Dear Author,

Here are the proofs of your article.

- You can submit your corrections **online**, via **e-mail** or by **fax**.
- For **online** submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers.
- You can also insert your corrections in the proof PDF and **email** the annotated PDF.
- For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page.
- Remember to note the **journal title**, **article number**, and **your name** when sending your response via e-mail or fax.
- **Check** the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown.
- **Check** the questions that may have arisen during copy editing and insert your answers/corrections.
- **Check** that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the *Edited manuscript*.
- The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct.
- Please **do not** make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style.
  Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof.
- If we do not receive your corrections **within 48 hours**, we will send you a reminder.
- Your article will be published **Online First** approximately one week after receipt of your corrected proofs. This is the **official first publication** citable with the DOI. **Further changes are, therefore, not possible.**
- The **printed version** will follow in a forthcoming issue.

**Please note**

After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI].
If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: [http://www.link.springer.com](http://www.link.springer.com).

Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned.
## Metadata of the article that will be visualized in OnlineFirst

<table>
<thead>
<tr>
<th>Article Title</th>
<th>Networks controlling seed size in <em>Arabidopsis</em></th>
</tr>
</thead>
<tbody>
<tr>
<td>Article CopyRight</td>
<td>Springer-Verlag Berlin Heidelberg (This will be the copyright line in the final PDF)</td>
</tr>
<tr>
<td>Journal Name</td>
<td>Plant Reproduction</td>
</tr>
<tr>
<td>Corresponding Author</td>
<td>Colombo</td>
</tr>
<tr>
<td>Family Name</td>
<td>Colombo</td>
</tr>
<tr>
<td>Given Name</td>
<td>Lucia</td>
</tr>
<tr>
<td>Division</td>
<td>Dipartimento di BioScienze</td>
</tr>
<tr>
<td>Organization</td>
<td>Università degli Studi di Milano</td>
</tr>
<tr>
<td>Address</td>
<td>Via Giovanni Celoria 26, Milan, 20133, Italy</td>
</tr>
<tr>
<td>Email</td>
<td><a href="mailto:lucia.colombo@unimi.it">lucia.colombo@unimi.it</a></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Orozco-Arroyo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Name</td>
<td>Orozco-Arroyo</td>
</tr>
<tr>
<td>Given Name</td>
<td>Gregorio</td>
</tr>
<tr>
<td>Division</td>
<td>Dipartimento di BioScienze</td>
</tr>
<tr>
<td>Organization</td>
<td>Università degli Studi di Milano</td>
</tr>
<tr>
<td>Address</td>
<td>Via Giovanni Celoria 26, Milan, 20133, Italy</td>
</tr>
<tr>
<td>Email</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Paolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Name</td>
<td>Paolo</td>
</tr>
<tr>
<td>Given Name</td>
<td>Dario</td>
</tr>
<tr>
<td>Division</td>
<td>Dipartimento di BioScienze</td>
</tr>
<tr>
<td>Organization</td>
<td>Università degli Studi di Milano</td>
</tr>
<tr>
<td>Address</td>
<td>Via Giovanni Celoria 26, Milan, 20133, Italy</td>
</tr>
<tr>
<td>Email</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Ezquer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Name</td>
<td>Ezquer</td>
</tr>
<tr>
<td>Given Name</td>
<td>Ignacio</td>
</tr>
<tr>
<td>Division</td>
<td>Dipartimento di BioScienze</td>
</tr>
<tr>
<td>Organization</td>
<td>Università degli Studi di Milano</td>
</tr>
<tr>
<td>Address</td>
<td>Via Giovanni Celoria 26, Milan, 20133, Italy</td>
</tr>
<tr>
<td>Division</td>
<td>Istituto di Biofisica</td>
</tr>
</tbody>
</table>
Abstract

**Key message:** Overview of seed size control.

Human and livestock nutrition is largely based on calories derived from seeds, in particular cereals and legumes. Unveiling the control of seed size is therefore of remarkable importance in the frame of developing new strategies for crop improvement. The networks controlling the development of the seed coat, the endosperm and the embryo, as well as their interplay, have been described in *Arabidopsis thaliana*. In this review, we provide a comprehensive description of the current knowledge regarding the molecular mechanisms controlling seed size in *Arabidopsis*.

Keywords (separated by ‘-’)
Seed development - *Arabidopsis* - Seed size - Seed coat - Endosperm

Footnote Information
Communicated by Silvia Coimbra.
A contribution to the special issue ‘From Gametes to Seeds’.
Networks controlling seed size in *Arabidopsis*

Gregorio Orozco-Arroyo · Dario Paolo · Ignacio Ezquer · Lucia Colombo

Received: 1 November 2014 / Accepted: 16 January 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract

Key message Overview of seed size control.

Human and livestock nutrition is largely based on calories derived from seeds, in particular cereals and legumes. Unveiling the control of seed size is therefore of remarkable importance in the frame of developing new strategies for crop improvement. The networks controlling the development of the seed coat, the endosperm and the embryo, as well as their interplay, have been described in *Arabidopsis thaliana*. In this review, we provide a comprehensive description of the current knowledge regarding the molecular mechanisms controlling seed size in *Arabidopsis*.

Keywords Seed development · *Arabidopsis* · Seed size · Seed coat · Endosperm

Introduction

Increasing seed production is a key goal to meet world demand and consumption of agricultural crops, for food and feed in emerging economies. In this context, the study of the molecular mechanisms controlling seed formation becomes essential for plant scientists as seed size is a major component of seed yield (Adamski et al. 2009). Thus, advances in the basic knowledge about seed development in the model species *Arabidopsis thaliana* are of key relevance for the rational design of genetically engineered traits in relevant agronomic crop species that could complement and improve upon traditional breeding systems (Varshney et al. 2009; Langridge and Fleury 2011; Feuillet et al. 2011; Becker et al. 2014).

*Arabidopsis* seed development (see Fig. 1) starts after a double-fertilization event (for a complete seed development review, see Nowack et al. 2010; Becker et al. 2014). During the first fertilization event, the zygotic embryo is generated by the fusion of the egg cell and one sperm cell. The second fertilization event, which triggers the development of the triploid endosperm, starts with the fusion of the central cell of the embryo sac with the second pollen sperm cell (endosperm development is reviewed by Lafon-Placette and Köhler 2014). The two biparentally derived fertilization products (the embryo and the endosperm) are encased by the maternal sporophytic tissue (the seed coat), which is derived from the ovule integuments (seed coat development has been reviewed recently by Khan et al. 2014; Figueiredo and Köhler 2014). The seed coat represents a protective layer that prevents damage from external factors such as UV radiation, toxic chemicals and pathogens, as well as impeding germination until conditions are favorable (Haughn and Chaudhury 2005). Furthermore, the seed coat plays a major role in controlling communication between the two generations (reviewed by Bencivenga et al. 2011).

