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We investigate the dynamics of continuous-time two-particle quantum walks on a one-dimensional noisy
lattice. Depending on the initial condition, we show how the interplay between particle indistinguishability
and interaction determines distinct propagation regimes. A realistic model for the environment is considered by
introducing non-Gaussian noise as time-dependent fluctuations of the tunneling amplitudes between adjacent sites.
‘We observe that the combined effect of particle interaction and fast noise (weak coupling with the environment)
provides a faster propagation compared to the noiseless case. This effect can be understood in terms of the band
structure of the Hubbard model, and a detailed analysis as a function of both noise and system parameters is

presented.
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I. INTRODUCTION

Quantum walks (QWs), the quantum counterparts of
classical random walks, describe the stochastic propagation
of a quantum system (e.g., a particle) on a discrete n-
dimensional graph [1-3]. A graph is any object that can be
mathematically described as a set of vertices (or sites) and
edges (or links between the sites). The simplest graph to
analyze the dynamics of a QW is the one-dimensional lattice,
i.e., the line [4-6], though more complex structures have
been also investigated [7-16] in order to fully characterize
the dynamics of QWs. In particular, it has been shown that the
final state of the quantum walker strongly depends on its initial
conditions and, because of quantum interference, it generally
propagates faster than its classical counterpart. QWs have
been extensively analyzed in different contexts, ranging from
quantum-enhanced search algorithms [17,18] and universal
models of quantum computation [19], to quantum transport in
complex networks [20], e.g., biological systems [21-23].

The study of few-particle QWs may offer a bottom-
up approach to understanding and simulating many-body
systems [24-26]. In fact, besides photons [27,28], QWSs have
been implemented in many experimental platforms such as
trapped ions [29,30] and neutral atoms [31,32]; very recently
a controlled dynamics of two particles with tunable interaction
has been demonstrated with optical lattices [33].

As a matter of fact, the propagation of multiple indis-
tinguishable particles is affected by the exchange symmetry
even in the absence of interaction. This phenomenon, known
as Hanbury-Brown-Twiss (HBT) interference, may create
nontrivial spatial correlations between two identical particles,
and has been widely investigated both experimentally [34,35]
and theoretically [36—38]. In turn the evolution of free particles
strongly depends on the statistics: while bosons tend to
propagate along the same direction, an effect known as
bunching, fermions tend to move in the opposite directions,
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showing antibunching, and they have zero probability of
occupying the same site, consistent with the Pauli exclusion
principle. Upon introducing interaction between particles, the
picture becomes more involved. As predicted by the Bose-
Hubbard Hamiltonian, a stable repulsively bound pair has been
observed [39]; moreover, under proper initial conditions, the
interplay between interaction and indistinguishability induces
a continuous transition from bosonic- to fermionic-like spatial
correlations [24]. All these effects have been shown to depend
on the strength of the interaction, but not on whether it
is attractive or repulsive, since the change in sign of the
interaction U simply reverses the energy spectrum [39].

In this framework, although there are some studies investi-
gating the impact of decoherence and disorder on the dynamics
of two-particle quantum walks [4,40-45], the combined effect
of indistinguishability and interaction in a classical noisy
environment is still poorly understood. In this paper, we aim
to contribute to a better understanding of the dynamics of
this kind of system. In particular, we analyze in detail the
role of interaction in the propagation of two identical particles
hopping on a one-dimensional noisy lattice and discuss the
interplay between interaction and indistinguishability in the
presence of noise. A realistic model for the QW environ-
ment is introduced, where the induced noise is described
by non-Gaussian stochastic, time-dependent, fluctuations in
the tunneling amplitudes [46,47]. Upon tuning the spectral
parameters of the noise, we explore different regimes ranging
from the localization of the pair in the presence of slow noise,
to nonballistic propagation due to fast noise.

