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General introduction  

 

According to the archaeological findings, maize (Zea mays L.) started to be cultivated 

between 7000 and 10000 years ago in Mexico (Piperno et al., 2009; Ranere et al., 2009; 

Van Heerwaarden et al., 2011; Ranum et al., 2014). European explorers introduced 

maize to Europe since the end of the XV century and only later it was adopted in Asia 

and Africa (Brown and Darrah, 2002; Gibson and Benson, 2002; Matsuoka et al., 2002; 

Vollbrecht and Sigmon, 2005; Mir et al., 2013; Ranum et al., 2014). Maize represented at 

first a botanical curiosity, but it rapidly become a staple food for the local population in 

all these countries, thanks to its higher yields compared to the other cereals and to its 

flexibility of usage. The process of adaptation to different environments and growing 

conditions, together with human selection, led to the diversification of hundreds 

different landraces (or farmer‘s varieties) maintained as open pollination varieties 

(Messedaglia, 1924; Brandolini, 1958; Brandolini and Brandolini, 2009; Mir et al., 2013). 

Modern hybrids introduction, after World War II led to the gradual disappearance of the 

less productive local varieties (Brandolini and Brandolini, 2009). Nowadays ancient 

landraces represent a potential source of genetic variability and genotypes adapted to 

low input cropping systems, in a context of sustainable or subsistence agriculture 

(Kuhnen et al., 2011; Prasanna, 2012). Hence the characterization of the ancient 

landraces is very important for their conscious protection and valorization, not only 

considering the possible economic interest of the farmers, but also because they can be 

considered a useful tool in future breeding programs (Liu et al., 2003; Vigouroux et al., 

2008; Warburton et al., 2008; Mir et al., 2013). 

The preservation of maize biodiversity appears crucial given the importance of this 

species for global food security, especially considering a biofortification approach, 

aimed to develop improved maize varieties characterized by an high nutritional power, 

that could be considered as real functional foods for the poorest population living in 

developing countries, whose diet is mainly based on cereals and on derived products. 

In fact corn still represents a staple food for many populations: maize tortillas provide 

about 50%-65% of human energy intake in Peru, Bolivia and in rural areas of Mexico 

(Ávila-Curiel et al., 1997; Villalpando, 2004; Petroni et al., 2014) (Fig. 1). In Africa are 

located 16 among the 22 countries in which corn represents the main source of energy 
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in the diet (Dowswell et al., 1996; Nuss and Tanumihardjo, 2011; Ranum et al., 2014) 

(Fig. 1); in particular in Sub-Saharian countries maize consumption is comparable to that 

of rice in Asia (Oldewage-Theron et al., 2005; Gouse et al., 2006; Nuss and 

Tanumihardjo, 2011). 

To allow optimal growth and an healthy life, avoiding nutrient deficiencies, humans 

have to consume proteins, carbohydrates and lipids in large quantities, and small 

concentrations of microelements (Welch and Graham, 2004). 

Maize is a good source of starch (72%-80%) and protein (10%-15%); it also provides lipids 

(4-5%) (Nuss and Tanumihardjo, 2010; Panzeri et al., 2011), fiber, macronutrients and 

micronutrients (e.g.: Na, Mg, P, K, Ca, Fe, Zn) (Rodriguez-Amaya et al., 2008; Brandolini 

and Brandolini, 2009; Ranum et al., 2014). Furthermore several bioactive molecules, 

such as carotenoids and flavonoids are produced by plants secondary metabolism 

(Escribano-Bailon et al., 2004; Kuhnen et al., 2011); their regular consumption is 

associated to a reduced risk of chronic diseases, mainly linked to their antioxidant 

activity.  

Corn usually contains appreciable amounts of carotenoids (Panfili et al., 2004; Messias et 

al., 2015) accumulated mainly in the endosperm (80%) (Fig.2), conferring a yellow-

orange pigmentation to the kernel, depending on their concentration.  

Several flavonoids compounds can be accumulated in seeds and in other plant tissues; 

anthocyanins and phlobaphenes confer them a red-purple, blue or brown pigmentation. 

Pigments from corn were traditionally used by pre-Columbian civilizations, and are still 

used today in some areas for tissues staining (Escribano-Bailon et al., 2004; Melo, 2008; 

Roquero, 2008; Gamarra, et al., 2009; Zaffino et al., 2015). Anthocyanins have been 

used as dyeing matter since the Roman period (Cardon, 2007; Pina et al., 2012) and the 

recent interest for these molecules is partially due to the possibility of using them as 

natural food colorants and in food supplements production (Buchweitz et al., 2013; 

Song, et al., 2013; Zaffino et al., 2015). 

Anthocyanins can be accumulated in the seed aleurone layer or in the seed pericarp 

(Fig. 2); among them cyanidin, pelargonidin, and peonidin glycosides are mainly 

accumulated (Cuevas Montilla et al., 2011; Tsuda, 2012; Z ̌ilić et al., 2012). 

Phlobaphenes can be accumulated only in the pericarp layer of the seeds (Fig. 2). Other 

phenolic compounds such as flavonols, flavones and phenolic acids are accumulated also 

in colorless maize varieties, but their total amount is usually higher in colored varieties. 



General introduction 

 

3 
 

Anthocyanins are water-soluble pigments conferring a red, purple or blue pigmentation 

to different plant tissues (Escribano-Bailon et al., 2004); their chemical structure 

consisting of two phenyl rings and an heterocyclic ring, forming a skeleton with fifteen 

carbon atoms (C6-C3-C6) is based on the one of the flavylium ion (2-

phenylbenzopyrylium) (Zaffino et al., 2015). In plants tissues the anthocyanidin 

molecules (aglycones) are usually coupled with a sugar (generally 3-glucoside) producing 

more than 400 different anthocyanins through structural variations (e.g.: B-ring 

substitution, methylation, glycosilation and acylation) (Wrolstad, 2004). 

These secondary metabolites have important roles in plants tissues: anthocyanins are 

involved in the recruitment of pollinators and seeds dispersers (as pigments in flowers 

and fruits), in male fertility (Mo et al., 1992; Ylstra et al., 1992), in UV protection 

(Wingender et al., 1990; Li et al., 1993; Kootstra, 1994; Stapleton and Walbot, 1994), in 

disease resistance, and in response to heat and cold stress (Christie et al., 1994; Pietrini 

et al., 2002; Mahmood et al., 2014); hence their accumulation in plant tissues may be a 

marker of different stresses able to induce oxidative damages (Winkel-Shirley, 2002; 

Kuhnen et al., 2011). Anthocyanins accumulation increases temperature in plants expose 

to sunlight hastening plant maturity (Barthakur, 1974), and they are also able to act as 

metal-chelating agents, protecting plants against the effects of metal toxicity under 

excess of edaphic metal ions thanks to the 3',4'-O-dihydroxyl group in the β ring 

characterizing flavonoids skeleton (Hondo et al., 1992; Hale et al., 2001; Hale et al., 

2002; Landi et al., 2015).  

The consumption of anthocyanins and other flavonoids is associated to many beneficial 

effects on health, especially in the prevention of cancer, cardiovascular diseases, 

myocardial infarction, age-related neurodegenerative diseases, obesity and type 2 

diabetes (Renaud and De Lorgeril, 1992; Liu et al., 1999; Meyer et al., 2000; Hagiwara et 

al., 2001; Tsuda et al., 2003; Fukamachi et al., 2008; Li et al., 2012; Tsuda, 2012; 

Cassidy et al., 2013; Martin et al., 2013; Woo et al., 2014; Guo and Ling, 2015; Urias-

Lugo et al., 2015); their anti-inflammatory and hypoglycemic properties (Hagiwara et 

al., 2001; Tsuda et al., 2003; Wang and Stoner, 2008; Kuhnen et al., 2011), and their 

ability to reduce allergen immunoreactivity appear particularly interesting too (Taddei 

et al., 2013). The great part of these beneficial effects can be ascribed to flavonoids 

well known antioxidant activity (Wang et al., 1997; Adom and Liu, 2002; Prior, 2003; 

Abdel-Aal et al., 2006; Rodriguez et al., 2013; Lago et al., 2014; Petroni et al., 2014). 
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Phlobaphenes represent another class of pigments accumulated in maize kernel: these 

water-insoluble phenolic compounds constituted by polymers of the flavan-4-ols apiforol 

or luteoforol (derived from 3-deoxy flavonoids), are produced by a specific branch of the 

flavonoids pathway together with anthocyanins (derived from 3-hydroxy flavonoids) 

(Sharma et al., 2012; Petroni et al., 2014).  

Phlobaphenes are accumulated in a limited number of tissues, such as seed pericarp 

(Fig. 2), and cob glumes (Grotewold et al., 1991; Grotewold et al., 1994; Ferreyra et al., 

2010; Casas et al., 2014), conferring them a typical red-brown pigmentation, sometimes 

very dark. Venturini and coauthors (Venturini et al., 2016) reported a positive effect of 

phlobaphenes against Fusarium Ear Rot and against the consequent fumonisin 

accumulation in maize kernel. These molecules are thought to harden maize pericarp 

(Treutter, 2006), acting as a physical barrier against fungal infection (Venturini et al., 

2016); they are also supposed to inactivate fungal proteins by complexing them with 

nucleophilic aminoacids (Treutter, 2006) and to block fumonisin production inhibiting 

the enzymes involved in their biosynthesis (Kim et al., 2006 Pilu et al., 2011; Sampietro 

et al., 2013; Venturini et al., 2015; Venturini et al., 2016). Furthermore the 

accumulation of maysin, a flavone defence compound able to reduce larvae 

development, that is linked to flavonoids accumulation in the pericarp, seems to reduce 

ears damages and fungal infections (Byrne et al., 1996; Sharma et al., 2012; Venturini et 

al., 2016).  

Phlobapenes are accumulated in several ancient landraces traditionally cultivated in the 

Padana Plain and in mountainous regions of Northern Italy, that are supposed to be 

among the first maize varieties introduced in Europe after Americas discovery. The 

cultivation of varieties rich in phlobaphenes in these areas suggests a selective pressure 

of the farmers against fungal contamination that led to prefer these varieties respect to 

the colorless ones. 

Even if the most of the colourless maize varieties retain the ability to weakly pigment 

different tissues, enhanced by biotic or abiotic stresses (Petroni et al., 2014), coloured 

maize varieties differ from the colourless ones because of the presence of ―strong‖ 

dominant alleles of the regulatory genes, able to up-regulate the structural genes 

involved in flavonoids biosynthesis.  

Two classes of regulatory genes coordinately regulate the anthocyanin pathway: the MYB 

and the bHLH gene families (Dooner et al., 1991; Shen and Petolino, 2006).  
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c1 (colored aleurone1) and pl1 (purple plant1) genes encode proteins with sequence 

homology to the DNA-binding domains of the MYB related oncoproteins (Paz-Ares et al., 

1987; Pilu et al., 2003); instead r1 (red color1) and b1 (booster1) are the main 

regulatory genes belonging to the bHLH gene family (R1, B1, Sn1, Lc1, Hopi1), encoding 

proteins with sequence homology to the basic Helix-Loop-Helix DNA binding domain of 

the MYC oncoproteins (Chandler et al., 1989; Dooner et al., 1991; Pilu et al., 2003; 

Petroni et al., 2014).  

The pattern of pigmentation in plant tissues greatly depends on the combination of the 

different alleles of these regulatory genes, nevertheless anthocyanins accumulation is 

greatly influenced by the genetic background and by the environmental conditions, 

showing great differences in different growing seasons.  

Considering phlobaphenes, their biosynthesis is regulated by the R2R3-MYB transcription 

factor P1 (pericarp color1) (Styles and Ceska, 1977; Chopra et al., 1996) regulating  C2, 

Chi1, and A1 structural genes transcription (Styles and Ceska, 1989; Grotewold et al., 

1991).  

The growing interest for foods rich in flavonoids and other bioactive molecules, whose 

regular consumption is associated to a reduced risk of chronic diseases, lead geneticists 

to focus their attention on pigmented maize varieties: until now breeders focused their 

attention mainly on yields, without considering the presence of phytochemicals 

important for both plant protection and human nutrition and many other nutritional 

aspects (Bailey and Bailey, 1938; Huang et al., 2002; Casas et al., 2014). 

Purple corn is traditionally cultivated in Peru and Bolivia, where it is used to produce a 

wide variety of meals and the ―Chicha Morada‖ traditional drink (Schwarz et al., 2003). 

Pigmented maize varieties are widely used also in other countries such as Mexico, 

Guatemala, Arizona, Colorado, New Mexico and Texas (Betran et al., 2001; Urias-Peraldì 

et al., 2013).  

The great part of the pigmented maize varieties weren‘t adopted outward their centre 

of origin during maize worldwide diffusion, partly because of the incapacity of tropical 

origin varieties to set seeds in environmental conditions characterized by a longer 

photoperiod and a colder climate as the European ones, and also because of cultural 

reasons that led to prefer yellow or white maize for flour production. Hence only a few 

coloured varieties where adopted in Europe, mainly where maize was first introduced 

(e.g. Spain and Italy) (Anderson and Cutler, 1942; Bianchi et al., 1963; Brandolini and 

Brandolini, 2009; Petroni et al., 2014). 
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Flavonoids, such as anthocyanins and phlobaphenes, could be increased or introduced in 

improved maize varieties to obtain real functional foods able to exert an higher 

antioxidant activity increasing beneficial effects on human and animal health with 

respect to the colourless hybrids actually cultivated.  

Three different strategies can be followed to obtain maize varieties rich in anthocyanins 

and other flavonoids adapted to the European growing conditions without recurring to a 

biotechnological approach.  

 The easiest strategy is represented by the rediscovery of ancient pigmented 

landraces that are still cultivated in restricted areas or maintained ex situ in germplasm 

banks; nutritional value and yields of these varieties can be further improved through 

the selection of specific characters, but they can also be considered as a source of 

genetic variability for the development of coloured inbreed lines and hybrids.  

 A second strategy is represented by the possibility of developing new varieties 

characterized by a high anthocyanin content crossing colourless varieties and coloured 

varieties already adapt to the European growing conditions (climate and photoperiod), 

using them as source of the dominant alleles of the main regulatory genes of the 

anthocyanin biosynthesis in breeding programs based on backcrosses and selection. In 

this case colourless varieties are used as recurrent parent.  

Using this strategy it is possible to obtain coloured varieties near-isogenic with respect 

to the colourless recurrent parent (Lago et al., 2013; Lago et al 2014) but able to confer 

higher nutraceutical benefits. 

 A third strategy can be followed to obtain varieties accumulating very high 

amounts of anthocyanins in seeds pericarp layer: using tropical or subtropical origin 

varieties (e.g.: Maìz Morado) as pollen donors it is possible to introduce in other 

varieties very ―strong‖ alleles of the regulatory genes (in particular Booster1, B1, and 

Purple plant1, Pl1) through breeding programs based on pedigree selection schemes, 

selecting the progeny for the anthocyanins content and for the adaptation to the 

photoperiod in each cultivation cycle. In fact tropical varieties cannot be directly 

cultivated at our latitude as they are unable to reach maturity and set seeds because 

adapted to a shorter photoperiod (Petroni et al., 2014).  

 

The use of transgenic techniques and of modern genome editing tools, particularly RNA-

guided endonucleases (RGENs), represent an interesting possibility also for what concern 

the obtainment of flavonoids enriched varieties, making this process more rapid; 
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nevertheless these techniques weren‘t taken into consideration in this work because of 

the lack of global acceptance of genetic engineering and because of the restrictive and 

costly GMO regulations that make difficult to commercialize the varieties so obtained 

(Kanchiswamy et al., 2015). 

Since their commercial introduction in the 1990s, GM food crops weren‘t adopted in 

many countries, including most of the European ones (except in Spain, Portugal, Czech 

Republic, Slovakia and Romania) (Lucht, 2015; Ishii and Araki, 2016), New Zealand and 

Japan (Ishii and Araki, 2016); however, even in permissive countries, these products 

have not been accepted by the whole population. 

Nowadays genome editing, represented by the CRISPR/Cas9 system, can provide 

transgene-free gene modifications, avoiding the potential adverse effects that are 

among the major concerns for consumers; but their negative attitude, associated with 

insufficient knowledge toward genetically modified organisms (GMOs), could lead to 

consider the transgene-free crops comparable to conventional GM crops; hence 

consumer acceptance of genome edited crops doesn‘t appear optimistic (Ishii and Araki, 

2016). 

Furthermore considering the development of pigmented maize varieties, the breeding 

process, adopting conventional techniques, doesn‘t appear particularly difficult because 

flavonoids content is mainly determined by a few regulatory genes, and visual 

observation together with the use of molecular markers can greatly help in making this 

process faster without recurring to genetic engineering.  
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Summary of the thesis work 

 

With the aim of finding maize varieties that could represent an interesting source of 

bioactive compounds such as carotenoids and flavonoids we studied and characterized 

two ancient pigmented maize varieties traditionally cultivated in Europe, according to 

the first strategy. 

In the article ―Study and Characterization of an Ancient European Flint White Maize Rich 

in Anthocyanins: Millo Corvo from Galicia‖, the blue maize cultivar ―Millo Corvo‖ (Fig. 

3A) typical of the Spanish region of Galicia was found to accumulate high amounts of 

anthocyanins (83.4 mg/100g flour) in seeds aleurone layer (the outer layer of the 

endosperm) (Fig. 2), due to the presence of a dominant allele of the R1 (red color1) 

gene (bin 10.06), as demonstrated by mapping and sequencing data. Due to the fact that 

the aleurone layer is a triploid tissue, the r1 gene shows a typical dosage effect. TLC 

(Thin Layer Chromatography) and HPLC (High Performance Liquid Chromatografy) 

analysis showed that cyanidin is the main anthocyanin accumulated in this cultivar, as 

well as in the great part of pigmented maize varieties. Cyanidin 3-glucoside is 

considered among the anthocyanins one of the most effective in cancer prevention (Long 

et al., 2013). 