In spite of the influence of several abiotic factors on plant growth and development, such as temperature, light and day length, the final size of plant organs is reasonably...
constant within a given species (Tsukaya 2006), indicating that it is mainly the genetic seed developmental plan which determines the rate of growth until the seed reaches a predetermined mass and final size (Conlon and Raff 1999; Day and Lawrence 2000). Arabidopsis seed size is mainly attained either during the rapid proliferation and growth of the endosperm (Boisnard-Lorig et al. 2001) and proliferation of the seed coat cells. These events span from fertilization to 6 days after pollination (DAP) of seed development (Fig. 1). From 7 to 13 DAP, there is a residual increase in seed volume occurring when the embryo expands at the expense of the endosperm. At this point, seed growth is limited by the seed coat that acts as a constraining physical barrier (Fang et al. 2012). Thus, to understand the whole mechanism governing seed size, it is essential to unveil both the mechanisms of endosperm and integument growth and development, as well as the interplay existing between the developmental programs of these structures.

In the last decades, many key regulators of seed size have been identified (reviewed by Kesavan et al. 2013—summarized in Table 1). However, there are still major gaps in knowledge regarding seed size and the available data are still fragmentary and need to be assembled into a global and coherent picture (see Fig. 2). This review provides a summary and an update of the different pathways controlling seed size in Arabidopsis. We analyzed seed size regulation in Arabidopsis, focusing on different functional categories in order to better describe them singularly. This includes mechanisms underlying the developmental processes of (A) the endosperm, including genomic imprinting and parent-of-origin effects, and (B) the seed coat/integuments. Moreover, we discuss (C) the cross talk between endosperm and seed coat and the role of (D) hormone synthesis and perception in determining seed size.

Endosperm development

Successful seed development requires the synchronized growth of the endosperm, the embryo and the seed coat (Fig. 1). Coordinated growth and development between these structures is reached through exchange of signals whose nature is still unknown. The profound morphological changes that characterize seed coat development could start only if the endosperm undergoes its developmental program, as embryo development by itself is not sufficient to stimulate seed coat growth and differentiation (Nowack et al. 2007; Hehenberger et al. 2012). However, it was demonstrated that central cell nuclei could start to proliferate even in the absence of karyogamy between central cell and sperm nucleus (Guitton et al. 2004). The failure of karyogamy in the central cell has been shown to impair endosperm development causing seed abortion (Aw et al. 2010). Interestingly, viable seeds can also be produced in the presence of homoparental diploid, as opposed to triploid, endosperm (Nowack et al. 2006, 2007). In cdka:1 mutants, pollen fertilizes only the egg cell, not the central cell due to karyogamy failure (Aw et al. 2010). If cdka:1 pollen is used to fertilize the mea (mea) mutant, in which the endosperm proliferates without fertilization (Kiyosue et al. 1999), full embryogenesis and viable plants are produced in the presence of diploid endosperm (Nowack et al. 2007). Endosperm development has four phases (Fig. 1): syncytial, cellularization, differentiation and death. The syncytial phase is characterized by a series of
### Table 1 List of Arabidopsis seed size-regulating genes and their functions

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>Mutants characterized</th>
<th>Effect on seed size</th>
<th>Expression patterns</th>
<th>Functional category</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARF2</td>
<td>AT5G62000</td>
<td>arf2-6; arf2-7; arf2-8</td>
<td>+</td>
<td>Y (prefertilization)</td>
<td>Embryo</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Okushima et al. (2005),</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schruff et al. (2006)</td>
</tr>
<tr>
<td>IKU1</td>
<td>AT2G35230</td>
<td>iku1</td>
<td>−</td>
<td>Y</td>
<td>Endosperm</td>
<td>VQ motif protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Garcia et al. (2003), Wang et al. (2010)</td>
</tr>
<tr>
<td>KLU</td>
<td>AT1G13710</td>
<td>klu-2; klu-4</td>
<td>−</td>
<td>Y</td>
<td>Seed coat, endosperm</td>
<td>Cytochrome P450 oxygenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Adamski et al. (2009)</td>
</tr>
<tr>
<td>TTG2</td>
<td>AT2G37260</td>
<td>ttg2-1</td>
<td>−</td>
<td>Y</td>
<td>Seed coat, endosperm</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Johnson et al. (2002), Dilkes et al. (2008)</td>
</tr>
<tr>
<td>STK</td>
<td>AT4G09960</td>
<td>stk-1; stk-2</td>
<td>−</td>
<td>Y</td>
<td>Seed coat, endosperm</td>
<td>Transcription Factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pinyopich et al. (2003), Mizzotti et al. (2012)</td>
</tr>
<tr>
<td>FER</td>
<td>AT3G51550</td>
<td>fer-4</td>
<td>+</td>
<td></td>
<td>Seed coat</td>
<td>Receptor kinase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yu et al. (2014)</td>
</tr>
<tr>
<td>AHK2</td>
<td>AT5G35750</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHK3</td>
<td>AT1G27320</td>
<td>abk2-5 abk3-7 cre1-2a</td>
<td>Y</td>
<td></td>
<td>Developing siliques, embryo</td>
<td>CK receptor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higuchi et al. (2004), Riefler et al. (2006)</td>
</tr>
<tr>
<td>CRE1/AHK4</td>
<td>AT2G01830</td>
<td></td>
<td>Y</td>
<td></td>
<td>Developing siliques, embryo</td>
<td>CK receptor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Riefler et al. (2006), Nishimura et al. (2004)</td>
</tr>
<tr>
<td>FIS2</td>
<td>AT2G35670</td>
<td>fis2</td>
<td>POE</td>
<td>Y</td>
<td>Endosperm</td>
<td>Chromatin remodeler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Luo et al. (2000)</td>
</tr>
<tr>
<td>DAI1</td>
<td>AT1G19270</td>
<td>dae-1</td>
<td>+</td>
<td>Y</td>
<td>Embryo</td>
<td>Ubiquitin receptor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Li et al. (2008)</td>
</tr>
<tr>
<td>IKU2</td>
<td>AT3G19700</td>
<td>ika2-3</td>
<td>−</td>
<td>Y</td>
<td>Endosperm</td>
<td>Receptor kinase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Garcia et al. (2003), Luo et al. (2005)</td>
</tr>
<tr>
<td>MINI3</td>
<td>AT1G55600</td>
<td>mini3-1</td>
<td>−</td>
<td>Y</td>
<td>Endosperm, embryo</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Luo et al. (2005), Li et al. (2013)</td>
</tr>
<tr>
<td>CKX1</td>
<td>AT2G41510</td>
<td>35S:AtCKX1B</td>
<td>+</td>
<td>Y</td>
<td>ND</td>
<td>CK biosynthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Werner et al. (2003)</td>
</tr>
<tr>
<td>CKX5</td>
<td>AT1G75450</td>
<td>ckx3 ckx5</td>
<td>+</td>
<td>Y</td>
<td>ND</td>
<td>CK biosynthesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bartrina et al. (2011)</td>
</tr>
<tr>
<td>CKX3</td>
<td>AT5G6970</td>
<td>35S:AtCKX3B</td>
<td>+</td>
<td>ND</td>
<td>Developing seeds</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zhang et al. (2013)</td>
</tr>
<tr>
<td>MYB56</td>
<td>AT5G17800</td>
<td>myb56-1</td>
<td>−</td>
<td></td>
<td>Developing seeds</td>
<td>SYG1 homologous protein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zhou et al. (2009)</td>
</tr>
<tr>
<td>SHBI</td>
<td>AT4G25350</td>
<td>shb1-1F</td>
<td>+</td>
<td></td>
<td>Endosperm, embryo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AP2</td>
<td>AT4G36920</td>
<td>ap2-11</td>
<td>+</td>
<td></td>
<td>Seed coat, endosperm and embryo</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ohoto et al. (2005), Kinoshita et al. (2004)</td>
</tr>
<tr>
<td>EOD3</td>
<td>AT2G46660</td>
<td>eod3-ko1</td>
<td>−</td>
<td>ND</td>
<td>Developing seeds</td>
<td>Cytochrome P450 oxygenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fang et al. (2012)</td>
</tr>
<tr>
<td>MET1</td>
<td>AT5G49160</td>
<td>met1-6</td>
<td>POE</td>
<td></td>
<td>Developing seeds</td>
<td>DNA methylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Xiao et al. (2006)</td>
</tr>
<tr>
<td>CYP78A9</td>
<td>AT3G61880</td>
<td>cyp78a9-ko</td>
<td>−</td>
<td></td>
<td>Developing seeds</td>
<td>Cytochrome P450 oxygenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fang et al. (2012)</td>
</tr>
<tr>
<td>EOD1</td>
<td>AT3G63530</td>
<td>eod1-2</td>
<td>+</td>
<td>Y</td>
<td>Embryo</td>
<td>Ubiquitin ligase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Li et al. (2008), Xia et al. (2013)</td>
</tr>
<tr>
<td>UBP15/SOD2</td>
<td>AT1G11710</td>
<td>sbp15-1</td>
<td>−</td>
<td>Y</td>
<td>NS</td>
<td>Ubiquitin protease</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Du et al. (2014)</td>
</tr>
<tr>
<td>GOA</td>
<td>AT1G31140</td>
<td>goa-1</td>
<td>+</td>
<td>Y</td>
<td>Developing siliques, seed coat, embryo</td>
<td>Transcription factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prasad et al. (2010), Erdmann et al. (2010)</td>
</tr>
<tr>
<td>CYP72C1</td>
<td>AT1G17060</td>
<td>shk1-D8</td>
<td>−</td>
<td></td>
<td>Developing siliques</td>
<td>Cytochrome P450 oxygenase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Takahashi et al. (2005)</td>
</tr>
<tr>
<td>DET2</td>
<td>AT2G38050</td>
<td>det2</td>
<td>−</td>
<td>Y</td>
<td>BR biosynthesis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fujisaka et al. (1997), Jiang et al. (2013)</td>
</tr>
</tbody>
</table>
Table 1 continued