Our results show that in the ideal case of absence of
noise, the strength of the interaction determines distinct
propagation regimes. On the other hand, noise makes such
distinction less sharp and creates an intermediate regime
with nontrivial dynamics, which will be analyzed in detail
in our work. We observe that noise with a fast-decaying
autocorrelation function induces a transition from ballistic
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to diffusive propagation in the case of two noninteracting
walkers while, under proper initial conditions, noise allows
two interacting particles to propagate faster than the noiseless
ballistic case. We show that this phenomenon depends both
on the noise and the system parameters, and that it can be
understood in terms of the band structure of the Hubbard
model.

The paper is organized as follows. In Sec. II we introduce
our model for a two-particle continuous-time quantum walk
(CTQW) on a noisy lattice, whereas in Sec. III we illustrate
the dynamics of two interacting indistinguishable particles.
We first show results for the noiseless case in Sec. IIT A and
then, in Sec. III B, we illustrate the dynamical properties of the
system in the presence of noise. Section IV closes the paper
with some concluding remarks.

II. MODEL

The continuous-time quantum walk [48,49] can be seen as
the quantum version of the classical continuous-time Markov
chains. CTQW of two particles over a graph composed of
N sites takes place in the Hilbert space spanned by the
orthonormal set of position vectors {|j,k)} that describe the
state in which one particle is localized on site j and the other
onsite k with j,k = 1, ... N. The dynamics of a CTQW of two
indistinguishable and interacting particles over ahomogeneous
one-dimensional lattice, such as the line, is described by the
total Hamiltonian

H, = Hy + Hiy, (D
Hy=H QI+1® H|, )
N
Hiy = U(lj — k) Z |j.k){j.kl, 3)
k=1

where Hy =€l —J Zj(lj)(j + 114+ |j 4+ 1){(j]) describes
the hopping of a single particle between next-neighbor sites,
Hi, accounts for the interaction between the two particles, and
U(|j — k|) shapes the strength of the interaction according to
the distance between the pair, which in the present case is
chosen to be
; U if j =k,

Ullj —kb = {U/S i =k + 1.

As an initial condition of the CTQW, we consider a state in
which each particle is localized over a different site:

L
V2

The symmetry of the initial state, i.e., the sign in Eq. (5),
then determines whether the particles are bosons or fermions,
since the Hamiltonian H, conserves the symmetry of the state
during its evolution. By applying the unitary evolution A(¢) =
exp(—i Hyt) to the initial state |\113E) one obtains the dynamics
of the pair. Notice that we use natural unitz = 1, throughout
the paper.

Due to unavoidable interaction with the environment, noise
is always present in realistic implementations of quantum
walks. The simplest case is that of static lattice imperfections,

“4)

W5) = —=(j.k) £ [k, j)  with j # k. ®)
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which may be described as missing links, thus obtaining a
percolation graph [50-52]. On the other hand, to describe
dynamical noise, we introduce a stochastic time-dependent
term in the hopping Hamiltonian H;, which randomizes
the tunneling amplitudes between adjacent sites. Although
fluctuating, transition amplitudes retain a finite value through-
out the evolution. The single-particle Hamiltonian thus be-
comes a time-dependent random matrix H,(¢), written as the
sum of the unperturbed term H; and a stochastic contribution
affecting the transition rates between adjacent sites [46]:

Hi ()= Hy +J ) g;01)N G+ U+ + DD, (©6)
i

where the coefficients {g;(¢)} are the time-dependent fluctua-
tions of the tunneling amplitude that introduce decoherence in
our description of CTQWs, and the two-particle Hamiltonian
reads

Hy (1) = le(t)®H+H®le(t)+Him' (7)

Each g;(z) is independent from the others and is modeled
as random telegraphic noise (RTN), i.e., as a dichotomic
variable which can only jump between two values g;(¢) =
+go, with a certain switching rate &. Other authors use RTN
as characterized by an exponentially decaying autocorrelation
function:

