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Abstract

FOOD security and food safety are the main global objectives of
today’s agriculture. Within this framework, the recent grow-
ing sensibility of both policy makers and consumers for food

safety themes appear to be a hopeful sign for the introduction of new
strategies and technological systems in the next future’s agriculture.

A particularly challenging issue for current crops management is
the control of plant’s diseases while avoiding environmental pollution.
Precision pest management techniques (an emerging subset of preci-
sion agriculture suite) aim at facing this challenge by means of: i)
sensing technologies for the early detection and localization of dis-
eased areas in the canopy, and ii) variable rate technologies for the
selective application of crop protection treatments on target areas.

In this dissertation, two innovative methodologies for hyperspec-
tral crop’s disease detection are presented. The measurements were
acquired by means of a hyperspectral camera mounted onto a robotic
manipulator which allowed to compose the subsequent hyperspectral
scans (1 spatial dimension x 1 spectral dimension) into an hypercube
(2D spatial x 1D spectral) of the imaged plant. The first disease detec-
tion method is based on the combinatorial selection of the most signifi-
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cant wavelengths from the hypercube data by applying linear discrimi-
nant analysis, and the classification power of the optimal selected com-
bination is then evaluated by applying a principal component analysis.
The second method is based on a new spatial filter approach, acting
along the different channels of the hypercube.

The two methods of detection are applied by discussing two case
studies of diseases, both on cucumber plants. A first set of experi-
ments was conducted on plants artificially inoculated with powdery
mildew. A second and more extensive set of experiments was con-
ducted on plants infected by the cucumber green mottle mosaic virus
(CGMMV), which is nowadays considered one of the most danger-
ous diseases for the Cucurbitaceae family. The application of the two
methodologies was successful in identifying the major symptoms of
the diseases considered, and specifically the spatial filtering approach
enable to detect the subtle morphological modifications in the plant
tissue at rather early stage of CGMMV infection.

Due to the high cost and complexity of the technologies adopted
in the disease detection and of precision spraying equipment, the sec-
ond part of the thesis applies the classical methods of mechanization
cost-analysis to investigate what are the economic thresholds, which
may enable the introduction of new precision pest management tech-
nologies. To this aim, the analysis is focused on vineyard and ap-
ple orchard that represent a favourable case for introducing these kind
of innovations, due to the high protection treatments costs typical for
these specialty crops. Starting from the results obtained in research on
precision spraying in speciality crops, the technical-economic analysis
considers on three different technological levels of precision spraying
equipment, associated with increasing levels of reduction of the dis-
tributed amount of pesticide. This reduction is assumed to be linked
to the improved accuracy in targeting the application without affecting
the biological efficiency of the treatment, and hence generating a net
cost benefit for the farmer.
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To gain insights into evaluating this benefit is of primary interest,
since the profitability of precision spraying technologies will be a ma-
jor driver for their adoption in speciality crops. Therefore, this study
aims at: a) assessing the total costs associated to spraying equipment
at the different technological levels considered; b) evaluating weather
more advanced equipment can be profitable compared to current con-
ventional sprayers.

Furthermore, this analysis was extended to a high-precision, robotic
spraying platform, here considered as a perspective scenario for pre-
cision spraying technologies. For this specific case, the study aimed
at assessing the maximum allowed cost for such a robotic platform,
which could generate positive net benefits for the farmer thanks to the
envisaged pesticide reduction.
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Preface

DURING last few years the growing sensibility of both policy
makers and consumers for food safety themes with the press-
ing of the technological advancement indeed are an hopeful

sign for the introduction of the described strategies and technological
systems in the modern agriculture.
In the introduction of the thesis a review of the motivation, history, reg-
ulations and the main techniques for precision pest management will
be presented. The topics of interest are related to the use of agrochem-
icals with the environmental impact of their use on human health and
environment with the main degradation routes of the most important
pesticides. An extended presentation of the main strategies for preci-
sion pest management will be presented with a special focus on the
disease recognition on leaves. At the end of the introduction chapter
a literature review on economic analysis of precision spraying will be
presented to introduce the economic sustainability of precision spray-
ing system adoption.

Chapter 2 starts with a theoretical background of the main tech-
niques and concepts applied during the experiments on cucumbers. A
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special attention is given to the data processing techniques and imag-
ing analysis. The description of the two methodologies developed will
follow with the two experiments description. A new methodology for
disease symptoms assessment is presented with the discussion of two
case studies: the preliminary experiment was conducted on cucum-
ber plants affected by powdery mildew aetiological agent. Thanks this
case study the methodology was developed.

In chapter 3 the issue of adoption precision sprayer systems by the
farmers will be investigated by applying the ASABE Standard method-
ology. At the beginning of the chapter there is a focus on the theoret-
ical background on machine performance and machinery costs with a
digression on the social impact of automation.
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CHAPTER1
Introduction

1.1 Purposes of the dissertation

The scientific work presented in this dissertation has two main ob-
jectives. The general framework in which it is inserted is the preci-
sion disease management agriculture and sensing strategies for disease
recognition.
In the first part of the thesis a new methodology for disease symp-
toms assessment is presented with the discussion of two case studies:
the first one on cucumber plants affected by powdery mildew. The
methodology was developed using this case study. The second exper-
iment is about cucumber green mottle mosaic virus (CGMMV) symp-
tom detection on cucumber plants. CGMMV disease is one of the most
dangerous in Cucurbitaceae family.

The measurements were performed using a hyperspectral camera
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Chapter 1. Introduction

with high spectral and spatial resolution which during the second ex-
periment was mounted into a robotic manipulator. In this studies vari-
ous wavelengths combinations were selected for the disease detection
coupled with a set of rules which permits the study of the reflected
light which arrive from the canopy.

The second part of the dissertation deal with the technical-economic
analysis on the possible adoption of high precision spraying equipment
on the pest management in specialty crops coupled with advantage
systems for disease detection. Starting from the results obtained in re-
search on precision spraying in speciality crops, this study conducts
a technical-economic analysis on three different technological levels
of precision spraying equipment, associated with increasing levels of
reduction of the distributed amount of pesticide. This reduction is as-
sumed to be linked to the improved accuracy in targeting the applica-
tion without affecting the biological efficiency of the treatment, and
hence generating a net cost benefit for the farmer.
To gain insights into evaluating this benefit is of primary interest, since
the profitability of precision spraying technologies will be a major
driver for their adoption in speciality crops. Therefore, this study aims
at: a) assessing the total costs associated to spraying equipment at the
different technological levels considered; b) evaluating weather more
advanced equipment can be profitable compared to current conven-
tional sprayers.
Furthermore, this analysis was extended to a high-precision, robotic
spraying platform, here considered as a perspective scenario for pre-
cision spraying technologies. For this specific case, the study aimed
at assessing the maximum allowed cost for such a robotic platform,
which could generate positive net benefits for the farmer thanks to the
envisaged pesticide reduction.

The second analysis is strictly connected with the first part of the
work due to it gives an idea of the economic limitations from the
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1.2. Crop losses due to biotic stresses

farmers on adoption of sophisticated systems for disease detection and
management. Furthermore, indirectly we have an idea of the time hori-
zon of the introduction of new technologies.

1.2 Crop losses due to biotic stresses

Since the born of agriculture, humans had to protect their crops against
yield loss from weeds, insect pests, and diseases. Harvest devastation
by insects and fungal diseases is the main cause of the reduction of the
crop yield causing problems in food and feed management and possi-
ble shortage.
The term food security describes the difference between the growing
food demand of the world population and global agricultural output,
further it describes the discrepancy between regional food demand and
the presence of food. With food security it is included not only the food
availability but also the physical and economic access to food.
Food imbalance has dramatically worsened during the recent decades,
culminating recently in the 2008 food crisis Savary et al (2012). In
accordance with FAO (2013) in the mid-2011, food prices were back
to their heights of the middle of the 2008.
Most of the agricultural research conducted in the 20th century fo-
cused on increasing crop productivity as the world population and its
food needs grew. To guarantee the progression a relevant role is given
by the plant protection aspect. In fact, crop protection is able to avoid
losses in the order of 20 % to 40 % of global agricultural productiv-
ity considering pathogens, animals, and weeds. Limit the focus on
pathogens they represent roughly 20 % of direct yield losses (Oerke,
2006).
In general, the more intensive the system of cultivation, the larger are
the potential losses due to harmful organism. This trend is given of
one hand for the high intensity of the cultivation and in parallel for the
increase in yield of modern cultivars. To overcome potential losses,
crop protection has become more sophisticated and more effective, es-
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Chapter 1. Introduction

pecially for developed countries (Oerke et al, 1994).
When we talk about crop losses we may refers to quantitative and/or
qualitative issues. Quantitative losses result from reduced productivity,
leading to a smaller yield per unit area. Qualitative losses from pests
may result from the reduced content of valuable ingredients, reduced
market quality, reduced storage characteristics, or due to the contami-
nation of the harvested product with pests, parts of pest or toxic prod-
ucts of the pests.
Crop losses to weeds, animal pests, pathogens and viruses continue
to reduce available production of food and cash crops worldwide, and
some crop losses may not be avoidable for technological reasons.

1.2.1 Main strategies for ensuring food security

To ensure food security many techniques were introduced in modern
agriculture. Part of these methods are intrinsic to the cultivation pro-
tocol, others include the use of external factors.
The first step to ensuring food production is the correct management of
field: precision sowing techniques now enable the farmer to plan crop
density and crop management on a selective basis in advance. In the
last century there have been considerable changes and developments
in techniques and crop rotations and soil fertility.
Plant breeding with the production of genotypes of useful plants, is
another strategy to have suitable plants to grow under the conditions
prevailing in the regions of cultivation and which give the highest pos-
sible yields of the best possible quality.
Considering now the methods which include external factors, the main
inputs are pesticides. With this term we are considering a wide range
of substances with ample fields of use. Pesticides are able to guaran-
tee the increase of agricultural productivity. Pesticide includes insec-
ticides, fungicides, herbicides, disinfectants and other substances or
mixture of substances used to prevent or control any pest. Considering
only the pre-harvest tasks, pests include vectors of human or animal
diseases, unwanted species of plants or animal diseases; animals or or-
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1.2. Crop losses due to biotic stresses

ganisms able to damage productive plants.
Focusing on chemical disease control, it represents an active strategy
to protect plants from diseases, and started in the last century with the
use of inorganic chemicals. The second generation of pesticides in-
cludes organic chemicals acting as surge protectans. Third generation
fungicides are also organic but penetrate the plant tissue and control
established infections. The fourth latest generation of compounds for
disease control consists nonfungitoxic in vitrum that enhances resis-
tance mechanism intrinsic to the plant and that interfere with the fun-
gal infection process (Waard et al, 1993).
At the beginning of the use of chemical control one of the first com-
pound was based on copper and sulphur to prevent the attach of pow-
dery mildew and downy mildew diseases. To protect the canopy and
save yields of the best techniques was the use of broad-spectrum fungi-
cides like dithiocarbamates developed since the 1930s. These com-
pounds have still a great importance in the protection of fruit and veg-
etables, cereals and speciality crops. Another group of broad-spectrum
protective fungicides were the phthalimides but they were withdrawn
completely due to the public health concerns. Referring in particu-
lar to vegetables and grapevine two groups very used are chloroben-
zenes and oxobenzenes. The characteristic of all these fungicides is
that they have a broad spectrum and block more than one stage of fun-
gal metabolism. Due to the expiration of the patents broad-spectrum
fungicides are cheap way to controlling fungal disease.
The introduction of systemic fungicides added a new dimension to
the control of fungal diseases. These type of chemicals are able to
penetrate into the tissue of the plant from the site of the application.
This capability is extremely important because permits to cover also
the already infected tissues. In this family we can find guanidines,
organophosphorus compounds, etc. Among others oxathline fungi-
cides have powerful systemic activity. The pyrimidines also include
systemic fungicides suitable for dressing seed and for soil treatments
and for controlling powdery mildew. The imidazoles/triazoles were an
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Chapter 1. Introduction

important addition to the range of fungicides available. They are able
to interfering with the membrane biosynthesis of fungi.
With the agents now available to control plant diseases, farmers are
able to secure high yields from their crops. Systemic fungicides al-
low the control to start with the onset of the disease due to a curative
and sometimes eradicative mode of action. The limit of chemicals and
their diffusion is the onset of resistance phenomena.
In parallel with the diffusion of new chemical compounds also tech-
niques of spreading are developing. The active control of crops and
their genetics, of soil fertility via chemical fertilization and irrigation,
and of pests via synthetic pesticides are hallmarks or the Green Revo-
lution (Oerke, 2006).

1.3 Concerns regarding the use of plant protection prod-

ucts

In principle, pesticides are only registered for use if they are demon-
strated not to persist in the environment considerably beyond their in-
tended period of use. Nonetheless, residues of many pesticides are
found ubiquitously in the natural environment Fenner et al (2013).
Chemical degradation and metabolism are major mechanism of disap-
pearance of pesticides after application to plants, animals or soil. The
rates of degradation and metabolism are dependent on the chemistry of
the compounds and factors such as temperature, humidity, light, sur-
face of the crop (FAO, 2016b). A pesticide residue is the combination
of the pesticide and its metabolites, degradates, and other transforma-
tion products.
The use of pesticides ensures less weed and pest damage to crops and a
consistent yield. At the same time their use can have negative environ-
mental impacts on water quality, terrestrial and aquatic biodiversity.
Pesticide residues in food can also pose a risk for human health.
Hereafter are summarized the main environmental degradation routes
and environmental occurrence in secondary compartments for top 10
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1.3. Concerns regarding the use of plant protection products

pesticide classes are summarized (Fenner et al, 2013).

Dithiocarbamates (e.g. Mancozeb) are fungicides relatively used (7.1 %
of global consumption). The main degradation route is acid-
catalysed hydrolysis with the formation of potential NDMA pre-
cursors. In environment are rarely observed;

Organophosphates (e.g. Chlorpyrifos) are an insecticide relatively
common (6.7 % of global pesticide use). The main degradation
route is the microbial transformation (oxidation and hydrolysis)
with the formation of glyphosate and AMPA frequently detected
in groundwater; and clorpyrifos, diazinon, disulfuton detected in
rainwater and remote lake waters;

Phenoxy alkanoic acids (e.g. 2,4-D) these compounds are herbicides
relatively widespread (4.7 % of global pesticide use). The main
degradation route is the microbial transformation (oxidative dealky-
lation and aromatic ring cleavage). Parent compounds are fre-
quently detected in groundwater;

Amides (e.g. S-Metolachlor) are herbicides relatively widespread (4.2 %
of global pesticide use). The main degradation route is the micro-
bial transformation (hydrolysis and glutathione coupling. Sec-
ondary compounds are chloroacetanilides and their transforma-
tion products oxanilic (OXA) and ethanesulfonic acid (ESA).
Secondary compounds are frequently detected in groundwater;
metolachlor and alachlor detected in remote lake waters;

Bipyridyls (e.g. Diquat) which are common herbicides (3.2 % of
global pesticide use). The formation of secondary compound
is a very slowly biotransformation due to strong sorption to soil
matrix. Secondary compounds are rarely observed due to they
are mainly sorbed to sediments and soils;

Triazines (e.g. Terbuthylazine) belong to herbicides (2.3 % of global
pesticide use). The microbial transformation (oxidative dealky-
lation and hydrolysis) lead to the formation of parent compounds
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Chapter 1. Introduction

and hydroxyand dealkylated transormation products are frequently
detected in groundwater (significantly beyond phase-out period).
Furthermore, atrazine and DEA are detected in remote lake wa-
ters;

Triazoles and diazoles | (e.g. Propiconazole) belongs to fungicides
(2 of global pesticide use). These substances are slowly transfor-
mation by microorganisms (oxidation) and by phototransforma-
tion of specific representatives. Among the parent compounds
frutriafol is detected in remote lake waters;

Carbamates (e.g. pirimicarb) are insecticides/herbicides (2 % of global
pesticide use). These components are transformed by microor-
ganisms or base-catalyzed (hydrolysis of ester bond); some of
them are phototransformed. Rarely are observed in environment;

Urea derivatives (isoproturon). These herbicides are transformed by
microorganisms (oxidative dealkylation and hydrolysis). Parent
compounds are frequently detected in groundwater;

Pyrethroids (e.g. cypermethrin) belong to insecticides (1.3 % of global
consumption). The Microbial transformation (hydrolysis oxida-
tion) and the phototransformation (direct and indirect) create par-
ent compounds rarely observed due to mainly they are sorbed to
sediments and soils.

Degradation of pesticides involves both biotic transformation pro-
cesses mediated by microorganisms or plants, and abiotic processes
such as chemical and photochemical reactions. When pesticides are
handled improperly, they or their metabolites are toxic to humans and
other species. Primary concern regarding the use of pesticides and in
particular their residues is dietary. The intake of pesticide’s residues
can cause diseases and/or intoxications. Residues of the pesticides to
which consumers are exposed often comprise not just the parent com-
pound, but also metabolites produced in treated plants, environmental
degradation products and possibly other pesticide-derived compounds.
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1.3. Concerns regarding the use of plant protection products

Many studies showed health risk associated with the intensive use of
pesticides connected especially with the farm workers. The effects in
health are often chronic. Nevertheless, also the acute intoxications are
common. It is also important to notice that often the absence of corre-
lation in pesticide expenditure and yields seems to suggest that farmers
are overusing pesticides in their farms (Rola, 1989).
The World Health Organization (WHO) and the United Nations En-
vironmental Programme estimated that one to five million cases of
pesticide poisoning occur among agricultural workers each year with
about 20000 fatalities (Organization et al, 1990; Dennis, 2003). It was
demonstrated that one of the main reason of poisoning is the lack of
protective equipment and/or the use of defective equipment Andreatta
(1998); Jeyaratnam (1990); Dennis (2003).

Direct and indirect negative effects of pesticide use on biodiversity
have been shown by different studies (Young et al, 2001; Campbell
and Cooke, 1997; Stoate et al, 2001; Marrs et al, 1991). Contamina-
tion of the environment from pesticides may result from spray drift,
volatilisation, surface run-off, and subsurface loss via leaching/drain-
flow. Pesticides are second only to fertilizer (figure 1.2) in the amount
applied and the extent of use (FAO, 2013). Referring to figure 1.1,
which represents the global pesticide sales divided by region it is pos-
sible to note how in all the compartments present a growing trend in
sales especially Asia, Latin America, and Eastern Europe. In addi-
tion, companies often charge lower prices for older products and in
poorer markets, boosting sales. Africa uses far less pesticide than any
other country. In figure 1.2 it is possible to see how the diffusion of
pesticides is very spread in regions in which intensive farming is prac-
ticed. Where the land is limited like Bahamas or Mauritius the use is
extremely high to maximize the production and contrast the spread of
diseases. Japan, New Zealand, and Malaysia are in the same condition
and the use is very intense. Different is the situation in China due to
the status of developing country and its severe shortage of arable land
compared with the high number of residents. Comparing with United
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Chapter 1. Introduction

Figure 1.1: Global pesticide sales by region (Anon., 2013).

Figure 1.2: Pesticide use around the world considering the arable lands FAO
(2013).
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1.3. Concerns regarding the use of plant protection products

States we have here a lot of arable land with high extension, the farm-
ing is extensive, with a reduction of input used.
In rural Asia farmers used insecticides and herbicides liberally, giving
them and their family members ready access to very toxic chemicals at
moments of stress Hvistendahl (2013). The pesticide ingestion is the
leading global means o suicide, and in Asia scientists said this is the
one of the cause of the hight rates of suicide in Asia.

Long term studies of the effects of pesticides and other environ-
mental chemicals were conducted by Mascarelli (2013), it was demon-
strated throw research in lab animals and farm workers that chronic ex-
posure to high doses of pesticides is associated with neuro-degenerative
diseases such Parkinson’s disease and cognitive deficits. In Europe
where the demand of input is extremely high and the land available is
relatively low or not equal-distributed we have a relative high use of
pesticides especially in countries like Netherlands (greenhouse farm-
ing), Italy (intensive farming). The first large-scale risk assessment of
organic chemicals in European rivers and lakes has revealed an exten-
sive problem with pesticides. The problem is focused in greatest for
insects and algae but concerns regard also the consumption of river
water from humans without previous treatments (Malaj et al, 2014).
Malaj et al (2014) demonstrate that the levels of organic chemicals
were high enough to likely cause chronic problems. These molecules
contain carbon atoms, and they include pollutants such as pesticides,
herbicides and other synthesized compounds. The team observed that
pesticides were by far the most common guilty party. Another ubiq-
uitous pollutant is polycyclic aromatic hydrocarbons which typically
come from vehicle exhaust or petroleum spills from boats.

The global pesticide use can be anticipated to continue to increase,
it means that the environmental impact of them and their residues is a
present concern. Even if the new pesticide legislation in Europe puts
more emphasis on hazard assessment, source control measures, and
substitution blind spots in pesticides degradation are still present.

13



Chapter 1. Introduction

1.4 European legislation on pesticides and the impact on

the machinery advancements

Pesticides usage can be reduced through integrated pest management
(IPM), which uses information on pest populations to estimate losses
and adjust pesticide doses accordingly (FAO, 2013).
In recent years one of the major interest of policy makers is the re-
duction of pesticide use in agriculture with the purpose of reducing
negative impacts on environment and on food security. In Europe the
main actions to protect human health and the environment regard to
pesticides are:

Directive 128/2009 establishing a framework for Community action
to achieve the sustainable use of pesticides;

Regulation 1107/2009 concerning the placing of plant protection prod-
ucts on the market;

Regulation 0083/1998 on the quality of water intended for human
consumption which stipulates a maximum concentration of 0.1
µg l−1 for any single pesticide and its relevant metabolites in
potable water;

Directive 60/2000 establishing a framework for Community action in
the field of water policy which identifies a large number of partic-
ularly toxic, persistent or bioaccumulative polluting substances.

Directive 105/2008 on environmental quality standards in the field of
water policy,

Directive 32/2002 on undesirable substances in animal feed;

Regulation 396/2005 on maximum residue levels of pesticides in or
on food and feed of plant and animal origin.

Direct linked to the machine improvement is the pesticide distri-
bution it is the Directive 2009/128/EC. Which is one of the strategic
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1.5. Main approaches for precision spraying in crop protection
treatments

themes of the 6th Environment Action Programme. Many studies have
been conducted about the precision spraying techniques because cur-
rent farming practice provides the uniform application of pesticides
into the field, even if several pests and diseases exhibit an uneven spa-
tial distribution, with typical patch structures evolving around discrete
foci, especially during the early stages of development (Everhart et al,
2013).

1.5 Main approaches for precision spraying in crop pro-

tection treatments

The mechanization and the intensification of agriculture in Europe, are
important factor for the rationalization of the inputs (fertilizer, pesti-
cides, fungicides) which are always applied uniformly without taking
in account the variability of the environmental condition (soil type,
crop density, or disease pressure) (West et al, 2003). Considering plant
disease detection, recent development in agricultural technology have
led to a demand for a new era of automated non-destructive manage-
ment methods.

Pesticides are recognised to play a major role in environmental
pressure and production costs of agricultural activity, as well as in pub-
lic concerns about healthiness and wholesomeness products (Oberti
et al, 2013). Then is present an increasing interest in developing suit-
able techniques and equipment able to selectively target the application
of pesticides where and when needed by the crop.
Any system that aims to make a spatially targeted pesticide application
needs a series of components, there is a detection part which permits
to read the informations environmental conditions; a decision mod-
ule and an application module. The advancement of the technology
permits to improve the number of correct decisions of area unit in
the field. The strong drive force in the advancement was thanks to
the diffusion of sensors, especially global navigation satellite systems
(GNSS), which permits the management of the target position in high

15



Chapter 1. Introduction

spatio-temporal variability (a peculiarity of agricultural fields). Satel-
lite navigation systems such are now being widely developed for agri-
cultural applications, reaching a very high accuracy.

Other important improvements deal with the decision module, which
concerns the interpretation of the sensor’s signals and the comparison
with pre-setted rules. Calculation capacity today permits real-time ap-
plications disconnected from prescription maps. At the same time the
use of treatment map means that an application system needs only to
be loaded with those pesticide formulations that will be needed for
treating a defined area (Miller, 2003). On the other hand, prescription
maps are less flexible in managing unexpected conditions or changes.

Improvements in sensors and in decision systems are in parallel
with the advancement of the delivery system. The main capability is
to operate maintaining a good quality of spraying and uniformity over
a wide range of dose rates.