Millo Corvo was found to lack carotenoids, but it showed an higher antioxidant power 

compared to yellow and white maize used as control, that could be ascribed to the 

presence of anthocyanins. 

In the article ―Genetic studies regarding the control of seed pigmentation of an ancient 

European pointed maize (Zea mays L.) rich in phlobaphenes: the ―Nero Spinoso‖ from 

the Camonica valley‖ we studied and characterized the ancient cultivar ―Nero Spinoso‖ 

(Fig. 3B), whose peculiarities are the pointed shape of the seeds and their dark brown-

black pigmentation. 

Spectrophotometric and TLC analysis showed that this variety accumulates very high 

amounts of phlobaphenes (320 A510/100 g flour). The involvement of the monogenic 

dominant gene pericarp colour1 (P1) in seeds pigmentation was demonstrated by 

mapping and sequencing data: a perfect cosegregation between a PHI095 polymorphism 

(SSR marker inside the P1 gene) and the trait ‗‗pigmented ear‘‘ was observed, and a 99% 

identity (334/336 bp) was found between a portion of the P1 gene and the P1-rw1077 

allele previously sequenced. 
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Thanks to the high flavonoids content, these varieties could be considered as real 

functional foods, able to increase the amount of antioxidants introduced with the diet, 

thus representing also a useful tool, as a source of genetic variability, for future 

breeding programs. Furthermore the selection of varieties rich in phlobaphenes and 

other flavonoids could represent an interesting opportunity not only because of their 

direct beneficial effects on human health, but also because of their role in protecting 

maize plants against fungal infections (Venturini et al., 2016), thus increasing the 

quality of the kernel and its healthiness, that often represent a relevant problem for the 

whole production chain.  

Considering that, at our knowledge, there are no ancient varieties in Europe carrying 

dominant alleles of the purple plant1 gene (Pl1) (bin 6.04), able to induce the 

accumulation of high amount of anthocyanins in the seed pericarp layer (Fig. 2, Fig. 3C), 

we used the pigmented inbred line Reduno, already included in the register of the 

Community Plant Variety Office (CPVO), (N° EU 33449) and carrying dominant alleles of 

the B1 and Pl1 regulatory genes from North American origin, as pollen donor (non-

recurrent parent) in a breeding program based on backcrosses and selection, aimed to 

develop a sugary corn line rich in anthocyanins from a colorless one used as recurrent 

parent, according to the second strategy previously reported. The results of this 

breeding program were reported in the article ―Development and characterization of a 

coloured sweet corn line as a new functional food‖. Our data showed that the 

accumulation of other phenolic compounds is pushed up together with anthocyanins, as 

they share a part of the same biosynthetic pathway, giving to the new coloured sugary 

line a higher antiradical scavenging activity compared to the colorless control. 

Considering that canned sweet corn undergoes an heat treatment before being 

consumed, we compared the effect of two different cooking processes on flavonoids 

content. In fact duration and temperature of cooking procedures/pre-treatments are 

known to affect the final content of flavonoids/antioxidant capacity reducing in a not-

negligible manner the total amount of anthocyanins (Chatthongpisut et al., 2015) and 

leading to the release of the bound flavonoids fraction. 

Bound flavonoids are accumulated mainly in the pericarp due to the presence of 

complex polysaccharides (Das and Singh, 2016), representing about the 60-80% of the 

total amount present in corn kernels (Adom and Liu, 2002; Urias-Peraldì et al., 2013; 

Messias et al., 2015).  
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The cooking process, especially the strongest treatment, drastically decreased, as 

expected, the amount of anthocyanins, without changing molecules chemical structure, 

reducing also the total antioxidant power. 

This coloured sugary corn can be considered a new functional food that is potentially 

able to increase the daily intake of antioxidant compounds in the diet of many people 

thanks to sweet corn worldwide consumers appreciation. 

Considering that some classes of flavonoids (e.g. flavonols and phenolic acids) can be 

accumulated in maize seeds without conferring them a distinguishable pigmentation, we 

sampled two unpigmented maize varieties, one white and one yellow, directly from the 

farmers in the rural region of Qwa-Qwa (Free State Province) in South Africa (Fig. 3D). 

Looking for flavonoids we founded that these varieties accumulate a limited amount of 

flavonols and phenolic acids, comparable to the one observed in the B73 colourless 

inbred line used as standard. We characterized these maize varieties from the 

phenotypical and nutritional points of view: calorific value, oil, protein, starch, minerals 

and carotenoids content were determined, together with free and phytic P, finding that 

these varieties have low protein and Fe content in comparison to the ones used as 

control. As expected the white variety was characterized by a very low level of 

carotenoids, and even if it showed a quite higher content of free P, our data suggest 

that there are no nutritional reasons to prefer this white variety for human consumption 

to the yellow one or to other maize varieties.  

Nevertheless the white variety appears interesting from a scientific point of view 

because of the very large dimensions of the seeds and of the high variability observed 

among plants. Our data were reported in the article ―Nutritional and phenotypical 

characterization of two South African maize (Zea mays L.) varieties sampled in the Qwa-

Qwa region‖.  

Biofortification represents a sustainable strategy to improve human nutrition where the 

population, as the South African one, suffers from nutritional deficiencies (Pfeiffer and 

McClafferty, 2007; Bouis and Welch, 2010), by enhancing the nutritional value of staple 

crops using modern breeding techiniques, with the aim of guarantying to the population 

at least the minimum intake of nutrients needed to improve health, avoiding 

deficiencies. Maize, as a staple food, appears a good candidate for biofortification 

strategies thanks to its wide diffusion, consumers appreciation and to the low 

production costs (Graham and Rosser, 2000; Bai et al., 2011; Mellado-Ortega and 

Hornero-Méndez, 2015). 
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Hence the nutritional value of the two south African varieties studied in this work could 

be improved increasing carotenoids and vitamins content, as well as the content of 

minerals such as zinc, iron and phosphorous, thus obtaining a cheap and easily accessible 

functional food. Furthermore increasing flavonoids content it could be possible to 

henance antioxidant intake in the poorest fractions of the rural South African 

population. 
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Figures 

 

 

Figure 1. Countries in which maize represents the main source of energy in human diet. 

From CIMMYT, 2011. ―MAIZE - Global Alliance for Improving Food Security and the 

Livelihoods of the Resource-poor in the Developing World‖.  
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Figure 2. Transversal section of a maize seed. 

The main tissues of the seed are indicated together with the main regulatory genes able 

to induce an high accumulation of flavonoids in pigmented maize varieties. R1 confers a 

blue pigmentation to the aleurone layer through the accumulation of anthocyanins; the 

same molecules confer a purple-black pigmentation to the seed pericarp in presence of 

Pl1 alleles, instead P1 induces phlobaphenes accumulation in the pericarp layer, 

conferring a red-brown pigmentation, sometimes very dark.  
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Figure 3. Biodiversity regarding maize pigmentation.  

Millo Corvo, accumulating anthocyanins in the aleurone layer (A). Nero Spinoso 

accumulating phlobaphenes in the pericarp layer (B). Colored sweet corn accumulating 

anthocyanins in the pericarp layer (C). South african maize varieties, without 

carotenoids on the left, and accumulating carotenoids in the endosperm on the right (D).  

 

 

  



General introduction 

 

15 
 

References 

 

Abdel-Aal, E. S. M., Young, J. C., & Rabalski, I. (2006). Anthocyanin composition in 

black, blue, pink, purple, and red cereal grains. Journal of Agricultural and Food 

Chemistry, 54(13), 4696-4704. 

 

Adom, K. K., & Liu, R. H. (2002). Antioxidant activity of grains. Journal of agricultural 

and food chemistry, 50(21), 6182-6187. 

 

Anderson, E., & Cutler, H. C. (1942). Races of Zea mays: I. Their recognition and 

classification. Annals of the Missouri Botanical Garden, 29(2), 69-88. 

 

Avila-Curiel, A., Shamah-Levy, T., & Chávez-Villasana, A. (1997). Encuesta Nacional de 

Alimentación y Nutrición en el Medio Rural, 1996. Resultados por entidad, 1. 

 

Bai, C., Twyman, R. M., Farré, G., Sanahuja, G., Christou, P., Capell, T., & Zhu, C. 

(2011). A golden era—pro-vitamin A enhancement in diverse crops. In Vitro Cellular & 

Developmental Biology-Plant, 47(2), 205-221. 

 

Bailey, D. M., & Bailey, R. M. (1938). The relation of the pericarp to tenderness in sweet 

corn. In Proc. Amer. Soc. Hort. Sci (Vol. 36, pp. 555-559). 

 

Barthakur, N., (1974). Temperature Differences Between Two Pigmented Types of Corn 

Plants. International  Journal Biometeoreology. 1974, 18(1), 70-75. 

 

Betran, F.J., Bockholt, A.J., Hallauer, A.R., (2001). Blue corn. In: Rooney, L.W. (Ed.), 

Specialty Corns. , 2nd ed. CRC Press LLC, Boca Raton, FL. 

 

Bianchi, A., Ghatnekar, M. V., & Ghidoni, A. (1963). Knobs in Italian maize. 

Chromosoma, 14(6), 601-617. 

 



General introduction 

 

16 
 

Bouis, H. E., & Welch, R. M. (2010). Biofortification—a sustainable agricultural strategy 

for reducing micronutrient malnutrition in the global south. Crop Science, 

50(Supplement_1), S-20-S-32. 

 

Brandolini, A. (1958). Il germoplasma del mais e la sua conservazione. Maydica, 3, 4-14. 

 

Brandolini, A., & Brandolini, A. (2009). Maize introduction, evolution and diffusion in 

Italy. Maydica, 54(2), 233. 

 

Brown, W. L., & Darrah, L. L. (2002). Origin, adaptation, and types of corn, national 

corn handbook. Cooperative Extension Service. Iowa: Iowa State University. NCH-10 

 

Buchweitz, M., Brauch, J., Carle, R., & Kammerer, D. R. (2013). Application of ferric 

anthocyanin chelates as natural blue food colorants in polysaccharide and gelatin based 

gels. Food research international, 51(1), 274-282. 

 

Byrne, P. F., McMullen, M. D., Snook, M. E., Musket, T. A., Theuri, J. M., Widstrom, N. 

W., Wiseman B. R., & Coe, E. H. (1996). Quantitative trait loci and metabolic pathways: 

genetic control of the concentration of maysin, a corn earworm resistance factor, in 

maize silks. Proceedings of the National Academy of Sciences, 93(17), 8820-8825. 

 

Cardon, D. (2007). Natural dyes: sources, tradition, technology and science. Archetype 

Publications, London. 

 

Casas, M. I., Duarte, S., Doseff, A. I., & Grotewold, E. (2014). Flavone-rich maize: an 

opportunity to improve the nutritional value of an important commodity crop. Frontiers 

in plant science, 5, 440. 

 

Cassidy, A., Mukamal, K. J., Liu, L., Franz, M., Eliassen, A. H., & Rimm, E. B. (2013). 

High anthocyanin intake is associated with a reduced risk of myocardial infarction in 

young and middle-aged women. Circulation, 127(2), 188-196. 

 



General introduction 

 

17 
 

Chandler, V. L., Radicella, J. P., Robbins, T. P., Chen, J., & Turks, D. (1989). Two 

regulatory genes of the maize anthocyanin pathway are homologous: isolation of B 

utilizing R genomic sequences. The Plant Cell, 1(12), 1175-1183. 

 

Chatthongpisut, R., Schwartz, S. J., & Yongsawatdigul, J. (2015). Antioxidant activities 

and antiproliferative activity of Thai purple rice cooked by various methods on human 

colon cancer cells. Food chemistry, 188, 99-105. 

 

Chopra, S., Athma, P., & Peterson, T. (1996). Alleles of the maize P gene with distinct 

tissue specificities encode Myb-homologous proteins with C-terminal replacements. The 

Plant Cell, 8(7), 1149-1158. 

 

Christie, P. J., Alfenito, M. R., & Walbot, V. (1994). Impact of low-temperature stress on 

general phenylpropanoid and anthocyanin pathways: enhancement of transcript 

abundance and anthocyanin pigmentation in maize seedlings. Planta, 194(4), 541-549. 

 

Cuevas Montilla, E., Hillebrand, S., Antezana, A., & Winterhalter, P. (2011). Soluble and 

bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. 

Journal of agricultural and food chemistry, 59(13), 7068-7074. 

 

Das, A. K., & Singh, V. (2016). Antioxidative free and bound phenolic constituents in 

botanical fractions of Indian specialty maize (Zea mays L.) genotypes. Food chemistry, 

201, 298-306. 

 

Dowswell, C. D., Paliwal, R. L., & Cantrell, R. P. (1996). Maize in the third world. 

Boulder, CO, USA. 

 

Dooner, H. K., Robbins, T. P., & Jorgensen, R. A. (1991). Genetic and developmental 

control of anthocyanin biosynthesis. Annual review of genetics, 25(1), 173-199. 

 

Escribano-Bailón, M. T., Santos-Buelga, C., & Rivas-Gonzalo, J. C. (2004). Anthocyanins 

in cereals. Journal of Chromatography A, 1054(1), 129-141. 

 



General introduction 

 

18 
 

Ferreyra, M. L. F., Rius, S., Emiliani, J., Pourcel, L., Feller, A., Morohashi, K., Casati, 

P., & Grotewold, E. (2010). Cloning and characterization of a UV‐B‐inducible maize 

flavonol synthase. The Plant Journal, 62(1), 77-91. 

 

Fukamachi, K., Imada, T., Ohshima, Y., Xu, J., & Tsuda, H. (2008). Purple corn color 

suppresses Ras protein level and inhibits 7, 12‐dimethylbenz [a] anthracene‐induced 

mammary carcinogenesis in the rat. Cancer science, 99(9), 1841-1846. 

 

Gamarra, F. M. C., Leme, G. C., Tambourgi, E. B., & Bittencourt, E. (2009). Extraction 

of corn colorants (Zea mays L.). Food Science and Technology (Campinas), 29(1), 62-69. 

 

Gibson, L., & Benson, G. (2002). Origin, History and Uses of Corn (Zea mays). Iowa State 

University Department of Agronomy, http://agronwww.agron.iastate.edu/Courses. 

 

Gouse, M., Pray, C., Schimmelpfennig, D., & Kirsten, J. (2006). Three seasons of 

subsistence insect-resistant maize in South Africa: have smallholders benefited?. 

 

Graham, R. D., & Rosser, J. M. (2000). Carotenoids in staple foods: their potential to 

improve human nutrition. Food and Nutrition Bulletin, 21(4), 404-409. 

 

Grotewold, E., Athma, P., & Peterson, T. (1991). Alternatively spliced products of the 

maize P gene encode proteins with homology to the DNA-binding domain of myb-like 

transcription factors. Proceedings of the National Academy of Sciences, 88(11), 4587-

4591. 

 

Grotewold, E., Drummond, B. J., Bowen, B., & Peterson, T. (1994). The myb-

homologous P gene controls phlobaphene pigmentation in maize floral organs by directly 

activating a flavonoid biosynthetic gene subset. Cell, 76(3), 543-553. 

 

Guo, H., & Ling, W. (2015). The update of anthocyanins on obesity and type 2 diabetes: 

experimental evidence and clinical perspectives. Reviews in Endocrine and Metabolic 

Disorders, 16(1), 1-13. 

 

http://agronwww.agron.iastate.edu/Courses


General introduction 

 

19 
 

Hagiwara, A., Miyashita, K., Nakanishi, T., Sano, M., Tamano, S., Kadota, T., Koda, T., 

Nakamura, M., Imaida, K., Ito, N., & Shirai, T. (2001). Pronounced inhibition by a 

natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo [4,5-b] 

pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1, 

2-dimethylhydrazine. Cancer letters, 171(1), 17-25. 

 

Hale, K. L., McGrath, S. P., Lombi, E., Stack, S. M., Terry, N., Pickering, I. J., George, 

G. R., & Pilon-Smits, E. A. (2001). Molybdenum Sequestration in Brassica Species. A Role 

for Anthocyanins?. Plant Physiology, 126(4), 1391-1402. 

 

Hale, K. L., Tufan, H. A., Pickering, I. J., George, G. N., Terry, N., Pilon, M., & 

Pilon‐Smits, E. A. (2002). Anthocyanins facilitate tungsten accumulation in Brassica. 

Physiologia plantarum, 116(3), 351-358. 

 

Hondo, T., Yoshida, K., Nakagawa, A., Kawai, T., Tamura, H., & Goto, T. (1992). 

Structural basis of blue-colour development in flower petals from Commelina communis. 

Nature 358, 515–518. 

 

Huang, J., Pray, C., & Rozelle, S. (2002). Enhancing the crops to feed the poor. nature, 

418(6898), 678-684. 

 

Ishii, T., & Araki, M. (2016). Consumer acceptance of food crops developed by genome 

editing. Plant cell reports, 1-12. 

 

Kanchiswamy, C. N., Malnoy, M., Velasco, R., Kim, J. S., & Viola, R. (2015). Non-GMO 

genetically edited crop plants. Trends in biotechnology, 33(9), 489-491. 

 

Kim, J. H., Mahoney, N., Chan, K. L., Molyneux, R. J., & Campbell, B. C. (2006). 

Controlling food-contaminating fungi by targeting their antioxidative stress-response 

system with natural phenolic compounds. Applied microbiology and biotechnology, 

70(6), 735-739. 

 

Kootstra, A. (1994). Protection from UV-B-induced DNA damage by flavonoids. Plant 

Molecular Biology, 26(2), 771-774. 



General introduction 

 

20 
 

 

Kuhnen, S., Menel Lemos, P. M., Campestrini, L. H., Ogliari, J. B., Dias, P. F., & 

Maraschin, M. (2011). Carotenoid and anthocyanin contents of grains of Brazilian maize 

landraces. Journal of the Science of Food and Agriculture, 91(9), 1548-1553. 