C(t) = (gj()gr(0)) = 8 g5 e >, (8)

where the Kronecker delta §;; expresses the fact that the
random processes {g;} are independent of each other. Starting
from the initial state py = |‘~IJgE )(\IJOi |, the dynamics of the two
particles for a single realization of the stochastic processes
{gj(?)} is governed by the evolution operator

A(t) =T exp <—i / Hz,(s)ds), 9)
0

where 7 is the time-ordering operator. The time evolution of
the two-particle CTQW is thus calculated by averaging the
single realization dynamics A(t),ooAT(t) over all the possible
realizations of the stochastic processes:

p(t) = (ADPo AT (1)) g,r)- (10)

Without loss of generality, the dynamical parameters may be
rescaled in terms of the hopping strength J. From now on we
will describe the dynamics in terms of a dimensionless time
and switching rate:

t—>Jt=1 £E—=E&/J=y. (11)
Upon looking at the autocorrelation function of the RTN in
Eq. (8), one may distinguish two regimes, which characterize
different time scales for the noise. If y > 1, we talk about
fast noise, because this situation corresponds to the two
particles evolving in a fast fluctuating environment, i.e.,
where the bistable fluctuators g;(¢) flip according to a very
large switching rate. On the contrary, the slow noise regime
arises when y < 1, and it describes the case of quasistatic
disorder [46,53].
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III. QUANTUM WALK OF TWO
INTERACTING PARTICLES

To investigate the propagation of two interacting particles
in the presence of dynamical noise, we first review the case of
a noiseless evolution in Sec. IIT A, then we analyze the effect
of decoherence on the two-walker dynamics in Sec. III B.

The two particles are initially localized in two sites in the
middle of a one-dimensional lattice with periodic boundary
conditions containing N = 80 sites. As noise is introduced,
the time evolution of the CTQW is computed by numerically
calculating the expression of Eq. (10). We evaluate the ensem-
ble average over 5000 different noise realizations. Simulations
are performed by implementing a specific GPU accelerated
code [54]. In this way the simulation time (for N = 80 sites
and 5000 noise realizations) is limited to approximately 25
min on an NVIDIA Tesla K40 board.

For each noise realization, the switching times, i.e., the
times at which the stochastic processes {g;} jump from one
value to the other thus changing the transition amplitudes
between J £ g;(¢) are generated by using the Monte Carlo
method. To maximize the effect of noise, we set the noise
amplitude to go = 0.9J. A more comprehensive analysis on
the effects of the noise amplitudes may be found in [46]. In all
the simulations, the evolution is stopped before the particles
may reach the lattice boundaries. This is equivalent to studying
the dynamics on an infinite lattice, and allows us to isolate the
effect of the noise from the possible interference effects due
to boundary conditions.

By tracing out one particle, we may characterize the
propagation in terms of single-particle variance

o(1) =) (1) — (x(1)*,

X

12)

with (x*) = " i*pL(t) and p'(¢) s the single-particle reduced
density matrix obtained by tracing out the other particle.
This quantity is meaningful in evaluating the quantum walk
spread in time and, consequently, in observing the transition
from ballistic (62 o ¢?) to diffusive (0> o t) propagation.
Furthermore, we evaluate the occupation number of the lattice
sites during the evolution

(@) =2 pija (1), (13)
J

where p; ;; () are the populations of the two-particle density
matrix in the {|k, j)} basis. This quantity represents the average
number of particles in each site; it provides information about
the spatial distribution and about the localization of the pair.

Because the results obtained for bosons and fermions are
qualitatively identical, for the sake of brevity hereafter we will
present results relative to the case of two interacting fermions.
In all the figures, quantities are dimensionless.