Canopy characterization methods One of the techniques for disease
treatment is the canopy volume detection due to the possibility of pre-
cise assessment of the target (Lee et al, 2010). For this case, the ob-
jective of saving pesticide is pursued by applying a variable spray rate
adapted to the changing canopy volume or density, instead the uniform
distribution rate adopted in conventional treatments. For the canopy
volume assessment, there have been several attempts. The first method
is the use of ultrasonic sensors, Turrell et al (1969) studied the changes
in feature data of citrus tree over a period of time. From the work they
observed that citrus trees and tree parts followed growth curves sim-
ilar to non-woody plants. From 1980s laser technology was used for
forest biomass and timber volume assessment through airborne laser
profiling (Nelson et al, 1988). Other works were conducted through
an helicopter-borne laser system by Nilsson (1996) using the combi-
nation of airborne LiDAR and satellite imagery.
The application of advanced technologies started later in 2004 by Wei
and Salyani, they used a laser scanning system to measure citrus tree
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height, width, and canopy volume reaching a good repeatability with
a measurement error less than 5 %. More recently Ehlert et al (2008)
estimate site-specific crop parameters such as plant height, coverage
and biomass density which could be a major factor in optimizing crop
harvesting methods.
Another step for the canopy density and volume assessment is repre-
sented by the use of ultrasonic sensing system. Giles et al (1988) and
in 1989 investigate spray volume savings using an ultrasonic measure-
ment which ranged an error rate less than 2 % on calibration targets
and an average error of 10 % for apple and peach orchards applica-
tions. In the study of canopy volume assessment other groups of re-
searchers made a comparison between a laser scanner and ultrasonic
transducers in measuring canopy volume of citrus trees Tumbo et al
(2002). Zaman and Salyani (2004) studied other technical aspects
regarding the influence of travel speed on ultrasonic measurements.
The third method used is based on light penetration of the canopy
and are connected with leaf area index (LAI) determination (Jahn,
1979). On arable crops (Miller et al, 2000; Dammer and Ehlert, 2006;
Van De Zande et al, 2009; Dammer and Adamek, 2012) by means of
sensor-controlled spraying equipment, savings of pesticide reported to
be in the range of 5 % to 30 %, while keeping an average biologi-
cal efficacy similar to conventional uniform spraying. However, it is
on speciality crops that this approach has the greater potential of sav-
ings. Specifically, onto bush and tree crops where the total amount
of pesticides used (application rates and frequency of the treatments)
is typically much higher than for arable crops. Furthermore, in these
crops the volume and density of the canopy largely change during the
growing season and, as well, gaps in the vegetation or variations in
the canopy structure often occur among fields. To address this hetero-
geneity of spraying targets, the presence, size and density of canopy
in bush and tree crops has been successfully sensed by multiple ultra-
sonic proximity sensors. The obtained site-specific information was
then used to control the on/off switching of the nozzles in correspon-
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dence of gaps in the canopy or when entering and exiting from tree
crops rows. Examples of equipment adopting such approach in or-
chard and vineyard treatments were developed, among first, by Giles
et al (1987); Balsari and Tamagnone (1998); Moltó et al (2001). More
recently, Esau et al (2014) developed a similar system for blueberry
crop, relying on a colour camera to detect the crop bush canopy to
be sprayed selectively. These authors reported average savings from
about 10 % to more than 35 %, compared to conventional sprayers
without application control.
Further advances in implementing precision spraying on speciality crops
were obtained by using the sensed canopy characteristics not just for
the on/off switching of individual nozzles, but also to control the pat-
tern of the spray proportionally to foliage density and according to
the canopy geometry (i.e. to the plant’s shape). Studies were con-
ducted for and advanced sprayer control and an automatic tree inven-
tory: Wellington et al (2012) had work in real time by adapting all
parameters involved, it was used PWM control system with a duty cy-
cle to control nozzles, but the main challenge was the utilization of
a vehicle-mounted sensors to build a model of trees by accumulating
LIDAR data in a 3D voxel density. LIDAR readings was processed
by applying probabilistic models. To this aim, Solanelles et al (2006)
developed an air-assisted sprayer for tree crops fitted with a LIDAR
sensor for canopy characterization, and high-frequency PWM (pulse
width modulation) solenoid operated nozzles, which enabled to con-
tinuously vary the delivered flowrate of each single nozzle in order to
adapt it to the current spraying target. The obtained pesticide savings
were estimated from 25 % to 45 % compared to conventional treat-
ments. Gil et al (2007) developed for vineyard applications a similar
system equipped with six electro valves, obtaining continuously vari-
able flow rate at three different height portions of the canopy.
In addition to the delivery rate of liquid spray, Balsari et al (2008) ad-
dressed also the problem of controlling the air-assist flow rate, with
the aim of improving the targeting and deposition of pesticide; i.e.
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reducing off-target spray losses. Their prototype included adjustable
air ports allowing to obtain a vertical spray profile with three separate
bands on each side, individually controlled according to the character-
istics of the canopy volume sensed in real-time by ultrasound trans-
ducers. A similar solution, based on PWM controlled nozzles and
a mechanically adjustable air-assist flow, especially designed for the
precision spraying of young (i.e. small canopies) citrus tree, has been
proposed by Khot et al (2012) who estimated a possible reduction of
almost 50 % of pesticide.
Vieri et al (2013) went further in this approach by developing an orchard-
vineyard sprayer able to automatically vary the distribution pattern of
the air-assist flow, to adapt it to the canopy volume and shape. This
was obtained by means of electric actuators able to control in real time
the inlet air flow rate and the delivering angle of four independent air
ports. From the results of preliminary tests, the authors envisaged a
possible reduction of about 50 % in pesticide while maintaining an ac-
ceptable spray deposition. Osterman et al (2013) addressed the same
objective by developing a three, hydraulically-driven, spraying arms
prototype with height degrees of freedom when configuring the spray-
ing and air-assist pattern on a side of the trees row. Also in this case
the sensed canopy’s shape was real-time processed to vary the pose of
the air-assist and spray delivery devices.

Reasoning on the importance of Precision Pest Management (PPM),
which aim to target chemicals where and when needed at an appropri-
ate dose, many pathogens cause discrete foci of disease within crops
due to uneven arriving of the pathogens in the field. In many polycyclic
diseases, the dispersal of new propagules, predominantly around the
original foci, intensifies the development of patches of disease (Mc-
Cartney and Fitt, 1998). The fundamental rationale of this selective ap-
proach relies on the uneven spatial distribution exhibited by the symp-
toms of several diseases, with typical patch structures evolving around
discrete foci, especially during the early stages of infection develop-
ment (Everhart et al, 2013; Spósito et al, 2008; Waggoner et al, 2000).
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The targeted spraying of disease foci (and of surrounding buffer areas)
can control the infection establishment and prevent its epidemic spread
to the whole field (West et al, 2003), while significantly reducing the
total amount of pesticide applied.

The fungal action in plants Fungi which infect plants are organism
unable to photo-assimilate, they derive their nutrition from the plant’s
internal flow. At the end of the cycle fungi produce spores which are
able to survive in extreme circumstances until they infect other plants
(Bravo, 2006). Usually fungi are host specific, it means that the spores
are able to germinate only in the specific host. When it happens usu-
ally the reaction of the host is extremely circumscribed and difficult to
see with naked eye.
Due to the parasitism in which the fungus live, it is interested in main-
taining the plant tissue alive, but at the same time it is settled into
the plant intercellular and intracellular structures. This presence in-
terferes with the plant’s immunity system; the fungus takes control of
the metabolism of the infected cells. This condition forces the host to
change its photosynthetic metabolism into a respiratory environment.
The chlorophyll content does not change until a later stage of the in-
fection, where infected cells start to die of. Even if the chlorophyll
content derived from fluorescence is almost the same, the efficiency
for assimilating the harvested light clearly chanced accordingly to the
fluorescence intensity (Peterson and Aylor, 1995).
The phenomena is caused by the protection of the chlorophyll com-
plex against photo-oxidation. When the chlorophyll is too much illu-
minated, photo-oxidation damage can occur under the form of triplet
excited chlorophyll. The chlorophyll photo-protection can be realized
in two different ways. One is called Non-Photochemical Quenching
(NPQ), which is activated by carotenes and pool of β-carotene de-
rived xanthophylls: violaxantin and zeaxantin. De-epoxidation of vio-
lazantin by excess energy of chlorophyll into zeaxantin helps the dis-
charging of the chlorophyll complex during the saturation event of the
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chloroplast. Further on zeaxantin changes into violaxantin by epoxida-
tion and thereby releases heat. This last part of the xanthophyll cycle is
called thermal relaxation. The excessive light energy, which could not
be assimilated through neither photosynthesis nor NPQ is fluoresced.
The initial peak fluorescence is a measure for the plant’s chlorophyll
content (Bravo, 2006).
The presence of the fungus inside the plant influence the composition
of the leaf and the biochemistry of the leaf itself. Healthy plants ap-
pear green since the green light band is reflected relatively efficiently
compared to blue, yellow and red bands which are absorbed by pho-
toactive pigments. Furthermore, with the advancing of the symptoms
also the structure of the leaf results influenced and conditioned by the
pathogen activity. The interpretation and the reading of the interaction
of light with plant is able to give important informations about the dis-
ease recognition.

Disease symptoms recognition techniques The laboratory analysis for
the disease characterization are represented by molecular methods.
This type of techniques are the reference for the comparison with the
indirect methods for disease characterization. Molecular methodology
is very sensitive (ranged between 10 and 106 cfu ml−1) but difficult
to use in real time applications. One of the commonly used diseased
molecular detection method is ELISA (enzyme-linked immunosorbent
assay) and PCR (polymerase chain reaction). The former method con-
sists in the injection into an animal of a microbial protein called anti-
gen. In presence of the disease causing microorganism (antigen), the
sample would fluoresce confirming the presence of a particular plant
disease. In PCR-based disease detection, the genetic material (DNA)
of the disease-causing microorganism is extracted, purified and ampli-
fied Sankaran et al (2010).
The methods just described present limitations because they are time-
consuming and labour-intensive. The main steps are the sample prepa-
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ration and the analysis itself which include the use of costly reagents.
Different is the situation for indirect methods for disease detection
which, for example, use the interaction of plant with light to recog-
nize the disease. These techniques in fact have the potential to be ap-
plied in real time applications and are relatively guaranteeing a certain
repeatability.

The properties of light are medium to understand the read the sur-
rounding environment, for this purpose optical-based sensors for dis-
ease detection have been developed. They offer non-destructive and
fast detection capabilities along with low weight and dimensions and
thus simple system integration (Sankaran et al, 2010). The differences
in energy per photon also have implications for sensing. For pho-
tons from longer wavelengths, either very sensitive sensing devices are
needed or a larger area is required in order to get a sufficient amount of
energy Heege (2015). Thus a balance between wavelengths and spa-
cial resolution might be necessary.
Another important factor for the detection besides the spacial resolu-
tion is the source of the light which can be natural (the sun is the most
important) or artificial. The radiation of a body depends mainly in its
temperature, for example the sun has a very high temperature in fact
the radiation which arrive on heart is of ultraviolet, visible and some
infrared radiation. On the other hand, the energy emitted from the
surface of the earth is mainly in thermal infrared range.

Regarding the interaction between a body and the light we can say
that a body can emit, reflect, absorb and transmit radiation. Every body
with a temperature above 0°K discharges photons. When a photon hits
a particle in its rote and change the direction this is a reflected radia-
tion. When the energy of the photons is used by the matter with which
they come in contact heating the body or for photosynthesis we talk
about absorbed radiation. Finally, transmitted radiation is the remain
radiation which pass through the body.
When we measure the light reflected by leaves we are looking to its
reflectance. The reflectance in plants is almost constant for healthy
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ones; alterations of the reflectance can be considered as an inference
of a leaf compositional change. Diseases can affect the optical prop-
erties of leaves at many wavelengths, thus disease detection systems
may be based on spectral measurements in different wavebands or a
combination of them.

Spectroscopy and imaging techniques are unique disease monitor-
ing methods which can be useful for PPM, the spectroscopic and imag-
ing techniques could be integrated with an autonomous agricultural ve-
hicle that can provide information on disease detection at early stages
to control the spread of plant diseases Sankaran et al (2010).
When we measure the light coming from the plant, considering an
healthy one, we are reading the spectral signature of the plant itself
(Lee et al, 2010). Leaf reflectance is defined as the proportion of the
irradiated light reflected by the leaf. Usually the reflected spectrum in
healthy plants present common features:

• Low reflectance at visible wavelengths (VIS = 400 - 700 nm) due
to the strong absorption of the photo-active pigments;

• high reflectance in the near infrared (NIR = 700 - 1200 nm) in
which there is the strongest interaction with the tissue of the leaf;

• low reflectance in wide wavebands of the long-wave infrared part
of the spectrum (SWIR = 1200 - 2400 nm)

In figure 1.3 is showed the typical reflectance vegetation spectrum,
with some of the most significant wavelengths associated with main
components of the leaf tissue. Disease can affect the optical properties
of leaves at many wavelengths, depending on which tissue of the leaf
is damaged, thus disease detection systems may be based on spectral
measurements i different wavebands. One of the most significant chan-
nel is around 670 nm, usually defined as red edge. In this point there is
a sharp transition in the reflectance spectrum from low VIS reflectance
to high NIR reflectance. In this point usually there is the maximum
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chlorophyll’s absorbance value; which result often corrupted in dis-
eased plants.
The identification is a matter of careful analysis of the spectrum which

Figure 1.3: Vegetation reflectance spectrum from visible to shortwave-
infrared spectrum.

can include mathematical processing of spectral data. The analysis can
be done with a full spectrum approach or a discrete waveband one. For
our analysis we develop a discrete waveband algorithm.

The real issue and interesting challenge in precision pest manage-
ment remain the recognition of the disease symptoms and the early
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identification of disease foci in field. Different methods are available
for this purpose. We pass from machine olfaction systems such as elec-
tronic nose to foliar optical methodologies (fluorescence, thermogra-
phy, hyperspectral imaging).

Thermography Images obtained with regular cameras, are two-dimensional
slices representing scenery in one or more spectral regions. Images in
other wavebands such as near-infrared part of the spectrum are obtain-
able with special sensors and cameras. Thermography for example
is a technique that acquires images of thermal radiation between 8 and
15 µm. The object under investigation emits a certain thermal radiation
depending on the temperature of this object and its emissivity. Plant
radiation can be estimated through the thermal radiation captured by a
thermal camera and the emissivity of the plants. The response of the
plant in thermal radiation responds to a physiological status: when the
plant is in a stress condition tends to close the stomata causing that
CO2 and H2O are not exchanged which causes a greenhouse effect in
the leaf (Lee et al, 2010).

Fluorescence Fluorescent radiation can be traced back to photons that
did enter an absorption process in plants. Fluorescence happen after
artificial excitation of the photosystems of a plant and the observation
of the relevant responses in from of fluorescent light. In particular fluo-
rescence is light emitted during absorption of radiation of some shorter
wavelength.
Irradiating the chloroplasts with blue or actinic light will result in some
re-emission of the absorbed light by the chlorophyll. The proportion
of this light compared to the irradiation is variable and depends on
the plant’s ability to metabolize the harvested light. The plant gain en-
ergy in form of ATP (Adenosine triphosphate) throw the mitochondrial
activity. Whether the photosynthetic receptors are exited with a very
strong blue light beam, the chloroplast Light-Harvesting Complexes
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(HCL) become completely saturated. The excitation is not associated
with the complementary activation of the photosynthetic metabolic
pathway; this misalignment causes the need of the HCL to discharge
its excess excitation energy into lower energy photons in form of red
emission. Common ranges for plant fluorescence are either the blue to
green region extending from about 400 to 600 nm or the red to far-red
region from approximately 650 to 770 nm wavelength. This fluores-
cence is strictly correlated with the chlorophyll concentration, and can
be utilized to monitor nutrient deficiencies, environmental conditions
based stress levels, and diseases in plants (Cerović et al, 1999; Be-
lasque Jr et al, 2008). Daley (1995) found sub-millimiter sized high
fluorescence emission spots that corresponded with TMV infection
points on tobacco leaves. Bodria et al (2002) observed fluorescence
spots,on wheat laves 2-3 days after inoculation with Puccinia recon-
dida spores.
The fact that the fluorescence always has high wavelengths than the
respective exciting light means that the fluorescence light has lower
intensity.

Hyperspectral imaging Recently hyperspectal imaging is gaining a
considerable interest for its application in precision agriculture. In
the hyperspectral imaging, the spectral reflectance of each pixel is ac-
quired for a range of wavelengths in the electromagnetic spectra (see
section 2.3.1 for technical details). The hyperspectral technique is used
in various applications such as monitoring of the food quality: Aleixos
et al (2002) used multispectral imaging of citrus fruits to assess the
quality of the fruits for developing a machine vision system. Gowen
et al (2007) explored the food quality and food security applications.
Huang and Apan (2006) provides the physiological condition of the
plants.

Considering the fungal infections, the reflectance variations can be
various (Mahlein et al, 2010). For the study of many crop proper-
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ties one successful approach is the use of reflectance indices. Spec-
tral indices are able to condensate the informations of the reflectance
electromagnetic spectrum to obtain useful the discrimination between
healthy and diseased plants. For example, Huang et al (2007) to study
Puccinia striiformis symptoms used the photochemical reflectance in-
dex (PRI):

PRI = R531 −R570

R531 +R570

where the form Rxxx represents the reflectance at a specific wave-
length.
Oberti et al (2012) to analyse symptoms of powdery mildew in grapevine
used the following spectral indices:

I1 =
R660G580

NIR2
800

and I2 =
R660

R660 +G580 +NIR800

For the studying of fungi is reasonable to analyse systematically math-
ematical combinations of discrete narrow wavelengths along a sensible
full spectrum. Nevertheless, this systematic searching will be immense
due to many different fungi and various crops should be considered
(Heege, 2015).

In figure 1.4 are summarized the various phases of infection of a
foliar disease from the first metabolic changes to the advanced symp-
toms, associated to the main detection techniques. Three phases are
defined: infection, early senescence and advanced stressed plant.
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1. Infection

2. Metabolic changes
• From photosynthesis to respiration
• Deriving nutrient flows

3. Early senescence
• Pigmentation and chlorophyll loss
• Cell wall collapse

4. Overall plant stress
• Stomatal closure

Fluorescence

Reflection sensing

Thermography

Figure 1.4: Most relevant indirect measurement techniques associated to the
stage of infection of a foliar disease (Bravo, 2006).

1.6 Perspective of disease detection

The objective of selectively targeting pesticide on disease areas in spe-
ciality crops has recently gained some interest among researchers. Li
et al (2009) considered this concept in a lab setup by using artificial
labels to simulate spraying targets to be detected by a stereoscopic
colour camera. Larbi et al (2013) while focussing on the problem of
multispectral sensing of the young foliage in citrus canopy, they also
envisaged for further research the possible selective spraying of im-
mature leaves, being the channel trough which Huanglongbing disease
infects citrus trees.
Regarding the robotic selective spraying in recent years Oberti et al
(2016) reported the first fully automatic tests of selective spraying
of disease areas In speciality crops, by using a reconfigurable, multi-
function agricultural robot developed in the EU-project CROPS (www.crops-
robot.eu). One of the main purpose of the project was the development
of an automated platform for disease management provided with sen-
sors to detect and manage symptomatology on plants and this was the
first experiment conducted on totally automatic, selective spraying of
diseases in speciality crops Oberti et al (2016). To identify disease
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symptoms a R-G-NIR multispectral camera was used. Data were pro-
cessed with dedicated algorithms, instead the treatment was guaran-
teed by a ROS1 based communication framework.
In a series of greenhouse experiments conducted on grapevine plots
exhibiting different levels of powdery mildew disease symptoms, the
CROPS robotic system was demonstrated to autonomously detect the
disease foci within healthy canopy, and to selectively spray them by
means of a sprayer end-effector. The results of these experiments were
evaluated basing on deposition of spray on targets, with the implicit
assumption of a contact action treatment on the disease, obtaining a
reduction of applied pesticide from 65 % to 85 % (depending on dis-
ease levels and spatial distribution of foci) when compared to a con-
ventional homogeneous spraying of the canopy. Spite their prelimi-
nary nature, these experiments represent a first demonstration of the
possibility to develop such an advanced stage of precision spraying in
speciality crops. The robotic manipulator used during the experiment
was equipped with a precision-spraying end-effector (Malneršič et al,
2012) and configured for this application. The robotic system was
tested on powdery mildew disease symptoms and was able to cover
at least 85 % of the disease area, reducing the healthy area covered
from 5 % to 20 % of the total canopy are. The total pesticide amount
reduction was between 65 % and 85 % comparing to a conventional
homogeneous spraying of the canopy.
The idea behind the described system is the possibility to perform non-
destructive measurements without a direct contact with the sample and
can be operated from almost any desired distance. The measurement
regards the sensing of instantaneous phenomena, suitable for on-the-
go measurements from a vehicle during normal field operation inspect-
ing the vertical stucture of the canopy. The detection it was at a sub-
centimetre scale. PPM can be an occasion for reducing the environ-
mental impact, and health issues (section 1.3) and to have a reduction
in economic pressure on the agricultural farm. The selective targeting

1Robot Operating System (Quigley et al, 2009).
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of pesticide application only where and when it is needed by the crop.

1.7 Literature review on economic analysis of precision

spraying

Beside the technical issues, the economic farm management is main
limit for adopting precision technologies for disease management by
farmers. Economic analysis on adoption of precision technologies in
sprayers has so far been limited to boom-equipment for arable crops
protection, mostly by studying the savings obtained with spot applica-
tion of herbicide on weed patches, or by avoiding spraying overlaps
due to swath errors and to irregular shaped or edged field.
Among the first, Bennett and Pannell (1998) analysed the potential
profitability of a weed-activated, on-off sprayer to be used for pre-
emergence application of glyphosate in a 1000 ha, Western Australia’s
hypothetical wheat farm. The authors estimated the investments and
operative costs of the precision spraying equipment and the associated
savings of herbicide, by assuming different patchy weed populations
to be sprayed only above predefined threshold of weed density. They
concluded that, for the considered scenarios, the costs of the technol-
ogy were still too high for the net benefits to be positive. Timmermann
et al (2003), in a four years experiment on herbicide site-specific spray-
ing of arable crops based on manual weed mapping, computed that the
obtained herbicide savings were on average 33 e ha−1 per year, but
they did not quantified the associated costs of automatic sensing and
patch spraying technologies.
Batte and Ehsani (2006) evaluated the potential benefits for a high-
accuracy RTK-GPS guidance system combined with control of in-
dividual sprayer nozzles, in comparison to investment and operative
costs of conventional boom-sprayers with foam marker guidance used
in arable crops. In their analysis, they assumed a cost of sprayed ma-
terial of 27 USD ha−1 per application, two chemical applications per
year, and 10 years of service life for the sprayers. The authors, by con-
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sidering simulated farm fields with different shapes and with or with-
out presence of waterways, quantified the savings due to difference of
swathing accuracy (overlapped spray area) in term of additional passes
and over-sprayed material, finding that a farm size between 486 ha
and 729 ha was needed to justify the investment in precision spraying
technology. With a similar approach, Larson et al (2016) analysed the
profitability of automatic nozzles control for a 27.4 m boom, specif-
ically considering field geometry (i.e. size and shape) obtained for
44 cotton and corn real farm fields in Tennessee, USA. The authors
suggested that the Perimeter-to-area ratio (P/A) of field geometry may
be a useful index to consider when evaluating investments in boom-
sprayers precision technologies. They estimated that, for a typical size
of cotton farm among those considered, investing in automated boom-
control was not profitable for fields with P/A = 0.01, but was generally
profitable for fields with P/A ≥ 0.02.
Esau et al (2016) analysed the economics of precision spraying tech-
nologies on boom-sprayers used for wild blueberries farming. The au-
thors compared the cases of a 13.7 m tractor-mounted boom sprayer
equipped with conventional manual control and foam marker guid-
ance assistance, with one equipped with high-accuracy guidance sys-
tem and individual nozzles control actuated by vegetation sensing. By
considering two simulated fields with 30% weed coverage during pre-
emergence herbicide applications, and with 80% crops coverage dur-
ing fungicide applications, basing on 9 spray passes over 2-year pro-
duction cycle, the authors computed an average reduction of 44% on
operative costs (from 2110 CAD ha−1 to 1137 CAD ha−1) thanks to
avoiding over-spraying due to swath errors (assumed to be on average
9%), and to the savings obtained by spot application.
Prior technical-economic analyses have not addressed precision tech-
nologies for spraying equipment used on speciality crops, i.e. air-
assisted sprayers travelling along crop’s rows (trees, vines, bushes) and
applying pesticide onto a vertical canopy wall.
However, from the above mentioned research works it can be drawn
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that the major factors influencing the profitability of introducing preci-
sion technologies on sprayer equipment are in general: the investment
costs of the technology; the amount and value of the inputs saved per
unit of area; the spatial variability of the inputs needed by the crop; the
size of the farm area operated by the equipment.
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CHAPTER2
Methodology development for

hyperspectral disease detection

2.1 Theoretical background

2.1.1 Hyperspectral disease detection

Disease detection and monitoring in greenhouses are conducted manu-
ally by experts and for this reason are limited to human boundaries: re-
source availability, low sampling rate, non-uniformity in performance
and high monitoring costs (Schor et al, 2016). How it was explained
in the previous chapter automation can have a positive impact also in
disease detection and monitoring facilitating targeted and timely dis-
ease control which can lead to increased yield, improved crop quality
and massive reduction in applied pesticides (see chapter 3). In per-
spective the less use of pesticide is correlated with a decreased risk for
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environment and for human health (section 1.3).

In the study of disease and in general health status in plants, hy-
perspectral imaging is gaining considerable interests (see section 2.3.1
for technical details). These techniques are used in remote and proxi-
mal sensing experiments in field agriculture, but also in monitoring the
quality of food. The implementation of such system in robotic appli-
cation remains not available in the market due to are technologies still
expensive and immature for the real field application. It is important to
underline that both legislation and technical advancement are pushing
to the development and the application of techniques for reducing the
impact of pesticides for the farm management.
In the hyperspectral imaging, the spectral reflectance of each pixel is
acquired for a range of wavelengths in the electromagnetic spectra.
The resulting information is a set of pixel values at each wavelength of
the spectra in the form of an image. Spectroscopy and imaging tech-
niques are unique disease monitoring methods which can be useful for
PPM, the spectroscopic and imaging techniques could be integrated
with an autonomous agricultural vehicle that can provide information
on disease detection at early stages to control the spread of plant dis-
eases Sankaran et al (2010).
Plants interact with electromagnetic radiation in different ways: ab-
sorption, reflection, emission, transmission and fluorescence. Light
measurement techniques are very helpful for detecting these proper-
ties. The assumption of the foliar disease detection with light mea-
surement starts from the hypothesis that diseased plants interact with
lights differently than healthy ones.
When we measure the light coming from the plant, considering a healthy
one, we are reading the spectral signature of the plant itself (Lee et al,
2010). Leaf reflectance is the proportion of the irradiated light re-
flected by the leaf.
In the study of disease hyperspectral imaging is used in remote and
proximal sensing experiments in field agriculture, but also in monitor-
ing the quality of food. The spectral reflectance of each pixel is ac-
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quired for a range of wavelengths in the electromagnetic spectra with
the resulting information of a set of pixel values at each wavelength of
the spectra in the form of an image.