 

Lago, C., Landoni, M., Cassani, E., Doria, E., Nielsen, E., & Pilu, R. (2013). Study and 

characterization of a novel functional food: purple popcorn. Molecular breeding, 31(3), 

575-585. 

 

Lago, C., Cassani, E., Zanzi, C., Landoni, M., Trovato, R., & Pilu, R. (2014). 

Development and study of a maize cultivar rich in anthocyanins: coloured polenta, a new 

functional food. Plant Breeding, 133(2), 210-217. 

 

Landi, M., Tattini, M., & Gould, K. S. (2015). Multiple functional roles of anthocyanins in 

plant-environment interactions. Environmental and Experimental Botany, 119, 4-17. 

 

Li, J., Ou-Lee, T. M., Raba, R., Amundson, R. G., & Last, R. L. (1993). Arabidopsis 

flavonoid mutants are hypersensitive to UV-B irradiation. The Plant Cell, 5(2), 171-179. 

 

Li, J., Kang, M. K., Kim, J. K., Kim, J. L., Kang, S. W., Lim, S. S., & Kang, Y. H. (2012). 

Purple corn anthocyanins retard diabetes-associated glomerulosclerosis in mesangial 

cells and db/db mice. European journal of nutrition, 51(8), 961-973. 

 

Liu, S., Stampfer, M. J., Hu, F. B., Giovannucci, E., Rimm, E., Manson, J. E., ... & 

Willett, W. C. (1999). Whole-grain consumption and risk of coronary heart disease: 

results from the Nurses' Health Study. The American journal of clinical nutrition, 70(3), 

412-419. 

 

Liu, K., Goodman, M., Muse, S., Smith, J. S., Buckler, E., & Doebley, J. (2003). Genetic 

structure and diversity among maize inbred lines as inferred from DNA microsatellites. 

Genetics, 165(4), 2117-2128. 

 



General introduction 

 

21 
 

Long, N., Suzuki, S., Sato, S., Naiki‐Ito, A., Sakatani, K., Shirai, T., & Takahashi, S. 

(2013). Purple corn color inhibition of prostate carcinogenesis by targeting cell growth 

pathways. Cancer science, 104(3), 298-303. 

 

Lucht, J. M. (2015). Public acceptance of plant biotechnology and GM crops. Viruses, 

7(8), 4254-4281. 

 

Mahmood, S., Parveen, A., Hussain, I., Javed, S., & Iqbal, M. (2014). Possible 

Involvement of Secondary Metabolites in the Thermotolerance of Maize Seedlings. 

International Journal of Agriculture and Biology, 16(6), 1075-1082. 

 

Martin, C., Zhang, Y., Tonelli, C., & Petroni, K. (2013). Plants, diet, and health. Annual 

review of plant biology, 64, 19-46. 

 

Matsuoka, Y., Vigouroux, Y., Goodman, M. M., Sanchez, J., Buckler, E., & Doebley, J. 

(2002). A single domestication for maize shown by multilocus microsatellite genotyping. 

Proceedings of the National Academy of Sciences, 99(9), 6080-6084. 

 

Mellado-Ortega, E., & Hornero-Méndez, D. (2015). Carotenoids in cereals: an ancient 

resource with present and future applications. Phytochemistry Reviews, 14(6), 873-890. 

 

Melo, M. J. (2008). Dyes in History and Archaeology 21 (Ed: J. Kirby), Archetype 

Publications, London, p, 65–74. 

 

Messedaglia L (1924) Notizie storiche sul mais: Una gloria veneta. Saggio di storia 

agraria. Quaderno mensile No. 7. Sez. Credito Agrario Istituto Federale Credito del 

Risorgimento delle Venezie, Verona, Italy. Premiate officine grafiche C. Ferrari 

 

Messias, R. D. S., Galli, V., Silva, S. D. D. A. E., Schirmer, M. A., & Rombaldi, C. V. 

(2015). Micronutrient and functional compounds biofortification of maize grains. Critical 

reviews in food science and nutrition, 55(1), 123-139. 

 



General introduction 

 

22 
 

Meyer, K. A., Kushi, L. H., Jacobs, D. R., Slavin, J., Sellers, T. A., & Folsom, A. R. 

(2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. The 

American journal of clinical nutrition, 71(4), 921-930. 

 

Mir, C., Zerjal, T., Combes, V., Dumas, F., Madur, D., Bedoya, C., Dreisigacker, S., 

Franco, J., Grudloyma, P., Hao, P. X., Hearne, S., Jampatong, C., Laloe, D., Muthamia, 

Z., Nguyen, T., Prasanna, B. M., Taba, S., Xie, C. X., Yunus, M., Zhang, S., Warburton, 

M. L., Charcosset, A. (2013). Out of America: tracing the genetic footprints of the global 

diffusion of maize. Theoretical and applied genetics, 126(11), 2671-2682. 

 

Mo, Y., Nagel, C., & Taylor, L. P. (1992). Biochemical complementation of chalcone 

synthase mutants defines a role for flavonols in functional pollen. Proceedings of the 

National Academy of Sciences, 89(15), 7213-7217. 

 

Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: a paramount staple crop in the context 

of global nutrition. Comprehensive reviews in food science and food safety, 9(4), 417-

436. 

 

Nuss, E. T., & Tanumihardjo, S. A. (2011). Quality protein maize for Africa: closing the 

protein inadequacy gap in vulnerable populations. Advances in Nutrition: An 

International Review Journal, 2(3), 217-224. 

 

Oldewage-Theron, W. H., Dicks, E. G., Napier, C. E., & Rutengwe, R. (2005). Situation 

analysis of an informal settlement in the Vaal Triangle. Development Southern Africa, 

22(1), 13-26. 

 

Panfili, G., Fratianni, A., & Irano, M. (2004). Improved normal-phase high-performance 

liquid chromatography procedure for the determination of carotenoids in 

cereals. Journal of Agricultural and Food Chemistry, 52(21), 6373-6377.  

 

Panzeri, D., Cesari, V., Toschi, I., & Pilu, R. (2011). Seed calorific value in different 

maize genotypes. Energy Sources, Part A: Recovery, Utilization, and Environmental 

Effects, 33(18), 1700-1705. 

 



General introduction 

 

23 
 

Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P. A., & Saedler, H. (1987). The 

regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene 

products and with structural similarities to transcriptional activators. The EMBO 

Journal, 6(12), 3553–3558.  

 

Petroni, K., Pilu, R., & Tonelli, C. (2014). Anthocyanins in corn: a wealth of genes for 

human health. Planta, 240(5), 901-911.  

 

Pfeiffer, W. H., & McClafferty, B. (2007). HarvestPlus: breeding crops for better 

nutrition. Crop Science, 47(Supplement_3), S-88. 

 

Pietrini, F., Iannelli, M. A., & Massacci, A. (2002). Anthocyanin accumulation in the 

illuminated surface of maize leaves enhances protection from photo‐inhibitory risks at 

low temperature, without further limitation to photosynthesis. Plant, Cell & 

Environment, 25(10), 1251-1259. 

 

Pilu, R., Piazza, P., Petroni, K., Ronchi, A., Martin, C., & Tonelli, C. (2003). pl‐bol3, a 

complex allele of the anthocyanin regulatory pl1 locus that arose in a naturally occurring 

maize population. The Plant Journal, 36(4), 510-521. 

 

Pilu, R., Cassani, E., Sirizzotti, A., Petroni, K., & Tonelli, C. (2011). Effect of flavonoid 

pigments on the accumulation of fumonisin B1 in the maize kernel. Journal of applied 

genetics, 52(2), 145-152. 

 

Pina, F., Melo, M. J., Laia, C. A., Parola, A. J., & Lima, J. C. (2012). Chemistry and 

applications of flavylium compounds: a handful of colours. Chemical Society 

Reviews, 41(2), 869-908. 

 

Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J., & Dickau, R. (2009). Starch grain and 

phytolith evidence for early ninth millennium BP maize from the Central Balsas River 

Valley, Mexico. Proceedings of the National Academy of Sciences, 106(13), 5019-5024.  

 

Prasanna, B. M. (2012). Diversity in global maize germplasm: characterization and 

utilization. Journal of biosciences, 37(5), 843-855. 



General introduction 

 

24 
 

 

Prior, R. L. (2003). Fruits and vegetables in the prevention of cellular oxidative 

damage. The American journal of clinical nutrition, 78(3), 570S-578S. 

 

Ranere, A. J., Piperno, D. R., Holst, I., Dickau, R., & Iriarte, J. (2009). Preceramic 

human occupation of the Central Balsas Valley, Mexico: Cultural context of early 

domesticated maize and squash. Proc Natl Acad Sci USA, 106, 5014-5018.  

 

Ranum, P., Peña‐Rosas, J. P., & Garcia‐Casal, M. N. (2014). Global maize production, 

utilization, and consumption. Annals of the New York Academy of Sciences, 1312(1), 

105-112. 

 

Renaud, S. D., & De Lorgeril, M. (1992). Wine, alcohol, platelets, and the French 

paradox for coronary heart disease. The Lancet, 339(8808), 1523-1526.  

 

Rodriguez-Amaya, D. B., Kimura, M., Godoy, H. T., & Amaya-Farfan, J. (2008). Updated 

Brazilian database on food carotenoids: Factors affecting carotenoid 

composition. Journal of Food Composition and Analysis, 21(6), 445-463.  

 

Rodríguez, V. M., Soengas, P., Landa, A., Ordás, A., & Revilla, P. (2013). Effects of 

selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica, 

193(3), 339-345. 

 

Roquero, A. (2008). Identification of red dyes in textiles from the Andean region. Textile 

Society of America Symposium Proceedings. Textile Society of America, paper 230. 

 

Sampietro, D. A., Fauguel, C. M., Vattuone, M. A., Presello, D. A., & Catalán, C. A. 

(2013). Phenylpropanoids from maize pericarp: Resistance factors to kernel infection 

and fumonisin accumulation by Fusarium verticillioides. European journal of plant 

pathology, 135(1), 105-113. 

 

Schwarz, M., Hillebrand, S., Habben, S., Degenhardt, A., & Winterhalter, P. (2003). 

Application of high-speed countercurrent chromatography to the large-scale isolation of 

anthocyanins. Biochemical Engineering Journal, 14(3), 179-189.  



General introduction 

 

25 
 

 

Sharma, M., Chai, C., Morohashi, K., Grotewold, E., Snook, M. E., & Chopra, S. (2012). 

Expression of flavonoid 3‘-hydroxylase is controlled by P1, the regulator of 3-

deoxyflavonoid biosynthesis in maize. BMC plant biology, 12(1), 1. 

 

Shen, L. Y., & Petolino, J. F. (2006). Pigmented maize seed via tissue-specific 

expression of anthocyanin pathway gene transcription factors. Molecular 

Breeding, 18(1), 57-67.  

 

Song, B. J., Sapper, T. N., Burtch, C. E., Brimmer, K., Goldschmidt, M., & Ferruzzi, M. 

G. (2013). Photo-and thermodegradation of anthocyanins from grape and purple sweet 

potato in model beverage systems. Journal of agricultural and food chemistry, 61(6), 

1364-1372. 

 

Stapleton, A. E., & Walbot, V. (1994). Flavonoids can protect maize DNA from the 

induction of ultraviolet radiation damage. Plant Physiology, 105(3), 881-889. 

 

Styles, E. D., & Ceska, O. (1977). The genetic control of flavonoid synthesis in maize. 

Canadian Journal of Genetics and Cytology, 19(2), 289-302. 

 

Styles, E. D., & Ceska, O. (1989). Pericarp flavonoids in genetic strains of Zea mays. 

Maydica (Italy). 34, 227-237. 

 

Taddei, P., Zanna, N., & Tozzi, S. (2013). Raman characterization of the interactions 

between gliadins and anthocyanins. Journal of Raman Spectroscopy, 44(10), 1435-1439. 

 

Treutter, D. (2006). Significance of flavonoids in plant resistance: a review. 

Environmental Chemistry Letters, 4(3), 147-157. 

 

Tsuda, T., Horio, F., Uchida, K., Aoki, H., & Osawa, T. (2003). Dietary cyanidin 3-O-β-D-

glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in 

mice. The Journal of nutrition, 133(7), 2125-2130.  

 



General introduction 

 

26 
 

Tsuda, T. (2012). Dietary anthocyanin‐rich plants: biochemical basis and recent progress 

in health benefits studies. Molecular nutrition & food research, 56(1), 159-170.  

 

Urias-Lugo, D. A., Heredia, J. B., Muy-Rangel, M. D., Valdez-Torres, J. B., Serna-

Saldívar, S. O., & Gutiérrez-Uribe, J. A. (2015). Anthocyanins and phenolic acids of 

hybrid and native blue maize (Zea mays L.) extracts and their antiproliferative activity 

in mammary (MCF7), liver (HepG2), colon (Caco2 and HT29) and prostate (PC3) cancer 

cells. Plant Foods for Human Nutrition, 70(2), 193-199. 

 

Urias-Peraldí, M., Gutiérrez-Uribe, J. A., Preciado-Ortiz, R. E., Cruz-Morales, A. S., 

Serna-Saldívar, S. O., & García-Lara, S. (2013). Nutraceutical profiles of improved blue 

maize (Zea mays) hybrids for subtropical regions. Field Crops Research, 141, 69-76. 

 

Van Heerwaarden, J., Doebley, J., Briggs, W. H., Glaubitz, J. C., Goodman, M. M., 

Gonzalez, J. D. J. S., & Ross-Ibarra, J. (2011). Genetic signals of origin, spread, and 

introgression in a large sample of maize landraces. Proceedings of the National Academy 

of Sciences, 108(3), 1088-1092.  

 

Venturini, G., Toffolatti, S. L., Assante, G., Babazadeh, L., Campia, P., Fasoli, E., 

Salomoni, D.,  & Vercesi, A. (2015). The influence of flavonoids in maize pericarp on 

Fusarium ear rot symptoms and fumonisin accumulation under field conditions. Plant 

Pathology, 64(3), 671-679. 

 

Venturini, G., Babazadeh, L., Casati, P., Pilu, R., Salomoni, D., & Toffolatti, S. L. 

(2016). Assessing pigmented pericarp of maize kernels as possible source of resistance to 

fusarium ear rot, Fusarium spp. infection and fumonisin accumulation. International 

journal of food microbiology, 227, 56-62. 

 

Vigouroux, Y., Glaubitz, J. C., Matsuoka, Y., Goodman, M. M., Sánchez, J., & Doebley, 

J. (2008). Population structure and genetic diversity of New World maize races assessed 

by DNA microsatellites. American Journal of Botany, 95(10), 1240-1253. 

 



General introduction 

 

27 
 

Villalpando, S. (2004). Tortilla fortification working group meeting. El problema de la 

biodisponibildad de hierro en harina de maiz nixtamalizada. National Institute of Public 

Health: Mexico City.  

 

Vollbrecht, E., & Sigmon, B. (2005). Amazing grass: developmental genetics of maize 

domestication. Biochemical Society Transactions, 33(6), 1502-1506. 

 

Wang, H., Cao, G., & Prior, R. L. (1997). Oxygen radical absorbing capacity of 

anthocyanins. Journal of agricultural and food chemistry, 45(2), 304-309. 

 

Wang, L. S., & Stoner, G. D. (2008). Anthocyanins and their role in cancer 

prevention. Cancer letters, 269(2), 281-290.  

 

Warburton, M. L., Reif, J. C., Frisch, M., Bohn, M., Bedoya, C., Xia, X. C., Crossa, J., 

Franco, J., Hoisington, D., Pixley, K., Taba, S., & Melchinger, A. E. (2008). Genetic 

diversity in CIMMYT nontemperate maize germplasm: landraces, open pollinated 

varieties, and inbred lines. Crop Science, 48(2), 617-624.  

 

Welch, R. M., & Graham, R. D. (2004). Breeding for micronutrients in staple food crops 

from a human nutrition perspective. Journal of experimental botany, 55(396), 353-364. 

 

Wingender, R., Röhrig, H., Höricke, C., & Schell, J. (1990). cis-regulatory elements 

involved in ultraviolet light regulation and plant defense. The Plant Cell, 2(10), 1019-

1026. 

 

Winkel-Shirley, B. (2002). Biosynthesis of flavonoids and effects of stress. Current 

opinion in plant biology, 5(3), 218-223. 

 

Woo, H. D., Lee, J., Choi, I. J., Kim, C. G., Lee, J. Y., Kwon, O., & Kim, J. (2014). 

Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients, 6(11), 4961-

4973. 

 

Wrolstad, R. E. (2004). Anthocyanin pigments—Bioactivity and coloring properties. 

Journal of Food Science, 69(5), C419-C425. 



General introduction 

 

28 
 

 

Ylstra, B., Touraev, A., Moreno, R. M. B., Stöger, E., van Tunen, A. J., Vicente, O., 

MOI,N.N.M., & Heberle-Bors, E. (1992). Flavonols stimulate development, germination, 

and tube growth of tobacco pollen. Plant physiology, 100(2), 902-907. 

 

Zaffino, C., Bruni, S., Russo, B., Pilu, R., Lago, C., & Colonna, G. M. (2015). 

Identification of anthocyanins in plant sources and textiles by surface‐enhanced Raman 

spectroscopy (SERS). Journal of Raman Spectroscopy. 
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Abstract 

 

In the second half of the last century, the American dent hybrids began to be widely 

grown, leading to the disappearance or marginalization of the less productive traditional 

varieties. Nowadays the characterization of traditional landraces can help breeders to 

discover precious alleles that could be useful for modern genetic improvement and allow 

a correct conservation of these open pollinated varieties (opvs). In this work we 

characterized the ancient coloured cultivar ―Millo Corvo‖ typical of the Spanish region of 

Galicia. We showed that this cultivar accumulates high amounts of anthocyanins (83.4  

mg/100g flour), and by TLC (Thin Layer Chromatography) and HPLC (High Performance 

Liquid Chromatografy) analysis, we demonstrated that they mainly consisted of cyanidin. 