A. Noiseless dynamics

In the absence of noise, the Hamiltonian H, in Eq. (1)
is obtained by adding a term containing the discretization of
the Laplacian operator (H;) plus an interaction term (Hiy)
depending only on the relative distance among particles.
In a homogeneous lattice, where the hopping amplitudes
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u/J=0

FIG. 1. Band structure of the Hamiltonian H, in Eq. (1) for the
case of two fermions on a lattice of N = 80 sites, for the conditions
U/J=0and U/J = 14.

are all equal to J, the translational invariance allows one
to solve the Schrodinger equation by the ansatz W(j,k) =
exp(i K R)pk (r), where we introduced the center of mass of
the pair R = (j + k)/2 and the relative interparticle distance
r =|j —k|. In this picture, K is the quasimomentum and
it assumes only discrete values due to the lattice finite size,
K =2nv/N with v=1,2,...,N, ¢x(r) is the pair wave
function. The band structure of H,, whose explicit derivation
can be found in [55,56], represents an essential ingredient to
study the two-particle dynamics. As displayed in Fig. 1, in
the absence of interaction (U = 0), the band structure consists
of a unique band identical for bosons and fermions. For finite
next-neighbor interaction strength, one observes the formation
of a small band, called a miniband, whose energy at the edge
of the first Brillouin zone (K = ) is given approximately by
U /(3J); in the case of bosons, the additional on-site interaction
generates a second miniband at higher energies, U/J. All the
remaining states are contained in the main band, which ranges
approximately from —4J to 4J [56-58]. It is worth noting
that the appearance of a single miniband is related to the
form of the interaction we have chosen. If second neighbors
were affected by interaction, one would observe the formation
of a second band. On the other hand, the symmetry with
respect to the energy depends on the hopping range, thus more
complicated and not symmetric band structures are obtained
when long-range hopping terms are included [59].

The dynamics of the two walkers strongly depends on the
initial state. If one considers a suitable interaction regime
(U/J > 6), particles initially occupying next-neighboring
sites give rise to a bound pair [39] that propagates as one single
packet through the lattice, a phenomenon called cowalking
dynamics, independent of the sign of the interaction. Usually
the eigenstates of the minibands are associated with such
bound states. Conversely, eigenstates belonging to the main
band, the so-called scattering states, are characterized by
a delocalized wave function. In other words, the dynamics
of fermions starting from next-neighboring sites is mainly
confined to the miniband, whereas particles starting from
n-neighboring sites, with n > 1, belong to the main band. This
feature is more evident when the interaction strength increases,
as in this case there is a proper gap between the two bands,
whose central width is given by Ax_g =U/3 + 12/U — 4 in
the limit of N — oo [55].
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FIG. 2. Plots showing the projections P; of the fermionic state
|W,y) (for particles initially located on next-neighbor sites) and the
fermionic state |3y ) (for particles initially located on three-neighbor
sites) on the eigenstates of the unperturbed Hamiltonian H, of Eq. (1).
E; is the eigenvalue corresponding to the ith eigenvector. Different
plots refer to different interaction strengths.

To analyze quantitatively this effect, we consider the
projections

P = (W Wo)
k

of a state |W,) onto the mth eigenstates |, ) of the
Hamiltonian H,, where the summation over k accounts for the
degeneracy, and evaluate this quantity for different values of
the interaction strengths. In Fig. 2, we compare the projections
P, for particles starting from next-neighbor sites

(W) = [Win) = 1/v2(jo.jo + 1) — Ljo+ 1.jo)) (1)

to the ones initialized in 3-neighbor sites

Wo) = [Wan) = 1/v/2(jo.jo +3) — Ljo+3.jo)) . (15)

For U/J = 6 projections are distributed on both bands since
the energy levels form a quasicontinuum, i.e., the two subbands
are not completely detached. The support of |W;y) is mostly
on the miniband, but still there are some contributions from the
scattering band. The converse happens for |\W3y), and the fact
that its projections are smaller than those of a bound state is due
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FIG. 3. Single-particle variance o'(¢) as function of time for two
fermions with different starting sites, from next-neighbor (1N) to
40-neighbor (40N) sites. The interaction is here fixed at U/J = 14.
To compare the different dynamics the initial value is set to o(t =
0) = 0 for all the curves. Since the farther the particles are in the
initial condition, the sooner they reach the boundaries, we observe
changes in the slope of the various curves (for initial particle distance
larger than 10 sites) due to spurious interference effects.

to the much larger number of states belonging to the main band.
The larger the interaction is, the smaller are the projections of
a bound (scattering) state onto the main (mini-) band. Since
a proper gap separates the two bands, two distinct dynamical
regimes arise, each one being a characteristic feature of a
definite subband.

