidence that the delocalization of Si 
wavefunctions in the silver substrate is a dimensional effect strictly related to the two-dimensional nature of the silicon 
adsorbate, no matter of its atomic configuration. Such effect may be influenced and controlled by tuning the silicene-
substrate interaction, which is an active field of research for 2D materials. As a proof-of-concept analysis, we artificially 
modified the (4x4) phase by lifting it by 3 Å (with all other coordinates unchanged, see Fig. 5b). The factorized 
absorption for this test case is presented in Fig. 5c and clearly presents a strong enhancement in the relative Si-Si 
contribution at the 4eV Si-derived peak, whereas mixed contributions are now significantly reduced in agreement with 
the expected reduction of hybrid character for silicene/silver states. 
 

 
Figure 6 Transient-reflectance spectra as a function of pump-probe delay for the probe wavelength of 340 nm in 
mixed-phase silicene/Ag(111) (dotted curve), 2√3 × 2√3 silicene/Ag(111) (dash-dotted curve), and a-
Si/Ag(111) (solid curve). 

 
The transient reflectivity dynamics (∆ܴ ܴ⁄ ) of the mixed-phase silicene/Ag(111) (dotted curve), 2√3 × 2√3 
silicene/Ag(111) (dashdotted curve), and a-Si/Ag(111) (continuous curve) are shown in Fig. 6. The probe wavelength is 
340 nm. The temporal behavior at this wavelength is characterized by at ultrafast decay at 2 ps after photoexcitation. 
Diamond like and amorphous silicon show the typical decay of tens to hundreds of picoseconds due to exciton 
recombination in indirect and direct band-gap semiconductors, while a fast dynamics of tens of fs, due to electron-
electron scattering, is characteristic of metals. The dynamic of silicene on silver is peculiar and can be related both to 
hybrid silicene/silver behavior and to amorphous silicon behavior. A metallic behavior in silicene/Ag is evident because 
of the dynamics characterized by a time constant of hundreds of femtoseconds, three orders of magnitude faster than in 
conventional semiconductors. Although, the dynamic is slower with respect to pure metallic systems. This highlights a 
behavior characteristic of a hybrid 2D Si/Ag interface, with electron-electron coupling and electron-phonon coupling 
with distinct time constants, and with the absence of exciton recombination. 
 

4. CONCLUSION 
In this work we study the optical properties of epitaxial silicene on silver. We demonstrated that the strong hybridization 
at the Silicon/Silver interface makes trivial any structural difference among differently oriented silicene phases. The 
contribution of Silver states in the optical absorption of the epitaxial silicene dominates with respect of transitions that 
involve only Silicon states. Transient-Reflectance spectroscopy allowed us to identify the strong hybridization by 
observing a metallic-like ultrafast response of epitaxial silicene. 
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