Mapping and sequencing data demonstrate that anthocyanin pigmentation is due to the 

presence of the red color1 gene (r1), a transcription factor driving the accumulation of 

this pigment in the aleurone layer. Further chemical analysis showed that the kernels 

lacks in carotenoids. Finally a DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging 

ability test showed that Millo Corvo, even though lacking carotenoids, has a high 

antioxidant ability, and could be considered as a functional food due to the presence of 

anthocyanins.  
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Introduction 

 

The beginning of maize (Zea mays ssp. mays) domestication has been dated to around 

8700 years before the present in Mexico (Matsuoka et al., 2002; Piperno et al., 2009; 

Ranere et al., 2009; van Heerwaarden et al., 2011). Then the progressive spread of the 

cultivated crop into the tropical regions and throughout the Americas in the following 

thousands of years (Grobman, 1982; Piperno et al., 2000; Pearsall et al., 2004; Piperno, 

2006; Pohl et al., 2007; Zarrillo et al., 2008; Mir et al., 2013) allowed hundreds of 

landraces to adapt and to evolve to suit different environments through human 

cultivation (Shen and Petolino, 2006). After the discovery of the Americas by Europeans, 

three main maize sources: corn from the American east coast with higher latitude 

adaptation (Eschholz et al., 2010), the photoperiod insensitive CATETO types (Eschholz 

et al., 2010) and the Pearl White (Brandolini and Brandolini, 2009; Eschholz et al., 2010) 

played a very important role for the adaptation of maize to Europe. The hybridization of 

these different corn sources, together with the effects of photoperiod, temperature, 

humidity and altitude of the different environments allowed the constitution and the 

differentiation of local European varieties and landraces (Brandolini and Brandolini, 

2009; Eschholz et al., 2010). Hundreds of new landraces have been created in the past 

500 years (Dubreuil et al., 2006; Mir et al., 2013). 

During this process the farmers‘ work of selection, based on specific needs for use and 

cultivation has been important too: they maintained the landraces as open pollinated 

populations, creating a collection of corn plants with high heterozygosity and 

heterogeneity, which represented a very important source of variability and of alleles 

with high adaptation to the local environments. However in the second half of the last 

century dent hybrids began to be widely grown in Europe in place of the traditional 

varieties: these commercial maize cultivars guaranteed superior productivity in response 

to the need for higher yields (Hallauer et al., 1988; Brandolini and Brandolini, 2009). In 

recent years, renewed interest for the ancient cultivars has been increasing due to the 

new vision of agricultural systems not only based on yield performance but also on 

sustainability and the quality of the products. In this work we characterized an ancient 

colored landrace, the ―Millo Corvo‖, cultivated in the Spanish region of Galicia and used 

to produce a variety of foods. The peculiarity of Millo Corvo is the distinctive dark 

blue/black coloration of the kernels that confers a typical blue coloration to the bread 
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cooked using this flour. Maize is able to accumulate pigments in the seeds: carotenoids, 

that confer the typical yellow to orange color and more rarely anthocyanins, conferring 

a red, purple, blue and black coloration, associated with antioxidant power, thought to 

be highly beneficial for human health (Rodriguez et al., 2013). Carotenoids are 

hydrophobic C40 isoprenoids that are synthesized in amyloplasts (Kirk and Tinley-

Bassett, 1978). In maize endosperm those present are mainly lutein and zeaxanthin. In 

yellow maize there are more than 30 loci involved in the biosynthesis of carotenoids and 

the main class of mutations that reduce or deplete carotenoids are the ys conferring 

white or pale yellow endosperm (Chander et al., 2008). In various developing countries 

white maize is consumed in human diet, even though it is now well understood that 

Vitamin A, derived from carotenoids, is essential for human health. In fact the World 

Health Organization estimates that hundreds of millions of people (in particular 

children) worldwide suffer from vitamin A deficiency (VAD) (West et al., 2002).  

The anthocyanin biosynthetic pathway in maize is known to be controlled by at least two 

classes of regulatory genes, both of which are required for tissue specific pigmentation 

of plant and seeds (Shen and Petolino, 2006). The R1/B1 family encodes proteins with 

sequence homology to the basic helix-loop-helix (bHLH) DNA binding domain of the MYC 

oncoproteins (Grotewold et al., 2000), while the C1/Pl1 family encodes proteins with 

sequence homology to the DNA-binding domains of the MYB-related oncoproteins (Paz-

Ares et al., 1987; Pilu et al., 2003); the presence of one member of each family and 

their interaction allow the activation of the approximately 20 structural gene required 

for anthocyanin pigment production (Dooner et al., 1991). In nature many different 

alleles of these regulatory genes exist, each one driving a tissue-specific coloration (Pilu 

et al., 2012). 

  

Materials and methods 
  

Plant and sampling material  

The Millo Corvo maize variety (from the Spanish region of Galicia), the B73 inbred line 

(provided by Stock Center Resources of MaizeGDB, 

http://www.maizegdb.org/stock.php), the Scagliolo variety (from Carenno, LC, VA1210) 

and the Ottofile variety (from Zinasco, PV, VA61) were cultivated in the experimental 

field of the University of Milan located in Landriano (PV), Italy (N 45°180, E 9°150).  
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For all genotypes tested, about 100 seeds were sown in adjacent rows, under the same 

agronomic conditions. These plants were selfed and the ears obtained were harvested at 

the same time at the end of the season. About 70 ears of Millo Corvo were shelled and 

the seeds obtained mixed to create a single bulk used for the determination of 

anthocyanins, flavonols and phenolic acid. The same was done for the B73 inbred line 

used as colorless control. For the anti radical power (ARP) determination we used the 

Millo Corvo seeds bulk described above, a Scagliolo seeds bulk obtained in the same way 

and the segregant yy seeds (without carotenoids) obtained by selfing the progeny Millo 

Corvo x B73.  

 

Milling  

Flour samples were obtained using a ball mill (Retsch MM200, Retsch GmbH Germany). 

Seeds (cleaned from the glumes) were ground for 5 min at 21 oscillations s−1 frequency.  

 

Spectrophotometer determination of anthocyanins, flavonols 

and phenolic acids  

Five mg of flour were first boiled with 100 μL of distilled water for 30 minutes and then 

left in an overnight agitation with 1 mL of the extraction buffer (1% HCl, 95% ethanol). 

After another agitation time of 2 hours with 500 μL of extraction buffer, the 

supernatants were collected together and centrifuged for 30 minutes. Their absorbance 

was determined spectrophotometrically at 530 nm for anthocyanins, at 350 nm for 

flavonols and at 280 nm for phenolic acids (Petroni et al., 2010). The amount of 

anthocyanins was calculated as cyanidin 3-glucoside equivalents (molar extinction 

coefficient (ε) 26900 L m-1 mol-1, M.W. 484.82), flavonols content as quercetin 3-

glucoside equivalents (ε 21877 L m-1 mol-1, M. W. 464.38) and the amount of phenolics as 

ferulic acid equivalents (ε 14700 L m-1 mol-1, M.W. 194.18). The analyses were conducted 

four times for each genotype, and the confidence interval (C.I.) at 95% was calculated.  
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Qualitative determination of anthocyanins: TLC (Thin Layer 

Chromatography) and HPLC (High Performance Liquid 

Chromatography)  

The fine powder of the pericarp and aleurone layers of the Millo Corvo kernels (obtained 

using a manual electric drill) was boiled at 100°C in 2 mL of 2N HCl for 40 minutes. After 

adding 1 mL of isoamyl alcohol, the upper phase was dried and suspended in EtOH 95% 

and HCl 1% for the TLC analysis and in methanol for the HPLC run. For TLC analysis, 

cyanidin, pelargonidin and delphinidin standards were loaded together with the extracts 

on a pre-coated plastic sheet Polygram Cel 300, Macherey-Nagel) for TLC using formic 

acid:HCl:water 5:2:3 as solvent. Developed plates were dried and pictured with a digital 

camera (A430 Canon) using both white and UV illumination. For HPLC 20 μL of the 

sample were injected in an HPLC Kontron Instrument 420 system equipped with a C18 

column Zorbax ODS column, 250 mm X 4.6 mm, 5 μm, Teknokroma (Agilent 

Technologies, Santa Clara, CA, USA) and the absorbance at 530 nm was monitored. 

Anthocyanins quantification was performed by the method used by Astadi (Astadi et al., 

2009); the HPLC conditions were as follows: from min 0 to 8 min, solvent A (10% formic 

acid) from 96 to 85%, solvent B (100% Acetonitrile) from 4 to 15%; from min 8 to 25, 

solvent B was kept at 15%; from min 25 to 27, solvent A 20%, solvent B 80%; from min 27 

to 30, solvent A 80%, solvent B 20%. The flow rate was 1 mL/min. 

 

Qualitative determination of seed carotenoids: HPLC  

After incubating 1 g of maize flour in 3 mL of hexane/acetone 1:1 solution with 100 

mg/mL of BHT for 30 min at room temperature, the sample was dried by means of a 

speedvac and the pellet was dissolved in 3 mL of hexane and washed three times with 4 

mL of distilled water in order to remove the hydrophilic compounds. Sample extracts 

were concentrated by speedvac and immediately analysed. Carotenoids were assayed by 

an HPLC method adapted from that described by Tukaj and collegues (Tukaj et al., 

2003) using a Kontron Instrument 420 system, equipped with C18 reverse-phase Zorbax 

ODS column, 250 X 4.6 mm, 5 µm (Agilent Technologies, Santa Clara, CA, USA). The 

solvent initially consisted of 60% solvent A (methanol-ammonium acetate 80/20 v/v) and 

40% solvent B (methanol/acetone, 80/20 v/v), which finally was brought to 0% solvent A 

and 100% solvent B over a period of 20 min, and fluxed under these conditions for 5 
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additional minutes. The column was subsequently returned to its original mobile phase 

(60% solvent A and 40% solvent B) over the next 5 minutes, and fluxed under these 

conditions for 5 additional minutes prior to the injection of a new sample. The solvent 

flow rate was 1 mL min–1.  

 

Mapping 

Millo Corvo was mapped in segregating F2 populations using the bnlg1028 simple 

sequence repeat (SSR) marker chosen on chromosome 10 (bin 10.06) from MaizeGDB 

(http://www.maizegdb.org). A total of 85 F2 seeds (obtained by selfing the progeny of 

the cross B73 x Millo Corvo) were screened for color and each flour was used for DNA 

extraction (Dellaporta et al., 1983). Polymerase chain reactions were performed in a 

final volume of 10 μL and the reactions were carried out as follows: 94°C for 2 min, 35 

cycles at 94°C for 1 min, 57°C for 1 min, 72°C for 1 min, and a final step at 72°C for 5 

min. The amplified fragments were resolved on 3% agarose gels. Recombinant values 

were converted to map distance using MAPMAKER3 (Lander et al., 1997).  

 

Histological analysis of Millo Corvo seeds  

For light microscopy studies, coloured Millo Corvo and colourless B73 seeds were 

imbibed in water overnight and fixed in freshly prepared 4% paraformaldehyde (Sigma 

P4168) in PBS (130mM NaCl, 7mM Na2HPO4, 3mM NaH2PO4
.H2O) at 4°C overnight, then 

rinsed in 0.85% NaCl and transferred in 70% ethanol at 4°C until being processed. 

Following successive dehydration in ethanol series and embedding in Paraplast Plus 

(Sigma P3683), 15 μm thick sections were cut and serially arranged on microscope slides. 

To preserve anthocyanin pigments in situ, sections were mounted on slides using tert-

butyl alcohol instead of water. Images were taken using a Zeiss IMAGE R.D1 microscope 

equipped with an AxioCam MRc1 camera.  

 

Amplification and sequencing  

The presence of the R-g allele involved in the coloration of the Millo Corvo kernels has 

been determined by sequencing: genomic DNA was amplified by high fidelity PCR (Pfu 

polymerase; Stratagene, La Jolla, CA, USA) using the specific primers OR31 (5'-

ATGGCTTCATGGGGCTT AGATAC-3') and OR32 (5'-GAATGCAACCAAACACCTTATGCC-3') for 

R1 gene (Consonni et al., 1997). Four sequences coming from independent amplification 

http://www/
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were sequenced in outsourcing. To deduce the consensus DNA sequence we used the 

freely available computer software CLUSTALW (http://www.ebi.ac.uk/clustalw/). To study 

the sequence obtained we used BLAST (http://www.ncbi.nlm.nih.gov/BLAST/).  

 

Anti Radical Power (ARP) determination  

The antioxidant ability of the pigments was inferred by the comparison of the Anti 

Radical Power (ARP) possessed by the white and colored kernels of a Millo Corvo 

segregating synthetic population, using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free 

radical-scavenging activity method (Cevallos-Casals and Cisneros-Zevallos, 2003). 

Acetone 70% (acetone:water 70:30 v/v) was added to an aliquot of the fine powder, 

keeping the ratio 1:4 (w/v). The mixture was shaken at 4°C in the dark for 3 hours, then 

centrifuged to collect the clean extracts. A 0.12 mM ethanolic DPPH solution was added 

to increasing aliquots of each sample and the final volume adjusted to 2.50 mL. The 

absorbance of the discolorations of the DPPH in ethanol and of the samples were 

measured at 516 nm after incubation for 2 hours at room temperature in the dark, until 

the reaction reached the steady state. The percentage of scavenged DPPH values was 

calculated and then plotted against the extract volumes so as to calculate by 

interpolation the amount of extract required to consume 50% of the initial DPPH amount 

(Lago et al., 2014). The ARP is the reciprocal of this value (Doria et al., 2009). The 

analyses were conducted three times for each genotype. 

 

Results 

 

Phenotypic characterization of the Millo Corvo landrace  

The Millo Corvo traditional open pollinated variety was cultivated in the field at 

Landriano (PV) from April to September, during this period some agronomic traits were 

measured (Table 1). The plants reached maturity in about 90 days after sowing in this 

environment. The plants were, on average, 248.36 cm in height, with the ears 

positioned at 105.09 cm from the soil. The ears were of cylindrical-conical shape with 12 

rows, measuring 16.26 cm in length with a cob diameter of 2.75 cm (Table 1). The 

kernels were flint type and pigmented, with an average weight of 0.319 g (Table 1); 

each ear weighed about 109.26 g for an estimated yield of about 6–7 tons per hectare 

(sowing 6–7 seeds per square meter). As control Ottofile and Scagliolo varieties, out of 

http://www.ebi.ac.uk/clustalw/
http://www.ncbi.nlm.nih.gov/BLAST/
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more than 700 catalogued open pollinated traditional Italian flint maize, were cultivated 

and measured in the same conditions (Table 1).  

 

Characterization of seed pigment: anthocyanins, flavonols and 

phenolic acids  

The important peculiarity of this variety is surely the seed color, that would seem to be 

the only pigmented tissue with the exception of the seedling (Fig. 1 and Fig. S1). It is 

well known that maize plants can accumulate anthocyanins and for this reason we 

conjectured that the pigments observed in the Millo Corvo seeds were flavonoids and in 

particular anthocyanins. Table 2 shows the spectrophotometric results on the amounts 

of anthocyanins, flavonols and phenolic acids present in the seed flour of the Millo 

Corvo, in comparison to the colorless B73 inbred line: we found respectively 83.45 

mg/100g of flour, 74.21 mg/100g, 216.63 mg/100g in the Millo Corvo variety, while 3 

mg/100g, 66 mg/100g, 113 mg/100g in the B73 line. We used the B73 inbred line to 

represent all the classical yellow maize cultivars where the pigments are not present or 

present as trace. Anthocyanins are a very wide group of pigments, so to better 

characterize them, we performed Thin Layer Chromatography (TLC) and High 

Performance Liquid Chromatography (HPLC). We did not analyze from a qualitative point 

of view the colorless controls (B73, Scagliolo and Ottofile) because the very low amount 

of anthocyanins as shown for the classical yellow inbred line B73. In Fig. 2B the TLC 

plate shows that the main spot present in the Millo Corvo extract is due to the cyanidin 

molecule: according to the standards loaded in the plate and considering that the 

absorption peak of the anthocyanins extract at 550 nm is close to the typical peak of 

cyanidin at 545 nm (Fig. 2C). Another little spot, poorly visible and not identified, has 

been detected with a run length higher than those of the standards (Fig 2B). The 

following HPLC analysis (Fig. 3) confirmed that cyanidin is the most abundant 

anthocyanin in Millo Corvo, representing 65.90% of the total anthocyanidin molecules; 

this analysis also detected 31.40% of peonidin, 1.96% of pelargonidin (Fig. S2).   

 

Characterization of seed pigment: carotenoids  

Unexpectedly, in the Millo Corvo seeds‘ flour, the HPLC analysis found that the amount 

of carotenoids present was under the detectable threshold. We hypothesized that the 

Millo Corvo cultivar carried a recessive homozygous mutation belonging to the white 
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endosperm class (ys) whose phenotype effect was hidden because of the anthocyanins 

accumulation. To confirm this hypothesis we used a hand drill to mill the seeds‘ surface, 

where the anthocyanins were accumulated: as expected we demonstrated the absence 

of carotenoid in the inner layer of the seed, which appeared completely white (Fig. 4A) 

as reported for the ys recessive mutations (Wurtzel et al., 2012). Furthermore, as 

expected for a recessive mutation, crossing the Millo Corvo with the B73 line (able to 

produce carotenoids) we obtained yellow F1 seeds after surface milling (Fig 4B). These 

results were further strengthened by studying the F2 segregating progeny for the yy 

seeds and the following F3 ears obtained selecting and sowing the yy seeds (Fig. 4C).  