<table>
<thead>
<tr>
<th>Gene</th>
<th>Locus</th>
<th>Mutants characterized</th>
<th>Expression pattern</th>
<th>Effect on seed size</th>
<th>Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR1</td>
<td>AT4G39400</td>
<td>bri1 -</td>
<td>Developing seeds</td>
<td>BR signaling</td>
<td>Jiang et al. (2013), Hategan et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>AT1G52340</td>
<td>aba2 -</td>
<td>Developing siliques</td>
<td>ABA biosynthesis</td>
<td>Cheng et al. (2013), Cheng et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>AT2G36270</td>
<td>ABI5 -</td>
<td>Developing siliques, dry seeds</td>
<td>Transcription factor</td>
<td>Finkelstein and Lynch (2000), Grossniklaus et al. (1998), Kiyosue et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>AT1G78420</td>
<td>F644/MEA</td>
<td>Developing siliques</td>
<td>Chromatin remodeller</td>
<td>Grossniklaus et al. (2013), Kiyosue et al. (2013)</td>
</tr>
<tr>
<td></td>
<td>AT1G02580</td>
<td>da2 -</td>
<td>Developing siliques, embryo</td>
<td>Transcription factor</td>
<td>Xia et al. (2008)</td>
</tr>
<tr>
<td></td>
<td>AT5G60440</td>
<td>AGL62 -</td>
<td>Developing seeds</td>
<td>Transcription factor</td>
<td>Hehenberger et al. (2008)</td>
</tr>
</tbody>
</table>

The effect of specific gene mutations on seed size is described as positive (+) as reported in the literature. The other member belonging to this pathway is AGL62, a type 1 MADS-box transcription factor. The expression level AGL62 correlates with endosperm cellularization in a dosage-dependent way, suggesting that it represents a key regulator of endosperm cellularization and consequently of seed size determination. Accordingly, the agl62 mutants have precocious endosperm cellularization and a small seed phenotype (Kang et al. 2008; Kradolfer et al. 2013), while increased AGL62 expression correlates with a delay in spermatogenesis in these mutants. The effect of specific gene mutations on seed size is described as positive (+) as reported in the literature.
or a complete absence of cellularization (Erilova et al. 2009; Tiwari et al. 2010). Interestingly, AGL62 expression is under negative control of the FIS-PRC2, an indication that the timing of endosperm cellularization is epigenetically controlled (Hehenberger et al. 2012).

The second pathway controlling cellularization of the endosperm involves the PcG protein complex and its imprinted genes. Imprinting and its relation with seed size control will be discussed in a separate section of this review.

The IKU pathway is probably the best-described pathway for endosperm cellularization. The genes HAIKU1 (IKU1) and IKU2 have been shown to be key regulators of seed size in Arabidopsis via control of the transition from syncytial phase to the cellularization phase of the endosperm (Garcia et al. 2003). IKU1 encodes a protein containing a VQ motif (Wang et al. 2010), while IKU2 encodes a leucine-rich repeat kinase (Luo et al. 2005). *iku1* or *iku2* mutant plants show reduced proliferation of the endosperm, as well as a precocious cellularization process, leading to reduced seed size (Garcia et al. 2003). Another member of the IKU pathway is MINISEED3 (MINI3), a WRKY class transcription factor that regulates the endosperm cellularization process (Luo et al. 2005). *mini3* mutant plants phenocopy *iku1* and *iku2* small seed phenotypes, due to precocious cellularization of the endosperm. In addition, the small seed phenotype of *mini3* mutant is ascribable to reduced cell expansion in the seed coat and reduced cell proliferation that results in a smaller embryo compared with wild type (Garcia et al. 2003; Luo et al. 2005). Genetic and mutant analyses indicate that IKU1, IKU2 and MINI3 are likely to participate in a single pathway, with IKU1 regulating both MINI3 and IKU2, and MINI3 regulating IKU2 (Luo et al. 2005). Apparently, MINI3 could positively regulate IKU2 by binding to the putative W-box identified in the IKU2 promoter. Seed size of the double mutants *iku2-1 mini3-1* is similar to the seed size of homozygous mutant alleles of each single locus (Luo et al. 2005).