Such distinction becomes apparent if one compares the
single-particle variance for states initially localized in next-,
3-, 10-, 20-, 30-, and 40-neighbor sites, see Fig. 3. Except for
a shift factor depending on the relative coordinate r, scattering
states exhibit the same ballistic propagation (o o 7). Bound
states |Wy) are still characterized by a parabolic profile,
but the slope is reduced due to the interaction range. It is
worth remembering that the particle velocity is given by the
slope of the band; since the slope of the scattering band is
always larger than the one of the miniband—and it does not
vary with the interaction strength—states with a large number
of components in the scattering bands have faster velocity
components thus achieving a faster ballistic propagation. On
the other hand, the slope of the miniband gets reduced with
increasing interaction, thus the spread velocity tends to zero in
the limit of infinite U . In this regime the variance will be frozen
in its initial value (o = 0.25) and the particles will be localized
on the starting sites by the strong next-neighbor interaction.

B. Noisy dynamics

To understand how dynamical noise affects the propagation
of the two particles, we first analyze the case of two
indistinguishable noninteracting particles, where the exchange
symmetry is the only ingredient added with respect to the
single-particle picture [46]. Similar to the single-walker case,
fast noise drives a transition from quantum ballistic to classical
diffusive propagation. This feature is evident when considering
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FIG. 4. Occupation number maps as a function of time and lattice
sites, (n(r)), for two noninteracting (U/J = 0) fermions initially
located on next-neighbor sites. The unitary dynamics (a) is compared
with the fast noise dynamics (c¢) with switching time y = 10 and
slow noise propagation (b) with switching time y = 0.01. Noise
amplitude is set to gy = 0.9. (d) Single-particle variance of the
position as function of time in the absence of interaction U = 0;
different curves account for the noiseless case (red solid line) and
for different values of the switching time: y = 0.01 (slow RTN,
green dash-dot), y = 10 (fast RTN, blue dash), whereas the noise
amplitude is set to go = 0.9.The curve is identical for both bosons
and fermions. Inset: zoom on the first part of the dynamics to highlight
the localization induced by the slow noise.

the single-particle spread o%(¢) over the lattice. This is shown
in Fig. 4(d), where the variance is quadratic at short times
while at longer times it grows linearly. In the fast noise
regime y > 1, the slope of the variance decreases with smaller
switching rates, whereas for larger values of y one recovers
the ballistic dynamics, as is evident in Fig. 5.

In the very fast noise regime, indeed, the time scales of
the system and the environment are well separated, and the
oscillations in the transition amplitudes happen so fast with
respect to the walker dynamics that they no longer affect
the evolution of the particles. By comparing the evolution
of the occupation number (n;) in the noiseless scenario with
the case of fast noise, see Figs. 4(a)—4(c), one observes that
noise wipes out the clear interference pattern, but preserves the
antibunching behavior typical of fermions. It is worth noting
that in both the noiseless and fast noise cases the particles
reach the boundaries of the lattice at the same time even if
they are differently distributed among the sites. Indeed, in
Fig. 4(a), the interference pattern has a larger intensity in the
farthest points from the origin, while fast noise tends to focus
the wave-function amplitude in a central area around the initial
positions. In the same way, fast noise rearranges the weight
distribution among the velocity components thus affecting the
average velocity, as detected by the single-particle variance.
In the previous section we showed that the noiseless dynamics
is completely determined by the band structure.