 

Genetic constitution and heritability of the colored seed trait 

It is well known that anthocyanins can be accumulated in the pericarp layer, a tissue of 

maternal origin, or in the aleurone, the outer layer of the seed endosperm (Dooner et 

al., 1991). With the aim to identify the tissues where anthocyanins were accumulated 

and to understand the heritability of the trait ―seed pigmentation‖ in the Millo Corvo 

variety we studied the progeny of an F2 population obtained as described in the previous 

paragraph. As shown in Fig. 4, the pigmentation of the F1 seeds (obtained using the B73 

plant as female and Millo Corvo as pollen donor) was weaker compared to the Millo 

Corvo. This finding suggested a dosage effect typical of pigments accumulated in 

aleurone layers (aleurone is a triploid tissue): in Millo Corvo aleurone, three doses of 

genes involved in the pigmentation seemed to be present, whilst in the F1 there was 

only one. Furthermore the presence of the pigment in F1 seeds excluded the possibility 

that it was a pericarp pigmentation that would appear only in the next generation (being 

a tissue of maternal origin). Selfing F1 plants we obtained an F2 progeny segregating 3:1 

for seed color (Fig. S3), confirming that the pigmentation is under the control of a 

monogenic dominant character that drives the accumulation of anthocyanins (mainly 

cyanidin) in the aleurone layer. The genetic data were confirmed by histological analysis 

of transverse sections of mature seeds, showing the pigmentation only in the aleurone 

layer (Fig. 5). This evidence led us to think that the regulatory r1 gene may be 

responsible for the seed anthocyanin biosynthesis. To strengthen this finding we mapped 

the character ―seed pigmentation‖ using SSR markers to confirm the presence of the 

―colored seed‖ trait on the long arm of chromosome ten where r1 locus maps (bin 

10.06). We used genomic DNA obtained by F2 mapping populations of 85 F2 seeds 
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screened for color and genotyped using the bnlg1028 simple sequence repeat (SSR) 

marker mapping on chromosome 10 (bin 10.06). We found an association of 3.4 cM 

between the trait ―seed color‖ and bnlg1028. 

 

Molecular analysis of the R1 gene 

R1 gene is a complex locus composed of two distinct components: the S1 and S2 

component driving the pigmentation of the seed and the P component driving the 

pigmentation of the plant tissues (Robbins et al., 1991). When an allele at the r1 locus 

carries both the components it is named R-r. If intrachromosomal rearrangement occurs 

(typical in complex genes) and the allele loses S components, r-r alleles are formed; 

when the P component is lost, alleles of class R-g are formed, and when both are lost we 

have r-g alleles unable to confer any plant pigmentation (Robbins et al., 1991; Walker et 

al., 1995; Pilu et al., 2012). In the case of Millo Corvo the pattern of pigmentation of the 

R1 gene is similar to that of R-g (Table 3) in fact in our case we have the seed colored 

and the plant colorless with the exception of the seedling (Fig. S1). To confirm these 

data we sequenced a 3' portion of R1 gene using specific primers (see Material and 

Methods chapter). The sequencing of 4 independent amplicons and the following 

alignment with the CLUSTALW program allowed us to obtain a consensus sequence of 

454 nucleotides (GenBank accession number: BankIt1769632 Seq1 KP056782) used for the 

research by the BLASTN program. The results obtained confirmed the presence of an R-g 

allele in the Millo Corvo cultivar, in fact we found significant alignments with the 

sequence NM_001112603.1, the seed color component at R1 (S) mRNA of Zea mays (Fig. 

S4).   

 

Antioxidant ability of the Millo Corvo flour  

To detect the antioxidant ability conferred by the anthocyanin molecules, a DPPH assay 

was performed on the flour obtained from the Millo Corvo seeds (containing 

anthocyanins but not carotenoids) and from F2 white segregating seeds (without 

anthocyanins and carotenoids). We also analyzed as control the yellow Scagliolo variety, 

a popular Italian polenta variety (containing only carotenoids). The percentage of 

scavenged DPPH values were calculated and then plotted against the extracted volumes 

(Fig 6). The antioxidant results were expressed as AntiRadical Power (ARP) as suggested 

by Doria and colleagues (Doria et al., 2009). The colored Millo Corvo seeds showed the 
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highest antioxidant ability with 0.06 of ARP, the Scagliolo variety had a value of 0.04, 

while the F2 white seeds showed the lowest antioxidant power with 0.03 as expected, 

since they lack carotenoids and anthocyanins. 

 

Discussion  

 

Starting from the last century, the increased needs for corn have focused the farmers‘ 

attention on the dent hybrids with high yields, displacing the maize landraces with the 

risk of losing their sources of genetic variability. Now the institutions and the companies 

responsible for conducting maize genetic improvement are starting to study the ancient 

landraces across the continents with the aim of identifying and using novel alleles and 

haplotypes in a context of low input and sustainable agriculture (Prasanna, 2012). In this 

scenario the study of the immense maize genetic diversity present around the world has 

a big limiting factor in the requirement for conscious protection of open pollinated 

varieties and their precise characterization. For these reasons the Millo Corvo ancient 

landrace from the Galician Spanish region has been studied and characterized. The most 

obvious characteristic of this cultivar is the blue/black pigmentation of the seed (Fig. 

1D) which differentiates it for example from Ottofile (Fig. 1E) and Scagliolo (Fig. 1F) 

traditional Italian cultivars, which as well as most other maize varieties don‘t 

accumulate high amounts of flavonoids.  

It is well known that red/black coloration of maize kernels is due to the accumulation of 

flavonoids and in particular anthocyanins (Žilić et al., 2012) and with the aim to quantify 

these pigments a spectrophotometric quantification of the main class of molecules was 

performed. As reported in Table 2, significant differences were found, as expected, for 

anthocyanins and phenolic acids amounts whilst no difference was noted for the 

flavonols content in comparison to the well characterized B73 inbred line used as typical 

control of all the colorless varieties. These data are in agreement with the work of 

Lopez-Martinez and colleagues who found a range between 76 and 869 mg/100g of 

anthocyanins in 18 colored landraces of Mexican maize (Lopez-Martinez et al., 2009). 

With the aim to characterize the anthocyanins present we carried out TLC and HPLC 

analysis of the pigment. The TLC plate indicated the presence of the cyanidin molecule 

(Fig. 2), confirmed by the HPLC analysis (Fig. 3 and Fig. S2). The second spot, poorly 

visibly in the TLC plate, is probably due to the presence of peonidin, quantified as 31.4% 
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by the HPLC analysis (Fig. S2). Several reports have shown that cyanidin, pelargonidin, 

and peonidin glycosides are the main anthocyanins present in maize kernels (Cuevas 

Montilla et al., 2011; Tsuda, 2012; Z ̌ilić et al., 2012), among which cyanidin 3-glucoside 

is the most abundant one in the dark red, dark blue, light blue and multicolor maize 

kernels (Žilić et al., 2012). The presence of anthocyanins in cereals is generally 

associated with a stronger antioxidant activity and the higher amounts of these phenolic 

compounds seem to directly contribute to higher antioxidant power (Lopez Martinez et 

al., 2009; Z ̌ilic ́ et al., 2012). The presence of these molecules in the diet is important in 

the prevention of chronic diseases such as cardiovascular disease, cancer, respiratory 

disease, diabetes and obesity as shown in numerous papers (reviewed by Tsuda) (Tsuda, 

2012). Considering that the yellow and white corn varieties do not accumulate 

anthocyanins in the kernel or only in trace amounts, we can consider the Millo Corvo 

cultivar a proper functional food. 
Furthermore the high percentage of cyanidin present (about 66%) in this variety (Fig. S2) 

represents an important feature because several papers reported the specific beneficial 

effect of the cyanidin in the diet of animal models. In particular a work by Toufektsian 

et al. in 2008 reported that chronic dietary intake of a synthetic maize population rich 

in cyanidin (about the same quantitative present in the Millo Corvo) protected the rat 

heart against ischemia-reperfusion injury (Toufektsian et al., 2008). In this work we also 

characterized in detail the genetic basis of pigment accumulation showing that the trait 

―seed colored‖ is a monogenic dominant character (Fig. S3). Furthermore histological 

analysis conducted preserving the pigment present in the fresh tissue showed that the 

pigment is accumulated in the aleurone layer (Fig. 5). Taken together the results 

obtained suggested that in this cultivar there was present an allele of the R1 regulatory 

gene of anthocyanin biosynthesis, because typically the r1 and c1 genes control the 

aleurone seed pigmentation whilst b1 pl1 genes control the vegetative tissue (in the 

seed the pericarp layer is of maternal origin). Further a strong evidence to support our 

hypothesis was given by the mapping: we demonstrated that the ―colored seed‖ trait 

maps on the long arm of chromosome 10, where the r1 gene maps. Further 

investigations were made to assess which kind of r1 allele was present in Millo Corvo 

variety. Comparing the data obtained from tissue specificity pigmentation of Millo Corvo 

(Fig. S1) with the data on the four principal classes of r1 alleles (Table 3) we inferred 

the presence of an allele of R-g class. The r1 gene is a complex locus, made up of three 

components P, S1, S2 which arose by gene duplication (Walker et al., 1995). This 
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complex locus undergoes with high frequencies (overall frequency of 6.2 x 10–4) genetic 

rearrangement by intrachromosomal recombination between P and S units, which results 

in the loss of one R-r component and generates the big genetic variability present at this 

locus (Dooner and Kermicle, 1971). The allele in which all these three components are 

functional is called R-r, R-g if the P component is missing, r-r if both the S components 

are missing and r-g if all the three components are missing. 

As we reported, each of these alleles has a specific tissue specificity for the synthesis of 

the anthocyanins, and given the phenotypic data acquired on Millo Corvo plants in the 

field and the histological analysis, it can be supposed that the anthocyanin biosynthesis 

in Millo Corvo is regulated by an R-g allele type. This hypothesis has been further 

confirmed by the sequencing and the following alignment analysis by BLAST program 

(Fig. S4). Further work will be necessary to better characterize this new allele at the r1 

locus from a molecular point of view, also because of its capacity to accumulate 

pigment in the seedling tissue that usually is not pigmented in the presence of R-g 

alleles.  

Another important source of hydrophobic dietary antioxidants and pigment in maize are 

carotenoids. Generally carotenoids, and in particular lutein and zeaxanthin, are present 

in maize varieties with yellow to orange coloration (Kurilich and Juvik, 1999; Žilić et al., 

2012). For example, Berardo et al. (Berardo et al., 2004) found in average around 42.07 

mg/kg of total carotenoids in an Italian polenta corn collection; among them, however, 

there were a few white varieties in which carotenoids were not synthesized. On the 

other hand in many developing countries around the world the utilization of white maize 

landraces is widespread, for reasons that so far are not well understood. In fact an 

adequate daily consumption of carotenoids is essential for human health: its deficiency 

may cause blindness, increased infectious morbidity and mortality, growth retardation, 

and anemia (Sommer and Davidson, 2002; Žilić et al., 2012), as already experienced in 

Africa where white corn is the main staple food (World Health Organization, 2002; Žilić 

et al., 2012).  

Our HPLC analysis showed that the Millo Corvo cultivar lacks carotenoids and that this 

character is controlled by a monogenic recessive mutation, as shown by the study of F1, 

F2 and F3 progenies (Fig. 4). White endosperm is an ancient trait shared with teosinte, 

the wild progenitor of maize, caused by ys recessive mutations impairing carotenoids 

biosynthesis (Buckner et al., 1996). It seems likely that Pyrenean-Galician landraces 

have been developed through hybridization with the Northern US flints introduced into 
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Europe in the sixteenth century from the north of France (Camus-Kulandaivelu et al., 

2006; Dubreuil et al., 2006; Mir et al., 2013) and we can conjecture that this last 

parental contribution brought the y allele which has been fixed in the following 

generations. To further characterize the Millo Corvo variety we measured the 

antioxidant ability of its flour containing anthocyanins and lacking carotenoids in 

comparison with a Scagliolo cultivar used as control (an Italian polenta maize variety 

containing carotenoids) and compared the data obtained with an F2 segregating white 

seed lacking both anthocyanins and carotenoids (Fig. 6). The results obtained showed 

the highest ARP value (0.06) in the dark blue kernels of Millo Corvo and the lowest ARP 

value (0.03) in the white kernels, while the yellow–orange cultivar Scagliolo showed an 

intermediate ARP value of 0.04. These data showed that Millo Corvo even though lacking 

carotenoid has a higher antioxidant ability, due to the presence of anthocyanins, 

compared with a classical yellow orange cultivar such as Italian Scagliolo polenta maize. 

To conclude, this ancient cultivar represents an historic landrace that could be a useful 

tool in future breeding programs and a promise for the development of functional foods 

or natural colorants.  
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Figures 

 

 

Figure 1. Phenotype of the Millo Corvo maize cultivar and ears compared to two other 

maize traditional cultivars.  

(A) Plant at maturity, (B) immature ear with silks, (C) tassel and (D) ear of Millo Corvo 

cultivar, (E) ear of Ottofile cultivar and (F) ear of Scagliolo cultivar. 
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Figure 2. Anthocyanin characterization.  

Anthocyanins alcoholic extract from the powder (A, above) obtained by milling the 

surface of the Millo Corvo kernels (A, below). TLC analysis (B) and absorbance spectrum 

of the extract (C). The standard used for the TLC analysis were: cyanidin (cyan.), 

delphinidin (delph.) and pelargonidin (pelarg.). 
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Figure 3. HPLC analysis.  

HPLC chromatogram of the anthocyanins extracted from the Millo Corvo seeds and the 

corresponding retention times compared to the standards cyanidin, pelargonidin and 

peonidin. 
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Figure 4. Carotenoid assay by surface milling and following F2 and F3 yy segregation. 

Surface milling of the Millo Corvo seeds (A) and of the F1 seeds obtained by crossing with 

B73 inbred line (B). Millo Corvo ear, F2 segregating ear and a F3 ear obtained selecting 

and sowing F2 seeds without carotenoids (C, from left to right).  
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Figure 5. Histological analyses of seeds preserving anthocyanin pigments in situ.  

B73 colourless seed used as control (A) and Millo Corvo seed (B).  

al. aleurone layer; p. pericarp layer.  Bar = 100 μm. 

  



Chapter 1 

 

50 
 

 

Figure 6. DPPH radical scavenging test.   

Comparison of the antioxidant ability in the DPPH radical scavenging test of  Millo Corvo 

(accumulating anthocyanins and no carotenoids), F2 segregating white seed (lacking 

anthocyanins  and carotenoids)  and Scagliolo cultivar (accumulating carotenoids) flours. 

Error bars represent S.D. (n=3). 
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SI4. Partial sequencing analysis of r1 Millo Corvo allele. Alignment obtained by BLASTN 

program using as query the consensus sequence of 454 nucleotide at the 3' portion of r1 

gene. 
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Abstract  

 

Several preclinical studies have suggested that the regular consumption of flavonoid-rich 

foods is associated to a reduced risk of chronic diseases. For this reason, in the last 

years a renewed interest for the ancient landraces rich in flavonoids or other bioactive 

molecules is growing. Preservation and valorisation of these ancient landraces is very 

important, not only for economic considerations regarding the farmers within the small 

rural communities, where the particular maize germplasm has been developed, but also 

from a scientific point of view. In this work we characterized the ancient cultivar named 

―Nero Spinoso‖ from the Camonica valley, the biggest valley in the north-west region of 

Lombardy (Italy). The peculiarity of this landrace is the colour and the pointed shape of 

the kernels. We showed after spectrophotometric and TLC analysis that this variety 

accumulates high amounts of phlobaphenes (320 A510/100 g flour). 

Genetic data demonstrate that phlobaphene pigmentation is under the control of a 

monogenic dominant gene. Further mapping and sequencing data showed that the 

pigmentation is driven by the presence of a strong allele of Pericarp color1 (P1) gene, a 

transcription factor belonging to the myb transcription factor gene family. The ‗‗Nero 

Spinoso‘‘ variety represents an ancient landrace that could be considered a real 

functional food and a useful tool in future breeding programmes. 
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Introduction 

 

Domestication of corn (Zea mays L.) can be traced back to about 8,700 BP in Mexico and 

from this center it spread within the Americas (Piperno et al., 2009; Ranere et al., 2009; 

Van Heerwaarden et al., 2011). From the Americas, three main sources of corn were 

introduced into Europe: the photoperiod insensitive Cateto types, the Pearl White and 

the corn lines from the American east coast with high latitude growth adaptation 

(Brandolini and Brandolini, 2009; Eschholz et al., 2010). The spread of maize in Europe 

started from Spain and other southern European countries such as Italy in which it had 

great success thanks to several favourable environmental and social conditions 

(Anderson and Cutler, 1942; Bianchi et al., 1963; Brandolini and Brandolini, 2009). In 

Italy, the first reports on the use of corn date from 1600 in the North East where maize 

was adapted to the climatic zones of cultivation and to local traditions of the people 

(Brandolini, 1958; Brandolini and Brandolini, 2009). Its spread led to the establishment 

of many local varieties genetically adapted to environmental conditions. 

After World War II the introduction of mechanized farming practices and the utilization 

of dent hybrids which were much more productive, mainly for use as animal feed, led to 

the gradual disappearance of local varieties (Brandolini and Brandolini, 2009). 

Fortunately, in more recent years many efforts have been made to try to recover and 

preserve the genotypes of the old varieties: in Italy the main maize collection is 

preserved ex situ at the CREA-Council for Agricultural Research and Agrarian Economy 

located at Stezzano (BG). 