2.1.2 Wavelengths selection

One of the main issues in hyperspectral imaging for plant disease de-
tection are the selection of specific bands which have the information
about the symptoms of the disease on the leaf. The main approach to
study the electromagnetic spectra of different symptoms are statisti-
cal classification algorithms. For example Bravo et al (2003) develop
a discrimination model using quadratic discriminant analysis (QDA)
investigating hyperspectral imaging for the early detection of rust dis-
ease in winter wheat. Moshou et al (2004) for the same crop but study-
ing yellow rust implemented a method based on QDA, self-organizing
map (SOM), and multilayer perceptrons based artificial neural net-
work. Zhang et al (2006) collect hyperspectral data from Phytophthora
infestans in tomato field, they used principal component analysis and
cluster analysis for the elaboration obtaining remarkable results in de-
tection middle to late stage symptoms. Zhang et al (2006) stated that
understanding the light responses of unique biological features might
increase discrimination accuracy since one should then be able to re-
duce the impact of soil background on spectral measurements, utilizing
the most sensitive wavelengths to discriminate healthy and diseased
tomatoes.
Malthus and Madeira (1993) studied the effect of Vicia faba leaves
infected by Botritis fabae. They found a significant influence of the
response to light in the visible part of the spectrum and a decrease of
the response in near infrared for diseased plants. Both responses are
attributable to the collapse of leaf cell structure as the fungus spread.
Recently Lee et al (2016) applied hyperspectral imaging to detect cu-
cumber green mottle mosaic virus on seeds of the "Sambok Honey"
cultivar. To analyse the data chemometric models were used in partic-
ular partial least-squares discriminant analysis (PLS-DA) and Least-
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squares support vector machines (LS-SVM) method. Authors pro-
pose that phenolic components are the key factor for discriminating
between virus infected and healthy seeds because major peaks of beta
coefficients were consistent with the absorption peaks of the pheno-
lic components. During the experiment it was possible to localize the
symptoms in the seeds: physiochemical changes in seeds were gener-
ally located in the centre.
Zhang et al (2003) conduct an experiment in remote sensing on toma-
toes. The experiment was conducted to collect the canopy spectral re-
flectance of tomato plants in a diseased field. The spectral reflectance
of the field samples indicated that the near infrared region was much
more valuable than the visible range comparing healthy and diseased
plants. The developed methods were based on minimum noise frac-
tion transformation (MNF), multi-dimensional visualization, pure pix-
els endmember selection and spectral angle mapping (SAM).

Relatively few studies have been conducted on the spatial infor-
mations obtainable with hyperspectral images. The combination of
spacial and spectral informations can give important improvement in
the symptoms recognition.
Recent advances in hyperspectral remote sensor technology allow the
simultaneous acquisition of hundred of spectral wavelengths for each
image. The high spectral resolution is coupled with an high spatial
resolution of the sensor which enable also the analysis of small spa-
tial structures in the image. During the last decade a lot of scien-
tists have been build accurate hyperspectral classifiers, most of them
are based on remote sensing for the classification of structures in the
view. Among others signal processing methods the feature reduction
and Bayesian models have been reported (Landgrebe, 2005). Ham
et al (2005) investigate two approaches based on the concept of ran-
dom forests classifiers. The classifier proposed incorporates bagging
of training samples and adaptive random subspace feature selection
within a binary hierarchical classifier. Ratle et al (2010) used a semi-
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supervised neural networks for efficient hyperspectral image classifi-
cation. Also kernel methods have been investigated (Camps-Valls et al,
2009).

2.1.3 Principles of the line imaging spectrography

Line Imaging Spectrography (LIS) is the simultaneous acquisition of
different spectra from reflective points in the sensor’s field of view
placed along the line. It gives us an high spatial resolution enabling
the detection of symptomatic areas along a spatial range and not like a
spectrophotometer which has only one sensible point for the acquisi-
tion (Bravo, 2006).
In LIS the light is gathered by an objective and brought to a very nar-
row slit. After collimating the light in a parallel beam, a first prism
diffracts incoming radiation and projects this light a grating device.
Owing to the specific inclination of the diffracted light compared to
position of the grating device, light is being decomposed into its spec-
trum. The decomposed light is oriented along the optical axis of the
spectrograph where a CCD or CMOS sensor is used to collect the in-
coming light and estimate its intensity at every waveband in the sensi-
tive range of the instrument.
To record the data the condition is that the incoming light have to cover
the sensitive range of the camera (in our case 400 - 1000 nm); the
camera itself should be large enough to collect all spectral radiation of
interest maintaining a high signal to noise ratio. If the f-stop number1

is too small the spectrograph will be filled by light, causing unwanted
reflections inside the optical instrument.

The hypercube

The movement of the hyperspectral camera along the x axis of the
acquisition permit to generate an image with three dimensions called

1The f-stop number (focal ratio) expresses the diameter of the spectrograph aperture in
terms of the effective focal length of the lens. For example f/8 represents an aperture diameter
that is one-eight of the focal length.
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hypercube. The output of the camera is an image with composed of
an x, y, and z axis. In x and y axis is stored the spatial information of
the acquisition and in particular y is fixed and depends on the sCMOS
sensor size, x varies with the angle covered during the acquisition. In
z are stored the informations relative to the electromagnetic spectrum
intensity. In figure 2.1 there is a representation of the hypercube in
which are stored the spatial and spectral informations.
As example the file generated by the camera is encoded in Band Inter-
leaved by Line typology. To read this type of file additional informa-
tion is needed, such as the numbers of rows, columns, and bands. This
information are supplied in a header file, when the file is loaded is a
multidimensional array. In the spectral domain pixels are represented
by vectors for which each component is a measurement corresponding
to specific wavelengths. The size of the vector is equal to the number
of spectral bands that the sensor collects. With increasing dimension-
ality of the images in the spectral domain, theoretical and practical
problems arise (Fauvel et al, 2013). In high-dimensional spaces nor-
mally distributed data have a tendency to concentrate in the tails which
is in contradiction with its bell-shaped density function (Jimenez and
Landgrebe, 1998).

Optical principle of the hypercube building

The camera output is one line of image at a time, the x dimension is
recorded for every frame, and the y dimension is created by moving
the target or the sensor depending on the system type. It is easy to
understand that the formation of the hypercube, how is conceived, can
be affected of distortions of the spatial axes in comparison with the
reality.
To maintain the proportion of the image it is possible to define the
speed of the target or the frame rate. Usually to perform the aspect
ratio adjustment it possible to follow the following steps:

• image an object of a known size, with a simple geometry, such
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as a circle or a square

the larger the object the better as long as the object is within
the field of view of the sensor

the object should e something that can be easily seen by the
sensor in use

• open the recorded image in a viewer

• measure the width (x) and the height (y) of the object in pixels
in the image;

• calculate the ratio x/y
if the ration is smaller than 1 either the scanning speed is too

fast or the frame rate is too slow

if the ratio is greater than 1, the scanning speed is too slow
or the frame rate is too fast

To change the frame rate of the sensor it is necessary to multiply the
current frame rate with the calculated multiplier, and set the result as
the new frame rate; conversely if we want change the scanning speed
it is necessary to divide the current scanning speed with the calculated
multiplier and set the result as the new scanning speed.

2.1.4 Image processing

The hypercube in its spacial dimension can be treated with digital im-
age processing techniques. These digital methods are characterized by
the need for extensive experimental work to establish the viability of
proposed solution to a given problem Gonzalez et al (2003). An impor-
tant characteristic underlying the design of image processing systems
is the significant level of testing and experimentation that normally is
required before arriving at an acceptable solution.

Digital image representation A single layer of the hypercube is a two-
dimensional function, f(x, y), where x and y are spatial coordinates,
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and the amplitude of f at any pair of coordinates (x, y) is called in-
tensity. The term gray level is used often to refer to the intensity of
monochrome images. In a RGB color system a color image consists of
three individual monochrome images, referred to as the red (R), green
(G) and blue (B) primary images. When x, y, and f are all finite, dis-
crete quantities, we call the image a digital image. Each point defined
from the coordinate x and y is commonly denoted as pixel.
Assuming that an image f(x, y) is sampled so that the resulting image
has M rows and N columns, we say that the image is of size M ×N .

f(x, y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(0,0) f(0,1) . . . f(0,N − 1)
f(1,0) f(1,1) . . . f(0,N − 1)

⋮ ⋮ ⋮
f(M − 1,0) f(M − 1,1) . . . f(M − 1,N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Expressing the sampling and quantization in formal mathematical terms
let Z and R denote the set of real integers and the set of real numbers,
respectively. The sampling process may be viewed as partitioning xy
plane into a grid, with the coordinates of the center of each grid being
a pair of elements from Cartesian product. Z2, which is the set of all
ordered pairs of elements (zi, zj), with zi and zj being integers from
Z. Hence, f(x, y) is a digital image if (x, y) are integers from Z2 and
if f is a function that assigns a grey-level value (real numbers from R)
to each pair of coordinates (x, y).

Spatial filtering concepts In image analysis the monochromatic im-
age represents the input of signal processing algorithms from which it
possible to obtain an image or a set of characteristics or parameters re-
lated to the image. If from an image we decide to analyse sub-images
we talk of regions of interest (ROIs). Different operations can be per-
formed on an image following the ROI criteria and applying different
methodologies.
The digital filter concept was used to study our collection of images.
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The concept of linear filtering has its roots in the use of the Fourier
transform for signal processing in the frequency domain. Digital lin-
ear filtering is the operation of multiplying each pixel in the neighbour-
hood by a corresponding coefficient and summing the results to obtain
the response at each point. The application of the filter is based on
a mask or window of significant amplitude which perform the opera-
tion along the image of interest. There are two closely related concepts
very important to perform the linear spatial filtering: the first one is the
correlation; other is convolution. Correlation is the process of passing
the mask w by the image array f ; convolution is the same process, ex-
cept that w is rotated by 180°prior to passing it by f . The correlation
of a filter mask w(x, y)☆ f(x, y), is given by the expression

w(x, y)☆ f(x, y) =
a

∑
s=−a

b

∑
−b

w(s, t)f(x + s, y + t)

This equation is evaluated for all values of the displacement variables x
and y so that elements ofw visit every pixel in f , which we assume has
been padded appropriately. Constant a and b are given by a = (m−1)/2
and b = (n − 1)/2. For notational convenience, we assume that m and
n are odd integers.
In a similar manner, the convolution of w(x, y) and f(x, y), denoted
by w(x, y) ★ f(x, y), is given by the expression

w(x, y) ★ f(x, y) =
a

∑
s=−a

b

∑
−b

w(s, t)f(x − s, y − t)

where the minus signs on the right of the equation rotate the f of 180°.
The nonlinear spatial filtering is based on neighbourhood operations
also, and the mechanics of sliding the center point of an m × n filter
through an image are the same previous discussed but, nonlinear spa-
tial filtering is based on nonlinear operations. It means that whereas
linear spatial filtering is based on computing the sum of products (lin-
ear operation), nonlinear filtering operations involving the pixels in the
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neighbourhood encompassed by the filter. For example, letting the re-
sponse at each center point be equal to the maximum pixel value in its
neighbourhood is a nonlinear filtering operation.
An important consideration implementing neighbourhood operations
for spatial filetering is the issue of what happens when the center of the
filter approaches the border of the image. Considering simple square
mask of size n×n at list one edge of such mask will coincide with the
border image when the center of th mask is a a distance of (n − 1)/2
pixels away from the border of the image. The simple and most ef-
fective way to obtain a perfectly filtered result is to accept a somewhat
smaller filtered image by limiting the excursions of the center of the
filter mask to a distance no less than (n − 1)/2 pixels from the bor-
der of the original image (Gonzalez and Woods (2008)). In such way
the resulting filtered image will be smaller than the original, but all
the pixels in the filtered image will have been processed by the entire
mask. This was the approach developed during the experiment.

2.1.5 Spectral image processing

Studying the hypercube from the z axis it is possible to read the in-
tensity of the spectrum along the sensibility of the sensor. It’s very
important to note that the different parts of the camera system can fade
in their performance over time, temperature or environment in general.
This is a crucial point in the spectra acquisition, one of the most impor-
tant factor is the stability of the light source during image acquisition.
If the light source should render unstable due to the bulb itself or the
associated power supply, than any image acquired will suffer from un-
desidered artefacts.
It is therefore important to conduct a acquisition procedure where the
sensitivity towards these external factors are minimized. The best ap-
proach is to acquire white reference and dark current as often as pos-
sible to capture any drift (Arngren, 2011).
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Dark signal subtraction Every sensor when is not illuminated shows a
dark current, which is mostly due to temperature dependant excitation.
The noise created by the current can cause a bias in the calculation, it
is important to subtract this signal from raw data before the process-
ing.
To estimate this signal is possible to cover the objective or close the
shutter and acquire a set of a completely dark images at the same ex-
posure time and gain as the measurements. At the same time is also
possible to acquire one dark image for each measurement.
The dark signal correction can be expressed as in the following equa-
tion:

A(s, λ) = R(s, λ) − dc (2.1)

where A is the dark current corrected image, R is the raw image, dc
represents the dark current, s is the observation number (camera pixel
coordinate) along spacial dimension, λ represents the camera channel
dedicated to the spectral information.
In our case the output of the camera is an hyperspectral data cube or
hypercube with i, j, k coordinates. If we have a reference cube Xref

and a dark current cube Xdark. Using these two hyperspectral images
a single compensated line scan image can be calculated from the mea-
sured image Xmeans by

Xcomp
ijk =

Xmeans
ijk −Xdark

jk

Xref
jk −Xdark

jk

∀i (2.2)

Data normalization Reflection variability between images and irradi-
ance differences for all measured spectra in the same acquisition give
the need to normalize the data acquired. It means that the different il-
lumination due to scene variation may cause the variation of a camera
pixel at a certain wavelength.
Leaf reflectance can be calculated using the proportion of reflected
light, at a certain waveband, to the total incoming light of the leaf. It
should be noted that it is not feasible to measure this incoming light
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on each leaf. By employing the gray 50% reflectance standard and as-
suming that illumination conditions are equal in the same image self-
reflectance can be estimated. Using the dark corrected image (A) cal-
culated by the equation 2.1, the reflectance-normalized matrix B can
be defined in percent through the following:

B(s, λ) = A(s, λ)
A(Pref , λ)

(2.3)

where s is the observation number along the spatial axis, λ is the wave-
length, and Pref is the position of the reflectance standard along the
spatial axis.

2.1.6 Exploratory data analysis

After the data normalization all the wavelengths intensity are in the
same range. This condition permits to compare the different groups
of spectra trying to understand patterns eventually present in the data.
This process can be defined as exploratory data analysis. Tukey (1977)
provided a detailed description for exploratory data analysis (EDA) as
a numerical detecting work. This type of analysis permits to examine
the data without any preconceived ideas about the phenomena being
studied. The EDA preliminary involve visualizing the relationship be-
tween samples and between variables without assign them to groups.
Among the EDA techniques an important one is the principal com-
ponent analysis (PCA). PCA is the most flexible general purpose ap-
proach, but suffers when there are many different groups Brereton
(2009). Nevertheless, PCA is still an excellent method for prelimi-
nary visualization, natural scientists of all disciplines, from biologists,
geologists, and chemists have caught on to these approaches over the
past few decades.
The main purpose of the PCA is to reduce the dimensionality from
p to d, where p < d, at the same time accounting for as much of the
variation in the original data set as possible. PCA involves an abstract
mathematical transformation of the original data matrix. In addition,

44



2.1. Theoretical background

the observations in the new principal component space are uncorre-
lated. The hope is that we can gain information and understanding of
the data by looking at the observations in the new space. In order to
explain the statistical method, the sample covariance matrix algorithm
will be presented.

PCA using the sample covariance matrix We start with the centered
data matrixXc that has dimension n×p. The defined matrix is centered
about the mean of the observation for the determined variable. Then
we form the sample covariance matrix S as

S = 1

n − 1
XT
c Xc

where T denotes the matrix transpose. The jk-th element of S is given
by

sjk =
1

n − 1

n

∑
i=1

(xij − x̄k); j, k = 1, . . . , p

with
x̄j =

1

n

n

∑
i=1

xij

The next step is to calculate the eigenvectors and the eigenvalues of the
matrix S. The eigenvalues are found by solving the following equation
for each lj , j = 1, . . . , p

∣S − lI ∣ = 0 (2.4)

where I is a p × p identity matrix and ∣●∣ denotes the determinant. The
equation 2.4 produces a polynomial equation of degree p.
The eigenvectors are obtained by solving the following set of equation
for aj

aia
T
i = 1

aja
T
i = 0

for i, j = 1, . . . , p and i ≠ j
A major result in matrix algebra shows that any square, symmetric,
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non-singular matrix can be transformed to a diagonal matrix using

L = ATSA

where the columns of A contain the eigenvectors of S, and L is a di-
agonal matrix with the eigenvalues along the diagonal. By convention,
the eigenvalues are ordered in descending order l1 ≥ l2 ≥ ⋅ ⋅ ⋅ ≥ lp, with
the same order imposed on the corresponding eigenvectors.
We use the eigenvectors of S to obtain new variables called principal
components (PCs). The j-th PC is given by

zj = aTj (x − x̄); j = 1, . . . , p (2.5)

and the elements of a provide the weights or coefficients of the old
variables in the new PC coordinate space. It can be shown that the
PCA procedure defines a principal axis rotation of the original vari-
ables about their means, and the elements of the eigenvector a are the
direction cosined that relate the two coordinate systems. Equation 2.5
shows that the PCs are linear combinations of the original variables.
We transform the observations to the PC coordinate system via the
following equation

Z =XCA (2.6)

The Z matrix contains the principal component scores. Note that these
PC scores have zero mean and are uncorrelated. We could also trans-
form the original observations in X by similar transformation, but the
PC scores in this case will have mean z̄. We can invert this transfor-
mation to get an expression relating the original variables as a function
of the PCs, which is given by

x = x̄ +Az

To summarize: the transformed variables are the PCs and the individ-
ual transformed data values are the PC scores.
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2.1.7 Two class classifier

The purpose of two class classifier is reformulate the problem as a clas-
sification problem, which involve the use of the samples to determine
whether there is a relationship between interesting properties of the
samples and the analytical data, and if there is so, to determine what
this relationship is, in the form of a mathematical model. Once the
model is set up, the objective is to determine is a new sample belongs
to a determined group.
There are numerous approaches in the literature to classify between
two or more groups. During the work it was used a two class classifier,
linear discriminant analysis.

Linear discriminand analysis (LDA) Linear discriminant analysis is a
method used in statistics, pattern recognition and machine learning to
find a linear combination of features which characterized or separates
two or more classes of objects or events. The LDA takes the different
variance of each variable into account, but has an additional property
that it also takes into account the correlation between the variables: if
there are 20 variables, for example, and 19 convey similar information
will be correlated and as such should not be weighted too much.
The characteristic of the LDA is to produce a linear boundary between
two classes. The algorithm used during our work is the Fisher one
(Fisher, 1936), to evaluate the distance to each class centroid a mea-
sured distance called Mahalanobis was used:

d2ig = (xi − x̄g)S−1p (xi − x̄g)′

where Sp is the pooled variance-covariance matrix, calculated for two
classes as follows:

Sp =
(IA − 1)SA + (IB − 1)SB

IA + IB − 1
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and where Sg is the symmetric variance-covariance matrix for class g
of dimension J × J whose diagonal elements correspond to the vari-
ance of each variable and whose off-diagonal elements are the cor-
responding covariance between each variable. The Mahalanobis dis-
tance based on variance-covariance matrix is based on the entire dataset,
rather than for each class independently.
The classifier was created assuming that the model has the same co-
variance matrix of each class; only the means vary. It was computed
the sample mean of each class. Then the sample covariance by first
subtracting the sample mean of each class from the observations of
that class, and taking the empirical covariance matrix of the result.
The weighted classifier was built supposing M is a N -by-K class
membership matrix: Mnk = 1 if the observation n from class k; Mnk =
0 otherwise.
The estimate of the class mean for unweighed data is

µ̂k =
∑Nn=1Mnkxn

∑Nn=1Mnk

The unbiased estimate of the pooled-in covariance matrix for unweighed
data is

Σ̂ = ∑
N
n=1∑Kk=1Mnk(xn − µ̂k)(xn − µ̂k)T

N −K
After the determination of the model it was examined the resubstitu-
tion error how difference between the response training data and the
predictions the classifier makes of the response based on the input
training data. If the resubstitution error is high, you cannot expect the
predictions of the classifier to be good. The confusion matrix shows
how many errors, and which types, arise in resubstitution. When there
areK classes, the confusion matrixR is aK-by-K matrix withR(i, j)
equal to the number of observations of class i that the classifier pre-
dicts to be of class j.
In detail for the LDA we consider a set of n p-dimensional observa-
tions x1, . . . , xn, with n1 samples labeled as belonging to class 1 (λ1)
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and n2 samples as belonging to class 1 (λ2).
We will denote the set of observation in the i-th class as Λi. Given a
vector w with unit norm, we may form a projection of the xi onto a
line in the direction of w using:

y = wTx

where T denotes the matrix transpose. We want to choose w in order
to provide a linear mapping that provides maximal separation of the
two classes. One natural measure of separation between the projected
points yi is the difference between their means. We may calculate the
p-dimensional sample mean for each class using the following equa-
tion

mi =
1

ni
∑
x∈Λi

x

the sample mean for the projected points is given by

m̃i =
1

ni
∑
y∈Λi

y = 1

ni
∑
x∈Λi

wTx = wTmi

we can use the last equation to measure the separation of the means
for the two classes

∣m̃1 − m̃2∣ = ∣wT (m1 −m2)∣

where ∣●∣ denotes the determinant. To obtain good class separation, and
hence a good classification performance, we want the separation of the
means to be as large as possible standard deviation for the observation
in each class. We will use the scatter as our measure of the standard
deviations. The scatter for the i-th class of projected data points is
given by:

s̃2i = ∑
y∈Λi

(y − m̃i)2
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We define the total within-class scatter to s̃21 + s̃22. The LDA is defined
as the vector w that maximizes the function:

J(w) = ∣m̃1 − m̃2∣2
s̃21 + s̃22

A little bit of linear algebra manipulation (Duda et al, 1973) allow us
to white the solution of the maximization as:

w = S−1w (m1 −m2)

where Sw is the within-class scatter matrix defined by:

Sw = S1 + S2

and
Si = ∑

x∈Λi

(x −mi)(x −mi)T

Note that the matrix Sw is proportional to the sample covariance matrix
for the pooled p-dimensional data. Interestingly, it turns out that the
LDA is the linear mapping with the maximum ratio of between-class
scatter SB to within-class scatter, where

SB = (m1 −m2)(m1 −m2)T

The input vectors data now reside in one dimension.

2.1.8 Applied technique for data reduction

The purpose of the experiment is the definition of a certain number of
wavelengths, to selectively choose the channels of interest data pro-
cessing exploited the binomial coefficient technique. The number of
ways of picking k unordered outcomes from n possibilities, known
as binomial coefficient (Brualdi, 1977) or choice number and read "n
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choose k", is described by this equation:

nCk ≡ (n
k
) ≡ n!

k!(n − k)!

where n! denotes a factorial. For example, considering (4
2
) combina-

tions of two elements out of the set {1,2,3,4}, namely {1,2}, {1,3},
{1,4}, {2,3}, {2,4}, and {3,4}. These combinations are known as
k-subsets.
In detail the binomial coefficients (n

k
) for all nonnegative integers k

and n, is equal to zero if k > n and that (n
0
) = 1 for all n. If n is

positive and 1 ≤ k ≤ n, then

(n
k
) = n!

k!(n − k)! =
n(n − 1) . . . (n − k + 1)

k(k − 1) . . .1 (2.7)

but we have that
(n
k
) = ( n

n − k)

This relation is valid for all integers k and n with 0 ≤ k ≤ n. We also
derived Pascal’s formula, which asserts that

(n
k
) = (n − 1

k
) + (n − 1

k − 1
)

By using Pascal’s formula and the initial information

(n
0
) = 1 and (n

n
) = 1, (n ≥ 0)

the binomial coefficients can be calculated without recourse to the for-
mula 2.7. When the binomial coefficients are calculated in this way,
the results are often displayed in an infinite array known as Pascal’s
triangle (Pascal, 2011):
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n

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

0 1 2 3 4 5 6
k

Each entry in the triangle, other than those equal to 1 occurring on the
boundary of the triangle, is obtained by adding together two entries
in the row above: the one directly above and the one immediately to
left. This is in accordance with Pascal’s formula. For instance, in row
n = 6, we have

(6

3
) = 20 = 10 + 10 = (5

2
) + (5

3
)

Many of the relations involving in binomial coefficients can be discov-
ered by the examination of Pascal’s triangle.

2.1.9 Robot position and rotation

During the experimentation a robotic manipulator was used. To per-
form the camera acquisitions it was necessary the study of robot kine-
matic. The position and orientation of a rigid body in space are collec-
tively termed the pose. In these terms the robot kinematics describes
the pose, velocity, acceleration, and all higher-order derivatives of the
pose of the bodies that comprise mechanism.
A coordinate reference frame i consists of an origin, denoted Oi, and
a triad of mutually orthogonal basis vectors, denoted (x̂i, ŷi, ẑi), that
are all fixed within a particular body. The pose of a body will always
be expressed relative to some other body, so it can be expressed as the
pose of one coordinate frame relative to another.
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The position of the origin of coordinate frame i relative to coordinate
frame j can be denoted by 3 × 1 vector

jpi =
⎛
⎜⎜
⎝

jpxi
jpxi
jpxi

⎞
⎟⎟
⎠

The components of this vector are the Cartesian coordinates of Oi in
the j frame, which are the projections of the vector jpi onto the corre-
sponding axes.
To define the rotation matrices we have the coordinate frame i relative
to coordinates frame j can be denoted with (jx̂i j ŷi j ẑi), which when
written together as a 3 × 3 matrix known as the rotation matrix. The
components of jRi are the dot products of basis vectors of the two
coordinate frames.

jRi =
⎛
⎜⎜
⎝

x̂i ⋅ x̂j ŷi ⋅ x̂j ẑi ⋅ x̂j
x̂i ⋅ ŷj ŷi ⋅ ŷj ẑi ⋅ ŷj
x̂i ⋅ ẑj ŷi ⋅ ẑj ẑi ⋅ ẑj

⎞
⎟⎟
⎠

Because the basis vectors are unit vectors and the dot product on any
two unit vectors is the cosine of the angle between them, the compo-
nents are commonly referred to as direction cosines.
An elementary rotation of frame i about the jzi axis through and an-
gle θ is

RZ(θ) =
⎛
⎜⎜
⎝

cos θ − sin θ 0

− sin θ cos θ 0

0 0 1

⎞
⎟⎟
⎠

while the same rotation about the ŷj axis is

RY (θ) =
⎛
⎜⎜
⎝

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎞
⎟⎟
⎠
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and about x̂j axis is

RX(θ) =
⎛
⎜⎜
⎝

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎟
⎠

Rotation matrices are combined through simple matrix multiplication
such that the orientation of frames i relative to frame k can be ex-
pressed as

kRi = kRj
jRi (2.8)

In summary, jRi is the rotation matrix that transforms a vector ex-
pressed in coordinate frame i to a vector expressed in coordinate frame j.
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(a) Hypercube scheme

(b) Hypercube data storage representation

Figure 2.1: Hypercube representation with the scheme of the data storage
system.
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2.2 Plants and diseases studied

During the experimentation cucumber plants (Cucumis sativus L.) were
studied, the disease symptomatology analysed is caused by powdery
mildew during the preliminary experiment and cucumber green mottle
mosaic virus (CGMMV) in the main investigation.
Cucumbers are from the family of Cucurbitacea taxonomy isolated
from other families. The family Cucurbitaceae, consists of about 120
genera and more than 800 species (Welbaum, 2015).
Commercial cucumber cultivars are warm-season, frost-sensitive an-
nuals. Usually cucumbers grow up to 2 m tall and 5 m long with a
climbing habit. C. sativus is a morphologically variable annual herba-
ceous climber. The stems are prostate, angular, and covered in white
pubescence. Stipulas are absent, and the plant bears unbranched axil-
lary tendrils up to 30 cm long 10 to 16 cm long petioles. The pubescent
leaves are alternatively arranged on 10-16 cm long petioles, simple,
basally cordate, and apically acute whit 3-7 palmate lobes (Mnzava
and Ngwerume, 2004; Zomlefer, 1994).
Cucumber plants exhibit monoecious (separate male and famale flow-
ers on a plant), andromonoecius (separate perfect and male flowers on
the same plant), or gynoecius (all female) sex expression. The expres-
sion can be controlled by genetics or chemicals.