Recently, it has been reported that short hypocotyl blue 1 (SHB1) binds to the promoters of IKU2 and MINI3 (Zhou et al. 2009; Kang et al. 2013). SHB1 encodes a nuclear SYG1-homologous protein (Kang and Ni 2006) that is recruited by MINI3 to activate the IKU2 and MINI3 expression, and probably other genes required for endosperm development, stimulating the process of endosperm cellularization (Kang et al. 2013). SHB1 was first described to be involved in hypocotyl development (Kang and Ni 2006).

Fig. 2 Model indicating the pathways determining seed size in Arabidopsis. The model illustrates the main networks and/or key regulators characterized in the literature, based on their role in development of the a seed coat or b endosperm. a Seed coat. Genetic pathways involved in the activation/repression of cell proliferation and cell expansion during seed coat development, thus controlling seed size in a maternal way. Four functional categories (boxes) are indicated based on previous characterization studies. b Endosperm. Schematic representation of factors that influence endosperm cellularization and, therefore, seed size. One of the mechanisms involved in parents-of-origin effects includes activation of DME in the central cell and simultaneous repression of MET1, resulting in hypomethylation of MEGs, and consequently their preferential expression over PEGs in the endosperm. The expression of MEGs is furthermore controlled by PRC2 action through histone methylation. The two additional pathways (MADS/AP2 and IKU) that regulate the timing of endosperm cellularization are indicated. Lines ending in arrowheads indicate positive transcriptional regulation, and lines ending in bars indicate repression of expression.
2006) and later as a regulator of endosperm proliferation and the timing of cellularization. The gain-of-function overexpression mutant shbl-D displayed an enlarged seed size phenotype associated with a delay in endosperm cellularization (Zhou et al. 2009).

Thus, independent networks act as key regulators of endosperm growth, by controlling endosperm proliferation and cellularization with a major impact in final seed size (Fig. 2). Further investigation is required to identify all the molecular players in these pathways and to determine whether they share downstream targets.

Genomic imprinting and parent-of-origin effects

In plants, genomic imprinting has been observed primarily in the endosperm (Bauer and Fischer 2011) and rarely on the embryo (Jahnke and Scholten 2009). Imprinting of a specific allele depends on the presence of an epigenetic mark on the corresponding locus (reviewed by Ferguson-Smith 2011). It has been proposed that imprinted genes regulate the transfer of nutrients from the sporophyte to the developing progeny. In particular, maternally expressed genes (MEGs) function to equally allocate nutrients to all seeds, while on the other hand paternally expressed genes (PEGs) function as growth factors that allow their own offspring to extract the maximum amount of nutrients from the mother. Therefore, increased PEGs activation determines the formation of larger seeds (Haig and Westoby 1989).

Epigenetic modifications performed on genetically identical alleles lead to parent-of-origin specific expression. Of particular importance is the balance of methylation between maternal and paternal alleles in the central cell. Removal of DNA methylation relies on the enzymatic activity of DEMETER (DME) (Kinoshita et al. 2004; Gehring et al. 2006), and DNA methylation depends on the enzyme DNA methyltransferase 1 (MET1) (Hsieh et al. 2011; Jullien et al. 2012). DME is expressed in the central cell in the embryo sac (Choi et al. 2002) and in the vegetative cell of the pollen grain (Schoft et al. 2011). This leads to specific DNA hypomethylation of the maternally inherited genome. Previous studies showed that altering DNA methylation in a parental-specific manner via MET1 resulted in variation in seed size (Xiao et al. 2006). When crossing MET1::RNAi pistils with wild-type pollen, the result is production of enlarged F1 seeds. Meanwhile, reciprocal crosses generated smaller F1 seeds, as expected from the presence of hypomethylated paternal genome (Adams et al. 2000; Luo et al. 2000; Xiao et al. 2006). Thus, the methylation status of both the maternal and paternal genome directly influences seed size.

The second major mechanism involved in imprinted expression of a subset of genes relies on PcG proteins. PcG proteins are pivotal regulators of cell identity that act as transcriptional repressors in multimeric complexes (Schuettengruber and Cavalli 2009). Among these, the PRC2-complex catalyzes the trimethylation of histone H3 on lysine 27 (H3K27me3) and has been implicated in controlling endosperm development. Specifically, the FIS-PRC2 (fertilization-independent seed-Polycomb repressive complex 2), which comprises the different subunits encoded by MEDEA (MEA), fertilization-independent seed 2 (FIS2), fertilization-independent endosperm (FIE) and multicopy suppressor of IRA1 (MSI1), acts in the central cell of the female gametophyte and in the endosperm, targeting DNA hypomethylation sites (Weinhofer et al. 2010). The FIS-PRC2 mainly represses the expression of maternally inherited (and hypomethylated) alleles. Seeds with mutations in mea, fis2 or fie show endosperm proliferation even in the absence of fertilization, but also prolonged endosperm proliferation and absent or delayed cellularization if fertilization occurs (Grossniklaus et al. 1998; Kiyosue et al. 1999; Makarevich et al. 2008). The phenotypes of these mutants imply that PC2 complexes promote fast endosperm differentiation after fertilization, thus directly acting on a pathway that greatly influences seed size (Fig. 2).

Finally, it is necessary to mention that perturbation of the relative dosages of the maternal and paternal genomes, by example in the case of interploidy crosses, directly affects endosperm development and seed size (Garcia et al. 2003; Luo et al. 2005; Kang et al. 2008; Zhou et al. 2009; Wang et al. 2010). The defects and low endosperm viability often observed in seeds of interploidy crosses (as in the case of wheat) can be explained in terms of maternal or paternal genome excess, i.e., an imbalance between MEGs and PEGs, and its effect on endosperm growth (Haig and Westoby 1991). However, the negative effects on seed development of interploidy crosses are reduced in Arabidopsis, in which both paternalized (PEGs excess) and maternalized (MEGs excess) seeds show the expected alteration from wild-type size, but show normal endosperm viability. This mitigated effect is probably due to the high rate of self-pollination that is characteristic of this model species (Scott et al. 1998).

The role of the seed coat in seed size determination

The Arabidopsis seed coat derives from the ovule integuments, formed by a set of five cell layers in mature ovules (Fig. 1). Two cell layers derive from the outer integument (oi) and three from the inner one (ii). The outer integument consists of two cell layers (oi1 and oi2), and the inner integument consists of three cell layers (ii1, ii1’ and ii2) (Breckman et al. 2000; Kunieda et al. 2008).
innermost layer of the inner integument, ii1, named the endothelium (Beeckman et al. 2000), is in direct contact with the endosperm cells.