As the translational invariance is broken by random
dynamical noise, it is no longer possible to define a proper

PHYSICAL REVIEW A 95, 022106 (2017)

800F T T T
—— noiseless f;
---- y=1 /
600 v=10 -
450 ) -
Y=1OO ./.
(q\]
o)
200
0

0 5 T 15 20

FIG. 5. Single-particle variance o%(¢) over the lattice as a function
of time for two noninteracting fermions in the fast noise regime for
different switching rates. Each curve refers to a different y value.
Noise amplitude is set to gy = 0.9.

band structure. On the other hand, the dynamics of the walkers
subject to very fast noise approaches the noiseless dynamics.
Therefore, we may see fast noise as a small perturbation to the
noiseless case and, to a first-order approximation, still analyze
the dynamics in terms of bands. In turn, in the presence of slow
noise, the features described above are absent. The propagation
is suppressed, as one can see in Fig. 4(b), and the occupation
number during the evolution is different from zero only for
a few sites close to the initial positions. Moreover, after a
certain time evolution, whose value depends on the switching
time of the noise, the variance achieves a saturation value,
see Fig. 4(d), and the system undergoes an Anderson-like
dynamical localization phenomenon.

Let us now move our attention to interacting particles.
In Fig. 6 we compare the single-particle variance in the
noiseless case to the fast noise one for different values of
the interaction strengths. If we consider particles starting from
next-neighboring sites, i.e., the initial state is |W,y), we see
that if the ratio U/J is increased. the variance in the presence
of fast noise becomes larger compared to the noiseless case.
Taking into account that whenever U/J > 6, a gap between
the two subbands appears, see Fig. 1, it becomes apparent that
noise provides access to a novel regime where the particles
acquire faster propagation components, which show up in the
single-particle variance.

As we have already observed before, upon excluding few
components with small weights on the main band, the noiseless
evolution of |W;y) is mainly confined to the miniband, see
Fig. 2, where each K component propagates with a smaller
velocity with respect to the the scattering band. A fast noise
regime appears to preserve the band structure and allows a
redistribution of the wave-function component between the
two subbands, thus enabling a faster propagation through
the lattice. This feature is more evident for larger values
of the interaction, as projections on the main band become
smaller and the noiseless dynamics slower. Clearly such gain
effect does not show up when the initial state has most of its
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FIG. 6. Single-particle variance o%(¢) as a function of time for two
fermions starting from next-neighbor sites |W;y) and third-neighbor
sites | Wy ). Each panel considers a different interaction strength U/ J,
and compares the noiseless evolution (solid red line) with the one in
fast noise regime (dotted blue line), whose amplitude and switching
time are, respectively, go = 0.9 and y = 10.0.

components on the main band, as in the case of |W3y), see
second column in Fig. 6. In this case, the redistribution of the
wave function brings components into the miniband and does
not allow a faster dynamics. Indeed, the noiseless variance is
always faster than the noisy one and, consistent with the results
of the previous section, this phenomenon is independent of the
value of the interaction strength.

This behavior is captured also by the occupation number,
shown in Fig. 7. Here we observe that for large interaction
values (U/J = 14,40), see Figs. 7(c) and 7(d), new areas
of the lattice are accessible to the walkers in the presence
of fast noise compared to the unperturbed case. Such a
broadening in the spatial distribution of the pair comes from
faster velocity components that allow for propagation even if
the interaction would be strong enough to induce localization,
see Fig. 7(b).

Finally, as further evidence supporting our conjecture that
noise allows faster wave-function components, we investigate
the interplay between the parameter y and the interband gap
A. In particular, to see whether the observed faster propagation
in the noisy regime is linked to the characteristic parameters
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FIG. 7. Occupation number maps as a function of time and lattice
site, {n (1)), for two fermions initially located on next-neighbor sites.
Different interaction strengths are considered: U/J = 14and U/J =
40. By rows, the unitary dynamics (top) is compared with the fast
noise dynamics (bottom) with switching time y = 10 (fast RTN) and
noise amplitude set to gy = 0.9.