Flowers occur at the nodes, staminate in clusters or singly with only
one flower in a cluster opening at a time. Flowers are open for a sin-
gle day and if not adequately pollinated rapidly abort. The fruit is an
indehiscent cylindrical berry with many seeds. They can be spherical,
blocky, oblong or elongated in shape and variable size. Cucumber are
glabrous, and can be smooth or warty, yellow or green, ranging from
5-100 cm long and weight 50 g to 4 kg. Each plant produces up to 25
fruits. Cucumber fruits are consumed immature when their flavour is
mild and seeds are small and underdeveloped.

Cucumbers have an important role in agricultural economy, they
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are consumed raw or pickled. Mature uncooked cucumbers bring relief
for individuals suffering from celiac disease and promote skin health.
The fruit is also valuted in the cosmetic industry, used to soften the
skin.
The seed can be used to expel parasitic worms. The seedlings are toxic
and should not be consumed.
Cucumber growing is very important because it has a high rate of con-
sumption; with reference to the World market consumer from 1970’s
preference and per-capita use of pickling cucumbers began to increase.
Analysing FAO (2016a) statistics the world production of cucumber
increased in the last 30 years of 6 times (figure 2.2).

Total world production of cucumbers and gherkins in 2011 was
estimated to be approx 2 million hectares. Compared with other veg-
etables, cucumber occupies fourth place in importance in the world,
following tomato, cole crops, and onion. The best world producer is
China with the 34% of total production.
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Cucumber production trend

Figure 2.2: Cucumber production trend indexed in 1980. Elaboration of FAO
(2016a) statistics.
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2.2.1 Powdery mildew on cucumbers

Powdery mildew fungi are obligate plant pathogens that attack approx-
imately 10000 species of plans belonging to more than 1600 genera
(Agrios, 2005). P. mildew fungi obtain their nutrients from living cells
of their host plants through feeding organs called haustoria.
Powdery mildew appears as spot patches of a white to greyish, pow-
dery, mildewy growth on young plant tissues or as entire leaves and
other organs being completely covered by the white powdery mildew.

Powdery mildew fungi are very common and severe in warm, dry

Figure 2.3: Powdery mildew symptoms on Cucumber plants (INRA, 2016).

climates, because their spores can be released , germinate, and cause
infection even when there is no film of water on the plant surface as log
as the relative humidity in the air is fair high. growth on young plant
tissues or as entire leaves and other organs being completely covered
by the white powdery mildew. The control of this pathogen is difficult
some of them have develop resistance and are no longer controlled by
some systemic fungicides.
Powdery mildew is one of the most important disease in cucumber (fig-
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ure 2.3) with downy mildew and damping-off, under field and green-
house conditions in most areas of the world. This disease is a major
production problem due to reduction of yield, decrease in the size or
number of fruit or decrease in the length of the harvest period. Prema-
ture senescence of infected leaves can result in reduced market quality
because fruit become sunburnt or ripen prematurely or incompletely.
Among others the pathogen in cucumber is Erysiphe cichoracearum
and E. polygoni, other are Podosphaera fuliginea also known as P.
xanthii.
Powdery mildew develops on both leaf surfaces, petioles, and stems.
The growth is primarily asexual through spores called conidia. It usu-
ally develops first on crown leaves, on shaded lower leaves and on leaf
undersurfaces. Usually older plants are affected first, whit the infec-
tion leaves wither and die.

2.2.2 Cucumber green mottle mosaic virus (CGMMV)

Cucumber green mottle mosaic virus (CGMMV) is one of the most
important viruses that exert influence, such as serious distortion and
decomposition on the plant family Cucurbitaceae. According with
Agrios (2005), cucumber mosaic virus occur worldwide, infects more
different kinds of plants than any other virus, and causes mosaics,
stunting of plants, and leaf and fruit malformations. Cucumoviruses
are very infective and can be transmitted by insects like aphids, from
infected seeds or mechanically handling the plants.
The virus infects and multiplies in phloem and parenchyma cells. Virus
particles may appear scattered in the cytoplasm, the vacuoles, and, pos-
sibly the nucleus, and they may be aligned in multiple files in the cyto-
plasm or in single file passing through plasmodesmata. The control of
the virus is very difficult, it depends primarily on breeding and use of
resistant varieties. Moreover continuous increase of the consumption
and trade of seeds among nations have led to hight risk of spreading
the disease (Lee et al, 2016).
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(a) Old leaf yellowing (PCA, 2016) (b) Young leaf mottling and shape deforma-
tion (USDA, 2016)

Figure 2.4: CGMMV symptoms characteristics in cucumber leaves.

Regarding the symptoms, cucumber mosaic affects plants by caus-
ing mottling or discolouration and distortion of leaves, flowers, and
fruits (figure 2.4). Symptoms on young leaves are vein clearing and
crumpling may be visible (figure 2.4b), while mature leaves may show
mottling or mosaic patterns, or look pale, yellow, or bleached (fig-
ure 2.4a). Young seedling symptoms may be indistinct or difficult to
recognise as being caused by a virus. In severe infections, embryonic
leaves may become yellow, but symptoms may not be apparent until
more mature leaves emerge The quantity and the quality of the yield is
reduced. Already four or five days after inoculation the young devel-
oping leaves become mottled, distorted and wrinkled and their edges
begin to curldownward. The dangerousness and the variability of the
symptoms were the reason why we decided to study this disease.
Once a few plants have become infected with CGMMV, insect vectors
and humans during their cultivating and handling of the plants spread
the virus to many healthier plants. A study in India (Vani et al, 1993)
has isolated CGMMV from river and irrigation water, indicating the
virus can spread under natural conditions once plants in the field or
greenhouse become infected.

The great symptoms variability - from colour variation to leaf shape

60



2.3. Measurements setup

distortion - with the extreme pathogenicity and danger of the virus are
the main reasons for the choice of this pathogen for the experimenta-
tion. Contextually the economic losses deriving from the disease are
substantial and involve the whole Cucurbitaceae family.

2.3 Measurements setup

2.3.1 Image acquisition system

To conduct the experiment, it was used a hyperspectral camera man-
ufactured by the SPECIM® company (figure 2.5). It is a line-scan
camera sensitive from in the Vis-NIR range approx. 400 - 1000 nm.
Compared to a multispectral camera in which we are able to acquire
images in few discrete wavebands in hyperspectral cameras we can-
not acquire an entire image at once. In fact, the camera is equipped
of a high speed sCMOS sensor which permits an image frame-rate in
the range of 1 to 100 Hz, this sensor has 1600 spatial pixels and 840
spectral channels. The spectrograph present inside the camera has a
spectral resolution (FWHM) of 2.9 nm.
One important characteristic of the camera is the possibility to sample
the light spectrum at steps of 0.63 to 5.07 nm. This peculiarity is given
by the adjustable spectral binning. It means that we are able to bin the
channels along the spectrum with two advantages, the former is adapt
the sensibility of the sensor to our needs, the latter is the reduction of
the quantity of data recorded with a resilience in the experiment setup.
Another peculiarity of this system is the spacial binning properties,
thanks to which it is possible to impose the resolution of the acquisi-
tion and the quantity of data recorded.
Exposure time range goes from 8.1 to 100 ms. An advanced optic sys-
tem developed by Schneider® (Xenoplan™ 1.9/35 C-mount) is used to
direct the light to the objective into the spectrograph.
The hyperspectral camera during the experiment was coupled with a
scanner system controlled by the Lumo software. The servo motor per-
mits to cover an arc with defining the starting and the ending position,
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(a) VIS-NIR Camera (b) Xenoplan™ 1.9/35

Figure 2.5: Camera equipment used during the experimentation

contemporary it is possible to handle the speed of the acquisition.

2.3.2 Data acquisition system

The camera was connected with an high-resolution, high-speed PCI
Express image acquisition device, the NI PCIe-1427. The shield has
a pixel clock range from 20 MHz to 80 MHz, and it is able to process
more than 200 MB s−1. The image acquisition device was installed in
a personal computer equipped with a 64 bit Microsoft® Windows® 7
Enterprise (SP1) operating system; 12 GB installed memory (RAM)
and a processor Intel® Core™ i7-4770 CPU 3.40 GHz.
The computer was equipped with the Specim data recording applica-
tion for hyper spectral image (HSI): Lumo Scanner. This application
can control HSI and scanner, and store the data into the computer hard
drive.
For the data elaboration was used a multi-paradigm numerical com-
puting environment Matlab thanks to which all the algorithms were
developed.

2.3.3 Robotic Manipulator

Robotic mechanisms are system of rigid bodies connected by joints
(Siciliano and Khatib, 2008). The hyperspectral camera was mounted
on a 6 degree of freedom manipulator (DOF) robotic manipulator Mo-
toman MH5L. The manipulator and the hyperspectral camera were
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physically integrated by a custom-made end-effector.
The manipulator has a payload of 5 kg with a repeatability of ±0.03 mm
in reaching the position. The maximum speed reachable by the joints
depends on which one is in movement and it vary from 270° s−1 to
720° s−1.
To control the robotic manipulator kinematics an application was spe-
cially designed and developed. For the hyperspectral acquisition the
software tool was thought to replicate and improve characteristics of
the Lumo Scanner software. Specim software is able to control a servo
motor which permit to establish a starting point and an ending point for
the acquisition as well we implement in the custom-made application
possibility to define a starting and an ending position for the scanning
process. Furthermore, a manual movement with a defined angle to the
right and to the left was implement. At the same time two ex-novo
buttons were created to have a performing and accurate integration
between the acquisition system and the manipulator: a robot homing
button and an initial position one. The former permits to reach the
homing position; the latter to reach the initial one from the manipula-
tor.
An improvement for the human machine interface was made for the
focusing button in which an integration between the Lumo Scanner
software and the custom application was realized; furthermore, the
possibility of defining the central position for the focusing function
was integrated.
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(a) Manipulator scheme

(b) Manipulator

Figure 2.6: The Motoman MH5L, the six DoF manipulator used during the
experiment (Motoman, Germany)
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2.4 The first methodology developed: wavelengths of in-

terest determination

2.4.1 ROI selection and spectra extrapolation

The first step for the analysis is the selection of the region of interest
(ROI) from the hypercubes. During the experimentations two methods
for the specta extrapolation were developed. The former fits with pow-
dery mildew symptoms characteristics but, the latter fits with CGMMV
symptoms but less with Powdery mildew ones.

Color code selection Contextually with the building of the hypercube
the camera output includes a preview image. The file output is a
classic three channels image; channels are customizable at will.
For the ROIs selection a code of three numbers was used for
each one of the classes analysed. The selection consists in paint-
ing the areas of interest by means of an imaging software tool
(Paint.NET). During the selection the anti-aliasing system was
disabled to have the certainty of a correct selection.

Spatial region selection The second methodology consists in the def-
inition of four spatial coordinates in the spatial dimension (x, y)
of the hypercube. The goal is to create a quadrilateral homoge-
neous region which is representative of the global condition of
the leaf tissue.

The first method the selection is spatially limited and it doesn’t cover
a representative part of the leaf tissue leaving uncovered the study of
CGMMV symptoms which are spread all around the leaf.

Regarding the second methodology exposed we can say that due to
the manual selection of the region and the different leaf portion cap-
tured from the camera often the dimension of the region is variable
among the classes and inside the classes considered. To overcome this
inconvenient a sensitivity analysis will be presented on the window
size.
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2.4.2 Spectral normalization

Before each acquisition a white and a dark references were collected.
The black reference was obtained by closing the shutter of the camera
for 100 frames. White reference was acquired holding a white panel
with 95% reflectance in front of the camera for at least 100 frames. The
two reference were averaged along the y axis obtaining an average for
the spatial dimension for all the 840 channels.

Refj,z =
∑ni=1 Refi,j,z

n
(2.9)

where

Ref represents the dark or the white reference;

i is the x dimension of the hypercube which is dependant from the
angle covered with the acquisition (i = 1,2,3, . . . , n);

j is the y dimension of the hypercube, strictly connected whit the sen-
sor characteristics;

z is dependant of the spectral sampling resolution of the hyperspectral
camera.

The single reference spectrum after the selection of the correct portion
is applied to the ROIs through the equation (2.2). To apply the correct
portion of the spectrum is necessary to have the correspondence with
the y axis of the sensor. This step is very important because it takes
into account the sensor intrinsic characteristics: the electronic noise is
present with different intensities along the sensor surface, contempo-
rary also the sensor’s sensibility vary along the surface influencing the
white level which is the maximum signal obtainable without satura-
tion.

In figure 2.7 there is as example the average for the white and the
dark reference of the sensor. In particular we have the average for
the single pixel of the dark/white intensity considering all the wave-
lengths. In reality during the experiment the two reference are applied
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considering the spacial and spectral dimension of the hypercube (equa-
tion (2.9)).
The white reference (2.7a) shows a bell shape along the sensor spatial
dimension: it means that we have a descending sensibility in the bor-
der of the sensor. For this reason, during the acquisition we decide to
put the target canopy in the middle of the frame.
The dark reference (2.7b) obviously is proportionally very low if com-
pared with the white one but it presents a shape which leaves inferred
the division of the sensor in two halves with different sensibility.

2.4.3 Combinatorial wavelengths selection

The output generated by the hyperspectral camera cover 840 channels
between visible and near infrared part of the spectrum, but for the de-
velopment of a specific sensor we want to reduce this number as much
as possible. To reach this purpose we decided to start selecting only
10% of the channels. The selection was made taking 1 channel at a
step of 10. This approach permits to cover all the spectrum registered
by the sensor.

The following statistical study was done among the channels se-
lected but considering all the combination without repetition of two
and three channels. For the more controversial case four wavelengths
will be considered. The selection methodology is detailed in para-
graph 2.1.8. To have an idea of the amount of the computing ca-
pacity required selecting two channels at a time of the 84 we have
3486 combinations; with three and four channels we have respectively

84C3 = 95284 and 84C4 = 1929501.

2.4.4 PCA & LDA

In order to establish a criterion of separation and understand how the
variable are distributed in the space a supervised rule based on prin-
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cipal component was developed (section 2.1.6). In more detail from
the ROI selected a constant number of spectra for each hypercube was
acquired. The spectral information was select randomly along the ROI
area.
PCA was performed for all the combinations of wavelengths obtaining
the principal component coefficients; the principal component scores
and the variance explained by each principal component. To identify
the best combination, the variance explained was used. In detail the
best combination 2, 3 or 4 wavelengths is selected weather give us
best variance explained respectively for the PC1, PC1 and PC2, and
PC1 - PC2 - PC3. The PCs were not considered in their totality to
avoid possible correspondences with other combinations in terms of
variance explained.

In parallel with the principal component analysis also the linear
discriminant analysis was used to study all the channel combinations.
The specific channel combinations for the two classes are the predic-
tors which are coupled with their class label. The main objective in
this case is to perform a classification, and in the case in which a new
observation is obtained we use the previous classification to label the
predictor. As a statistical technique LDA is one of the most widely
used classification procedures Hai and Wang (2006). The method max-
imizes the variance between categories and minimizes the variance
within categories by means of a data projection from a high dimen-
sional space to a low dimensional space (Zhang et al (2008); Wu et al
(2002)).

The best combination is the one which give us the minimum re-
substitution error which is the misclassification error i.e. the propor-
tion of misclassified observation in the training set. To identify to
which class the misclassified data belongs the confusion matrix will
be presented.

At the end of this process we have two set of wavelengths of inter-
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est, from the PCA and LDA study. In fact, from both PCA and LDA we
obtain the best combination of two, three and four wavelengths obtain-
ing the best results in terms of best variance explained and minimum
misclassification error.

2.4.5 Deep window analysis

The next step is to extend the analysis and explore the neighbourhood
of the wavelengths of interest. The objective of the deep window anal-
ysis is the investigation of the discriminant capability of the channels
not considered in the previous step.
In detail the investigation started from the observation of the discrim-
inant capability between the classes of all the hyperspectral channels
considered individually. We note that some of the wavelengths se-
lected by the first methodology derived from LDA, were very close
to significant channels with a very low misclassification error: to ex-
plore the not covered portion of the spectrum a second step selection
was performed at an higher spectral resolution: we decide to open a
window around each one of the wavelengths of interest taking the five
preceding and five subsequent channels of the wavelengths of interest.
Considering for example the simplest case of two channel combination
we will select 20 channels in the neighbourhood of the wavelengths of
interest.

At this point we applied again the algorithm discussed up to here
starting from the combination among the new channels selected pass-
ing to the LDA to arrive at the end to identify the target channels (two,
three or four). Continuing with the example of two wavelengths we
have 22 channels around the wavelengths of interest, all the combina-
tion of 2 channels were evaluated with PCA and LDA. Target channels
are wavelengths at which we have the maximum discrimination be-
tween the groups, which is one of the objective of the study.
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Figure 2.7: Average of the white and dark references for all the wavelengths
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Figure 2.8: Steps in determining the target channels according to the
methodology exposed.
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2.5 The second methodology developed: moving window

classifier

Starting from the experience of Schor et al (2016) a moving window
filter was developed. The objective was to follow the symptoms char-
acteristics of Plasmopara and CGMMV. We started from the obser-
vation that distortion symptomatology in CGMMV cause shadows in
some hypercube channels. The intention is to check this peculiarity
from a numerical point of view.

The moving window algorithm consists in a square window of cus-
tomizable size which moves from right to left and from up to down
with a step of 1 pixel along a defined area in the spatial dimension
of the hypercube. To overcome the border problem of this neighbour-
hood operation the methodology described in section 2.1.4 was applied
with the result of a smaller filtered image. At each step the coefficient
of variation (CV) is calculated, generating an image (CV mask) com-
posed of all the calculated CV.

CV = σ
µ

where

σ is the standard deviation of the pixels inside the moving window;

µ is the mean of the pixel inside the moving window.

The CV of a moving window was calculated for all the 840 channels
of the hypercube in a defined spacial region (ROI) and for different
window sizes. We want observe the variation of light intensity inside
a specific leaf area corrupted by the pathogen for a defined wavelength
and comparing it with the healthy tissue.

Due to is difficult to analyse all the CV masks for the entire hyper-
cube database we decide to condense the information inside each mask
through indices. In detail for the entire mask we calculate separately a
series of indices below summarized.
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• average;

• median;

• standard deviation;

• coefficient of variation;

• dispersion index.

From each one of the indices we expect to obtain different informa-
tions strictly connected with the light intensity variation inside the re-
gion taken into account.

The dispersion index is a measure used to quantify whether a set
of observed occurrences are clustered or dispersed compared to a stan-
dard statistical model.

D = σ
2

µ

Different decision rules were implemented based on the examination
of the indices calculated for each channel of the hypercubes for the
classes selected. After the inspection in the different indices for the
defined classes the index in which there is a clustering of the curves
was chosen. Averaging the curves of the two groups it was calculated
the absolute value of the difference between the two classes: chan-
nels of interest are the points in which there is the maximum distance
among the two classes.
At the end of this analysis we have a set of rules: index, window size,
channel of interest which applied to an unknown region are useful to
select the data for the classification. Fixing the rules the linear dis-
criminant analysis is used to quantify the classification capability of
the defined points.

For this analysis the window size is one of the main parameter
to choose. The window size is strictly connected with the symptoms
characteristics and their amplitude. Supposing the acquisition is exe-
cuted from 85 cm, considering the sensor structural characteristics and
the optic used we have a spatial resolution of 0.17 mm px−1. If we
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have a symptom manifestation of 5 mm theoretically we will have a
sharp contrast between healthy and symptomatic tissues for a window
size smaller than 30 px if it is manifested for the specific wavelength.
If the same symptom is 1 mm, a window size of 5 pixels is necessary
to see differences inside the leaf tissue.

Using windows sizes greater than the disease symptoms can give
us informations relative to the general state of the tissue, the presence
of different colours, or small and distributed symptoms patches.
For the reasons exposed heads we decide to investigate the window
sizes between 10 and 100 pixels by steps of 10 for a total amount of
10 window sizes.

2.6 Preliminary experiment on Powdery mildew

Plant material For the preliminary experiment 8 cucumber plants were
infected with Powdery mildew etiological agent. The acquisitions with
the camera were made from three different positions covering the en-
tire canopy.

Experimental setup The acquisition of hypercubes in this preliminary
experiment was conduct from a fixed position. The distance between
the stem of the plant and the focus plan it was fixed at 75 cm.

Regarding the illumination two 500 W halogen lamps were used
and positioned in the same plan of the camera lens. Lamps where
directed to the plant with an angle of 45°compared to the camera plan.
The distance between the two lamps was set in 75 cm to have a triangle
in which in two extreme we found the illumination and in the other one
the target.

In figure 2.9 there is the radiation spectrum of the halogen lamps
used during the experiment. It is possible to see how the radiation
covers all sensibility range of the camera. At the same time we can
note that in the queues of the spectrum the radiation intensity is very
low. The shape of the curve suggests that the leaf reflectance will be
lower in the correspondent range with the possible formation of noise

74



2.6. Preliminary experiment on Powdery mildew

in queues regions. The absorption pick at 730 nm is due to the light
interaction with atmosphere.
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Figure 2.9: Measured halogen light radiation along the sensor height.

ROI selection and data normalization The ROI selection in the pow-
dery mildew experiment follows the colour code procedure described
in section 2.4.1. In particular, for each hyperspectral image of the
training samples, two different classes were considered:

• symptomatic areas

• asymptomatic areas

not distinguishing the different symptoms in accordance with the de-
gree of advancement of the disease, but trying to follow the evolution
of the disease during a week.

The representative spectra selected allowed the construction of an
artificial training image, which granted the use of a reduced and com-
putationally less onerous amount of data.
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After the selection of the different ROIs in the spatial region a soft-
ware tool was conceived to read the correspondent spectra in z dimen-
sion of the hypercube and create a database in which the spectra are
stored.

Considering the entire amount of spectra collected with the ex-
posed method we have approx. 60000 spectra from each class. Due
to the the nature of trial of this experiment the spectra were reduced to
test the methodology developed (chapter 2). A constant ratio of spec-
tra were collected randomly from the ROIs. The high number of data
is the main limit to high computational time necessary for the analysis.
In the definition of the ratio the base was the ROI amplitude (amount
of spectra present in each region) and this was a weak point in this type
of selection.

Before the database construction all the spectra were normalized
following the procedure exposed in section 2.4.2.

2.6.1 Results and discussion

In relation to the preliminary experiment the analysis involved the
method described in section 2.4 to prove the capability of the algorithm
to determine the target wavelengths for disease symptoms recognition.
Briefly the results will be presented. Regarding the principal compo-
nent analysis, the best result in terms of variance explained for the
two wavelengths combination algorithm are: 760 nm and 767 nm with
99.3% of variance explained. Applying the linear discriminant analy-
sis to the variable selected with the PCA we obtain a misclassification
error of 28.4%.

Considering the 3 channel combination algorithm the target wave-
lengths founded are: 396 nm, 417 nm and 760 nm. The variance ex-
plained for the selected channels is 96.3%. With LDA it was obtained
a misclassification error of 28.8%.

Contemporary with the PCA, linear discriminant analysis was ap-
plied on all the combinations of 2, 3 and 4 wavelengths with the results
exposed in table 2.1.
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2.6. Preliminary experiment on Powdery mildew

Looking at the disposition of the target wavelengths founded on fig-

Table 2.1: LDA target channels for powdery mildew detection

Combinations Misclassification Channels (nm)

2 13,5% 543 871
3 11,0% 612 869 874
4 10,8% 542 613 750 923

ure 2.10, which represents the linear discriminant capability of each
channel, it is possible to see how the best discrimination not always
corresponds with the combination of channels with the minimum mis-
classification error. This point let understand that the interaction among
the wavelengths are important more than the single discriminant capa-
bility.
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Figure 2.10: Linear discriminant capability of each wavelength

Prediction by day The equation founded applying the linear discrim-
inant analysis was applied to predict the membership to one class or
another of spectra randomly chosen inside the selected ROIs for each
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day.
The average predicted error found is 15.5% for the two wavelengths
LDA algorithm; 12.78% and 13% for the three and four wavelengths
algorithm respectively.

Analysing these results showed that the predicted error is strictly
connected with the number of spectra chosen to the formation of the
discriminant model for each day. The spectra selection was made with
a constant percentage not considering the amplitude of the ROI. This
limitation will be overcome in CGMMV experiment due to the im-
proved ROI selection method.
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2.7 Cucumber green mottle mosaic virus detection

2.7.1 Materials and methods

Plant material During the experiment a plot of 100 cucumber plants
was breed in greenhouse conditions. Cucumbers were acquired from
Hishtil, a commercial nursery company, which graphs the cucumber
plants with a pumpkin foot. Among the cultivars American types was
chose for the importance in the fresh consumption.
Plants were fertigated proportionally with drippers 2-3 times per day
with 5:3:8 NPK2 fertilizer, allowing for 25 - 50% drainage. Irriga-
tion water was planned to have total N, P, K concentrations of 120,
30, 150 mg l−1 respectively; electrical conductivity of water (EC) was
2.2 dS m−1. The temperature was on an average of 25° to 35° during
the day for the period of the experiment and 17° - 20° during the night.
Plants were in a pest and disease free greenhouse where their healthy
status was ascertained by visual inspections of a plant pathologist.