The seed coat deeply influences seed size, highlighting a fundamental role for seed maternal tissues in the control of this aspect of seed yield. The seed cavity (the space enclosed by the seed coat) increases in volume after fertilization, partly due to the independent developmental plan of the seed coat and partly as the result of the interplay between the seed coat and the endosperm (Ingouff et al. 2006; Roszak and Köhler 2011). After fertilization, the cells belonging to the different seed coat layers predominantly experiment intense expansion activity but still undergo division activity (Garcia et al. 2005). Both cell division and expansion cease at 6 DAP (Du et al. 2014).

Before fertilization, the female gametophyte (embryo sac) seems to have only a moderate importance in generating the signals to stimulate the integuments’ proliferation (Ingouff et al. 2006); this was proven by demonstrating that mutants defective in embryo sac formation, such as sporocyteless (spl), are still able to develop integument to some extent (Yang et al. 1999). Numerous studies have identified genes involved in Arabidopsis ovule integuments and seed coat development, and some of them have provided a functional characterization of seed size contribution. In particular, seed size mutant phenotypes showing a clear maternal inheritance are mainly due to an alteration of cell proliferation or elongation in the seed coat. The control of these two pathways will be discussed separately.

Factors controlling integuments cell proliferation

A key player in the control of cell cycle and expansion in Arabidopsis is auxin response factor 2 (ARF2), which encodes a B3-type transcription factor of the ARF family (Li et al. 2004). ARF genes take part in auxin-related responses and recognize specific AuxRE (auxin response elements) consensus elements on target genes (Ulmasov et al. 1999). Among the different ARF proteins, ARF2 is thought to act as a transcriptional repressor, exercising a negative control over cell proliferation and expansion (Li et al. 2004; Okushima et al. 2005; Schruff et al. 2006). In particular, different arf2 loss-of-function mutants exhibit abnormal flower morphology and enlarged seeds in comparison with the wild type (Okushima et al. 2005). A phenotype characterized in detail in the case of arf2-9, which presented more cells in the seed coat compared with wild-type seeds. The result of the increased volume of the seed cavity in arf2-9 is that seeds are 46% heavier than the wild-type seeds, showing in some cases additional cell layers in the seed coat (Schruff et al. 2006). A further confirmation that ARF2 is important for the maternal control of seed size comes from the maternal inheritance of arf2-9 phenotype observed in the reciprocal crosses with wild-type plants (Schruff et al. 2006). Besides enlarged seeds, the arf2-9 mutant also has a significant reduction in fertility due to improper flower development (Schruff et al. 2006). Reduced fertility often correlates with increased seed weight (Harper et al. 1970; Ohoto et al. 2005). However, this is not occurring in the arf2-9 mutant, since the hypothesis of the large-seed phenotype as an indirect effect of the seed size/seed number trade-off was later refuted in a subsequent study (Hughes et al. 2008). In fact, the defects in the floral morphology of the arf2-9 mutant were overcome by expressing ARF2 under the promoter of APETALA1 (AP1). The pAP1::ARF2 arf2-9 plant improved the fertility, retaining the enlarged seed size phenotype of the original arf2-9 mutant, thus showing the pivotal role of ARF2 in seed development.

Another negative regulator of cell division is the transcription factor AP2, whose role in endosperm development has been described above. Interestingly, the increased cell proliferation observed in ap2 is under maternal control and affects both the seed coat and the endosperm (Jofuku et al. 2005; Ohoto et al. 2005). Notably, AP2 expression is negatively regulated by miR172 during flower development (Chen 2004), while ARF2 is negatively regulated by transacting small-interfering RNA (tasiRNA) (Williams et al. 2005). Similarly, it was reported that mutation in the gene mir159 results in seeds smaller than wild type (Allen et al. 2007). The two known targets of mir159 that are expressed in developing seeds, MYB33 and MYB65, have no described function in the seed. However, they are responsible for the mir159ab seed phenotype, as the quadruple mutant mir159ab myb33 myb65 showed a reversion of the seed traits (Allen et al. 2007). Taken together, these results provide evidence of a fundamental role for post-transcriptional regulation via small RNAs in the control of seed size.

Cytochrome P450 KLUH, encoded in Arabidopsis by CYP78A5/KLU, is a regulator of organ size (both leaves and floral organs) as well as of plastochron length (Anastasiou et al. 2007; Wang et al. 2008). It has also been shown that KLU, expressed prior to fertilization in the inner integuments of the ovule, acts as a maternal positive regulator of seed size. klu-2 seeds have a reduced number of cells in the outer layers of the seed coat in comparison with wild type, with the result that klu-2 seeds are 13% lighter than seeds of wild-type plants. The opposite phenotype was observed in KLU-overexpressing plants, whose seeds are 11% heavier (Adamski et al. 2009). KLU seems to act independently of previously described integument cell proliferation factors as AP2 and ARF2, because seeds of the double mutants klu arf2 and klu ap2 were an intermediate seed size between those of the respective single mutants (Adamski et al. 2009).
In Arabidopsis, the importance of ubiquitin pathway in the determination of seed size has been widely investigated over the last decade. Several members involved in this pathway have been identified (reviewed by Li and Li 2012) for their role in maternal control of seed size. Among them, DA1 and DA1-related (DAR) encode for plant-specific ubiquitin receptor protein. While single mutants dal1-ko and dar1-1 do not exhibit variation in seed size in comparison with wild type, the double mutant dal1-ko dar1-1 produces larger seeds. Another mutation in the DA1 sequence (a single arginine-to-lysine aminoacidic change at position 358, the dal1-1 mutant) results in plants producing seeds with increased cell proliferation in the seed coat, a phenotype also observed in 35S::DA1R35SK. This suggests that the mutated DA1 protein might act antagonistically with native DA1 or DAR (Li et al. 2008), DA2 and enhancer of DA1 (EOD1) encode proteins with E3 ubiquitin ligase activity and are also negative regulators of seed size, as shown by the enlarged seeds of single mutants da2-1 and eod1. They may act synergistically with DA1, as observed by the enhanced seed size of dal1-1 da2-1 and dal1-1 eod1 double mutants in comparison with dal1 mutant (Xia et al. 2013). EOD3 encodes cytochrome P450 CYP78A6. The gain-of-function mutant eod3-1D proved to be a dominant enhancer of the dal1-1 seed size phenotype, while on the contrary eod3-ko produced smaller seeds than wild type (Fang et al. 2012). CYP78A9 encodes for another cytochrome P450 and is the most closely related gene to EOD3, with whom it might act synergistically in promoting the size of the seed coat. This is implied by the additive small seed phenotype observed in eod3-ko cyp78a9-ko double mutants in comparison with the single mutants (Fang et al. 2012). Ubiquitin-specific protease 15 (UBP15) suppressor of DA2 (SOD2) encodes for a de-ubiquitinating enzyme acting downstream of DA1 (Li et al. 2008; Du et al. 2014). The ubp15 mutant produces small seeds, while the overexpression line of UBP15 results in larger seeds. This is likely due to a positive effect on cell proliferation in maternal integuments of ovules and developing seeds.