of the noise and the system, we introduce the variance gain
2, 2
8o = Ufasl/ano noise 1 (16)

and analyze its behaviour a function of y at a fixed time in
the evolution. In particular, in Fig. 8 we show the results for
7 = 12.5. Each curve corresponds to a different interaction
strength. In all cases, the variance gain displays a similar
behavior: the gain increases with increasing y up to a
maximum value after which it decreases and, in the limit
of y — o0, it vanishes, in agreement with the results shown
before about very fast fluctuations. It turns out that each peak
shifts to larger y values for larger gaps (i.e., larger interaction
values), which means that a larger gap needs a faster noise

30— u/i=40
U/J=60
U/J=70
2514 u/-80
—&- U/J=100

20

1 1 1
10 20 30 40 50
Y

FIG. 8. Single-particle variance gain g,, for two fermions, initially
located in next-neighbor sites, as a function of the switching rate
parameter y, with go = 0.9. The variances are calculated at 7 = 12.5,
when the dynamics is not yet affected by the boundary conditions.
Each curve corresponds to a different value of the interaction strength,
u/J.
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to maximize the gain. By repeating the same calculations for
different times during the dynamics, we find that the optimal
y value corresponding to the peak does not change much with
time, while the value of the maximum gain changes.

IV. CONCLUSIONS

Two-particle quantum walks are paradigmatic systems to
address the interplay between particle indistinguishability and
particle interaction, and to analyze in detail the resulting propa-
gation regimes. Besides the fundamental interest, two-particle
quantum walks are implemented on different platforms also
with the aim of studying multiple quantum interference and to
simulate physical, chemical, and biological complex systems.
In turn, experimental realizations of QWs may be subject to
imperfections and defects, or to external perturbations, and
those different sources of noise may change, also dramatically,
the dynamical behavior of the walkers.

In this paper, to analyze more realistic scenarios for
quantum walks and to explore new dynamical regimes for
the particles, we have addressed the decoherent dynamics
of two indistinguishable and interacting particles over one-
dimensional lattices with random, time-dependent, tunneling
amplitudes. In particular, the hopping amplitudes between
adjacent sites of the lattice have been modeled as independent
stochastic processes in the form of non-Gaussian random
telegraphic noise. Depending on the value of the switching rate
of the RTNs and on the strength of the interaction between the
walkers, different dynamical regimes arise.

To compare our results to the noiseless case, we first showed
that the propagation of two interacting particles moving on
a perfect one-dimensional lattice is strongly affected by their
initial condition and the interaction strength. This feature gives
rise to different dynamics that may be understood in terms of
the band structure of the systems: two subbands, in fact, appear

PHYSICAL REVIEW A 95, 022106 (2017)

and become progressively more detached as the interaction
between the two particles increases. We then analyzed the
effect of noise on the time evolution of the walker, in terms of
their position variances and the occupation numbers over the
lattice.

Our results suggest that fast noise redistributes the wave-
function components between the two subbands, giving rise
to new dynamical regimes that cannot appear without the
contribution of noise. Under appropriate initial conditions, the
dynamics in the presence of fast noise leads indeed to a faster
propagation, as revealed by the single-particle variance, and
a wider spread in the spatial distribution, as revealed by the
occupation number. We also analyzed the dependency of the
faster dynamics on the characteristic parameters of both noise
and system, and showed that a larger band gap (originating
from a stronger interaction value) typically needs a faster
noise to maximize the variance gain. On the other hand, the
propagation is suppressed in the slow noise regime, where
the system displays a dynamical Anderson-like localization
phenomenon, in agreement with previous results [46] for a
single walker.

Overall, our results show that upon tuning the the ratio
between the time scale of the noise and the coupling between
the walkers, we may explore very different dynamical regimes.
This is a relevant degree of freedom, which permits control
over the transition between different dynamical evolutions and
may be exploited for reservoir engineering, where noise is
shaped to enhance some specific dynamical features.
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