After the inoculation of the plants four classes were selected: healthy
asymptomatic young leaves (HY), diseased symptomatic young leaves
(DY), healthy asymptomatic old leaves (HO), diseased symptomatic
old leaves (DO). In conformity with the development of the disease in
the healthy classes (HY, HO) we do not have any colour variation or
shape deformation. In contrast diseased classes are strictly connected
with colour variation and shape deformation especially DY class. In
DO the main symptoms regards almost colour variation.

For convention we decided to use the definition of old and young
leaves based on how much time has passed from infection. Are con-
sidered old leaves the ones which were completely developed when
the symptoms manifest themselves. Instead young leaves are growing
during the disease manifestation.

2N = nitrogen; P = phosphorus and K = potassium
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Experimental setup During this experiment the hyperspectral camera
was mounted on the manipulator Motoman described in section 2.3.3
through an end-effector designed and build specifically for the exper-
imentation. During the experiment the acquisition of hypercubes was
done from distance between the leaf and the focus plan it was fixed at
85 cm, improving the old distance to meliorate the focus deepening.

Regarding the illumination two 500 W halogen lamps were used
and positioned 14 cm ahead the camera lens to have a higher light
intensity. Lamps where directed to the plant with an angle of 60° im-
proving the preliminary experiment angle from 45°. The distance be-
tween the two lamps was set in 70 cm to have a rectangle triangle in
which in two extreme we found the illumination and in the other one
the target.

Regions of interest selection During the previous experiment on per-
onospora symptoms the selection was made by choosing a colour code
with which masks were created. From the masks spectra were selected
with a purpose made algorithm. This approach not permit to have an
homogeneous selection to check the general status of the tissue. To
overcome this problem a second methodology based on spatial region
selection was implemented (section 2.4.1). For each class selected the
CV indices were calculated for 24 samples images.

The amplitude of the region is depending on how wide is the leaf
on the image. In any case the maximum possible area was covered.
From each region an equal number of spectra were selected for the
application of the target wavelengths determination (section 2.4). On
the other hand, the application of the second methodology (section 2.5)
was performed for all the wavelengths from 400 to 1000 nm.

Influence of the region area on the CV analysis The manual selec-
tion of the region inside the leaf with the second method of ROI se-
lection presents a limit: it is not possible to have the same area among
different images. Due to the high variability of the tissue covered with
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the region selection a sensitivity test was conducted on different region
sizes.

The purpose of the test is to verify how much the region area in-
fluence the coefficient of variation mask and the derived indices. In
the database the smallest area selected is approx. 13000 px2 while the
greatest is ten times greater than the smallest. During the test for each
class selected (HY, HO, DY, DO) we took the most extended ROI and
create 10 sub-images reducing the original area. In detail the original
region is proportionally reduced in ten steps from the original size to
the smallest one present in the database. The evaluation of the CV
mask is made for 5 channels distributed along the spectrum (466 nm,
546 nm, 612 nm, 711 nm, 839 nm) with five different window sizes
(10 px, 20 px, 50 px, 70 px, 100 px) for each resized region.

The analysis starts with the study of the symptomatic old leaves
(DO). The first index is the average of CV masks: reducing the area of
the most extended hypercube in ten steps until it reach the area covered
the less extended hypercube in the database the AVG index evaluation
seems to be not influenced by the area. This behaviour is present for
all the window sizes analysed (figure 2.11). Even if it is not showed
the 100 px window size it is very similar to the 70 px window size. For
higher window sizes in the CV mask creation the AVG index tend to
grow more for smaller regions.

The same considerations can be done for the median index be-
haviour even if the variation for smaller area is greater than the average
index. Different is the situation for the standard deviation index of the
CV in which the 711 nm channel is influenced by the region width
above the 70 px window size for smaller area. At 100 px window size
all the wavelengths are influenced by the region width especially from
the 7th crop: the standard deviation index tends to descend.

Coefficient of variation index and dispersion index are both con-
stant for window size smaller than 70 px after they tend to decrease.
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Chapter 2. Methodology development

The same considerations can be done for the symptomatic young
leaves (DY) where the average CV index is constant for all the chan-
nels selected and all the window sizes evaluated for subsequent resized
regions. The median index is perfectly comparable to the average in-
dex for all the cases analysed.

The standard deviation index is constant for window sizes smaller
than 50 px, after that it starts to have a descending trend from the
5th cropped region to the 10th. The dispersion index is extremely in-
fluenced from the region width from the 6th reduction already from
a window size of 50 px. It is possible to do the same consideration
for the coefficient of variation index where the variability of the index
starts to be evident from the 7th area reduction from 50 px window
size.
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Figure 2.11: Sensitivity analysis on region area variation for different window size. In abscissa we have the ten different cropped
regions form the most extended to the less extended. The average index is evaluated at five different wavelengths.
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Analysing the healthy old leaves it is possible to note a difference
in the behaviour of the average index of CV which at 70 px window
size for all the wavelengths analysed have a descending trend from the
8th cropped region. At 100 px window size this trend is anticipated to
7th reduction.

More constant is the median index which presents some variation
only at 100 px window size for all the wavelengths with a bell shape
from the 5th to the 10th region.

The standard deviation index is constant until the 50 px window
size at the 6th region in which for all the wavelengths considered there
is a descending trend. As consequence the dispersion index and the
standard deviation index are both influenced of the trend of the average
and the standard deviation indices which start to be with a descending
trend from a window size of 50 px at the 5th area reduction.

Analysing the last class of healthy young leaves (HY) we have a
very constant values for the average index for all the wavelengths and
all the windows sizes. The same thing is about the median CV index.

Also for healthy young leaves the standard deviation index presents
a descending trend from 50 px window size starting from the 7th re-
gion. This trend is higher for windows size greater than 50 px. Coeffi-
cient of variation index and dispersion index will be influenced by this
behaviour presenting the same descending trend. The 100 px windows
size is the more influenced.

CV analysis on homogeneous panels One of the point of interest
in the evaluation of the CV method (section 2.5) is the stability of the
indices evaluation in a homogeneous region. This test represents the
reference for the evaluation of the methodology.

In our analysis we decide to acquire the hypercube of three homo-
geneous coloured panels: white, dark and green. After the selection
of a spatial region (ROI) inside the hypercubes the CV analysis is per-
formed along the different ROIs for the same window sizes explored
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2.7. CGMMV detection

in the main experiment.
In this section will be graphically presented only the results of the

dark panel because for all the colours selected there is the same be-
haviour of the CV index analysis along all the wavelengths selected.
The only discriminant among the different colours is the intensity of
the generated curve. This behaviour is the first response and it was
took in account and confirmed from the analysis due to the nature of
the coefficient of variation which measures the amount of variability
relative to the mean of a population.

Another consideration can be done on the figure 2.12 is the high
intensity of CV value on the queues of the spectrum. It is possible
to suppose the influence of the normalization on this behaviour. Ob-
serving the figure 2.7 on white and dark reference and considering the
equation (2.2), dividing a number for a very low denominator the re-
sult tends to be very high. Reasonably this is the reason why we have
high values of CV index in the queues of the graph.

In figure 2.12a we have the average of the CV mask for all the
channels of the hyperspectral camera. It easy to note how there is the
coincidence of the average CV index along all the spectrum for the
whole set of window size analysed. The same trend is present also
for the median index. At the same time it seems to exist an ascending
trend of the intensity of CV index connected with the width of the
moving window. Analysing the results, the same intensification of the
CV index is present. In results the signal for greater window sizes
often the signal tend to intensify.

Regarding the figure 2.12b the standard deviation index and in con-
sequence all the derived indices (coefficient of variation and dispersion
index) are influenced by the window size even if slightly. Among the
windows applied the smallest ones are more influenced from the area
covered: smaller regions present a higher variability than the wider
ones. Reasonably the electronic noise influences this behaviour.

85



Chapter 2. Methodology development

400 500 600 700 800 900 1000

Wavelength (nm)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
V

 i
n

d
e

x

10 px

20 px

30 px

40 px

50 px

60 px

70 px

80 px

90 px

100 px

(a) Average CV index

400 500 600 700 800 900 1000

Wavelength (nm)

0

0.005

0.01

0.015

0.02

0.025

0.03

C
V

 i
n

d
e

x

10 px

20 px

30 px

40 px

50 px

60 px

70 px

80 px

90 px

100 px

(b) Standard deviation CV index

Figure 2.12: Results of the CV index evaluated on an homogeneous dark
panel for the two main indices: average and standard deviation.
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2.8 Results

2.8.1 Young symptomatic leaves analysis

The first analysis is among young healthy leaves (HY) and young dis-
eased ones (DY). In CGMMV young leaves are very influenced in their
development in both shape deformations and colour mottling. How it
was seen in figure 2.4 in young leaves colour variations are almost
among light green and dark green. Considering the shape deforma-
tions in young leaves the magnitude of shape variation is the highest.
In particular, we can have different types of alterations: bubbling tissue
and contours disruptions due to different speed in tissue formation.

Channel combination The first step in this analysis is the definition
of what are the channels of interest around which it possible to find
the target channels. Starting from the two wavelengths combinations
analysis we found as PCA channels of interest 396 nm and 672 nm.
The variance explained for this combination is 99.92% for the first
PC. How it is possible to observe the two classes have a distribution
that overlaps. Applying the LDA on the selected channels we have a
misclassification error of 25.5%. These two wavelengths are not able
to discriminate between the groups, in fact from the linear discrimi-
nant analysis algorithm the channels which have the greater interest
are 508 nm and 543 nm with a misclassification error of 17.44%.

Opening a window of 10 wavelengths around the LDA selected
channels the classification has undergone a small improvement pass-
ing to 17%. The target channels in this classification are 508 nm and
546 nm. In figure 2.13 we have the representation PCA and LDA re-
sults. In figure 2.14 is represented the linear discriminant capability of
each one of the 840 channels. There are low misclassification errors
between 400 nm and 500 nm, around 550 nm; along the red-edge (650
- 750 nm) and after 950 nm. The linear discriminant analysis of all
the combinations of three wavelengths among the 84 chose led to the
definition of the following wavelengths of interest: 543 nm, 643 nm,
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999 nm. The relative misclassification error is of 11.6%.

Considering the three channels combination algorithm the best vari-
ance explained among the data is with the following channel combi-
nation: 396 nm, 672 nm and 679 nm. The variance explained the first
two PCs for the defined channels is 99.9%. Applying the LDA on this
channel combination we have a misclassification error of 25.40%.

The next step was to open a spectral window around the wave-
lengths of interest applying the LDA to reduce the misclassification
error. This analysis brought to the definition of the following target
channels: 547 nm, 640 nm, and 1000 nm with a misclassification error
of 11%.

Moving window classifier The second methodology have the aim to
measure the variation of the light reflection inside a region. How ex-
plained in section 2.5 the coefficient of variation was chose how the
index of the light variability inside the selected region.
In healthy young cucumber leaves tissues are homogeneous and when
the leaf is observed at different camera channels it seems to be con-
stant in the intensity inside the same leaf component. Young diseased
leaf presents a bubbled tissue often with curvatures in the shape. Fur-
thermore, sometimes the green mottle mosaic virus is the cause of
perimeter disruptions with contour variations if compared with healthy
asymptomatic leaves.

The algorithm was applied along the 840 channels of the camera
for all the hypercubes collected during the experiment. The moving
windows width evaluated are ten: from 10 to 100 pixels by steps of 10
pixels. To extract the informations from the masks generated by the
algorithm for each channel five indices were evaluated: the average of
the CV mask, the standard deviation of the CV mask, the coefficient
of variation of the CV mask the dispersion index of the CV and the
median value of the CV.
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By leaf analysis. From a visual analysis of the distribution of the curves
of the average of CV masks it is possible to divide the channels in four
areas. The first is from 400 to 500 nm in which the signal is noisy and
not intelligible. The second area goes from 500 to 700 nm in which
the average of the CV masks for healthy leaves tend to stay under the
diseased ones for a window size between 40 and 100 pixels, even if
the values around the red-edge are not so clear. In the near infrared
region between 700 and 950 nm there is the overlapping among the
two groups. At the end of the spectrum (greater than 950 nm) healthy
leaves tent to have a coefficient of variation of the light reflected av-
erage greater than diseased ones for all the window size analysed. As
example an extract will be presented in figure 2.16.

The median value of the CV mask retraces almost the average
CV with a differentiation among groups marked among 500 nm and
650 nm for all the windows sizes examined.

Looking at the standard deviation of the CV mask along the spec-
trum for the same group of diseased and healthy young leaves not con-
sidering the queues we have a high variability in the red edge region
for both classes.
Different is the situation analysing the coefficient of variation of the
CV masks in which the two classes are overlapped along all the spec-
trum and for all the window size analysed.

Analysing the dispersion index in which for all the windows sizes
the standard deviation squared give more importance to the separation
among the two groups is limited to the area among 550 nm and 700 nm
in which the healthy leaves tend to overcome the diseased ones for all
the windows size but especially for 40 and 50 pixel of width. A limited
differentiation is also at the end of the spectrum over 950 nm. In the
described region data are not clustered but dispersed.

Classification rules definition. Averaging all the leaves analysed by
typology we obtain two different curves one for each class. To ex-
trapolate some information, it was calculated the absolute value of the
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difference between the two curves for all the windows sizes applied.
In figure 2.17 is represented the difference at 60 pixels window size
for the average of CV masks.
Considering the area of the spectrum selected with the previous obser-
vation for the average index of the CV mask it is possible to define four
peaks of interest: 562 nm, 670 nm, 703 nm, 980 nm. In these channels
for the selected window size there is the maximum distance between
the two classes HY and DY.
Applying the same consideration to the median index for the two

classes considered the region interested are the same of the average
index.
Regarding the standard deviation and the explained graph the peak of
the difference is in the red edge area around 670 nm at 10 pixels win-
dow size. For the same window size of the standard deviation index the
dispersion index presents a peak at 671 nm. For the reasons previously
exposed no considerations will be done for the CV.

2.8.2 Mature symptomatic leaves analysis

The second step of the investigation is the assessment of the difference
between diseased old leaves and healthy old ones. The characteris-
tics of the symptoms are different compared to young leaves due to
a preponderant yellowing mottling and discolouration in old diseased
leaves. Morphological deformations are limited whether the virus in-
fects the plant when the leaf is already formed.

Channel combination study Applying the first methodology the prin-
cipal component analysis gives us the following two wavelengths ex-
plaining the 99.9% of the variance among two channels: 396 nm and
672 nm. Computing the linear discriminant analysis on the selected
channels we have misclassification error of 19%.

The other step is the evaluation of the PCA with the three chan-
nels algorithm. From the study three channels were selected with the
99.9% of the variance explained: 396 nm, 672 nm and 679 nm. The
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LDA on this channel combination bring to the 19% of the misclassifi-
cation error.

Observing the figure 2.19 we can see how the classification capa-
bility of each channel among the symptomatic and asymptomatic old
leaves is various along the spectrum. Lower picks are between the
range 400 nm and 500 nm. Around the red-edge zone between 650
and 750 nm. A decreasing of the misclassification error for the sin-
gle channel is present after 820 nm. Applying the LDA with the two
channels combination algorithm the selected channels fall around the
range founded. In fact, the wavelengths of interest are at 501 and 543
nm with a classification error of 15.03%. Opening a spectral window
around the selected channels it possible to improve the classification
with a 14.6% error with the following channels: 503 nm 546 nm.

To improve the classification capability of the model we decide
to perform a three channel combination algorithm. From the analy-
sis of the 10% of the wavelengths the most important channels are
501 nm, 508 nm, and 549 nm with a misclassification error of 12.78%.
After the deep spectral analysis, the target channels were defined as
503 nm, 505 nm and 546 nm with the and error of 12.44%. These
wavelengths show that most of the difference between old diseased
and asymptomatic leaves is around the cyan and green channels of the
electromagnetic spectrum. It is possible to suppose that the selected
channels are directly correlated with the characteristic yellow colour
of the diseased old leaves.

Moving window classifier The second methodology have the aim to
measure the variation of the light reflection inside a leaf region. For
our classification we decide to consider old leaf symptoms the yel-
lowed old leaves which do not present shape deformations.
The algorithm was applied along the 840 channels of the camera for all
the hypercubes collected during the experiment in the class. The mov-
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ing windows width evaluated also in this case are ten: from 10 to 100
pixels by steps of 10 pixels. The same five indices for the classification
of the CV masks were used.

By leaf analysis. The first analysis is about the distribution of the
curves of the average of CV masks for all the channels of interest. In
the first part of the spectrum (400 to 500 nm) the signal is noisy and not
intelligible. From 500 to 700 nm in which the average of the CV masks
for healthy leaves tend to overlap the diseased ones for a window size
between 40 and 100 pixels. It is interesting to note that the distribution
of the diseased leaves has less variability. The differentiation between
the two classes is marked in the red edge region especially at 80 pix-
els window size. In the near infrared region between 700 and 950 nm
there is the overlapping among the two groups, only at the end of the
spectrum (greater than 950 nm) healthy old leaves tend to have a co-
efficient of variation of the light reflected greater than diseased ones
for all the window size analysed. In figure 2.21 is represented an ex-
tract of the average index for symptomatic old leaves (DO) and healthy
asymptomatic old leaves (HO).

The median value of the CV mask retraces almost the average CV
with but with a more pronounced distance between the two classes for
a moving window greater than 80 pixels. The distance among the two
classes is present also for value channels greater than 950 nm for all
the window sizes analysed.

Looking at the standard deviation of the CV mask along the spec-
trum for the same group of diseased and healthy old leaves we have a
high limited possibility of discrimination in the red edge region.
Different is the situation analysing the coefficient of variation of the
CV masks in which the two classes are overlapped along all the chan-
nels and for all the window sizes analysed. The same consideration can
be done analysing the dispersion index in which for all the windows
sizes the separation among the two groups not possible.
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Classification rules definition. Studying the absolute value of the dif-
ference between the two classes considered it is possible to define the
rules which can be used for the correct classification of the selected
region.
Considering the previous observation it is possible to define three peaks
of interest: 546 nm, 671 nm, 980 nm. In these channels for win-
dow size of 80 pixels there is the maximum distance between the two
classes HO and DO of the average index.

Applying the same consideration to the median index for the two
classes considered the region interested are preponderant at 70 pixels
window size at 546 nm, 671 nm and 980 nm.
Regarding the standard deviation the peak of the difference starts to be
intelligible at 60 px window size in the red edge area around 670 nm.
For the same window size of the standard deviation index the disper-
sion index presents a peak at 671 nm. For the reasons previously ex-
posed no considerations will be done for the CV.

2.8.3 Overall discrimination of symptomatic leaves

The symptoms characteristics among young and old leaves for CGMMV
depends on when the plant was infected. In our analysis are consid-
ered old leaves the ones which presents yellow mottling instead young
leaves present green mottling and shape deformations. It’s possible
suppose the spectral differences between the groups will be limited to
few regions. On the contrary relative more difference could be noted
in the light reflection characteristics which will be investigated with
the moving window classifier.

Channel combination study The application of the channel combina-
tion algorithm led to the definition of the following channels for the
two wavelengths combination algorithm: 396 nm and 672 nm with a
variance explained of 99.9% for the first PC. The two groups are al-
most overlapped: applying the LDA on the selected 2 channels we
have a misclassification error of 45.6%.
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Also the three channels combination algorithm led to an overlapping
of the two groups with the 45.32% LDA misclassification error. The
three wavelengths chose are 396 nm, 672 nm and 679 nm with the
variance explained for the first two PC of 99.9%.

To obtain a better discrimination between the groups the linear dis-
criminant analysis algorithm with the combination of two and four
wavelengths. The discrimination with two channels reach a very high
misclassification error 41%. Which is maintained also with the three
channels combination algorithm (40%). The selected channels for the
two algorithms are respectively are 515 nm and 672 nm for the two
channels combination algorithm and 515 nm 672 nm and 679 nm.
Opening a spectral window, the error it was reduced to 40% with the
following two channels: 513 nm and 696 nm.

The error in LDA classification with two and three channels is very
high for this reason the investigation continued with a four channel
combination algorithm. The selected wavelengths are 672 nm, 694 nm,
716 nm, and 804 nm. With the selected four channels the error it was
reduced only of 1% to 39%. From a deep spectral window analysis,
it was obtained a very limited reduction of the misclassification error
to 38% with the following wavelengths: 400 nm, 694 nm, 716 nm,
804 nm.

In figure 2.23 is represented the discriminant capability of each
wavelength for the two classes DO and DY. The significant point is at
694 nm in which we have the minimum value of the misclassification
error. With the interaction among different channels it is possible to
reduce the error of the single wavelength in the red edge but in a per-
spective of development of a specific sensor one single channel results
cheap and easy in management. At the same time, the misclassification
error is very high and not effective for our purpose.
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Moving window classifier Analysing the moving window classifier
and considering the average CV index we have a different distribu-
tion of the index along the spectrum for the two classes. The signal
tend to be very clustered and lower for diseased old leaves than symp-
tomatic young ones for all the windows sizes inspected. As sample in
figure 2.24 there is the average index at 50 pixels window size. Until
450 nm the signal is very noisy, after the different path for the two
classes is clear with the diseased old leaves more uniform in the aver-
age of the reflected light if compared with diseased young leaves. This
trend is constant for all the window sizes inspected and there is also a
correspondence with the median CV index. The intensity of the signal
appears more clustered from 40 pixels windows size.

Analysing the standard deviation index the disposition of the curves
along the evaluated channels is constant with overlapping among the
two classes for all the wavelengths. Some differentiation is present
around 670 nm for windows size lower than 40 pixels.

Studying the dispersion index and the CV index also in this case
there is an overlapping between the two groups for all the wavelengths
and for all the windows size inspected.

Classification rules definition. The classification rule definition con-
cerns only the average index of CV mask due to the characteristics
previously exposed. In figure 2.25 it possible to observe the absolute
value of the difference among the average of all the curves for the two
classes considered at 50 pixels window size. The peaks in which there
is the maximum difference are at 486 nm and at 670 nm.

95



Chapter 2. Methodology development

(a) Two channels PCA

(b) Two channels LDA

Figure 2.13: Results for the two wavelengths combination algorithm for PCA
and LDA
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Figure 2.14: Linear discriminant capability of each wavelength considering
healthy and diseased young leaves.
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(a) Two channels PCA

(b) Two channels LDA

Figure 2.15: Results for the three wavelengths combination algorithm for
PCA and LDA
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Figure 2.16: Average of the CV mask along the spectrum for a 60 pixel
moving window width comparing asymptomatic young leaves (HY) and
symptomatic young leaves (DY).
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Figure 2.17: Difference of the average of the CV mask along the spectrum
for a 60 pixel moving window width comparing the average of the asymp-
tomatic young leaves (HY) with the symptomatic young leaves (DY).
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(a) Two channels PCA

(b) Two channels LDA

Figure 2.18: Results for the two wavelengths combination algorithm for PCA
and LDA between symptomatic and asymptomatic old leaves.
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Figure 2.19: Linear discriminant capability of each wavelength considering
symptomatic and asymptomatic old leaves.
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(a) Two channels PCA

(b) Two channels LDA

Figure 2.20: Results for the three wavelengths combination algorithm for
PCA and LDA
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Figure 2.21: Average of the CV mask along the spectrum for at 80 pixel mov-
ing window width comparing asymptomatic old leaves (HO) and symp-
tomatic old leaves (DO).
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Figure 2.22: Difference of the average of the CV mask along the spectrum
for a 80 pixel moving window width comparing the average of the asymp-
tomatic young leaves (HO) with the symptomatic young leaves (DO).
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Figure 2.23: Linear discriminant capability of each wavelength considering
symptomatic old leaves (DO) and symptomatic young leaves (DY).
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Figure 2.24: Average of the CV mask along the spectrum for at 50 pixel
moving window width comparing symptomatic old leaves (DO) and symp-
tomatic young leaves (DY).
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Figure 2.25: Difference of the average of the CV mask along the spectrum
for a 50 pixel moving window width comparing the average of the symp-
tomatic young leaves (DY) with the symptomatic old leaves (DO).
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2.8.4 Discussion

The two methods discussed and applied to the CGMMV detection
showed a great potentiality in plant disease detection. The reduction
of the wavelengths is very important for the determination of the target
channels thanks to which it is possible to develop a specific sensor for
a defined disease. In table 2.2 are summarized the target wavelengths
with the correspondence LDA misclassification error. For the identi-
fication of CGMMV symptoms in young leaves three channels were
selected with a linear misclassification error of 11%.

The application of the first methodology comparing healthy old
leaves with old leaves infected with CGMMV etiological agent led to
the definition of three target channels with an error of 12% in the linear
classification.

More complicated is the definition of a linear model for the classi-
fication of diseased young leaves and diseased old leaves. The target
channels were extended to four and among the two million combina-
tion examined the misclassification error is of 39%.

Table 2.2: Wavelengths of interest with the relative misclassification error
for CGMMV symptoms identification in young leaves.

Two channels algorithm Three channels algorithm

Wavelengths Error Wavelengths Error

HY-DY 508 543 17% 547 640 1000 11%
HO-DO 396 672 19% 503 505 546 13%
DY-DO 513 696 40% 513 675 679 39%

400 694 716 804 38%

In table 2.3 are summarized the main results in terms of misclas-
sification error during the generation of the linear model for the three
case studies analysed. Regarding the first classification between DY
and HY the target wavelengths selected follow are between the green
red and infrared part of the spectrum. The classification among the
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DO and HO classes covers the violet, the red edge and the green part
of the spectrum logically it is connected with the different photosyn-
thesis ability of old symptomatic leaves in which the virus has a very
high activity which influence the normal metabolism of the plant (sec-
tion 2.2.2). Analysing the last classification, the correct identification
is more difficult due to the presence of the disease symptoms in both
classes but at the same time the leaves symptomatology is partially
different. The best classification in this case was obtained with four
wavelengths covering the entire spectrum. In fact the target channels
register the light at 400 nm, 694 nm, 716 nm, and 804 nm which rep-
resent the violet, red-edge, and near infrared part of the spectrum. In
figure 2.26 is represented the class prediction using the model devel-
oped with the four wavelengths algorithm. The classification of dis-
eased symptomatic old leaves and young ones obtained greater results
with the CV methodology.

Table 2.3: Confusion matrix - LDA classification algorithm

Actual

Two channels LDA Three channels LDA

HY DY HY DY

Predicted

DY 16.23% 83.77% 11.47% 88.53%
HY 82.38% 17.62% 89.02% 10.98%

HO DO HO DO
DO 15.24% 84.76% 12.71% 87.29%
HO 86.06% 13.94% 87.82% 12.18%

DY DO DY* DO*

DO 60.55% 39.45% 62.64% 37.36%
DY 41.44% 58.56% 39.65% 60.35%

* Referred to the four wavelengths LDA combination algorithm.