It has been suggested that dal1-1 acts independently of ARF2 and AP2, as the seed phenotype of the double mutants dal1-1 ap2 and dal1-1 arf2 is additive in comparison with the one of the single mutants (Li et al. 2008).

Factors controlling integuments cell elongation

A reduction in cell elongation is observed in the loss-of-function mutant transparent testa GLABRA 2 (TTG2). In the ttg2 mutant, cell elongation in the integuments is affected, possibly because of the increased physical constraint of the cell walls, or possibly because of disruption of the developmental pathways for elongation. Endosperm development is also affected, probably as a consequence of the defects in integument cells (Garcia et al. 2003, 2005). Developing seeds produced by the double mutant ttg2 iku2 display extremely reduced size in comparison with the single mutants ttg2 and iku2 seeds (Garcia et al. 2005). The combination of ttg2 and iku2 mutations prevents integument cell elongation and growth of the endosperm more severely than in each single mutant. The double homozygous mutant displays a cumulative phenotype combining the maternal effects of ttg2 with the endosperm effect of iku2 (Garcia et al. 2003, 2005). The additive reduction in integument cell division and elongation, endosperm growth and seed size when iku2 and ttg2 mutations are combined, indicates that each mutation acts in distinct genetic pathways, but has common effectors. In parallel, reduction in the endosperm volume is more evident in the double mutant relative to the single mutants. To achieve the size of the integument, dictated by the size of the syncytial endosperm, integument cells regulate elongation, not cell proliferation. Integument cell elongation plays a key role in the coordination of size between the endosperm and the integument. Accordingly, TTG2 would modulate the competence of the integument cells to elongate via a maternal integument elongation-dependent pathway (Garcia et al. 2005).

Another positive regulator of seed size in Arabidopsis is the R2R3 MYB transcription factor, MYB56, which maternally affects seed development by regulating seed size and shape (Zhang et al. 2013). The loss-of-function mutant lines of MYB56 generate smaller seeds, while overexpression of MYB56 generates larger seeds compared with wild type. myb56 endothelial cells are smaller and more rounded. Apparently, the role of MYB56 is locally dependent since its altered expression on the endothelial layer affects cell size but not cell number; however, in the two layers of the outer integument, MYB56 controls only cell number but not the cell size (Zhang et al. 2013). MYB56 affects seed size in a regulatory pathway probably independent of other seed coat development regulators such as TTG2, KLU, GORDITA (GOA) and DA1, because these genes show no expression changes in a myb56 mutant background (Zhang et al. 2013).

SEEDSTICK (STK) and Arabidopsis B-sister (ABS) are two MADS-box genes that act together to control the formation of one layer of the seed coat, the endothelium, during seed development (Mizzotti et al. 2012). STK controls ovule identity redundantly with SHATTERPROOF1 (SHP1) and SHP2. In addition, stk single mutant produces smaller seeds (Pinyopich et al. 2003) with respect to wild type, whereas abs mutant has no size difference (Nesi et al. 2002). The double mutant stk abs completely lacks endothelium development and manifests a high level of sterility, due to both ovule and seed abortions (Mizzotti et al. 2012). Another MADS-box transcription factor involved in seed
coat development is GOA. A loss-of-function mutation in GOA causes an increase in the seed size when compared with wild type, due to an impact on cell expansion processes, during fruit and seed development (Prasad et al. 2010; Erdmann et al. 2010).

Very recently, a new actor in the integument development was described, the plasma membrane receptor kinase FERONIA (FER) (Yu et al. 2014). FER has been demonstrated previously to be involved in inhibiting pollen tube elongation (Escobar-Restrepo et al. 2007) and promoting cell elongation in leaves and root hairs (Guo et al. 2009; Duan et al. 2010). FER is highly expressed on the integuments of developing seeds, but it was not detected in embryo or endosperm (Yu et al. 2014). FER-null mutants develop seed that are 40–60 % larger than the wild type. At 2 DAP, the outer integument of fer-4 contained larger cells and no differences in cell number from the wild type. The authors concluded that FER inhibits the elongation of seed coat cells (Yu et al. 2014). This conclusion is supported by the fact that FER controls cell elongation in root hairs in response to auxin through recruitment of RHO GTPases (ROP/RAC) to promote or inhibit cell elongation. ROP/RAC signaling pathway regulates several cell responses, such as polarized growth and differentiation (Duan et al. 2010; Yu et al. 2014). In the female gametophyte, FER is a receptor of rapid alkalinization factor (RALF), a small peptide whose overexpression or external application promotes cell wall alkalinization and growth inhibition. The FER–RALF interaction causes the phosphorylation of the H⁺-ATPase AHA2. AHA2 phosphorylation may have an effect on the cell wall levels of reactive oxygen species (ROS), changing the balance between the ROS promoting/inhibiting cell wall relaxation state (reviewed in Wolf and Höfte 2014). In this way FER could, at least partially, control the cell wall’s capacity to elongate. However, further research has to be done to fully understand the role of FER in seed development.

**Endosperm–integument cross talk**

Endosperm and integument growth and development are tightly coupled. As mentioned above, seed coat development influences endosperm proliferation and the timing of cellularization (Fig. 1). At the same time, the endosperm performs a key nourishing function and provides signals to coordinate seed maturation (Berger et al. 2006).

Two models have been proposed to explain the cross talk between endosperm and the seed coat and its role in controlling seed size. The ‘integument size-restriction model’ suggests that the expansion of the integument cells represents a physical constraint to the size of the seed cavity, restricting the size of the embryo. As a result, this volume reduction increases the concentration of the factors triggering the cellularization process (Garcia et al. 2005; Doughty et al. 2014).