In this work, we characterize an ancient landrace of colored pointed flint maize used for 

polenta: the ―Nero Spinoso‖ (Black Pointed), which until now has been cultivated in a 

small isolated field (about 800 m a.s.l.) in the Annunciata area of Piancogno Municipality 

near Esine, an Italian town in the Camonica valley, province of Brescia (BS). This maize 

cultivar has two peculiarities: the pointed shape of the seed and the pigmentation of the 

kernel. Concerning pigmentation, it is well known that maize is able to synthesize and 

accumulate two types of pigments: anthocyanins and phlobaphenes, secondary 

metabolites synthesized through the flavonoids pathway that perform several functions 

during the growth and development of plants (Grotewold, 2006; Falcone Ferreyra et al., 

2012; Casas et al., 2014). Both these types of pigments are responsible for some 

beneficial effects on human health due to their antioxidant capacity (Grotewold et al., 
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2000; West et al., 2002; Rodriguez et al., 2013; Casas et al., 2014; Lago et al., 2014a, 

Lago et al., 2014b; Petroni et al., 2014). The inheritance of pigmentation depends on 

the tissue in which the pigment is accumulated. The accumulation of pigments in the 

seeds may occur in two tissues: in the pericarp, a tissue of maternal origin, or in the 

aleurone layer that covers the endosperm (Dooner et al., 1991). The anthocyanin 

pathway in maize is known to be controlled by two classes of regulatory genes: the 

r1/b1 family, that encodes proteins with sequence homology to the basic helix-loop-

helix (bHLH) and the c1/pl1 family, that encodes proteins with sequence homology to 

the DNA-binding domains of the MYB related oncoproteins (Pilu et al., 2003). The 

interaction of these regulatory genes allows the activation of about 20 structural genes 

required for anthocyanin pigment production (Dooner et al., 1991).  

Phlobaphenes are reddish insoluble pigments; the biosynthetic pathway of these 

compounds begins with the condensation of three malonyl-CoA molecules with p-

coumaroyl-CoA by chalcone synthase (CHS), encoded by the colorless2 locus (c2), 

leading to the formation of naringenin chalcone (Styles and Ceska, 1977; Casas et al., 

2014). The chalcone isomerase (CHI) enzyme converts naringenin chalcone into the 

flavanone naringenin that is converted to apiforol and luteoforol by the A1 locus coding 

for dihydroflavonol reductase-DFR enzyme and the Pr1 locus coding for flavanone-3-

hydroxylase-F3-H enzyme which are polymerized into phlobaphenes (Winkel-Shirley, 

2001; Grotewold, 2006; McMullen et al., 2004; Morohashi et al., 2012; Falcone Ferreyra 

et al., 2012). 

In the maize pericarp layer the accumulations of phlobaphene pigments are under the 

control of the R2R3-MYB transcription factor pericarp color1 (p1) whereas different P1 

alleles confer different pericarp and cob glume colors (Grotewold et al., 1991; Casas et 

al., 2014). The presence of P1-rr allele determines the coloration of both pericarp and 

cob glumes, P1-rw only the pericarp, P1-wr only the cob glumes and P1-ww has both the 

tissues colorless (Anderson, 1924; Chopra et al., 1996; Casas et al., 2014). 

For the pointed shape of the seeds, we known that this is an ancient characteristic of 

wild maize, in fact the maize ancestor was probably both pod corn (tunicate maize) and 

a popcorn with pointed kernels (Mangelsdorf and Reeves, 1959). In this work we studied 

from several point of view this rediscovered ancient opv (open pollinated variety), 

determining which pigments are accumulated in the seeds and the heritability of this 

character by genetic and molecular analysis. 
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Materials and methods 

 

Plant and sampling material  

The ―Nero Spinoso‖ maize variety (kindly provided by Mr. Saloni of Saloni‘s farmhouse, 

Piancogno) was cultivated, during the 2014 season, in different fields situated in the 

Camonica valley, Italy (the locations were: Esine, Largarolo, Malonno, Plemo, Plerio, 

Pregasso, Santicolo and Volpera) and in the experimental field of the University of Milan 

located in Landriano (PV), Italy (45° 18‘ N, 9° 15‘ E). The colourless B73 inbred line and 

the coloured Millo Corvo variety, R-sc (self-coloured aleurone) and P1 homozygous plants 

which were used as control and for breeding activities came from the collection of 

germplasm at the Department of Agricultural and Environmental Sciences-Production, 

Landscapes, Agroenergy at the University of Milan. About 200 seeds, for all genotypes 

tested, were sown in adjacent rows, under the same agronomic conditions. These plants 

were selfed and the ears obtained were harvested at the same time at the end of the 

season. About 80 ears of ―Nero Spinoso‖, cultivated in Landriano, were shelled and the 

seeds obtained mixed to create a single bulk. The seeds so obtained were used for the 

determination of anthocyanins, flavonols and phenolic acids. 

The same procedures were followed for the Millo Corvo variety and the B73 inbred line 

used as the colorless control. 

 

Milling 

Flour samples were obtained using a ball mill (Retsch MM200, Retsch GmbH Germany), 

and seeds (cleaned from the glumes) were ground for 5 min at 21 oscillations s-1 

frequency. 

 

Spectrophotometer determination of anthocyanins, flavonols 

and phenolic acids  

15 mg of flour were first boiled with 100 µL of distilled water for 30 min and then left in 

an overnight agitation with 1 mL of the extraction buffer (1% HCl, 95% ethanol). 

After another agitation time of 2 h with 500 µL of extraction buffer, the supernatants 

were collected together and centrifuged for 30 min. Their absorbance was determined 

spectrophotometrically at 530 nm for anthocyanins, at 350 nm for flavonols and at 280 
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nm for phenolic acids (Pilu et al., 2011). The amounts of anthocyanins were calculated 

as cyanidin 3-glucoside equivalents (molar extinction coefficient (ε 26,900 L m-1 mol-1, 

M.W. 484.82), flavonols content as quercetin 3-glucoside equivalents (ε 21,877 L m-1 

mol-1, M. W. 464.38) and the amount of phenolics as ferulic acid equivalents (ε 14,700 L 

m-1 mol-1, M.W. 194.18). The analyses were conducted four times for each genotype, and 

the confidence interval (C.I.) at 95% was calculated.  

 

Bleaching test  

Twenty seeds of coloured ―Nero Spinoso‖ and R-sc (self coloured aleurone) seeds, used 

as a control, were bleached following immersion in 7% sodium hypochlorite for 1 h. After 

this period the seeds were rinsed with tap water and pericarp tissue decoloration was 

checked. 

 

Qualitative determination of anthocyanins: TLC (thin layer 

chromatography)  

The fine powder of the pericarp layer of the ―Nero Spinoso‖ and P1 inbred line kernels 

(obtained using a manual electric drill) was boiled at 100 °C in 2 mL of  2 N HCl for 40 

min. After adding 1 mL of isoamyl alcohol, the upper phase was dried and suspended in 

EtOH 95% and HCl 1% for the TLC analysis. Cyanidin, pelargonidin and delphinidin 

standards were loaded together with the extracts on a pre-coated plastic sheet 

(POLYGRAM CEL 300, MACHEREY–NAGEL) for TLC using formic acid:HCl:water 5:2:3 as 

solvent. Run TLC plates were dried and the results recorded by a digital camera (A430 

Canon) using both white and UV illumination. 

 

Cosegregation analysis  

In order to perform cosegregation analysis we used F2 populations, obtained by selfing 

the progeny of the cross ―Nero Spinoso‖ X B73. A total of 109 F2 plants were screened 

for the ear color and from every plant a leaf sample was used for DNA extraction 

(Dellaporta et al., 1983). PCRs were performed using PHI095, simple sequence repeat 

(SSR) marker within the gene P1 on chromosome 1 (bin1.03) from MaizeGDB 

(http://www.maizegdb.org). 

http://www.maizegdb.org/
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Polymerase chain reactions were performed in a final volume of 10 µL and the reactions 

were carried out as follows: 94 °C for 2 min, 35 cycles at 94 °C for 45 s, 67 °C for 1 min, 

72 °C for 1 min, and a final step at 72 °C for 5 min. The amplification fragments were 

resolved on 3% agarose gels. Polymerase chain reactions and gel running conditions were 

performed as described in the SSR Methods Manual by MaizeGDB 

(http://www.maizegdb.org/documentation/maizemap/ssr_protocols.php). 

 

Amplification and sequencing  

The partial sequencing of the P1 gene was conducted starting from genomic DNA 

extracted from leaves.  

DNA was amplified by high fidelity PCR (Pfu polymerase; Stratagene, La Jolla, CA, USA) 

using the specific primers sP1-4F: 5‘-ATGGACGCCCTGATGCCTAT-3‘ and sP1-4R: 5‘-

CTGTACACACGA GCAACG CC-3‘. PCR reaction was performed in a 25 µL volume 

containing about 50 ng of genomic DNA; 1X polymerase buffer; 2.5 mM MgCl2; 200 µM 

each of dATP, dCTP, dGTP, and dTTP; 0.1 µM of each primer and 0.25 unit of Taq DNA 

polymerase. 

The reactions were carried out as follows: 94 °C for 2.5 min, 35 cycles at 94 °C for 45 s, 

63 °C for 1 min, 72 °C for 1 min, and a final step at 72 °C for 5 min. 

Five independent amplicons were sequenced in outsourcing to deduce the consensus 

DNA sequence by freely available computer software CLUSTALW 

(http://www.ebi.ac.uk/clustalw/).  

We used BLAST algorithm (http://www.ncbi.nlm.nih.gov/BLAST/) to study the sequence 

obtained.  

 

Histological analysis  

Coloured ―Nero Spinoso‖, and the controls, coloured Millo Corvo and colourless B73 

seeds were imbibed in water overnight and fixed in freshly prepared 4% 

paraformaldehyde (Sigma P4168) in PBS (130 mM NaCl, 7 mM Na2HPO4, 3 mM 

NaH2PO4
.H2O) at 4 °C overnight, then rinsed in 0.85% NaCl and transferred in 70% 

ethanol at 4 °C until processing. 

Following successive dehydration in ethanol series and embedding in Paraplast Plus 

(Sigma P3683), 15 µm-thick sections were cut and serially arranged on microscope slides. 

http://www.maizegdb.org/documentation/maizemap/ssr_protocols.php
http://www.ebi.ac.uk/clustalw/
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To preserve anthocyanin pigments in situ, sections were mounted on slides using tert-

butyl alcohol instead of water. To determine the pericarp thickness, images were taken 

and elaborated using a Zeiss IMAGE R.D1 microscope equipped with an AxioCam MRc1 

camera. 

 

Results 

 

Phenotypic characterization of the “Nero Spinoso” landrace  

The ―Nero Spinoso‖ open pollinated variety was recovered from a small isolated 

terraced field owned by the Saloni family located in the Annunciata area of Piancogno 

municipality (BS) in the Camonica valley (45° 55‘ N, 10° 13‘ E), at 680 m a.s.l. (Fig. 1). 

Starting from a sample of seeds this variety was cultivated and studied at the 

Experimental Field of University of Milan located at Landriano (PV) where the genetic 

study was conducted and then in different fields all located in the Camonica valley: 

Esine, Largarolo, Malonno, Plemo, Plerio, Pregasso, Santicolo and Volpera. As shown in 

Fig. 1B and Fig. 2 the peculiarities of this cultivar are the color and the pointed shape of 

the kernel. During the agronomic season 2014, different agronomic traits were measured 

(Table 1). The plants reached maturity in about 90 days after sowing in these 

environments. In these fields the plants were, on average, 252.41 ± 4.16 cm in height 

(plant height was recorded at the level of the flag leaf). The ears were of cylindrical-

conical shape with 14.03 ± 0.56 rows, measuring 18.12 ± 1.02 cm in length with an ear 

diameter of 4.22 ± 0.12 cm and cob diameter of 2.97 ± 0.11 cm (Table 1). The ears 

height was 106.34 ± 2.74 cm (Table 1). The kernels were pointed flint type and 

pigmented, with an average weight of 0.26 ± 0.05 g. The weight of seeds carried by a 

single ear was 120.74 ± 58.7 g for an estimated potential yield of about 7.2–8.4 tonnes 

per hectare (sowing 6–7 seeds per square meter). 

 

Characterization of seed pigments: anthocyanins, flavonols, 

phenolic acids and phlobaphenes  

The main characteristic of this variety is the color of the seeds as previously described, 

but other tissues are also pigmented, such as the cob, husks, roots and seedlings (Table 

2; Fig. 2). 
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It is well known that maize plants can accumulate anthocyanins and/or phlobaphenes in 

different tissues, and with the aim to establish which kind of pigments were 

accumulated we carried out spectrophotometric analysis. Table 3 shows the results on 

the amounts of anthocyanins, flavonols, phenolic acids and phlobaphenes present in the 

seed flour of the ―Nero Spinoso‖ in comparison to the B73 inbred line used as the 

colorless control and the Millo Corvo variety, used as the colored control which 

accumulates anthocyanins in the kernel. We found that ―Nero Spinoso‖ is pigmented by 

the accumulation of phlobaphenes (320.24 A510/100g). To confirm this finding we 

performed thin layer chromatography (TLC): we loaded as control the three main 

anthocyanidins accumulated in maize (cyanidin, pelargonidin and delphinidin) and the 

extract of the P1 (pericarp 1) inbred line, able to accumulate phlobaphenes in the 

pericarp. As shown in Fig. 3, in the ―Nero Spinoso‖ lane no anthocyanidins were 

observed whilst two orange spots were present, with the same retention factor (Rf) 

present in the P1 lane (although with different relative amounts). 

 

Determination of the pigmented tissues in the seed  

In maize seeds two type of tissues can accumulate pigments; the aleurone layer (the 

outermost triploid tissue) and the pericarp layer (of maternal origin). 

To assess which tissue was pigmented in the ‗‗Nero Spinoso‘‘ we treated a seed sample 

with a strong oxidant, sodium hypochlorite at 7%: a strong oxidant is able to bleach 

completely the pigment present in the pericarp layer while the pigment present in the 

aleurone layer remains unoxidized. As shown in Fig. 4, the ‗‗Nero Spinoso‘‘ seeds 

completely lost their color while the inbred line R-sc (accumulating anthocyanin in the 

aleurone layer) remained unchanged. These data were confirmed by histological analysis 

of transverse sections of mature seeds, showing the pigmentation only in the pericarp 

layer (Fig. 5). Furthermore a different structure of the pericarp layer was noticed 

compared to the B73 colourless line and to the Millo Corvo coloured variety controls. In 

fact as shown in Table 4 the pericarp thickness of the ‗‗Nero Spinoso‘‘ variety (173.11 ± 

12.16 μm) was much greater, compared to B73 and Millo Corvo varieties (respectively 

73.5 ± 6.13 μm, 59.16 ± 9.88 μm). 
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Heritability of the colored seed trait  

It is well known that phlobaphenes can be accumulated in the pericarp layer of the 

kernel, a tissue of maternal origin, by the action of Pericarp color1 gene (Dooner et al., 

1991). Hence, starting from the hypothesis that the ―pigmented ear‖ trait was due to 

the presence of a dominant allele at the P1 locus we determined the heritability of this 

trait in F1 and F2 populations obtained through controlled crosses. As shown in Fig. 6 the 

coloured ―Nero Spinoso‖ was used as a male line (pollen donor), while the line B73 was 

used as the colorless female line. The F1 seeds obtained from the cross were all 

colorless, (indicating that the pigment is present in pericarp maternal tissue) while the 

F1 generation gave all pigmented ears although their color was less intense compared to 

the colored parent used for the cross. In the F1 generation we observed a noticeable 

reduction in the ―pointed‖ characteristics of the kernels (data not shown). The following 

F2 progeny segregated 3:1 for ear color, confirming that a monogenic dominant 

character drives the accumulation of phlobaphenes in the pericarp layer (Table 5; Fig. 

6). 

This evidence led us to hypothesize that the P1 gene might be responsible for the kernel 

phlobaphenes biosynthesis. To test this hypothesis we performed a cosegregation 

analysis using 109 F2 plants phenotyped for the ear color. We extracted genomic DNA 

from each plant and using PHI095 SSR marker (inside the P1 gene), on chromosome 1 

(bin1.03) we found a perfect cosegregation between a PHI095 polymorphism and the 

trait ―pigmented ear‖, which strengthens the relationship between the presence of a 

dominant P1 allele and the ear pigmentation (data not shown). Studying this opv it was 

possible to observe some variability in the ears‘ pigmentation, in fact out of 730 ears 

scored, 686 ears were dark red (93.97%), 23 ears showed different shades of red (3.15%) 

and 21 ears were completely colorless (2.87%) (Fig. 7). Assuming that the 23 red ear  

were due to a variable expressivity of P1 allele present in this population, we used the 

Hardy–Weinberg principles to calculate the p1 allelic frequency (colourless ear) and we 

obtained the value of 0.169 (fr p1 allele = square root of 21/730) while for P1 it was 

0.831 (fr P1 = 1 - fr p1). 

 

Molecular analysis of the P1 gene  

To confirm the presence of a strong Pericarp 1 allele in this landrace, we sequenced a 

portion of the P1 gene using specific primers (see ―Materials and methods‖ chapter). 
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The sequencing of 5 independent amplicons and the following alignment with the 

CLUSTALW program allowed us to obtain a consensus sequence of 334 nucleotides used 

for the analysis by the BLASTN program. The results obtained in Fig. 8, show that the 

best alignment is with the Zea mays MYB-like transcription factor P1 gene, P1-rw1077 

allele (accession number AY702552.1). However we found, respect the P1-rw1077 allele, 

two polymorphisms (2 deletions/336 nucleotides) indicating the presence of a new allele 

needing further investigation. 