The developed methodology about the coefficient of variation is
very promising for the measurement of the leaf-light interaction. CGMMV
causes different symptoms like shape deformations, colour mottling
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Figure 2.26: Class prediction by single spatial coordinate of the symptomatic
young leaf (DY, red) and symptomatic old leaves (DO, blue) through the
linear model generated from the four wavelengths algorithm described in
section 2.8.3.

(green and yellow), bubbling tissue. It was demonstrated that specific
wavelengths succeed in differentiating the symptoms both by a visual
inspection and by the CV analysis of a region of interest took inside
the symptomatic leaf.

In table 2.4 are summarized the predicted and actual percentage
of the classification error of the linear discriminant analysis on the set
of rules defined with the CV indices analysis. The set of rules in the
CV methodology is the combination of index applied on the single CV
mask for each channel, the moving window size and the corresponded
selected channels in which there is the maximum distance between the
two classes considered.

The different linear models evaluated present strengths and weak-
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nesses points but they are not able to reach the combinatorial spec-
tral analysis methodology. Nevertheless, good results were reached,
but surprisingly the CV index analysis led to a greater discrimination
comparing DO and DY leaves.

Even if the methods proposed seems to be able to reach the prefixed
purposes, further analysis must be implemented for the study of the CV
masks indices. Furthermore, for an effective application the study of
the disease will need an improvement of the variability of the sample
and development of a cross-validation study to have stronger results in
terms of reliability.
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Table 2.4: Confusion matrix - CV classification algorithm

Set of rules Classification

Index Window Selected Class Actual Error
size (pixel) channel (nm) (%)

HY DY

Average 50×50 652 HY 60% 40% 42%
DY 44% 56%

670 HY 68% 32% 30%
DY 28% 72%

703 HY 72% 28% 28%
DY 28% 72%

980 HY 64% 36% 26%
DY 16% 84%

Standard dev. 10×10 670 HY 68% 32% 24%
DY 16% 84%

Dispersion 10×10 671 HY 64% 36% 28%
DY 20% 80%

HO DO

Average 80×80 546 HO 80% 20% 26%
DO 32% 68%

671 HO 60% 40% 22%
DO 4% 96%

980 HO 60% 40% 28%
DO 16% 84%

Median 70×70 546 HO 80% 20% 24%
DO 28% 72%

671 HO 60% 40% 20%
DO 0% 100%

980 HO 48% 52% 32%
DO 12% 88%

DO DY

Average 50×50 486 DO 96% 4% 18%
DY 32% 68%

670 DO 96% 4% 16%
DY 28% 72%
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CHAPTER3
Technical-economic analysis in crop

protection equipment at increasing
technological levels

Plant protection products (PPPs), commonly referred as pesticides,
play a crucial role in securing worldwide food and feed production,
especially in high-intensive agricultural areas. On the other hand pes-
ticides use and misuses represent a major public concern about impact
of agriculture on environment of food products.
To address these concerns, the reduction of pesticides use is one the
main objectives of the policy actions related to agriculture sustainabil-
ity. For example, this is the strategic theme of the framework direc-
tive 2009/128/EC, which proscribes to the state member of European
Union action plans for reducing the dependence of agriculture on pes-
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ticides.
These objectives can be reached through the implementation of differ-
ent and complementary approaches, including: rotation of crops and
selection of resistant varieties; crop management techniques; planning
of appropriate scouting practices; introduction of thresholds for trig-
gering protection treatments; application of biocides and beneficial or-
ganisms.
A primary contribution can also come from the technological advances
in the equipment used to carry out the protection treatments. This can
play a fundamental role in allowing improved capability of pesticide
deposition on the plant, and in particular by enabling the practical im-
plementation of precision spraying, i.e. the possibility of varying the
amount of pesticide distribution across the field according to the site-
specific characteristics of the crop, in opposition to a uniform applica-
tion of treatments to the fields.
At this point of the dissertation the economic sustainability in adopting
advanced system for disease management will be investigated. The
analysis is conducted on specialty crops which are high value crops
and are considered to be the first field of application of new technolo-
gies.

3.1 Theoretical background

3.1.1 Machine performance

In order to contextualize the theoretical basis for the study it will pre-
sented the main standards for the agricultural machinery management.
The importance of this aspects is given by possibility to provide those
who manage agricultural machinery operations assistance in determine
optimum practices.
Optimum farm machinery management occurs when the economic
performance of the total machine system has been maximized. The
performance of a machine system is profitable only when it can add
value to products and processes beyond the system’s cost of operation.
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Field capacity The economic performance of a machinery system is
measured in terms of dollars per unit of output (ha h−1; e ha−1; etc.).
To summarize the three components of economic performance are:

1. Machine performance;

2. Power performance;

3. Operator performance.

Referring to ASABE Standards (2013) field efficiency is the ratio be-
tween the productivity of a machine under field conditions and the
theoretical maximum productivity. Considering the field efficiency ac-
counts for failure to utilize the theoretical operating with of the ma-
chine; time lost because of operator capability and habits and operating
policy; and field characteristics. It is very important to underline that
field efficiency is not a constant for a particular machine, but varies
with the size and shape of the field, pattern of field operation, crop
yield, moisture and crop conditions. A rate of machine performance
is reported in terms of quantity per time and represents the machine
capacity. To evaluate the effective field capacity Ca (ha h−1) we have
to take in account:

s is field speed, km h−1;

w is the working width, m, (i.e. the inter-row distance);

Ef is field efficiency, decimal.

Ca =
swEf

10
(3.1)

where: Ef accounts the incidence of idle time on working time.
The term theoretical field capacity is used to describe the field capacity
when the field efficiency is equal to 1.0, i.e., theoretical field capacity
is achieved when the machine is using 100% of its width without in-
terruption for turns or other idle time.
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Material capacity is expressed as:

Cm = swyEf
10

Where

Cm is material capacity, t h−1;

s is the field speed, km h−1

w is the working width, m;

Ef is field efficiency, decimal;

y is unit yield of the field, t ha.

Part of the performance of the machinery is the transporting of ma-
terials. Harvesting machinery gather and process grain and forage;
seeding machines distribute seeds and fertilizers; atomizers distribute
pesticides. In this contest it is possible to talk of material efficiency. In
the case in which the quality of the transported product is influenced
by the machine the most realistic measure of material efficiency must
be the reduction of the value of a material after being handled by a
machine compared to the value it would have with no material losses
or deterioration.

Theoretical capacity Field efficiency decreases with increases in the-
oretical capacity. One can feel intuitively that a minute wasted with
a large machine represents more loss in potential production than the
same minute loss with a smaller machine (Hunt and Wilson, 2015).
Field capacity we saw depends on the travel speed: increasing the field
speed will decrease the actual working time required. At the same
time, if time losses remain the same the field efficiency will be less:
it is better not use slow speeds to keep the numerical value of field
efficiency high. Field speeds may be limited for the following factors:

• overloading the machine’s functional units;
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• inability of the operator to control the machine accurately;

• loss of function and structural damage to machine due to rough
ground surface.

Another point which we took in account during the technical eco-
nomic analysis is the machine manoeuvrability. Of course machine
used inside the speciality crop field are designed to permit them to
make short turns at the end of the rows. Nevertheless, considerable
time is necessary to manoeuvre the machine. The turning radius of
implements is an important factor affecting the time lost in end travel
and at corners.
Field pattern permit to improve the field efficiency, of course the pat-
tern depends on the size and shape of the field. The main objective
in establishing an efficiency pattern is to minimize the amount of field
travel. In fact, nonworking turns, the travel distance in a turn and the
amount of nonworking travel in the interior of a field are all valuable
time and energy which can be avoided or should be eliminated.

Considering the field efficiency we can say that is represented by
the ratio between the productivity of a machine under field conditions
and the theoretical maximum productivity. Field efficiency accounts
for failure to utilize the theoretical operating width of the machine;
field efficiency is not a constant for a particular machine, but varies
with the size and shape of the field, pattern of field operation, crop
yield, crop moisture, and other conditions. If we want to summarize
the majority of the time lost in the field is given by:

• turning and idle travel;

• materials handling;

• cleaning clogged equipment;

• machine adjustment;

• lubrication and refuelling
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Field efficiencies are not constant values for a specific machine but
vary widely. The theoretical time (τt, h) required to perform a given
field operation varies inversely with the theoretical field capacity and
can be calculated using the following equation:

τt =
A

Cat
(3.2)

where

Cat is the theoretical field capacity, ha h−1;

A is the area to be processed, ha.

The actual time required to perform the operation will be increased
by a factor dependant on overlapping, time required for turning on the
ends of the field, time required for loading or unloading materials, etc.
Such time losses lower the field efficiency below 100%.

Ef =
τt

τe + τh + τa
(3.3)

where

τe = τt/w

w = fraction of implement width actually used

τa = time losses that are proportional to area, h

τh = time losses that are not proportional to area, h

τa-type losses are for example unclogging of spray nozzles, adding
filling fertilizer or seed boxes, or filling spray tanks. Regarding τh-
type losses are proportional to effective operating time, τe; including
rest stops, adjusting equipment, and idle travel at field ends if such
travel is at normal operating speed. τh concerns the field shape; it can
have less importance compared to τe if we are working in a narrow
field.
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Operator performance

The way in which the machine is managed inside the field is one of the
component of the economic performance of a machine system. Today
electronic devices are used to five more information to the operator.
Automation of machine guidance functions has been an interest for
agricultural researcher since the beginning of agricultural mechaniza-
tion.
Precision agriculture has contributed in advance vehicle guidance firstly
in terms of providing position information that is required for vehicle
guidance. Secondly, precision agriculture has placed the notion of ve-
hicle automation within the conceptual boundary of equipment manu-
facturers and agricultural producers.
Automatic guidance in tractor present into the market permit to avoid
te human operator for steering, an operator of such a tractor or machine
might still be needed for detecting contingencies and making decisions
Srivastava et al (2006).

3.1.2 Machinery costs

In a farm like in any other economic activity costs have a great influ-
ence on profit. For farmers who don’t have control on product price
the revenue is fixed and profit depends only on the cost.
Machinery costs are divided in costs of ownership and operation as
well as penalties for lack of timeliness. Usually ownership costs are
called also fixed costs or overhead costs due to their amount is not de-
pendent of the use of the machine itself. Conversely operating costs
are strictly dependant of the time in which the machine is used. The
sum of operative costs and ownership costs are defined total machine
costs. Total per-hectare cost is calculated by dividing the total annual
cost by the area covered by the machine during the year.
Per-hectare ownership costs vary inversely with the amount of annual
use of the machine. Therefore, a certain minimum amount of work
must be available to justify purchase of a machine and, the more work
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available, the larger the ownership costs that can be economically jus-
tified.

Ownership costs Ownership costs include depreciation of the ma-
chine, interest on the investment, and cost of taxes, insurance and hous-
ing of the machine.
Depreciation is often the largest cost of farm machinery (Srivastava
et al, 2006), measures the amount by which the value of a machine de-
ceases with the passage of time whether used or not. The actual total
depreciation can be never be known until the equipment has been sold
(ASABE Standards, 2013). To estimate the depreciation at the end of
each year the value of a machine is compared with its value at the start
of the year (fig. 3.1). The difference is the amount in depreciation.
The estimated values of aged farm machines are established at farm
sales, at specialized machinery auctions, and by farm equipment deal-
ers through use of guides. There are significant variations due to make
and models.
The machine’s value at the end of its life (Vend, e) is given by:

Vend = V0(1 −Dr)l (3.4)

where:

V0 is the value of the new machine, e;

Dr is the depreciation rate, %;

l is the effective life of the machinery, year.

Factors of depreciation:

Physical obsolescence: The parts of the machine become worn whit
use and cannot perform as effectively as previously. These parts
are the economically irreparable mechanism in a machine (ex.
machine frame);

118



3.1. Theoretical background

2 4 6 8 10 12 14

Effective life (yr)

0

10

20

30

40

50

60

70

80

90

100
V

e
n
d
 V

a
lu

e
 a

t 
th

e
 e

n
d

 o
f 

th
e

 l
if
e

 (
%

 o
f 

V 0
)

D
r
 = 12.5%

D
r
 = 18%

D
r
 = 19.5%

D
r
 = 23%

D
r
 = 25.5%

Figure 3.1: Estimation of Vend in function of the effective life of the machin-
ery (l), and of the depreciation rate (Dr)

Operative costs growth: The expense of operating the machine at its
original performance increases as more power, labour, and repair
costs for the same unit of output are required;

Economic obsolescence: A new, more efficient machine or practice
become available. The existing machine may be functionally ad-
equate but because of new technology it is uneconomic to con-
tinue to operate it.

Farm characteristic: The size of the enterprise is changed and the
existing machine’s capacity is not proportionally adequate.

The main concepts which we have to take in account in machine eco-
nomic management are: the physical life, accounting life, and eco-
nomic life. The physical life ends when a machine cannot be repaired
due to the absence of repair parts or irreparable part failures. The ac-
counting life is the predicted life of a machine based on survey use of
existing machines and from the design life for new machines. Usually
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the accounting life is expressed in hours so we can calculate the pre-
dicted life in years by dividing the wear-out life by the annual use of
the machine itself.
The economic life is very important and is defined as the length of
time from purchase of a machine to that point where is more economic
to replace with a second machine than to continue with the first. It’s
very important to underline that at this time a machine may still have
considerable service life but for an economic analysis it must be re-
placeable. In the case in which the machine is sold the price paid
by the second owner will determine the depreciation cost to the first
owner.

The interest on investment in a farm machine is included in op-
erational cost estimates. Nominal interest rates include expected in-
flaction and the time value of money invested in the machinery it they
were not invested. Due to the trend of depreciation the amount will be
variable each year. Considering ASABE Standards (2013), a method
for determining the capital costs of ownership which includes the time
value of money makes use of a Capital Recovery Factor, (CRF). The
investment in the machine is multiplied by the proper CRF to give a
series of equal payments over the life of the machine which includes
both the cost of depreciation and interest.

R = (P − S)
⎡⎢⎢⎢⎢⎢⎣

( iq) (1 + i
q)
nq

(1 + i
q)
nq
− 1

⎤⎥⎥⎥⎥⎥⎦
+ Si
q

(3.5)

where:

R is one of a series of equal payments due at the end of each com-
pounding period, q times per year;

P is principal amount;

i is interest rate as compounded q times per year;
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n is life of the investment in years;

S is savage value.

Other expenses are considered taxes, insurance and machinery shelter.
Due to the high variability of this expenses they were evaluated as a
percentage (1.5 - 2%) of equipment initial value V0. In detail we have:

• taxes 1%;

• housing 0.75%;

• insurance 0.25%;

To evaluate the total annual ownership costs ASABE Standards
(2013) propose to multiply the purchase price of the machine by the
ownership cost percentage which can be calculated with the following
equation:

Co = 100 [1 − Sv
L

+ 1 + Sv
2

i +K2] (3.6)

where:

Co is the ownership cost percentage;

Sv is salvage value factor of machine at end of machine life, decimal;

L il machine life, yr;

i is interest rate, decimal;

K2 is ownership cost factor for taxes, housing, and insurance.

Costs of operation

Costs for operation vary directly with the amount of use and are often
called variable costs. This types of costs are associated whit the use of
machine. They include the costs of labour, fuel and oil, and repair and
maintenance.
Variable costs may be greater than ownership costs, for some high-use
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machines. The actual estimation of variable costs is usually based on
hours of use of the machinery. The cost of the operator is relatively
easy to estimate, it is not possible tell the same think for repair and
maintenance factor.
Repair and maintenance costs (Crm, e h−1) are the expenditures for
parts and labour for installing replacement parts after a part failure
and reconditioning renewable parts as a result of wear these costs are
highly variable depending on the care provided by the manager of the
machine but tend to increase with the size and complexity of the ma-
chinery and the with the purchase price of the equipment itself (see
figure 3.2).

Crm = RF1
(El AWt)k−1

Phkl
V0 (3.7)

where:

V0 is the value of the new machine, e;

El is the economic life, year;

Phl is the estimated physical life, h.

RF1 is the fraction of V0 which is needed to cover Crm along l;

k is a coefficient which define the intensity of variation of the hourly
Crm costs. Higher values are for machinery which have low
hourly costs of use (tractors, 1.9), lower values are for equip-
ment with high hourly cost for low intensity in use (sprayer, 1.3)

To predict the fuel consumption for a specific operation it is nec-
essary to determine the total tractor power for the executing operation
and the specific fuel consumption of the tractor cst (g kWh−1).

cst = csmin [2 − (2 − λ

λ0
) λ

λ0
]

where:

csmin is the minimum specific fuel consumption (220 g kWh−1);
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Figure 3.2: Maintenance and repair cost variation at different k coefficients
(V0 = 100000 e; RF = 0.8; Phl = 12000 h; El = 12 yr)

λ is the average engine load, decimal;

λ0 is the engine load in which there is the minimum specific fuel
consumption.

Engine oil consumption is based on 100 h oil change intervals, and
is defined as the volume per hour of engine crankcase oil replaced at
the manufacturer’s recommended change interval. ASABE Standards
(2013) help in estimating the oil consumption (l h−1) considering dif-
ferent motor types:

Gasoline 0.000566 Pn + 0.02487

Diesel 0.00059 Pn + 0.02169

LPG (liquefied 000041 Pn + 0.02

petroleum gas)

For our purpose we calculate the lubricant costs amount with the
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following equation

Coil = 0.0004956 Pn + 0.01822

where Pn is the power of the tractor (kW) and the values expressed are
empirical data. Coil is expressed in kg h−1.
Regarding the labour cost should be determined from alternative op-
portunities for use of time when the operator coincide with the owner
of the farm, but for a hired operator a constant hourly rate is appropri-
ate.

3.1.3 Machinery selection and replacement

The chose of the appropriate field capacity for a machine is a very im-
portant issue. The final purpose for the farm operator is to have the
maximization of profit with the optimal capacity. There is a positive
correlation between the per-hectare machinery costs and the farm size
because the land area is fixed and larger machine cost more than the
small machines. Timeliness is an important factor in almost all the
farm operations. In this sense the larger machines are able to complete
the work quickly but are more expensive than the smaller one. In situa-
tion like orchard or vineyard the influence of the type of farming is the
bottleneck for the machine dimension. Timeliness costs rise sharply
when machines are too small to complete the work in a timely manner
(Srivastava et al, 2006).

Mathematically, the field capacity giving least total cost for an in-
dividual machine can be determined by combining all of the cost equa-
tions into one equation and differentiating with respect to field capac-
ity.

Caopt =
√

A

CosKp

[Lc + Tfc +
KτAY V

λoTPwd
] (3.8)

where:

Caopt is the optimum field capacity, ha h−1;
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Lc is the labour cost, e h−1

Kp unit price function

A value for Tfc can be determined by using the following equation:

Tfc =
Co
τAt

(3.9)

where:

Tfc is the amount charged to machine for tractor use, e h−1

Co is the annual ownership cost of tractor

τAt total annual use of tractor, h yr−1

When the machine life is finished due to the economic life is over
or the physical life reached the limit the equipment have to be replaced.
How previously mentioned a machine can finish its life also due to the
repair parts are no longer available or when the replacement can pro-
duce a greater profit.
Usually processing machines (balers, combines, atomizers, etc.) be-
comes obsolete faster than tractors. The substitution is essential when
the frequency of breakdowns become so large to represent a problem
executing the works. Large economic penalties can result when field
work is delayed and an unreliable machine can cause delays.

To resume machines, have to be replaced when:

• Accidents have damaged the implement beyond repair;

• Field capacity of the machine is inadequate because of an in-
crease in the scope of the operation

• a new machine or farm practice makes the old machine obsolete

• anticipated costs for operating the old machine exceed those for
a replacement machine
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Time of replacement decision depends on the accumulated costs over
a period of years (Hunt and Wilson, 2015). The incidence of the cost is
very high during the first year because a real marketplace depreciation
obtained from the estimated value method. After the first period the
incidence of fixed cost drop and raise the value of repair and mainte-
nance. The optimum replacement time is at crossing point since the
accumulated cost curve (fixed cost and variable costs) is at a minimum
and is expected to rise after that point.
To predict when a machine has to be replaced is necessary to know an
average expected use of the machine per each year to have an idea of
the annual fixed cost and annual variable costs. Replacement time is
the point at which accumulated costs divided by accumulated use is
minimum. Of course the best method to predict the optimum replace-
ment time is based on marketplace remain value previously exposed
(see equation (3.4)).

The very important factor today is the determination of the obso-
lescence which increase at each year at a constant rate. An obsoles-
cence factor can be defined as the rate of drop in machine value with
time as desirable new features are added to new models. An obsoles-
cence factor, ObF, can be estimated. Supposing a machine of 15000 e
with a straight line depreciation. If the economic life of the machine
is 20 years but for us it become worthless after 10 years, the cost of
obsolescence would be e 7500/10 i.e. 750 e yr−1.

3.1.4 Sensitivity analysis

For our study we took in account also the sensitivity analysis of a
model. The output of this technique aims to quantify the relative im-
portance of each input model parameter in determining the value of
an assigned output variable (Homma and Saltelli, 1996). Many tech-
niques are developed around the sensitivity analysis, and they can be
classified in two main branches: local S.A., and global S.A.

Local sensitivity analysis looks at the modification of the model
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output to small changes in the model inputs. The slope, or derivative,
of the model response in a very small neighbourhood is used to esti-
mate the local sensitivity of a function.

δy

δx
∣x0

where x0 specifies the neighbourhood in which the local sensitivity is
to be estimated and δ represents the small change or partial derivative
on the function.
Local S.A. can be very quick and informative method of understanding
how model output responds to its uncertain factors but only for small
factor changes and so does not directly provide the sensitivity of the
model response over the whole of the range of uncertainty.

Global S.A. focuses on the output uncertainty over the entire range
of values of the input parameters. The values of input are in a range
specific for each parameter. S.A. can then help to identify key param-
eters whose uncertainty affect most the output, helping in establish
research priorities. At the same time the opposite problem it is possi-
ble to investigate the interrelationship between system description and
different scales (Petropoulos and Srivastava, 2016).
In an uncertainty setting, this means have a function Y = f(X) whit
n uncertain factors X = {X1,X2, . . . ,Xn} and we want to understand
how the uncertainty in X leads to uncertainty in Y and, in particular,
how the individual elements of X, lead to uncertainty in Y across the
range of Gi which represents the uncertainty distribution.
One-at-a-time sensitivity analysis methods are a way of testing the ef-
fect of perturbation of uncertain model factors on the model one at
a time (Daniel, 1973). This approach was used during the technical-
economic analysis.
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3.1.5 Social-economic impact of automation

How previous explained (paragraph 1.1) one the objective of the study
is the exploration of the possibility of the introduction of completely
autonomous machinery in precision pest management. It seems inter-
esting to understand how automation is changing the human role in
production, services, organizations and innovation. All these changes
are going to alter also the society stratifications, human values, require-
ment in skills and individual conscience. Automation means all kinds
of activities perfected by machines and not by the intervention of direct
human control. How it is easy to understand this definition can cause a
series of concerns regarding the human factor in the development. The
concept, which give us an idea about the question is the man-machine
paradox because the human role in all kinds of automation is a continu-
ously emerging constituent of man-machine symbiosis, with feedback
to the same (Nof, 2009).

Due to the diffusion of automated systems in everyday life it is
very difficult to separate the progress of the technology from general
trends and usage. It is enough to think that about 70% of all the aircraft
function are related to automation and the limit is related only to hu-
mans rather than to technology. What is important to understand is that
the crucial point is the changing of human roles due to mechanization-
automatization processes. Trying to compare the impact of automation
in the society we have to think about the end of slavery and the conse-
quent development of mechanization or about the acquisition of equal
right for women during the past century. The most important effect
is a direct consequence of the statement that the human being is not a
draught animal anymore, and this is represented in the role of physical
power.

The introduction of automation in agricultural activities implies ef-
fects in the production function of the company and it has an effect on
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costs flexibility. The transformation of a labour-intensive process into
a capital-intensive one implies the modification of cost structure of
the enterprise by increasing the capital cost while reducing the labour
costs.
Let the total cost CT be defined by the cost of the three factors, namely
intermediate goods, labour, and capital respectively

CT = pXX +wL + cKK (3.10)

where

pX is the unitary cost of the intermediate goods;

X quantity of intermediate goods;

L quantity of labour;

w unitary cost of labour;

K denotes the quantity of capital;

cK denotes the unitary cost of capital

Referring total cost to the production Q, the cost per production
unit c can be stated assuming constant capital value in the short term

c = CT
Q

(3.11)

On the contrary, in capital-intensive systems, the presence of large
amounts of automation induces the following effects:

1. Labour productivity λA surely greater than that which could be
obtained in labor-intensive system (λA > λ∗X);

2. A salary wA that dows not require incentives to obtain optimum
efforts from workers, but which implies an additional cost with
respect to the minimum salary fixed by the market (wA ⋚ w∗

E), in
order to select and train personnel
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3. A positive correlation between labour productivity and produc-
tion quantity, owing to the presence of qualified personnel who
the enterprise does not like to substitute, even in the presence of
temporary reductions of demand from the final product market

λA = λA(Q), δλA/δQ > 0, δ2λA/δQ2 = 0 (3.12)

4. A significantly greater cost of capital, due to the higher cost
of automated machinery, than that of a labor-intensive process
(cKA > cK), even for the same useful life and same rate of inter-
est of the loan.

According to these statements, the unitary cost in capital intensive sys-
tem can be stated as

cA = pXβ +wA/λA(Q) + cKAK/Q (3.13)

Denoting by profit per product unit π the difference between sale price
and cost

π = p − c (3.14)

The relative advantage of automation D, can be evaluated by the fol-
lowing condition

D = πA − π (3.15)

Except in extreme situations of large underutilization of production ca-
pacity, the inequality w∗

E/λ∗L > wA/λA(Q) denotes the necessity con-
dition that assures that automated production techniques can be eco-
nomically efficient. In this case, the greater cost of capital can be
counterbalanced by greater benefits in terms of labor cost per product
unit.
The result shows that automation could be riskier than labour-intensive
methods, since production variations induced by demand fluctuations
could reverse the benefits.
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Automation in economic activities is characterized by dominance
of capital dynamics over the biological dynamics of human labour.
Automation plays a positive role in reducing costs related to both la-
bor control, and supervisors employed to assure the highest possible
utilization of personnel. In spite of this positive effect there is a greater
rigidity of the cost structure: some variable cost change into fixed
costs. This induces a greater variance of profit in relation to production
volumes and a higher risk of automation in respect to labour-intensive
systems (Ravazzi and Villa, 2009).