In the second model, identified as the ‘cellularization signaling model’ (Fig. 3), the interplay between seed coat and endosperm is mediated by a signal that moves between integuments and endosperm. Flavonoids (proanthocyanidins [PAs]) represent excellent candidates for the signal that triggers the endosperm cellularization process since they are synthesized in the endothelium. The accumulation of flavonoids is initiated after fertilization in the endothelium (Debeaujon et al. 2003). The relevance of flavonoids in seed size control emerged from the fact that many flavonoid biosynthetic pathway mutants show alterations in

![Fig. 3 Schematic representation of endosperm–seed coat cross talk in Arabidopsis according to the ‘cellularization signaling model.’ Seed coat layers are not shown for clarity. Black circles represent the endosperm nuclei at syncytial stage. a During early seed development (globular stage embryo—4 DAP), the endosperm progresses from the syncytial to cellularized stage. In this suggested model, transport of a cellularization signal between the integuments and the endosperm would be controlled by flavonoid biosynthesis. Adding support to this thesis, several mutants defective in the flavonoid biosynthesis pathway with reduced seed size were found to display a precocious endosperm cellularization (Scott et al. 2013). Hexose concentrations may also play an important regulatory role driving growth of the endosperm, since a higher hexose/sucrose ratio may stimulate mitotic activity and promote cellular proliferation leading to a greater seed size (Ötho et al. 2005). During the early stages of seed development, sucrose is actively transported into plant “sink” tissues like seeds and enters the seed coat via the vascular bundle of the funiculus (black arrows). Sucrose is cleaved in the seed coat and the resultant hexoses are used by developing embryo and endosperm. Signaling mechanisms originated in the seed coat (red arrows) may enter to the syncytium from the seed coat and later reach the embryo. This could be done directly from the syncytial endosperm, or indirectly via the suspensor. b The accumulation of these signals triggers the endosperm cellularization process at later stages of seed development (heart stage embryo). Abbreviations: SC seed coat, CV central vacuole](image-url)
the timing of the endosperm cellularization process (Scott et al. 2013; Doughty et al. 2014). Furthermore, it has been reported that flavonols could interact with the phosphoglycerolipid (PGP) auxin transporters PGP1, PGP4 and PGP19 (Peer and Murphy 2007). Flavonoids inhibit PGP-mediated polar auxin transport (Terasaka et al. 2005), which in fact may cause a rapid change in auxin concentration that results in delay/trigging of the endosperm cellularization process (Doughty et al. 2014), thus affecting seed development and seed size.

Another type of candidate molecules that could mediate the seed coat–endosperm cross talk are the polysaccharides. Nutrients from the phloem have to be unloaded from the seed coat into the endosperm and the embryo. The processing of sucrose follows distinct biochemical pathways, such as biosynthesis of cell wall polysaccharides and storage reserves. Thus, maternal tissues are major sites of sugar translocation and partitioning and are hence considered key determinants of sink strength and seed biomass yield. Since sugar metabolism and transport can be highly compartmentalized in seeds (Morley-Smith et al. 2008), even small differences in hexose/sucrose ratio can have dramatic effects on seed development and storage metabolism. For instance, AP2 seems to modulate the nutritional supply from maternal tissues by changing the ratio of hexose to sucrose during seed development, opening the possibility that AP2 may also control seed mass through its effects on sugar metabolism (Ohto et al. 2009).

**The role of hormone synthesis and perception in determining seed size**

As stated before, the complex structure forming the developing seed requires the coordination in growth of multiple tissues and cells with different patterns of proliferation and differentiation. This coordinated growth demands a precise spatiotemporal organization that can be achieved thanks to the synthesis and perception of signals in different seed tissues. This sophisticated communicative system between seed compartments is crucial not only to regulate their balance in growth, but also to control the progression of the whole developmental process within each tissue. The function of hormones in this communicative role to coordinate seed development has been well characterized by studies performed on hormone-deficient and hormone-insensitive mutants of Arabidopsis. Several hormonal pathways such as brassinosteroids, cytokinins, auxins and abscisic acid have been already proposed to play a crucial role in seed development (Sun et al. 2010). In this last part of the review, we provide a global panorama of the regulation of seed development by phytohormonal stimuli, emphasizing their impact on seed size (for a review of hormones controlling seed development, see Locascio et al. 2014).

**Key role of brassinosteroids in seed size regulation**

The function of brassinosteroids (BR) in seed development has been well characterized by studies of BR-deficient and BR-insensitive mutants in several species such as Arabidopsis, Oryza sativa, Pisum sativum and Vicia faba (for a review, see Jiang and Lin 2013). At the cellular level, low endogenous concentrations of BR have been shown to exert a positive effect on cell elongation; meanwhile, saturating levels of BR lead to the opposite effects with reduced cell elongation (Fujioka et al. 1997; Turk et al. 2003). Brassinosteroids are required for proper plant growth and deficiencies in their synthesis, and signal transduction pathway leads to severe dwarfed phenotypes (Fujioaka et al. 1997). An Arabidopsis dwarf mutant overexpressing the P450 monooxygenase gene CYP72C1 (shk1-D) showed a reduction in endogenous BR levels and produced smaller seeds than the wild type, probably due to an effect on cell elongation (Takahashi et al. 2005). A similar small seed phenotype was reported in the DWF5 (DWF5) loss-of-function mutant. DWF5 encodes a sterol reductase gene involved in the BR biosynthesis pathway (Choe et al. 2000). The weak BR-deficient mutant de-etiolated 2 (det-2), in which seed size was rescued by exogenous BR application, and the BR-insensitive mutant (brassinosteroid-insensitive 1) bri1-5 produced smaller seeds than wild-type seeds.

The mechanism of BR regulation of seed size is twofold: 1) expanding the seed cavity and endosperm volume, promoting embryo development and 2) controlling integument cell length (Jiang et al. 2013). BR regulates embryo and endosperm development through the brassinazole-resistant 1 (BZR1) transcription factor which controls the IKU pathway by binding to the promoter regions of SHB1 or IKU1, or alternatively through binding to the promoter of IKU2 (Jiang et al. 2013). On the other hand, evidence supporting BR control of seed size by regulating integument development comes from the significant decrease of integument cell length in det2 (Jiang et al. 2013) and from the mutant arf2, which develops larger seeds due to extra integument cell divisions (Schruff et al. 2006). ARF2 is a direct target of BZR1, and its transcription is negatively regulated by BR (Jiang et al. 2013). Thus, it seems that BR might regulate seed size through BZR1 binding and repressing ARF2 promoter to positively regulate the integument development (Jiang et al. 2013). As a result, ARF2 has been proposed to mediate the cross talk between auxins and BR. BIN2, a
kinase regulated by BR, phosphorylates ARF2 in vitro. Apparently, this phosphorylation would allow the detachment of ARF2 from DNA, inhibiting its transcriptional repression activity (Vert et al. 2008). The proposed scenario establishes that BR affects BIN2 target specificity promoting a change from BRZ1/BES1 to ARF2. The presence of auxin and/or BR will determine an increment or persistence of the target genes expression (Krizek 2009).