 

Discussion 

 

The center of domestication of maize (Zea mays L.) is located in south-central Mexico, 

and from here it spread within the Americas over thousands of years and, successively, 

to the rest of the world including Europe (Matsuoka et al., 2002; Mir et al., 2013). The 

spread of maize to a variety of geographical locations has led to its local selection and 

adaptation to new environments and, consequently, the development of many 

landraces, or farmer‘s varieties (Mir et al., 2013). These varieties were characterized by 

low yields, when compared with modern hybrids, but had considerable phenotypic and 

genetic variability (Liu et al., 2003; Vigouroux et al., 2008; Warburton et al., 2008; Mir 

et al., 2013). Recent studies indicate that the spread of maize outside the Americas is 

complex. In Europe, Asia and Africa the different varieties imported over the centuries 

from the Americas still coexist (Mir et al., 2013). In Italy the use of corn in agriculture 

dates back to the second half of the sixteenth century, since then the adaptation to 

different environments together with human selection led to the diversification of 

hundreds of landraces (Messedaglia, 1924; Brandolini and Brandolini, 2009). Before these 

landraces disappeared, being replaced by modern hybrids, hundreds of them were 

preserved ex situ at the CREA-Council for Agricultural Research and Agrarian Economy 

located at Stezzano (BG). Analysis of 17 phenological, morphological and geographical 

characteristics allowed the classification of the accessions of Italian corn into 65 

agroecotypes, representing 34 landraces derived from 9 racial complexes (Brandolini and 

Brandolini, 2009). These nine racial complexes are: Eight row flints (Ottofile) located 

throughout Italy; Conical flints (Conici) located in Central and Northern Italy; Late south 

cylindrical flints (Cilindrico tardivo) located in Appenine valleys and Sicily; South 

cylindrical flints (Cilindrici meridionali di ciclo medio) located in Southern Italy and 
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Sicily; Early dwarf flints (Nani precoci) located in mountainous areas in North and 

Central Italy; Microsperma flints (Microsperma) located in Northern and Central Italy; 

Insubrian flints (Insubri or Padani); Pearl white flints (Bianco perla) and White dents 

(Dentati bianchi) grown in the Veneto and Friuli regions (Brandolini and Brandolini 2009). 

In this system of subdivisions, the ‗‗Nero Spinoso‘‘ (named also ―Spinusa‖ and ―Spinato 

Nero della Valcamonica‖) the ancient landrace from the Camonica valley (BS), subject of 

this study, taking together the characteristics of the ear, seed (Fig. 2) and the data 

reported in Table 1, can be classified in the Insubrian flints group (Insubri or Padani). 

The main features of this cultivar are the dark red pigmentation and the shape of the 

seed that appears pointed (Fig. 1, Fig. 2).  

It is well known that maize is able to accumulate pigments in the kernels belonging to 

two classes of flavonoids, anthocyanins and phlobaphenes (reviewed by Petroni et al., 

2014) and with the aim to establish and quantify the pigments present we performed 

spectrophotometric and TLC analysis. As reported in Table 3, the data obtained revealed 

that the pigments accumulated in the ―Nero Spinoso‖ variety are phlobaphenes and not 

anthocyanins as in the case of the Millo Corvo cultivar used as control. We detected also 

a small amount of anthocyanin (16.66 mg/100g of flours) that, most likely, does not 

represent actual anthocyanins but rather un-polymerized phlobaphenes (phlobaphenes 

are complex molecules derived from the polymerization of flavan-4-ols, mainly apiforol 

and luteoforol) extracted by the anthocyanin extraction buffer (see ―Materials and 

methods‖ chapter). To strengthen this finding we carried out TLC analysis of the 

pigments extract (Fig. 3) using as control an extract coming from an inbred line carrying 

the P1 gene, and the three main anthocyanidins accumulated in maize: the ―Nero 

Spinoso‖ pattern observed after chromatographic runs is very similar to one present in 

the P1 line that is able to accumulate phlobaphenes in the pericarp layer (Grotewold, 

2006; Pilu et al., 2011; Casas et al., 2014). The presence of phlobaphenes in ―Nero 

Spinoso‖ kernels allows us to consider it as a functional food compared to colorless corn 

varieties. In fact the beneficial properties derived from the anthocyanins and from other 

classes of flavonoids on human health have been well studied in recent years (Grotewold 

et al., 2000; West et al., 2002; Lopez-Martinez et al., 2009; Z ̌ilić et al., 2012; Lago et 

al., 2013; Rodriguez et al., 2013; Casas et al., 2014; Lago et al., 2014a, Lago et al., 

2014b; Petroni et al., 2014). Furthermore, phenylpropanoids and in particular 

phlobaphenes seem to be a resistance factor to kernel infection and fumonisin 

accumulation by Fusarium verticillioides, making it likely that this landrace is more safe 
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for direct human consumption (Pilu et al., 2011; Sampietro et al., 2013). We also 

confirmed that the phlobaphenes pigments were accumulated in the pericarp layer, as 

shown by Fig. 4 and Fig. 5. We also found that the pericarp of ―Nero Spinoso‖ is thicker 

compared to the two controls B73 and Millo Corvo variety (Table 4; Fig. 5). This 

characteristic could explain the high amount of phlobaphenes accumulated in this 

landrace and the consequent dark red/black seed color, compared to other varieties 

carrying strong pericarp color1 gene such as P1-rr conferring a brick red seed color (Pilu 

et al., 2011; Petroni et al., 2014). Hence when we crossed ―Nero Spinoso‖ with a 

colorless line, the F1 obtained always produced seeds which were red and not dark 

red/black (Fig. 6), probably because of the reduction in pericarp thickness. Of course we 

cannot also exclude that the specific genetic background of ―Nero Spinoso‖ could also 

boost the phlobaphenes biosynthesis. The character ―pointed kernel‖ in the F1 produced 

seeds was less strongly marked compared to the original one and preliminary data 

suggest that this could be a simple Mendelian character exhibiting incomplete 

dominance (Fig. 6). However future work will be necessary to study this ancient trait in 

depth. 

The genetic data definitely confirmed that the trait ―colored ear‖ is under control of a 

dominant monogenic character (Table 5; Fig. 6) driving the accumulation of 

phlobaphenes in the pericarp layer as expected by the presence of a strong P1 allele. To 

support our hypothesis a cosegregation analysis was performed using SSR marker, chosen 

inside the P1 gene in an F2 population where the ears were screened for the color. A 

polymorphism always associated to the trait ―colored ear‖ was found in all 109 

individuals analysed, confirming the hypothesis (data not shown). 

We also notice that not all the colored ears had the full pigmentation (3.15%) and in 

some case were colorless (2.87%). Using Hardy–Weinberg principles, as shown in the 

Results section, we calculated the allelic frequency of this P1 allele conferring 

pigmentation, which was found to be 0.831 (Fig. 7). The observation of this variability is 

not surprising considering that maize is a highly heterogeneous crop where most of the 

genetic diversity is observed within each population rather than between populations 

(Warburton et al., 2008; Mir et al., 2013). Finally the presence of a strong P1 allele has 

been further confirmed by sequencing and following alignment analysis by BLAST 

program showing an identity of 99% (334/336 bp) with the P1-rw1077 allele previously 

sequenced (Fig. 8). However we think that our allele should belong to the P1-rr class of 

alleles having both pericarp and cob colored as shown in Table 2, as it is different from 
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a P1-rw allele having only the pericarp colored. Further work will be necessary to obtain 

the complete sequence of this new allele at the P1 locus.  

Although today the ―Nero Spinoso‖ is grown in small plots in the Camonica Valley, in 

collaboration with the municipalities of Esine and Piancogno (BS), ―Nero Spinoso‖ has 

been included into the list of ―Variety of Conservation‖ of the National Register of 

Varieties of Agricultural and Horticultural Species at MIPAAF (Ministry of Agriculture, 

Food and Forestry) in order to prevent the loss of local traditions as well to preserve the 

genetic variability (published in the Official Gazette of the Italian Republic n. 9, 

13.01.2016). Due its ―splendid isolation‖ (see Fig. 1A) the ―Nero Spinoso‖ went through 

the centuries unchanged becoming not only a potential functional food but also useful to 

further clarify the origin and spread of maize as well as to prevent the loss of important 

sources of genetic variability for further genetic improvement programs. 
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Figures 

 

 

Figure 1. Sampling site of the ―Nero Spinoso‖ maize cultivar. (A) Terraced field where 

this landrace has been cultivated by the Saloni family in the Annunciata area of 

Piancogno municipality. (B)  Harvested ears hung in farmhouse for drying according to 

tradition. 

  



Chapter 2 

80 
 

 

Figure 2. Phenotype of the ―Nero Spinoso‖ maize cultivar. (A) Dark red/black ear at 

maturity and (B) the characteristic pointed kernels, (C) tassel and (D) immature ears 

with silk, (E) pigmented roots. 
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Figure 3. TLC analysis of ―Nero Spinoso‖ compared to a colored P1 homozygous variety. 

The standards used for the TLC analysis were: cyanidin (cyan.), delphinidin (delph.) and 

pelargonidin (pelarg.). 
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Figure 4. Bleaching test. (A) ―Nero Spinoso‖ seeds before and (B) after bleaching test in 

which the complete depigmentation of the seed can be seen; (C)  R-sc seeds (having the 

aleurone layer pigmented), used as control, before and  (D) after bleaching test. 
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Figure 5. Histological analysis of seeds preserving pigments in situ. (A) B73 colourless 

seed used as control, (B) coloured Millo Corvo seed where the pigments are accumulated 

in the aleurone layer and (C) ―Nero Spinoso‖ seed where the pigments are accumulated 

in the pericarp layer. p pericarp layer; a aleurone layer; Bar = 100 µm. 
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Figure 6. Segregation of the ―colored ear‖ trait observed in the F1 and F2  progenies 

starting from the cross B73 x ―Nero Spinoso‖ plants. The expected segregation values for 

―colored ear‖ was  3:1  in the case of  the  presence of a single dominant gene driving 

the pigmentation in the pericarp layer maternal tissue. 
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Figure 7. Expressivity and frequency of P1 allele present in the ―Nero Spinoso‖ opv. Out 

of 730 ears scored, 686 showed strong pigmentation, 23 showed different red color 

gradations and 21 appeared completely colorless. Using Hardy-Weimberg principles the 

allelic frequency of P1 allele was 0.831 (assuming the presence of P1 in all the colored 

individuals)  while the allelic frequency of p1 was 0.169. 

 

  



Chapter 2 

86 
 

 

 

Figure 8. Partial sequencing analysis of P1 ―Nero Spinoso‖ allele. Alignment obtained by 

BLASTN program using as query the consensus sequence of 334 nucleotide at the 3‘ 

portion of P1 gene. 
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Abstract 

 

The standard sugary sweet corn (Zea mays saccharata Sturt) is a maize variety grown for 

the fresh, frozen and canned markets, traditionally appreciated. Its kernels are 

characterized by the presence of some antioxidant substances suggested to be beneficial 

for cancer prevention. For this reason an interesting challenge for breeders is the 

development of sweet corn genotypes with naturally high antioxidant levels, starting 

from flavonoids. In fact important sources of antioxidants in maize are anthocyanins, 

considered as nutraceuticals because they have been proven to lower the risk of many 

chronic diseases. 

In this paper we report the development of a new coloured sugary line and the results of 

some analyses concerning flavonoid content before and after two different cooking 

treatments are discussed. Attention was mainly focused on the anthocyanins, the 

molecules suggested as being responsible for the nutraceutical properties of the new 

coloured sugary line. The results show that the presence of the anthocyanins also pushes 

up the flavonol and the phenolic acid amounts and gives the new coloured sugary line a 

higher scavenging power compared to the uncoloured control. The mild cooking seems 

not to significantly change the metabolites analyzed in the coloured kernels, while the 

stronger treatment seems to drastically decrease the amounts of pigments, without 

changing the structure of the leftover molecules. All these findings suggest that the new 

colored sugary line can be considered a new functional food, able to introduce healthy 

compounds into the diet of many people. 
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Introduction 

 

According to the data for the years 2012-2013, the corn global yield overtook 850 million 

metric tonnes, so that maize can be considered as the most produced cereal in the 

world (USDA data). 

Corn is characterized by a high versatility: it is used for food, forage and for industrial 

purposes. In USA the amount of corn used as food is about 1.4 billion bushels (35.56 

million metric tonnes), to produce high-fructose corn syrup, starch, corn oil and various 

other food products (Brester, 2012; 

http://www.agmrc.org/commodities__products/grains__oilseeds/corn_grain/).  

Among the different varieties of maize used for different purposes an important one is 

sweet corn. Sweet corn (Zea mays saccharata Sturt) is a corn type grown for fresh, 

frozen and canned markets (Bülent Coşkun et al., 2006). In USA the fresh market 

accounts for nearly 70% of the total production of the sweet corn crop, and it is the 

second largest processing crop, surpassed only by tomatoes (Hansen R, content 

specialist, AgMRC, Iowa State University, Sweet corn profile http://www.agmrc. 

org/commodities__products/grains__oilseeds/corn_grain/sweet-corn-profile/; Haynes et 

al, Sweet Corn, Iowa State University Horticulture Guide). It differs from starchy field 

corn by a single recessive naturally-occurring genetic mutation causing a higher sugar 

content in the kernels. As a consequence sweet corn is harvested during the milk stage, 

before physiological maturation, approximately 15 to 23 days after the silks emerge, 

when it retains the highest amount of sugar and its maximum sweetness (Hansen R, 

content specialist, AgMRC, Iowa State University, Sweet corn profile 

http://www.agmrc.org/commodities__products/grains__oilseeds/corn_grain/sweet-

cornprofile/). There are three different mutations resulting in the three most widely 

diffused genetic varieties of sweet corn: sugary (su), sugarenhanced (se), and shrunken2 

(sh2): they vary in sweetness, shelf life and cold soil vigour. The most diffused and 

ancient sweet corn variety is the sugary. This variety has a harvest, storage and shelf 

life slightly shorter than the others, the sugar content is not so high compared to se and 

sh2, but it is characterized by a flavour and a texture traditionally appreciated by 

consumers (Juvik et al., 2003). 

The sweet corn kernels are characterized by a high starch and sugar content, important 

energy sources, by cellulose and β-glucan which are important dietary fibre for the 

http://www.agmrc.org/commodities__products/grains__oilseeds/corn_grain/
http://www.agmrc.org/commodities__products/grains__oilseeds/corn_grain/sweet-cornprofile/
http://www.agmrc.org/commodities__products/grains__oilseeds/corn_grain/sweet-cornprofile/
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enteric flora (Topping and Clifton, 2001; Tokuji et al., 2009) and by the presence of 

zinc, an essential mineral to assure the functioning of many enzymes and transcription 

factors (Haase et al., 2008; Tokuji et al., 2009). Some antioxidant substances can also 

be found in sweet corn kernels, such as the β-carotene and the lutein carotenoids 

(Kurilich and Juvik, 1999; Tokuji et al., 2009) and above all the phenolic compound 

ferulic acid (Balasubashini et al., 2003; Tokuji et al., 2009). This molecule seems to be 

very important for health, in fact Tokuji and colleagues collected data indicating that 

this compound found in dietary sweet corn can be beneficial for cancer prevention 

(Tokuji et al., 2009). 

The antioxidant power seems to be the mechanism through which the molecules carry 

out their preventive function against human chronic diseases (Virgili and Marino, 2008), 

and cancer. Therefore vegetable foods containing high levels of antioxidant compounds 

are now entering the human diet as essential constituents, endowed with the added 

value of the functional food. So developing sweet corn genotypes with naturally high 

antioxidant level could be an interesting challenge for breeders. Important sources of 

antioxidants in maize are the anthocyanins. Anthocyanins are a class of flavonoids: they 

are water-soluble glycosides of simple or acylated polyhydroxy and polymethoxy 

derivates of flavylium salts and they are responsible for the red, purple, and blue 

colours of many fruits, vegetables, and cereal kernels (Giusti and Wrolstad, 2003; Zilic ́ 

et al., 2012). They are very important for human health because they have been proven 

in animal system to reduce the risk of death from heart disease (Rissanen et al., 2003; 

Tsuda., 2012), to be able to lower LDL cholesterol levels (Castilla et al., 2008; Tsuda,  

2012) and to fight obesity (Seymour et al., 2009; Titta et al., 2010; Peng et al., 2011; 

Tsuda, 2012) and diabetes (Prior et al., 2008; Tsuda., 2008; DeFuria et al., 2009; Tsuda, 

2012), to improve visual function (Matsumoto et al., 2005; Iwasaki-Kurashige et al., 

2006) and to prevent neurodegenerative diseases (Goyarzu et al., 2004; Lau et al., 2007; 

Shukitt-Hale et al., 2008; Tsuda, 2012). 

Corn (Zea mays L) presents around 20 structural and regulatory genes that compose the 

anthocyanin biosynthetic pathway (Chandler et al., 1989; Dooner et al., 1991; Pilu et 

al., 2003). The regulatory genes concerned belong to two different multigene families: 

the class of bHLH transcription factors among which are the r1/b1 genes, and the class 

of MYB transcription factors, among which are the c1/pl1/p1 genes (Chandler et al., 

1989; Dooner et al., 1991; Pilu et al., 2003). A member of each family must be present 

and active in the dominant form to activate anthocyanin structural genes expression. 



Chapter 3 
 

102 
 

According to the combination of these alleles, the pigments will be synthesized in 

different plant tissues, for example the B/Pl genes combination confers purple colour to 

the pericarp (Chandler et al.,1989; Bodeau and Walbot, 1992; Gaut, 2001; Pilu et al., 

2003). 

In this paper we describe how a new coloured sugary line has been developed and, 

together with an uncoloured control, was subjected to three different food processing 

treatments: raw, steam cooked and autoclaved. Some analyses concerning the 

quantitative and qualitative characterization of the main flavonoid molecules in the 

uncoloured and coloured samples are presented and the results obtained after the 

different cooking treatments are discussed. Attention has been focused on the 

anthocyanins, the molecules that are supposed to be responsible for the nutraceutical 

properties of the new coloured sugary line, which is therefore proposed as a new 

functional food. 