3.2 Analysed scenarios and applied methodology

3.2.1 The considered crops and the adopted protection protocols

In this work two speciality crops were considered as case studies:
grapevine (Vitis vinifera) and apple orchard (Malus domestica), two
of the most diffused crops worldwide. To define a general protection
protocol of these specific crops, we focused on the most relevant and
frequent diseases found in the intensive production areas of Central-
Southern Europe, and we relied on the typical crop protection strategy
generally adopted in these areas.
To conduct the technical-economic analysis is necessary to prelim-
inary define the main crop management and protection parameters
adopted: number of treatments per season, time available to carry out
the treatments, used active ingredients (AI) and their costs, application
rates, and row distance in orchards.
The quantification of the number of treatment executed in one pro-
ductive season, the costs and the application rate of pesticides most
diffused and the machine field speed were referred to best practices
adopted in this region.
All technical data are based on technical literature review (Anon, 2016a;
Bohren et al, 2016a,b; Anon, 2016d,e,b) and personal communications
from crop protection experts advisers and growers.
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Grapevine scenario

Under the considered pedoclimatic conditions, the most diffused and
important diseases in grapevine are due to the pathogenic fungi Botry-
tis cinerea (grey mold), Plasmopara viticola (downy mildew) and Erysiphe
necator (powdery mildew) (Brewer and Milgroom, 2010; Williamson
et al, 2007). Usually the protection against the last two pathogens is
conducted within the same treatment, and it consists on average of 10
to 15 fungicide applications per season. On the other hand, B. cinerea
typically requires 1 to 3 specific treatments per season.
The available time to carry out an effective protection treatment is
largely depending on local specific condition. Nevertheless, a reason-
able range might be considered between 2 and 4 days. In our analysis
a conservative value of 2 days was assumed for all the diseases con-
sidered.
Fungicide active ingredients typically used to protect vineyards from
downy and powdery mildew are fosetil aluminium, ditihocarbamate,
cyazofamid, sulfur, penconazol and few others; while for grey mold
pyrimethanil, boscalid, fluopyram and others specialised fungicide are
used.

The cost range for different active ingredients is varying with dis-
eases. An average cost of 10 to 35 e kg−1 and of 25 - 50 e kg−1 is
typical for powdery mildew and downy mildew respectively. Against
grey mold, the AI costs ranges from 80 and 120 e kg−1.
A certain variability can be also found in AI application rates: for
downy mildew and powdery mildew application rates of 3.5 to 7 kg ha−1

and from 1 - 3.5 kg ha−1 are adopted. For grey mold the adopted AI ap-
plication rates ranges from 0.8 - 2 kg ha−1 and, as a particular feature,
it must be noted that for this treatments the spraying equipment is set
to only target on a limited (50 - 70 cm) band of the canopy height cor-
responding to the so called "cluster belt" where all the berry bunches
grows.
Based on this general framework and considering a typical inter-row
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distance of 2.3 m in vineyard, we assumed the parameters detailed in
table 3.1 as representative for grapevine protection scenario. The treat-
ments against powdery and downy mildew are all referred as TRG1
treatments group. On the other hand, due to the specificity of protec-
tion treatments against grey mold, their operative characteristics are
separately referred as TRG2 treatments group.

Apple scenario

Under the considered pedoclimatic conditions the most diffused and
important diseases in apple crop are due to the pathogenic fungi Ven-
turia inaequalis (apple scab) and Podosphaera leucotricha (powdery
mildew) (Williams and Kuc, 1969). Usually the protection against the
two pathogens is conducted within the same treatment. The number of
application is largely depending on local whether conditions and can
typically range from 15 to 32 fungicide applications per season.
Also the time available to carry out an effective protection treatment
strictly depends on local specific conditions. A reasonable range might
be considered between 2 and 4 days. In our analysis a conservative
value of 2 days was assumed for all the diseases taken in considera-
tion.
Fungicide active ingredients typically used to protect apple orchards
from apple scab and powdery mildew vary from the traditional and
relatively inexpensive copper oxychloride to high-priced cyprodinil.
Other active ingredients that are used in protection protocols are bupir-
imate, dithianon, pirimetanil.
The cost range for these active ingredients varies on average 20 to
50 e kg−1.
A certain variability can be also found in the application rates varying
from 1 kg ha−1 to 5 kg ha−1 per treatment.
Based on this general framework and considering a typical inter-row
distance of 3 m in apple orchard, we assumed the parameters detailed
in table 3.1 as representative for the apple protection scenario. All the
treatments on apple are referred as a common TRA treatments group.
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Table 3.1: Protection treatment parameters considered for the
technical-economic analysis.

Grapevine Apple

TRG1(a) TRG2(b) TRA(c)

Number of treatments (n yr−1) 13 2 25
Available time (d tr−1) 2 2 2
AI cost (e kg−1) 18 90 32
AI application rate (kg ha−1) 5 1 1.5

(a) TRG1 refers to protection treatments on grapevine against
powdery and downy mildew

(b) TRG2 refers to protection treatments on grapevine against
grey mold

(c) TRA refers to all the protection treatments on apple

3.2.2 The different spraying equipment considered

Technological characteristics of the spraying equipment

In this analysis three different spraying equipment, hereafter referred
as L0, L1 and L2 (figure 3.3), were considered. These types of ma-
chines are characterised by the adoption of different technological lev-
els which enable increasing capability of adapting the application rate
and the spraying pattern to the site-specific canopy characteristics. As
consequence, we assume for each technological level an associated
saving in pesticide application, without any negative effect on crop
protection efficiency.
Machines characteristics are defined in accordance with actual mod-
els present in the market, or with latest evidences from literature when
more advanced equipment is considered. To conduct economic analy-
sis of machinery, average market prices were adopted whenever pos-
sible. In contrast, when considering higher level of automation nowa-
days proposed only as prototypes, machinery cost was estimated by
using current costs of technological components and including a raw
assessment of industrial development cost.
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The main characteristics of the different technological levels of the
spraying equipment are described in the following:

L0 refers to state-of-the-art equipment, i.e. the conventional tractor-
coupled air-blast sprayer used for vineyard and orchard crop pro-
tection. The spray application to the crop is conducted at a con-
stant flow-rate which, in turn, corresponds to a homogeneous ap-
plication rate, provided that field speed is kept constant during
the treatment. The application accuracy of this equipment highly
relies on: 1) the calibration of spraying patterns; 2) the calibra-
tion of the air-flow carrier pattern; 3) the homogeneity of canopy
shape and volume across all the orchard/vineyard plots. In real
field situation this generally leads to an AI over-application where
the canopy volume is lower, and to AI deficiency when it is
higher (Gil et al, 2013).
In our analysis, L0 represents the equipment reference level against
which the possible cost and benefits of more advanced technolo-
gies are quantified.

L1 refers to an air-blast sprayer equipped with: 1) a sensing systems
(e.g. ultrasonic sensors) able to detect the canopy presence in
the sprayed area; 2) a control system which can correspondingly
switch on or off each single nozzle in real time during the treat-
ment.
Therefore L1 is assumed to be capable of distributing pesticides
only in presence of canopy, while some or all the nozzles are
switched off when vegetation is not present (e.g. canopy gaps,
heterogeneity in plant size, raw turnings etc.).
Examples of such spraying equipment can be found in Balsari
and Tamagnone (1998); Moltó et al (2001); Downey and Giles
(2005). The use of this typology of machines allowed significant
reported savings when compared to a corresponding homoge-
neous application rate (i.e. obtained with L0 equipment). The
obtained savings depends on the operative conditions, and they
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Table 3.2: Agrochemical savings assumed in this study for L1 and L2 tech-
nological levels compared to L0.

Grapevine Apple

TRG1 TRG2 TRA

L0 0% 0% 0%
L1 20% 10% 20%
L2 35% 20% 35%

range from about 10%, when treating vineyard with rather homo-
geneous managed canopy, up to more than 35% for young olive
trees exhibiting large gaps between single plants vegetation.

L2 refers to air-blast sprayer equipped with: 1) an advanced sensing
system (e.g. LIDAR sensors or time of flight 3D cameras) able
to detect the shape and volume of the sprayed canopy; 2) a con-
trol system which correspondingly vary the flow-rate sprayed by
each single nozzle proportionally to the vegetation target; fur-
thermore, actuators are controlled to real-time adjust the noz-
zles and air-deflectors geometry in order to adapt the air-carried
spraying pattern to the canopy characteristics. Examples of sim-
ilar equipment are described by Solanelles et al (2006); Escolà
et al (2007); Balsari et al (2009); Gil et al (2013); Escolà et al
(2013). The reported savings obtained with these advanced pro-
totypes are in a range of 25% to 45%, depending on the specific
considered conditions.

Based on the results reported in scientific literature, for technological
level L1 and L2 we assumed savings in agrochemicals compared to
L0, as indicated in table 3.2. These savings are related to grapevine and
apple crops protection protocols, and imply no reductions in protection
efficiency when compared to conventional treatments.

136



3.2.
A

nalysed
scenarios

and
applied

m
ethodology

(a) Level 0

(b) Level 1 (c) Level 2

Figure 3.3: Schematic representation of the three considered typology of spraying equipment at increasing technological level.
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Operative characteristics of spraying equipment

In order to compare the profitability of the L1 and L2 technological
levels compared to L0, it is necessary to compute their corresponding
field capacity (3.1).
Regarding the field capacity among other parameter it depends on the
travel speed, which is a very important parameter due is limited by the
characteristics of the equipment used, but essentially from the type of
operation conducted. A good operator test and judge the crop and soil
conditions and then operate as fast as possible.
In the analysis it was define a field speed (table 3.3) adequate to the
condition of fields in the soils in the geographic region considered and
acceptable for the spraying operation according to the references (Hunt
and Wilson, 2015; ASABE Standards, 2013; Srivastava et al, 2006).
For spraying operation, idle time is mainly the time for turns and for
tank fillings. In our analysis we assumed an incidence of turns conser-
vatively equal to 15% of spraying time. This is due to in orchards and
vineyards usually small machines are used which are able to cover a
narrow angle easily.
In the analysis we suppose fields with a shape optimized for the opera-
tions, it means that in fields we have the minimization of: nonworking
turns, the travel distance in a turn, and the amount of nonworking travel
inside the field.
The same consideration of optimal field structure was done consid-
ering the filling time, it was supposed a standard distance from the
source of water for all the farm sizes selected. Filling time, thanks to
spray savings obtained with L1 and L2 technological levels, is con-
sidered proportionally decreasing in association with L0, L1 and L2
equipment respectively.
In detail, filling time was assumed 25% of spraying time for L0, while
this value was reduced according to savings (table 3.2) for L1 and L2
equipment. This leads to the following expression for the field effi-
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ciency of the spraying equipment:

Ef =
1

1 + τt + τf (1 − S) (3.16)

where:

Ef is the field efficiency, decimal;

τt is the turning time incidence, decimal (in our case 0.15);

τf is the filling time incidence, decimal (in our case 0.25);

S is the specific degree of savings in agrochemicals for each techno-
logical levels, decimal.

Given the field speed s (set at 6 km h−1 for all the three equipment),
and substituting Ef as resulting in Equation (3.16), is then possible to
obtain the equipment effective field capacity by Equation (3.1).
Another important consideration is the definition of the number of ma-
chinery necessary to perform the operation in an tolerable time. Con-
sidering to have a defined area A (ha) after the evaluation of the effec-
tive field capacity of the machine (ha h−1) we can calculate how many
hours a single tractor sprayer combination needs to cover the field. At
the same time the biological characteristics of the disease to be treated
is the bottle neck which define how much time there is for treating the
field, dividing the result of the previous division for the time available
for the treatment (ta). Whether the hours founded exceed the turn shift
which is available for the treatment there is the obligation to add an-
other tractor-sprayer combination to the farm. Summarizing consider-
ing a growing farm area A (ha), and setting the time available for field
work each day (G) at 11 h d−1, it follows that the number of sprayer-
tractor equipment units (Nu) necessary to execute the treatment in the
available time ta (d tr−1) according to the specific protection parame-
ters defined in table 3.1, is:

⌈Nu⌉ =
A

Ca ta G
(3.17)
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Table 3.3: Technical parameters related to different technological levels of
spraying equipment.

Tractor Sprayer

L0 - L1 - L2 L0 - L1 - L2

Engine power (kW) 50 -
Average engine load (%) 65 -
Field speed (km h−1) 6 6
Tank volume (dm3) - 1500
Time available each day (h d−1) 11 11

where ⌈x⌉ represents the ceil function which map a real number to the
largest integer greater than or equal to the value x.
The technical parameters related to the considered equipment at dif-
ferent technological levels are reported in table 3.3. The amount of
power and the amount of energy required for performing various farm
tasks are neither precise nor constant, but we can estimate field oper-
ation energy for any given farm from the performance of an existing
implements. Draft and power are important in selecting tractors and
implements because tractors must be large enough to supply power re-
quirement for the field operation.
In the analysis the power has been chosen in accordance with the
sprayer requirements and tabled values (ASABE Standards, 2013; Sri-
vastava et al, 2006).

3.2.3 Economic analysis of spraying equipment

The economic analysis was applied to vineyard/orchard hypothetical
farms with a growing area A varying from 5 ha to 200 ha. The analy-
sis considered the investment and operating costs of the three types of
spraying equipment and the pesticide costs used for protection treat-
ments.
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Spraying equipment costs

In order to evaluate the costs of the considered spraying equipment, the
methodology defined by ASABE Standards (2013) was applied. This
approach accounts for ownership costs (including depreciation rate, in-
terest rate for the machinery investment, taxes, housing and insurance)
and operating costs (including labour, fuel and lubricants, repair and
maintenance). Table 3.4 summarises the economic parameters used
for applying the ASABE methodology.
In order to compute the operating costs of the equipment, the annual

Table 3.4: Economic parameters related to different technological levels of
spraying equipment.

Tractor Sprayer

L0 - L1 - L2 L0 - L1 - L2

Purchase price (’000 e) 50 12 - 24 - 40
Economic life (yr) 12 6
Depreciation rate (%) 12.5 18
Estimated life (h) 12000 2000
Repair and maintenance factor (%) 80 60
Labour cost (e h−1) 20 -
Annual interest rate (%) 3.5 3.5

work time (AWt, h yr−1) was obtained as:

AWt = ntr
A

Nu Ca
(3.18)

where:

ntr is the number of annual treatments associated to the protection
protocol (table3.1)

AWt value is extremely important because it gives us a forecasting of
the real life of the equipment. For example, supposing we have in one
case AWt equal to 500 h yr−1 and our sprayer has 2000 h of estimated
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life, with an economic life of 6 years. In this case the nominal AWtn

limit for the equipment is given by the ratio 2000/6 = 333.3 h which
is greater than our needs. In this case the physical life is a limit be-
cause 2000/500 = 4 year. It means that we have to replace our sprayer
within the fourth year of usage. Inversely supposing a AWt = 250 in
this case the economic life will be the limit for the replacement of the
equipment.
The cost of the tractors used during the analysis were taken from the
price list of the machines present in the market for all the level of au-
tomation studied (L0, L1, L2). The price is variable in base of the
manufacturer, the intrinsic characteristics of the machines, and also
the reference market (Europe/USA/Asia). In this sense the varibility
is in the order of ±10000 e. The final tractor cost was harmonized for
all the levels to 50000 e.

Considering now the cost of sprayer utilized in L0 we took the price
lists of the major manufacturer companies present in the market. The
price lists were taken in account considering the technological char-
acteristics of the equipment and the operating parameters used in the
analysis. For L0 sprayer system the average price list found it was
12400 e, which was rounded to 12000 e during the simulation. The
standard deviation of the price stood around ±5400 e.
Considering the sprayer in L1 the machine is still not present in the
market but they exist in form of manufacturer prototypes. Sprayers
present in the market have systems to control the flow rate in base
of the machine speed advancement in the field. By a comparison of
the characteristics and a raw estimation of the components hypothe-
sized (see table 3.5) we estimate the total cost of the sprayer in L1 in
24000 e. In fact, on total component cost is necessary to add a per-
ceptual for the manufacturing and of engineering that we quantify in
approx. 40% of total cost. Supposing the use of 6 ultrasonic sensors
in L1 equally distributed in both sides of the machine we quantify the
raw cost of sensors in 2500 e.

142



3.2. Analysed scenarios and applied methodology

Table 3.5: Estimation of the development cost of L2 equipment on the hy-
pothesized component.

L1 Components L2 Components
cost (e) cost (e)

Sensors 2500 7000
VRT system 3000 6000
Controller 4000 5000
Base platform 10000 10000

Total 17500 28000

The situation is completely different in the L2 case due to the absence
both in market and as manufacturer prototype of spraying equipment
with the characteristics presented in section 3.2.2. For this reason, the
main strategy to estimate the purchase price of the machine was the
consultation of the hypothesized machine’s components price list and
an estimation of the industrial development cost. In table 3.5 are sum-
marized the main components of the L2 equipment with the associated
price. Supposing the use of advanced sensors like time of flight cam-
eras or LiDAR sensors the total amount of sensor cost was estimated
in 7000 e. Also in this case we add a perceptual for the manufacturing
and of engineering that we quantify in approx. 40% of total cost.

To estimate the value of the equipment at the end of its life (Vend,
see equation (3.4)) in the analysis we use a uniform rate applied each
year to the annual remaining value of the machine, it means that the
depreciation amount is different for each year of the machine’s life.
The sprayer for the structural characteristics and the intense use it is
subjected it will be a depreciation rate higher than the tractor which
present few intensive used components.
In section 3.1.2 it is described how the annual use of the equipment
influences the operative costs which are for definition variable costs.
The amount relative to the operating costs are added to the fixed costs
described above to arrive at the annual cost for a machine operation.
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Referring to real farm practice and timeliness needs, we assumed that
the tractor coupled to the sprayer is solely employed for protection op-
erations. In detail operating costs include the repair and maintenance
cost, labour costs, fuel and oil consumption.
The average engine load, necessary to quantify fuel and oil consump-
tion, is assumed to be 65%. The cost for fuel and lubricant it was found
in the range of 9 e h−1.
Lubricant consumption is based on 100 h oil change intervals. The
consumption rate of oil ranges from 0.0378 to 0.0946 L h−1 depending
upon the volume of the engine’s crankcase capacity.
The last component of operating cost is the labour cost, which vary
with the geographic location. In the analysis we tried to select a me-
dian value for the labour hourly cost (see table 3.4).

Treatment costs

In order to compare the treatment cost (APC) and corresponding ben-
efit of the different technological levels, it is necessary to compute
the total costs of used pesticides basing on their unitary cost (AIp
in e kg−1), the application rate (AIar in kg ha−1) and the number
of annual treatments (ntr) associated to the protection protocol (ta-
ble 3.1). Thanks to the savings (S, decimal) associated with the spe-
cific technologies (table 3.2), the costs for the treatments conducted
using equipment L1 and L2 were decreased correspondingly.

APC = ntr AIar (1 − S) AIp (3.19)

Total costs of protection treatments

The annual total costs per hectare associated to the use of the three ty-
pologies of equipment were computed by adding ownership, operating
and pesticide costs:

ATC = AOC +AWt OC +APC
A

(3.20)
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where

AOC are the annual ownership costs of the equipment, e yr−1;

OC are the annual operating costs of the equipment, e h−1;

AWt is the annual work time, h yr−1;

APC is the annual protection costs, e;

A is the vineyard/orchard area, ha.

3.2.4 Advanced robotic level as perspective scenario

In a speculation about perspective developments of crop protection
equipment, we hypothesized the introduction of an advanced robotic
platform (hereafter referred as equipment of technological level L3)
able to carry out autonomous protection treatments, and to target the
spraying of pesticide only where needed by the crop, namely on dis-
ease foci and on buffer canopy regions around the infected areas. The
effect of this hypothesis is that is possible to ignore the labour cost in
the formation of operative costs. At the same time we expect high ex-
penses relative to the automation system.
The robotic platform L3 is assumed to be equipped with a disease de-
tection system (e.g. based on multi-spectral or hyperspectral sensors)
and an on-board intelligent classifier, possibly connected with a remote
assisting information system. The robot actuators are assumed to per-
form localised spraying spots onto the identified targets and modulated
application on buffer areas, according to the severity of the symptoms
and the risks of infection’s spreading.
A possible example of such an advanced approach was explored with
the CROPS robotic platform (www.crops-robot.eu). Starting from the
experimental results by Oberti et al (2016), even if very partial, in our
analysis we hypothesized that for both treatments on grapevine and
apple crops the robotic technology corresponding to this perspective
scenario L3 can enable pesticide saving of 75%, as compared to the
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reference scenario L0. Also in this case, the savings are assumed to be
obtained without negatively affecting the protection capability of the
selective treatments.
Inherently this selective approach, it is the fact that not all the crop
area is covered by periodical treatments conducted on a regular ba-
sis. Therefore, to guarantee an effective crop protection, the robotic
platform must be able to monitor every point of the vineyard/orchard
within a safe time interval, so that when an infection focus emerges it
can be selectively treated at a conveniently early stage of development.
In our analysis, we set this revisit time tR at 3 days, i.e. the time inter-
val needed by the robot for a complete monitoring of the whole crop
area.
Furthermore due to the fully autonomous operation capability of tech-
nological level L3, the robotic platform is assumed to work on average
of 20 h d−1. Finally, in consideration of the needed capability of oper-
ating at high spatial resolution, we considered an average field speed
of 1.2 km h−1.
The conditions described cause a change in the evaluation of the treat-
ment costs (equation (3.19)), in particular the number of annual treat-
ments cannot be considered the same of other levels studied. Sup-
posing the machine working all day long we have a productive period
(Pp) of approx. 130 days per year, during this time span the machine
constantly is looking for disease in the field also without effectively
spraying the canopy. In this context the annual number of passes (np)
in the field is given by the following equation

np =
Pp
tR

Given these parameters, summarized in table 3.6a, the number of robotic
platforms needed to manage a given farm area was computed with
equation (3.17). In table 3.6b are reported the economic parameters
used in the analysis.
The volume of the tank in the robotic platform was dimensioned in
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Table 3.6: Technical - economic parameters associated to the robotic level
(L3).

(a) Technical parameters

Robot

L3

Engine power (kW) 20
Average engine load (%) 80
Field speed (km h−1) 1.2
Tank volume (dm3) 250
Work time available each day (h d−1) 20

(b) Economic parameters

Robot

L3

Purchase price (’000 e) -*

Economic life (yr) 6
Depreciation rate (%) 12.5
Estimated life (h) 10000
Repair and maintenance factor (%) 100
Annual interest rate (%) 3.5
* To be determined by the analysis

accordance with the theoretical daily needs. Looking at the most in-
tensive scenario represented by the apple orchard with 25 applications
per year, the total brew applied is around 35 m3 which, considering
savings in order of 75%, for the entire productive season it will be
used only approx. 26 m3. How previously explained considering Pp
equal to 130 we have that the average total daily amount of liquid ma-
terial applied is expected in 200 dm3. Conservatively the dimension of
the tank was increase of 25% in comparison with the expected daily
amount of liquid material to overcome peak demand.
The aim of the study of the robotic level L3 is to quantify the max-

imum purchase cost of the robotic platform, which could be balanced
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by the enabled savings of pesticide, as compared to the amount needed
by the equipment at lower technological levels. To reach this purpose
a simple algorithm was developed, which is based on iterative com-
parison of total annual costs among L3 and other levels: increasing the
price of the platform from 0 to 1 million euros, when L3 cost line (5
to 200 ha) overcomes the cost line respectively of L0, L1, and L2 the
platform price for the specific point is recorded.

3.2.5 Sensitivity analysis

A sensitivity analysis was conducted in order to estimate how the un-
certainty on the considered parameters could affect the output of the
technical-economic analysis of equipment at different technological
levels. The sensitivity analysis is defined as the study of how uncer-
tainty in the output of a model can be attributed to different sources of
uncertainty in the model input. Mathematically, the sensitivity of the
cost function with respect to certain parameters is equal to the partial
derivative of the cost function with respect to those parameters. Our
analysis is defined as local sensitivity analysis, and refers the fact that
all derivatives are taken at a single point. Local sensitivity analysis is
a one-at-a-time (OAT) technique. OAT techiniques analyze the effect
of one parameter on the cost function at a time, keeping the other pa-
rameters fixed (Saltelli et al, 2008).
The sensitivity analysis was evaluated by including the parameters
shown in table 3.7 with the corresponding range of variation consid-
ered. All the parameters ranges were taken in according with the real
variability of the data. An high variability was found in the pesti-
cides market prices, and in the number of treatments, which at the
moment are strictly connected to the weather condition. Considering
the technical-economic parameters an high varibility is present also in
the market prices of the machinery which for the sprayer is strictly
connected with its estimated life.
The results are computed only for a farm area of 30 ha (a representative
average size farm), and are quantified in term of change in total cost
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Table 3.7: Parameters and corresponding range considered in the sensitivity
analysis.