Interestingly, the fer mutants are hypersensitive to BR (24-epibrassinolide), suggesting that FER can act as a critical modulator of the brassinosteroid signaling pathway during hypocotyl development (Deslauriers and Larsen 2010). Deciphering the relation between FER and BR promises to be very interesting to better understand seed size determination. Last but not least, BR can act as global regulator, acting at the same time over both integuments, endosperm, and embryo development through BZR1 binding to the AP2 promoter (Jiang et al. 2013). The role of auxins in communication

At the cellular level, auxin is involved in many processes, including pattern formation, cell division and cell expansion (Vandenbussche and Van Der Straeten 2004; Leyser 2005). In addition, auxins exert a key role during the first steps of seed development (Hamann et al. 2002; Friml et al. 2003; Jenik and Barton 2005; Cheng et al. 2007; Wabnik et al. 2013). Schuff and colleagues proposed that ARF2 is a general repressor of cell division in many aerial organs of the plant by controlling expression of CYCD3;1, a D-type cyclin involved in cell cycle entry, and AINTEGUMENTA (ANT), a transcription factor involved in organ growth and cell division control (Klucher et al. 1996; Schuff et al. 2006).

Cytokinins

Several studies have highlighted the importance of cytokinins (CK), together with auxin, in promoting growth by cell division, development and differentiation (Bishop et al. 2011; Vanstraalen and Benkóvá 2012). High levels of CK are present during early seed development in many species (Yang et al. 2002). In Arabidopsis, limited information comes from a few reports (Werner et al. 2003; Garcia et al. 2005; Day et al. 2008) and CK function has not yet been exhaustively characterized. Studies performed on the genetics of CK production have shown that during early stages of seed development transcriptional changes are mostly associated with effects of the hormone on the development of endosperm and seed coat. These data reinforce the idea that the control of seed size would involve a cross talk occurring between maternal and zygotic tissues (Garcia et al. 2005). Transcriptome analysis of the endosperm at 4 DAP revealed an overrepresentation of CK biosynthetic and response genes, supporting the hypothesis that the predominant role of CK is in cell proliferation of the early endosperm (Lur and Setter 1993; Day et al. 2008). Overexpression of two cytokinin oxidase dehydrogenases (CKX1 and CKX3) produced larger seeds with larger embryos. The enlargement found in these transgenic seeds is attributable to increases in cell number and size (Werner et al. 2003). Larger seeds were also produced by the triple mutant of the CK receptor genes arabidopsis histidine kinase 2 (AHK2), AHK3 and cytokinin response 1/AHK4 (CRE1/AHK4). In this case, an increase of almost two times the seed size was reported, when compared with wild-type seeds, due to an enlargement of the embryo size, with approximately 15 % greater cell number and 30 % greater cell size. Reciprocal crosses with wild-type plants suggested that the increase found in seed size was likely to be regulated by maternal and/or endosperm genotypes (Riefler et al. 2006).

Recently, it was concluded that the control of endosperm size by the IKU pathway is regulated by the cytokinin catabolic pathway through the activation of CKX2 (cytokinin oxidase 2) by MINI3 (Li et al. 2013). CKX2 is also co-regulated by maternal genome dosage and methylation, and both phenomena suppress CKX2 transcription. These data establish a link between hormonal and epigenetic factors in the regulation of seed size in Arabidopsis (Li et al. 2013).

Abscisic acid

The predominant role of abscisic acid (ABA) regulation involves key processes occurring during the maturation stages of seed development. Key aspects of this development are accumulation of storage compounds in the embryo, seed dormancy, and the inhibition of precocious germination (McCarty 1995; Finkelstein et al. 2002; Kanno et al. 2010). ABA biosynthesis exhibits two peaks during seed development: Initially biosynthesis is induced in the embryo and then levels accumulate to a second peak during the late maturation stage, where it is thought that ABA mainly originates from the maternal tissues (Finkelstein et al. 2002; Finkelstein 2004). ABA has been proposed to act mainly as an endosperm development regulator since the mutants abscisic acid-deficient 2 (aba2) and abscisic acid-insensitive 5 (abi5) develop larger seeds than the wild type (Cheng et al. 2014). ABA2 encodes a dehydrogenase/reductase involved in ABA biosynthesis (González-Guzmán et al. 2002), and ABI5 encodes a transcription factor involved in ABA signaling (Broucard et al. 2002). Interestingly, aba2 mutants have delayed endosperm cellularization. The model of action suggests that endogenous ABA levels in the seed...
are raised by ABA2 action, resulting in an enhancement of ABI5 transcription. ABI5 negatively regulates SHB1 expression by directly binding to its promoter region. Therefore, ABA regulates proper endosperm development and cellularization processes in a SHB1-dependent way (Cheng et al. 2014). ABA slowly induced DA1 expression, but other growth regulators such as jasmonic acid, auxin, CK, BR, gibberellins or glucose failed to induce its expression. It therefore seems that the mechanism that restricts proliferative growth under the control of DA1 control could include ABA signaling (Li et al. 2008).

Future perspectives

Unraveling seed development and its genetic control is important due to the critical role of seeds as a food source for mankind and livestock, as well as the growing interest in seeds as a renewable source of energy. Recently, genomic-based research and other modern technologies have made it possible to identify most of the genes involved in seed development, providing a vast amount of information that could be used in the engineering and design of transgenic crops. However, there are many gaps in the field regarding the functional characterization and determination of the biological relevance of these genes in model species. Unveiling a complete and accurate map of the process remains a major challenge for plant biologists. Achieving these goals will require not only the integration of multiple disciplines including proteomics, metabolomics and functional genomics, but also the development and improvement of automatized computational tools to analyze complex datasets. A comprehensive analysis of large-scale datasets will provide the required tools to enhance the nutritional quality of seeds and also to increase resistance to adverse environmental conditions and/or biological attacks. A second major challenge for plant genomics will be finding an integrative and rational way to apply that information to crop species to improve their agronomic performance. This could be achieved either by using the basic knowledge arising from studies of Arabidopsis, or by using the tools and techniques refined with Arabidopsis (or other model species), to generate and analyze extensive datasets for important crop species.

Author contribution statement GOA, DP, IE and LC wrote the manuscript. All authors read and approved the manuscript.

Acknowledgments The authors are grateful to Edward Kiegle for assistance in preparing the manuscript. This work was supported by the Consejo Nacional de Ciencia y Tecnología CONACYT–MEXICO (to G.O.A); the International European Fellowship-METMADS project and the Centro Nazionale di Ricerca Italiano (Fondo IBF-AR-2014Mi; to I.E.); and a fellowship from the Università degli Studi di Milano (to D.P.).

References


...


Author Proof


Dear Author,

During the process of typesetting your article, the following queries have arisen. Please check your typeset proof carefully against the queries listed below and mark the necessary changes either directly on the proof/online grid or in the ‘Author’s response’ area provided below.

<table>
<thead>
<tr>
<th>Query</th>
<th>Details Required</th>
<th>Author’s Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>AQ1</td>
<td>Please check the capitalization throughout the article.</td>
<td></td>
</tr>
<tr>
<td>AQ2</td>
<td>Please check and confirm the clarity of the sentence ‘Arabidopsis seed size is mainly … of the seed coat cells’.</td>
<td></td>
</tr>
</tbody>
</table>