(a) Ranges of the protection protocols

Grapevine Apple

TRG1 TRG2 TRA

Min Max Min Max Min Max

Number of treatments (n yr−1) 10 15 1 3 15 32
AI application rate*(kg ha−1) 4 7 0.5 1.5 1 2
AI cost (e kg−1) 10 25 80 120 20 40

* Savings were maintained constant (table 3.2) through different technologi-
cal levels

(b) Ranges of the technical-economic parameters

Grapevine - Apple

Levels Min Max

Sprayer purchase price (’000 e)
L0 10 15
L1 20 30
L2 35 45

Tractor purchase price (’000 e) All 35 65
Sprayer estimated life (h) All 1500 2500
Field speed (km h−1) All 3 10

(%), as compared to those obtained with input parameters above spec-
ified in sections 3.2.1 to 3.2.3, and used for the technical-economic
analysis.
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3.3 Results and discussion

3.3.1 Comparison among different levels of automation

Grapevine

Equipment costs

Figure 3.5a shows the annual equipment cost per hectare computed for
the different technological levels in the vineyard scenario.
Each curve exhibits the expected hyperbolic trend for increasing vine-
yard area. For areas smaller than 15 ha the equipment cost varies dra-
matically with vineyard size, while above this threshold the cost is
much less dependent on the area.
Sharp cost edges appear in correspondence of the area requiring an
additional tractor-sprayer unit to execute the treatment in the available
time ta. For all the three levels, the first edge (from one to two tractor-
sprayer units) occurs at around 22 ha. For larger areas, the transition
edges tend to slightly shift among technological levels. This is due
to the higher field efficiency of L1 and L2 equipment linked to lower
filling time than L0 obtained by corresponding savings in spraying.
As a comparative index among levels, the equipment cost for a medium
sized farm with an area of 30 ha was computed. This cost resulted to
increase with the technological level, namely it was 922 e ha−1 yr−1

for L0; 1101 e ha−1 yr−1 for L1; and 1340 e ha−1 yr−1 for L2, respec-
tively.
From an analysis of the composition of the equipment cost in vineyard
scenario it is interesting to see the trend of the incidence of variable
costs on total equipment cost. To remember that composition of vari-
able cost is given by tractor fuel and oil consumption, maintenance of
both sprayer and tractor, and labour cost.
In figure 3.4a the L0 variable costs incidence is around 50% and 60%
on total equipment cost (figure 3.5a). For area smaller than 40 ha in-
stead we have high variability on the incidence, from 15% to 60%.
From a comparison with other levels we can see a reduction in the im-
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portance of variable costs to the formation of the total equipment cost,
even if the shape of the trend is almost the same compared to L0 we
have an incidence of 55% and 50% respectively for L1 and L2.
Another consideration is the inverse trend of the curves of equipment
cost composition (figure 3.4) among the acquisition of a new trac-
tor sprayer combination, if compared with the equipment cost in fig-
ure 3.5a. The saw shape of the curve is the opposite, and it is due to be-
fore the acquisition of new equipment the use of the machine become
more and more intense reaching the area threshold for the acquisition
of a new tractor-sprayer combination.

Total cost

The annual cost per hectare associated to pesticides used in protection
treatment was obviously found to be independent from the vineyard
area: for L0 the total treatment cost was 1350 e ha−1 yr−1; for L1
1098 e ha−1 yr−1; and 905 e ha−1 yr−1 for L2.
Figure 3.5b shows the total annual cost per hectare, computed by adding
equipment and pesticide costs, of protection treatments in vineyard,
conducted with the equipment at different technological levels. The
plotted curves show that for worked area smaller than 10 ha, L0 is the
most profitable option among the considered equipment, with relative
cost savings of about 1% - 5% compared to L1, and of about 3% - 18%
compared to L2.
For area larger than 10 ha, L1 becomes more profitable than L0, with
cost savings limited to 5% compared to L0. It must be noticed that this
advantage pattern is strongly changes around the curve edges, i.e. the
transition farm area corresponding to the introduction of an additional
tractor-sprayer unit (edge effect).
Interestingly, the more advanced and expensive equipment L2 becomes
the best option for vineyards with area larger than 100 ha approx.,
it possible to affirm that there is a coincidence between L1 and L2
curves. Given these results, it was possible to evaluate the amount of
savings in agrochemicals which would make profitable the adoption
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of equipment of higher levels L1 and L2 instead of current machinery
L0. Two examples of vineyard size were considered to this aim: a
small farm with an area of 10 ha and a large farm of 150 ha.
For the small farm case, equipment L1 would become more convenient
than L0 if the associated savings were higher than 18% (instead of the
15% assumed) for pesticides used in treatments TRG1, and higher than
9% (assumed 10%) for TRG2. For the more expensive equipment L2,
these savings should reach at least 43% (instead of the assumed 35%)
and 21.5% (instead of the assumed 20%) for TRG1 and TRG2 respec-
tively.
For the large farm case, equipment L1 would be more convenient than
L0 even if the associated savings were just higher than 10% for TRG1
and 5% for TRG2, respectively. While for L2, these thresholds re-
sulted to be 25% and 12.5% respectively.

Sensitivity analysis

The main results of sensitivity analysis for vineyard scenario are sum-
marised in figure 3.7a. It shows the change (in percent) of total cost
due to the variation of a single input parameter, keeping constant all
the others. The data show that changes in the input economic param-
eters (table 3.7b except field speed) resulted in a limited impact (less
than ±5%) on the total cost for all the three technological levels L0,
L1, L2.
On the contrary, the field speed (and in turn the spraying work rate)
appears to have the largest impact in the sensitivity analysis for all
technological levels. This is due, on one hand, to the obvious changes
in operational costs linked to variations in work time. Additionally,
a major effect on costs is also associated with the number of tractor-
sprayer units needed to cover the farm area, which is directly related
to the machine work rate.
Furthermore, the main protection protocol parameters (table 3.7a) had
a significant influence on the computed final cost. Approximately the
variation of AI cost, application rate, and number of treatments influ-
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enced the total cost from -18% to +15%, (figure 3.7a).
From a comparison among the levels it is possible to note the growing
incidence of field speed in the formation of total cost, also sprayer cost
and sprayer life have more incidence in the formation of total cost.
At the same time, it is possible to see the reduction of the impact of
treatment related variables with the growth of automation among lev-
els. From a comparison among the two scenarios, grapevine and apple
orchard the variation on total cost is more consistent in the latter (see
paragraph 3.3.1).
It is important to notice that even if the incidence of machinery pa-
rameters is growing with the automation level at 30 ha the total cost is
lower for L1 and L2.

Apple

Equipment costs

Figure 3.6a shows the annual equipment cost per hectare computed
for the different technological levels in apple orchard scenario. Also
in this case, for areas smaller than 15 ha the equipment cost varies
dramatically with orchard size, while above this threshold the cost is
much less dependent on the area. Again sharp cost edges appear in
correspondence of the transition area where introduction of an addi-
tional tractor-sprayer unit is needed.
As a comparative index among levels, the equipment cost for a refer-
ence farm of 35 ha resulted to increase with the technological level:
namely, for L0 the cost resulted 1094 e ha−1 yr−1; for L1 1257 e ha−1

yr−1, and for L2 1480 e ha−1 yr−1. Analysing the composition of vari-
able costs, we have that (figure 3.4b) the L0 variable costs incidence
is around 60% and 70% on total equipment cost (figure 3.6a). These
values are higher than vineyard scenario and it is due to apple orchard
is more intensive in terms of number of treatments per year. The inci-
dence of variable cost is lower for L1 and L2 but always above 50%.
Only before 30 ha the variability is very high.
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The inverse trend of the curves of equipment cost composition (fig-
ure 3.4) among the acquisition of a new tractor sprayer combination is
also in apple orchard case very sharp. The use of the machine become
more and more intense reaching the limit crop area in which another
tractor sprayer combination is necessary.

Total cost

The annual cost per hectare associated to pesticides used in apple or-
chard protection resulted to be: 1200 e ha−1 yr−1 for L0, 960 e ha−1

yr−1 for L1, and 780 e ha−1 yr−1 for L2.
Figure 3.6b shows the total annual cost per hectare of protection treat-
ments in apple orchard conducted with the equipment at different tech-
nological levels. The curves show that in this case L0 is the most prof-
itable option for area smaller than 9 ha. The relative cost savings range
about 1% - 7% compared to L1, and from 14 ha of about 2% - 20%
compared to L2.
For area larger than 17 ha, L1 becomes more profitable than equipment
L0 and L2, with relative cost savings limited to less than 1.5% when
compared to L0, and 2% - 4% when compared with L2.
Differently from the vineyard case, in this scenario equipment L2 never
resulted the most profitable option compared to L1. This is related, on
one hand, to the lower costs of agrochemicals considered in the apple
protection protocol; on the other to the significantly higher number of
annual treatments which implies a greater weight of use of equipment
in determining the total cost.
It must be noticed that this general pattern of relative cost advantage
among equipment levels, is distorted around the curve edges (edge ef-
fect).
Concerning the computed savings in pesticides making the adoption of
equipment of higher levels more profitable than L0, two orchard sizes
were considered as examples. In the case of small farm area (10 ha),
equipment L1 would become profitable instead of L0, if the associated
savings were higher than 20% (instead of the 15% assumed) for agro-
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chemicals used in treatment TRA. For L2 the savings should be higher
than 47% (instead of 30%).
For the large farm (150 ha) case, equipment L1 would be more con-
venient than L0 with savings higher than 12% (instead of 15%), while
L2 should enable savings higher than 28% (instead of 30%) to become
profitable compared to L0.

Sensitivity analysis

The sensitivity analysis for apple orchard scenario (figure 3.7b) led to
similar results obtained for vineyard. Changes in purchase cost of trac-
tor and sprayer, and life of the operating machine, resulted to have a
limited impact (less than ±5% approx.) on the total cost for all the three
technological levels L0, L1, L2. For the same reasons mentioned for
vineyard, also in this case the field speed had the largest impact for all
technological levels. Changes in agrochemical cost and in application
rate resulted in corresponding variations of total cost approximately
from -16% to +13% as compared to those obtained with input parame-
ters adopted in the technical-economic analysis. On the other hand, the
total costs resulted significantly influenced (from -30% to more than
+20%) by the annual number of treatments, since these involve a lower
or higher use of machines associated to operative costs.
From a comparison among the different levels we can see a grow-
ing importance of machine parameters with the growth of automation
level. Considering the field speed, we have 60% more impact compar-
ing L0 and L2. The sprayer cost impact is growing more than 120%.
Almost constant is the impact of the tractor cost. These trends are due
to the greater economic value of machines for growing automation lev-
els.
Considering the treatment variables we have a lost of importance for
the number of treatments the pesticides costs and their rate. Of course
it this condition is due to the savings that we have for growing level of
automation.
Also in apple orchard even if the incidence of the variation of the
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equipment parameters in the formation of total cost is higher, we have
at 30 ha convenience to adopt an automated machinery.

3.3.2 Future perspectives: advanced robotic level

Thanks to the potential savings in pesticides that were assumed to be
enabled by the robotic platform L3, the analysis allowed to compute
the maximum purchase cost ensuring the profitability of robot tech-
nology on the spraying equipment at lower technological levels. This
profitability threshold is equal to the purchase cost originating the min-
imum total cost shown by curves in figure 3.5b and 3.6b for vineyard
and apple orchard, respectively.
For whatever farm size, in the grapevine scenario this purchase cost
resulted to be around 49600 e, while for apple orchard is 67300 e.
With the technical economic parameters carefully chosen in defining
the scenario explored by this analysis, the resulting price range appears
to be far from any sustainable development and industrial production
cost, making the application of the robotic platform L3 quite unrealis-
tic. Indeed, even assuming extreme savings in used agrochemicals, the
profitability of L3 is not reachable at a current technology cost.

Platform purchase cost investigation

It becomes not so important trying to improve the field speed in the
robotic level for obtaining an higher platform purchase price, due to it
seems to be high enough to this type of technology; but how we can see
in figure 3.8 trying to change the physical estimated life (Phl) the pur-
chase cost value is influenced. In both vineyard and apple orchard sce-
narios we get the maximum purchase cost for the platform at 12000 of
physical life. The median value for all the crop area considered in vine-
yard scenario is: 20509 e at Phl = 3000 h; 30600 e at Phl = 5000 h;
38900 e at Phl = 7000 h; and 61900 e at Phl = 12000 h.
Higher values are obtainable in apple orchard scenario in which we
have: 28462 e at Phl = 3000 h; 42700 e at Phl = 5000 h; 59100 e at
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Phl = 7000 h; and 86650 e at Phl = 12000 h.
An front of an improvement of 3 times of the physical estimated life
the advance of the platform purchase cost is limited to twice for both
scenarios. It is interesting to notice that in apple orchard scenario the
margin of improvement in the platform purchase cost is higher: this
aspect is due to this is a very high intensity scenario more subjected
to be treated. Also in the maximum physical life value used the plat-
form purchase cost is limited for the industrial development of this
type of machinery even if in apple orchard for Phl = 12000 h we reach
86650 e.

We can suppose the ability of the platform to maintain a level of
savings higher than 75% setted. Due to how it possible to see in the
literature exposed in the section 1.5 higher savings are reachable. If
we suppose saving in the order of 85% economical margins are still
very low with the median of platform purchase price for all the crop
areas limited to 65900e if compared with L0 in apple orchard scenario
and 535600 e in comparison with vineyard one. Only improving the
field speed from 1.2 km h−1 to 1.5 km h−1 and leaving the platform
physical life to 12000 h with very high savings we can reach a platform
purchase cost of 121800 e in the more intensive scenario (median of
all the crop area comparing with L0). But develop a machine with such
characteristics is far from to be possible, remaining a pure speculation
about the future.
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Figure 3.4: Variable cost weight on total equipment cost for vineyard (a) and
apple orchard (b).
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Figure 3.5: Vineyard: (a) annual equipment costs per hectare and (b) total
annual costs per hectare in different farm area for rising technological
levels.
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Figure 3.6: Apple orchard: (a) annual equipment costs per hectare and (b)
total annual costs per hectare in different farm area for rising technolog-
ical levels.
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Figure 3.7: Sensitivity analysis: percentage variation of the total annual
costs in vineyard (a) and apple orchard (b), for variables considered.
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Figure 3.8: Platform purchase cost variation in accordance with the esti-
mated physical life (Phl) in vineyard (a) and apple orchard (b).
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3.4 Machine substitution effect

The whole analysis made it was done smoothing the substitution ef-
fect of the equipment between two subsequent acquisitions of a new
machine-tractor combination at growing crop area. To explain the con-
cept we are going to analyse the apple orchard scenario.
In apple orchards the machine is used intensely at specific crop areas
due to the high number of hours which are necessary each year to con-
duct the treatments. The extreme use of the equipment, especially for
the sprayer, is a limiting factor to the physical life of the machine.
The sprayer, especially in the apple orchard scenario, is subjected to
a fast physical obsolescence which does not permit to the machine to
reach the economic life limit of the machine itself (in our case 6 years,
table 3.4). For example, let consider the case L0 in apple orchard at
62 ha. The nominal maximum hours AWtn for the sprayer is given
by the ratio Phl/El = 2000/6 = 333.3 h. Comparing with the annual
hours which are necessary to execute the operation (approx. 402 h) we
have a real life (Spl) of the sprayer equal to

⌊Spl⌋ =
Phl
Hyr

= 2000

402
= 4 yr

where Hyr represents the annual hours necessary to execute the treat-
ments and the ⌊x⌋ symbol represents the floor function which map a
real number to the largest integer less than or equal to the value x.

In detail we can look at the figure 3.9, in which is represented ap-
ple orchard equipment cost presenting the substitution effect. How it
is possible to see in figure 3.9a the acquisition of a new tractor-sprayer
combination is respectively at 57 ha, 59 ha, and 61 ha for L0, L1, and
L2: the peaks here are given by the necessity to cover a larger field
area in the available time we have impose for the treatment (table 3.1).
Going ahead along the abscissa axis we encounter other peaks at 62 ha,
65 ha and at 66 ha, respectively for L0, L1, and L2. This shape defor-
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mation is due to the substitution effect previously exposed. The cost
of the sprayer is divided for a smaller sprayer life. In L2 the peak over-
come even the peak at 61 ha, which regards the acquisition of a new
tractor-sprayer combination.
In figure 3.9c it is possible to observe the trend of the calculated life or
real life of the machine. In correspondence of the points listed above
there is a decreasing in sprayer life from 5 to 4 years. Of course the
increasing of the annual working hours is constant and parallel with
the crop area covered (figure 3.9b).

In figure 3.9a it possible to observe a series of peaks also at the
end of the graph between 75 ha and 90 ha. The correspondence of
the peaks here is with the reduction of the life of the sprayer from 4
to 3 years (very intense use of the equipment). Only the acquisition
of a new tractor-sprayer combination is able to push up the life of the
sprayer from 3 to 4 years. This effect is due to the repartition of the
annual working hours necessary to cover the field among more equip-
ment units.
The substitution effect is an artifice present in the evaluation of the
equipment cost in this analysis derives exclusively from the sprayer
and not from the tractor which has a very high physical life (1000 h yr−1).

It is very interesting to note how the substitution effect is reflected
on the variable cost weight on total cost. Considering the same portion
of the graph on figure 3.10 we have the variable cost weight on total
equipment cost for the apple orchard scenario.
When the life of the sprayer is reducing from to 4 or 3 years there is
a step down in the curves. This step down is due to the reduction of
economic life factor in repair and maintenance cost equation (3.7).
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3.5 Conclusions

A technical-economic analysis was conducted on three different tech-
nological levels of spraying equipment for speciality crops (grapevine
and apple) which were assumed to enable correspondingly increasing
levels of reduction in distributed pesticide, without negatively affecting
the biological efficacy. Fungicide treatments against major fungal dis-
eases in vineyard and apple-orchard were considered, and the annual
total costs of protection treatments (costs of equipment and pesticide)
when operating with a conventional air-blast sprayer (referred as tech-
nological level L0), with an on-off nozzle switching sprayer (L1) and
with a canopy-optimised distribution sprayer (L2), were evaluated.
Within the assumptions made, the results of the analysis highlighted
that:

• for a given worked area, the equipment cost raised with tech-
nological level, as expected; the obtained values for a reference
vineyard/orchard farm of 30 ha increased from 944 e ha−1 yr−1

to 1316 e ha−1 yr−1, respectively for L0 and L2 in grapevine
case, and from 1107 e ha−1 yr−1; to 1518 e ha−1 yr−1, respec-
tively for L0 and L2 in apple case;

• thanks to pesticide savings enabled by the different level of pre-
cision spraying technologies, the annual cost of pesticide per
hectare decreased from 1350 e ha−1 yr−1 to 905 e ha−1 yr−1, re-
spectively for L0 and L2 in grapevine case, and from 1200e ha−1

yr−1 to 780e ha−1 yr−1, respectively for L0 and L2 in apple case;

• in term of annual total costs of protection treatments, on grapevine
the conventional sprayer L0 resulted the most profitable option
for vineyard area smaller than 10 ha; from 10 ha to approx.
100 ha L1 was the best option, while above 100 ha the more
advanced equipment L2 resulted the best choice;

• the perceptual of variable costs in equipment cost is always above
the 50% for L0, L1, and L2 in apple orchard scenario resulting
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the most work intense. In vineyard we have the same situation
compared to apple orchard for L0 and L1. In L2 this trend is not
so sharp due to the high cost of the sprayer equipment;

• on apple, the lowest total costs of protection treatments for or-
chard area smaller than 17 ha were obtained with L0; above 17 ha
L1 was the best option, while L2 never resulted profitable com-
pared to L0 and L1;

• both for grapevine and apple cases, the sensitivity analysis put
in evidence that the uncertainty on equipment economic param-
eters had a limited impact on the total costs of protection; on
the contrary, the uncertainty on protection parameters had an ev-
ident influence on the computed final costs: on average the range
of variation of AI price, application rate, and number of treat-
ments influenced the total cost from about -20% to +15% and
from about -30% to +20%, on grapevine and apple respectively;

• the variation of sprayer field speed, which is not inherent to the
precision spraying technologies considered in this study, appears
to have the largest costs impact in the sensitivity analysis for all
technological levels;

• for the estimation of the equipment cost in an agricultural farm
it is important take in account the substitution effect described in
section 3.4. This effect can give artifices and oscillations in the
evaluation that can be misleading for the real equipment man-
agement.

Finally, in a speculation on possible perspectives of precision spray-
ing in speciality crops, the analysis was addressed to the case of an
autonomous robotic platform able to selectively target the pesticide on
diseased areas. The obtained results indicated that:

• the purchase price that would make profitable the robotic plat-
form, thanks to the assumed pesticide and labour savings over
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sprayers at technological levels L0, L1 and L2, was unrealisti-
cally lower than current industrial cost;

• regardless the area of the vineyard/orchard considered, for the
grapevine scenario the robot purchase cost threshold resulted
around 54700 e, while for apple scenario was 66500 e.

• within the assumptions made in this study, the results indicate
that cost profit cannot be the only driver for possible adoption,
in the very next future, of autonomous intelligent platforms for
advanced precision spraying in speciality crops;

• varying the physical life of the platform, improving the compo-
nents characteristics, it is possible to speculate on the final price
of the platform which in the best case of 12000 h of physical
life reach 86650 e in vineyard scenario and 121800 e in apple
rchard resulting the most work-intensive crop.
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M, Baur J, Pfaff J, Schütz C, Ulbrich H (2016) Selective spraying of
grapevines for disease control using a modular agricultural robot.
Biosystems Engineering DOI 10.1016/j.biosystemseng.2015.12.
004, URL http://www.sciencedirect.com/science/

article/pii/S1537511015001865

Oerke EC (2006) Crop losses to pests. The Journal
of Agricultural Science 144(1):31–43, DOI 10.1017/

183

https://books.google.it/books?id=2v_91vSCIK0C
https://books.google.it/books?id=2v_91vSCIK0C
http://dx.doi.org/10.1007/s11119-006-9015-8
http://dx.doi.org/10.1007/s11119-006-9015-8
http://www.sciencedirect.com/science/article/pii/S1537511015001865
http://www.sciencedirect.com/science/article/pii/S1537511015001865


Bibliography

S0021859605005708, URL https://www.cambridge.

org/core/article/crop-losses-to-pests/

AD61661AD6D503577B3E73F2787FE7B2

Oerke EC, Schonbeck H, F Weber A, Rainey W, Jorgensen S, SN Jor-
gensen L, Runge C, Lotterman R, E Creason J, Urbina N, et al
(1994) Crop production and crop protection: estimated losses in ma-
jor food and cash crops. F01 16, IICA, Bogotá (Colombia)

Organization WH, et al (1990) Public health impact of pesticides used
in agriculture

Osterman A, Gode?a T, Ho?evar M, ?irok B, Stopar M (2013)
Real-time positioning algorithm for variable-geometry air-assisted
orchard sprayer. Computers and Electronics in Agriculture
98:175 – 182, DOI http://dx.doi.org/10.1016/j.compag.2013.08.
013, URL http://www.sciencedirect.com/science/

article/pii/S0168169913001919

Paice M, Miller P, Bodle J (1995) An Experimental Sprayer for the
Spatially Selective Application of Herbicides. Journal of Agricul-
tural Engineering Research 60(2):107–116, DOI 10.1006/jaer.1995.
1005

Pascal B (2011) Traité du triangle arithmétique. Éd. les Caractères
d’Ulysse

PCA (2016) Cucumber green mottle mosaic virus on cucumbers. URL
http://www.protectedcroppingaustralia.com

Peterson RB, Aylor DE (1995) Chlorophyll fluorescence induction in
leaves of phaseolus vulgaris infected with bean rust (uromyces ap-
pendiculatus). Plant physiology 108(1):163–171

Petropoulos G, Srivastava PK (2016) Sensitivity Analysis in Earth Ob-
servation Modelling

184

https://www.cambridge.org/core/article/crop-losses-to-pests/AD61661AD6D503577B3E73F2787FE7B2
https://www.cambridge.org/core/article/crop-losses-to-pests/AD61661AD6D503577B3E73F2787FE7B2
https://www.cambridge.org/core/article/crop-losses-to-pests/AD61661AD6D503577B3E73F2787FE7B2
http://www.sciencedirect.com/science/article/pii/S0168169913001919
http://www.sciencedirect.com/science/article/pii/S0168169913001919
http://www.protectedcroppingaustralia.com


Bibliography

Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, Wheeler
R, Ng AY (2009) Ros: an open-source robot operating system. In:
ICRA workshop on open source software, Kobe, Japan, vol 3, p 5

Ratle F, Camps-Valls G, Weston J (2010) Semisupervised neural net-
works for efficient hyperspectral image classification. IEEE Trans-
actions on Geoscience and Remote Sensing 48(5):2271–2282

Ravazzi P, Villa A (2009) Economic aspects of automation. In:
Springer Handbook of Automation, Springer, pp 93–116

Riar DS, Ball DA, Yenish JP, Burke IC (2011) Light-activated,
sensor-controlled sprayer provides effective postemergence control
of broadleaf weeds in fallow. Weed Technology 25(3):447–453,
DOI 10.1614/WT-D-10-00013.1, URL http://dx.doi.org/

10.1614/WT-D-10-00013.1

Rola A (1989) Pesticides, health risks and farm produc-
tivity: a Philippine experience. URL http://agris.

fao.org/agris-search/search.do?recordID=

PH19910113458{#}.WAsc6u-LlO0.mendeley

Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli
D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the
primer. John Wiley & Sons

Sankaran S, Mishra A, Ehsani R, Davis C (2010) A review of ad-
vanced techniques for detecting plant diseases. Computers and Elec-
tronics in Agriculture 72(1):1 – 13, DOI http://dx.doi.org/10.1016/
j.compag.2010.02.007, URL http://www.sciencedirect.

com/science/article/pii/S0168169910000438

Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses
due to diseases and their implications for global food produc-
tion losses and food security. Food Security 4(4):519–537, DOI
10.1007/s12571-012-0200-5, URL http://dx.doi.org/10.

1007/s12571-012-0200-5

185

http://dx.doi.org/10.1614/WT-D-10-00013.1
http://dx.doi.org/10.1614/WT-D-10-00013.1
http://agris.fao.org/agris-search/search.do?recordID=PH19910113458{#}.WAsc6u-LlO0.mendeley
http://agris.fao.org/agris-search/search.do?recordID=PH19910113458{#}.WAsc6u-LlO0.mendeley
http://agris.fao.org/agris-search/search.do?recordID=PH19910113458{#}.WAsc6u-LlO0.mendeley
http://www.sciencedirect.com/science/article/pii/S0168169910000438
http://www.sciencedirect.com/science/article/pii/S0168169910000438
http://dx.doi.org/10.1007/s12571-012-0200-5
http://dx.doi.org/10.1007/s12571-012-0200-5


Bibliography

Schor N, Bechar A, Ignat T, Dombrovsky A, Elad Y, Berman S
(2016) Robotic disease detection in greenhouses: Combined de-
tection of powdery mildew and tomato spotted wilt virus. IEEE
Robotics and Automation Letters 1(1):354–360, DOI 10.1109/LRA.
2016.2518214

Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer
Science & Business Media

Slaughter DC, Giles DK, Tauzer C (1999) Precision Off-
set Spray System for Roadway Shoulder Weed Control.
http://dxdoiorg/101061/(ASCE)0733-947X(1999)125:4(364)
DOI 10.1061/(ASCE)0733-947X(1999)125:4(364)

Solanelles F, Escolà A, Planas S, Rosell J, Camp F, Gràcia F (2006) An
electronic control system for pesticide application proportional to
the canopy width of tree crops. Biosystems engineering 95(4):473–
481

Gonzalez-de Soto M, Emmi L, Perez-Ruiz M, Aguera
J, Gonzalez-de Santos P (2016) Autonomous systems
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