 

Materials and methods 

 

Plant material 

A backcrossing breeding scheme was used to develop a sugary maize line rich in 

anthocyanins, in the experimental field of the University of Milan located in Landriano 

(PV, Italy). The source of the anthocyanin biosynthesis regulatory genes was a tropical 

maize line carrying the homozygous form of the Booster1 (B1) and Purple Plant1 (Pl1) 

genes, that determine the pigmentation in the pericarp and in the plant. This line was 

crossed with a commercial yellow sugary line, used as the recurrent parent for 5 cycles 

of backcrossing. Then 3 cycles of self pollination were performed, selecting in each 

cycle, the plants with the highest content of anthocyanins by Marker Assisted Selection 

(MAS). 

 

Molecular Marker assay 

Two SSR molecular markers were used to select the coloured sugary plants: the nc009 

SSR molecular marker (5‘CGAAAGTCGATCGAGAGACC3‘/5‘CCTCTCTTCACCCCTTCCTT3‘), 

that is part of the pl1 gene located on chromosome 6 and the bnlg1064 SSR molecular 

marker (5‘CTGGTCCGAGATGATGGC3‘/5‘TCCATTTCTGCATCTGCAAC3‘) located next to 

the b1 gene on the short arm of chromosome 2 (http://www.maizeg db.org/ssr.php). 
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After the DNA extraction from the leaves of parental (P1 and P2) and progenies‘ plants 

(Dellaporta et al., 1983), the Polymerase Chain Reactions (PCR) and gel running were 

performed as described in the SSR Methods Manual by MaizeGDB 

(http://www.maizegdb.org/documentation/maizemap/ssr_protocols.php). 

  

Material sampling 

For the genotypes tested (sugary maize line rich in anthocyanins and his colourless 

control) in the 2012 field season about 300 plants were grown in adjacent rows, under 

the same agronomic conditions, in the experimental field of the University of Milan, Italy 

(45°18‘ N, 9°15‘ E). These plants were selfed (using paper bags) and then harvested at 

the same time at the end of the season. 

About 50 ears were shelled and the seeds obtained mixed to create a single bulk used 

for the analyses. 

 

Seed treatments 

With the aim to mimic the processing treatments used for the sweet corn commercially 

available, we decided to test the uncoloured control seeds and the new coloured ones 

raw and after 2 different cooking treatments (100 seeds each). The steam cooking 

method involved a mild cooking of 10 minutes during which no contact between the 

seeds and the boiling water occurred. Other seeds underwent an autoclave cycle, 

consisting of 20 minutes of a constant pressure of 1 atm and a constant temperature of 

120 °C. After these treatments the seeds were analysed as described below. 

 

Metabolite quantification (Anthocyanins, flavonols and 

phenolic acids quantification) 

A pool of 10 seeds per treatment (raw, steam cooked and autoclaved) and per line was 

used to extract flavonoid metabolites. The seeds were ground in a mortar with the 

extraction buffer (1% HCl, 95% ethanol) in the presence of quartz sand. A sequence of 

consecutive washing steps of 30 minutes were performed until the extraction buffer 

turned out to be transparent. Finally the collected supernatants underwent a 

centrifugation at 13,000 rpm for 30 minutes, and then were used to determine 

http://www.maizegdb.org/documentation/maizemap/ssr_protocols.php
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anthocyanins using a spectrophotometer at λ = 530 nm, flavonols at λ=350 nm and 

phenolic acids at λ = 280 nm. 

The amount of anthocyanins was calculated as cyanidin 3-glucoside equivalents (molar 

extinction coefficient (ε) 26,900 L m-1 mol-1, MW 449.2), flavonoids as quercitin 3-

glucoside equivalents (molar extinction coefficient (ε) 21,877 L m-1 mol-1, MW 464.38) 

and phenolic compounds as ferulic acid equivalents (molar extinction coefficient (ε) 

14,700 L m-1 mol-1, MW 194.18) for 100 g of seed weight. 

The analyses were conducted on four seeds bulk (10 seeds each) randomly selected for 

each type. The confidence interval (C.I.) at 95% was calculated. 

 

Qualitative determination of anthocyanins: TLC 

The pericarp layers of 2 kernels per treatment of coloured and uncoloured lines were 

excised and boiled at 100°C with 2 mL of 2N HCl for 40 minutes. 

After adding 1 mL of isoamyl alcohol, the upper phase was dried and dissolved in EtOH 

95% and HCl 1%. The standards of cyanidin, pelargonidin and delphinidin were loaded on 

a pre-coated TLC (Thin Layer Chromatography) plate (POLYGRAM CEL 300, Macherey-

Nagel) together with the samples to be tested. The solvent used for the TLC running was 

formic acid:HCl:water 5:2:3. The developed plates were photographed with a digital 

camera (A430 Canon) using both white and UV illumination. 

 

Antiradical ability assay 

The free radical-scavenging activity was tested using the 2,2-diphenyl-1-picrylhydrazyl 

(DPPH) assay (Brand-Williams et al., 1995; Leong and Shui, 2002; Cevallos-Casals and 

Cisneros-Zevallos, 2003; Hu et al., 2004; Yang and Zhai, 2010). Five coloured sugary 

seeds per each treatment were excised from the pericarp; the same procedure was also 

followed for the uncoloured untreated seeds. The pool of 5 pericarps for each treatment 

was ground with liquid nitrogen. 

An adequate aliquot was extracted with acetone 70% (acetone:water 70:30 v/v) 

according to the ratio 1:8 (w/v) for 3 hours. Then the samples were centrifuged for 10 

minutes at 13,000 rpm and the colored extracts were equalized with a dilution based on 

the anthocyanin content of each treatment. 

Then a 0.12 mM DPPH ethanolic solution was added to increasing aliquots of each sample 

extract, conveniently diluted. The final volumes of 2.5 mL of these preparations were 
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left 1 hour in the dark at room temperature before the discoloration absorbance was 

spectrophotometrically recorded at 516 nm. The percentage of the scavenged DPPH was 

calculated as: % DPPH = (Ac−As) × 100 / Ac where Ac is the absorbance of the control, 

and As is the absorbance of each increasing aliquot of thesample (Leong and Shui, 2002; 

Hu et al., 2004; Yang and Zhai, 2010). Finally the amounts of the increasing aliquots of 

each extract were interpolated with the corresponding DPPH scavenged percentage, 

tracing the reported curve. 

 

Panel test 

To test the acceptability of the new coloured sugary line, 12 blinded subjects were 

randomly recruited and asked to taste 4 kernels of both the uncoloured and coloured 

line. No cooking treatment, nor salt nor dressing were added to the kernels. Each 

subject expressed his judgment about his appreciation according to a scale from 1, the 

worst, to 10, the best. The mean, the median and the mode of the judgments relative to 

the two different kinds of kernels were calculated. 

 

Results 

 

Development of a coloured sugary line 

Sugary corn is a well-established product in the market and a very popular ingredient in 

the diet, especially in the USA. Some reports showed that dietary consumption of sweet 

corn seems to be able to inhibit tumour growth in mice (Tokuji et al., 2009), probably 

because of the presence of phenolic compounds, particularly ferulic acid (Tokuji et al., 

2009). The ability of some molecules to prevent several chronic diseases such as cancer 

is supposed to originate from their antioxidant potential (Virgili and Marino, 2008). 

In maize the antioxidant potential could be increased thanks to its capacity to 

accumulate anthocyanins in the kernels. In fact anthocyanins are antioxidant molecules 

whose regular consumption is associated with a high number of health benefits. 

Therefore improving sweet corn by increasing the anthocyanins content could lead it to 

being considered as a functional food. 

For this purpose a recurrent breeding scheme was planned (Fig. 1A). A tropical black 

corn plant bearing the Pl and B regulatory genes, required to activate the anthocyanin 

accumulation in the seed pericarp, was used as source of the genes for the pigment 
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biosynthesis, while a commercial sugary yellow line was used as the recurrent parent 

(Fig. 1A). The selection of the heterozygous plants used for crossing and the homozygous 

plants during the self-pollination cycles was based on the use of 2 molecular markers, 

nc009 and bnlg1064, polymorphic for the Pl and B genes between the uncoloured and 

coloured parents of the cross (Fig. 2). This breeding scheme allowed us to obtain a 

sugary plant with a pigmented ear, harvested 21 days after pollination (DAP) (Figure 1B). 

Simultaneously, in the same field in Landriano (PV, Italy), the yellow commercial sugary 

line was grown and harvested 22 DAP to be used as the control (Fig. 1B). 

The breeding scheme provided good results: both the fresh and dry mean seed weights 

did not show significant differences on comparing coloured with non-coloured raw seeds 

(Fig. S1).  

The coloured and the uncoloured sweet corn lines are near-isogenic lines, and as a 

consequence a near-isogenic food, that differs only in the content of specific 

phytonutrients and thus appears to be an useful tool to reduce the complexity of the 

studies about the diet-health relationship (Martin et al., 2011). 

Then for both the coloured and uncoloured sugary lines the seed anthocyanin, flavonol 

and phenolic acid compounds were spectrophotometrically quantified (Table 1). 

The introgression of the colour genes allowed us to obtain a red sugary line able to 

accumulate 118.92 ± 14.97 mg 100 g-1 of anthocyanins in the fresh kernels (Table 1), 

while no pigment was detected in control sugary kernels (Table 1). This appeared to be 

a good amount in comparison with berries that accumulate 25 to 698 mg 100 g-1 (Mazza 

and Miniati, 1993; Wang and Lin, 2000; Wu et al., 2006; Koponen et al., 2007), black 

rice, that accumulates 10 - 493 mg 100 g-1 (Ryu et al., 1998) and coloured popcorn, that 

accumulates around 36 - 66.44 mg 100 g-1 (Lago et al., 2013).  

Also for each of the other metabolite classes, the red line showed a significantly higher 

value compared to the yellow line: 81.04 mg 100 g-1 vs 31.23 mg 100 g-1 of flavonols and 

121.67 mg 100 g-1 vs 52.49 mg 100 g-1 of phenolic acids. In addition to anthocyanins, 

sweet corn is also able to synthesize phenolics compounds, particularly ferulic acid 

(Balasubashini et al., 2003; Tokuji et al., 2009). So we quantified the amount of 

phenolic acids and flavonols in both coloured and uncoloured sweet corn lines. The 

results showed a significantly higher amount of both in the new coloured sugary line, 

than in the control uncoloured one (Table 1): 81.04 mg 100 g-1 vs 31.23 mg 100 g-1 of 

flavonols and 121.67 mg 100 g-1 vs 52.49 mg 100 g-1 of phenolic acids. 
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This could be expected because these classes of molecules share the first part of the 

biosynthetic pathway with anthocyanins, so that the active alleles of the anthocyanin 

regulatory genes could have pushed up the quantities of all the structural genes of the 

flavonoids biosynthesis. Therefore the presence of the anthocyanin pigments in the new 

coloured sugary line is a nodal point because they also seem to boost the amounts of 

other flavonoids and health-promoting compounds too: the anthocyanin presence makes 

the new sugary coloured line a good candidate as an everyday functional food in the diet 

of many people. 

 

Effects of the cooking treatments on anthocyanins, flavonols 

and phenolic acids content 

The steam treatment caused a small decrease in the anthocyanins content of the new 

coloured line: the 118.92 mg 100 g-1 amount in the fresh seeds fell to 96.82 mg 100 g-1 

(Table 1). The effect of the autoclave cycle was dramatic, destroying a large part of the 

anthocyanins, which reached the final amount of 19.6 mg 100 g-1 (Table 1). Strikingly, 

neither the flavonols nor the phenolic acids were degraded by the steaming procedure, 

on the contrary this treatment caused a significant increase in the flavonol amounts 

(Table 1). This increase seems to be higher for the coloured seeds (81.04 mg/100 g 

before the treatment and 115.28 mg/100 g after) than for the uncoloured ones (31.32 

mg/100 g before the treatment and 39.51 mg/100 g after). The same pattern was found 

for the phenolic acids, with the red line scoring 81.043 mg/100 g before and 156.66 

mg/100 g after the treatment and the yellow line 31.23 mg/100 g before and 64.07 

mg/100g after the steam treatment (Table 1). 

The autoclave cycle led to a marked decrease in flavonols and phenolic acids content in 

the red line, while this decrease was less evident in the yellow line (Table 1). 

 

Qualitative analysis of anthocyanins 

To understand whether the cooking treatments modified the chemical structure of the 

leftover anthocyanins, a TLC was performed comparing the extracts of raw and treated 

seeds uncoloured and coloured. The plate in Fig. 3A shows the spots corresponding to 

the 3 standards delphinidin, cyanidin and pelargonidin (lanes 1-3), then the 3 coloured 

samples -raw, steam cooked and autoclaved- (lanes 4-6) and finally the 3 uncoloured 

samples (lanes 7-9). 
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Cyanidin was the most abundant anthocyanin in the 3 coloured samples, while no spots 

corresponding to the standards were identified in the uncoloured samples. The extract 

obtained from the raw seeds (lane 4), also revealed the presence of pelargonidin, less 

abundant than cyanidin, and another spot, not identified by the standards. The same 

pattern even if less intense, was shown by the coloured steam cooked sample (lane 5). 

The spots relative to the coloured autoclaved sample were very weak (lane 6), so that 

only the cyanidin was visible. The UV picture of the TLC plate revealed another 

unidentified spot (Fig. 3B), not detected in visible light, and present in both the 

coloured autoclaved sample (lane 6) and the uncoloured untreated sample (lane 7). This 

spot was also present, even if weaker, in the uncoloured steam cooked and autoclaved 

samples too (lanes 8-9). 

 

DPPH Scavenging ability 

The diagram representing the DPPH scavenging ability clearly showed that the new 

coloured sugary line has a much higher antioxidant activity compared to the uncoloured 

sample (Fig. 4A). After the equalization of the extracts among the three different 

treatments, through suitable dilutions based on the anthocyanins content, the curves of 

the raw and the steam cooked coloured samples were characterized by a similar 

tendency, while the autoclaved coloured extract showed a lower radical scavenging 

ability (Fig. 4B). 

 

Panel test - consumer test  

Twelve blinded subjects, randomly chosen, were asked to express a judgment about the 

acceptability of the new coloured sugary corn and of the respective control (Table 2). 

Both lines were tested without cooking, salt and dressing. The acceptability mean scores 

were 6.75 for both lines, attesting no significant differences between the acceptability 

for taste alone of the traditionally uncoloured and the new coloured sugary products 

(Table 2). 
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Discussion 

 

Sugary corn is a well-established product in the market and a very popular ingredient in 

the diet especially in the USA. Some reports showed that dietary consumption of sweet 

corn seems to be able to inhibit tumour growth in mice (Tokuji et al., 2009), probably 

because of the presence of phenolic compounds, particularly ferulic acid (Tokuji et al., 

2009). The ability of some molecules to prevent several chronic diseases such as cancer 

is supposed to originate from their antioxidant potential (Virgili and Marino, 2008). 

In maize the antioxidant potential could be increased thanks to its capacity to 

accumulate anthocyanins in the kernels. In fact anthocyanins are antioxidant molecules 

whose regular consumption is associated with a high number of health benefits. 

Therefore improving sweet corn by increasing the anthocyanins content could lead it to 

being considered as a functional food. 

For this purpose a recurrent breeding scheme was planned (Fig. 1A). A tropical black 

corn plant bearing the Pl and B regulatory genes, required to activate the anthocyanin 

accumulation in the seed pericarp, was used as source of the genes for the pigment 

biosynthesis, while a commercial sugary yellow line was used as the recurrent parent 

(Fig. 1A). The selection procedure was based on the use of 2 molecular markers, nc009 

and bnlg1064, polymorphic for the Pl and B genes between the parents of the cross (Fig. 

2). The result of this breeding scheme is a coloured sugary plant, characterized by the 

genetic background of the commercial uncoloured sugary line with the exception of the 

presence of the anthocyanin regulatory genes in the dominant form (Fig. 1B). The new 

coloured sugary line was then analysed using the uncoloured commercial sugary isogenic 

line as control. 

Being the coloured and the uncoloured sweet corn lines near-isogenic, they represent 

near-isogenic foods, differing only in the content of specific phytonutrients and thus 

appears to be an useful tool to reduce the complexity of the studies about the diet-

health relationship (Martin et al., 2011). 

Sweet corn is harvested before the time of field maize physiological maturity, at about 

20-21 DAP The fresh and dry seed weight did not show significant differences between 

the two isogenic lines (Fig. S1), attesting to the good result coming from the breeding 

work. The introgression of the colour genes allowed us to obtain a red sugary line able 
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to accumulate 118.92 ± 14.97 mg/100g of anthocyanins in the fresh kernels (Table 1), 

while no pigment was detected in control sugary kernels (Table 1). 

This appeared to be a good amount in comparison with berries that accumulate 25 to 

698 mg/100g (Mazza and Miniati, 1993; Wang and Lin, 2000; Wu et al., 2006; Koponen et 

al., 2007), black rice, that accumulates 10 - 493 mg/100g (Ryu et al., 1998) and 

coloured popcorn, that accumulates around 36 - 66.44 mg/100g (Lago et al., 2013). In 

addition to anthocyanins, sweet corn is also able to synthesize phenolics compounds, 

particularly ferulic acid (Balasubashini et al., 2003; Tokuji et al., 2009). Ferulic acid is 

synthesized starting from phenylalanine following the phenylpropanoids pathway. 

Therefore phenolic acids share a part of the biosynthetic way with anthocyanins and 

with flavonols, the most abundant group of flavonoids among plants, proven to have 

many human health beneficial effects (Formica and Regelson, 1995; Duthie et al., 2000). 

So we quantified the amount of phenolic acids and flavonols in both coloured and 

uncoloured sweet corn lines. The results showed a significantly higher amount of both in 

the new coloured sugary line, than in the uncoloured control one (Table 1). This could 

be expected because these classes of molecules share the first part of the biosynthetic 

pathway with the anthocyanin pathway, so that the active alleles of the anthocyanin 

regulatory genes could have pushed up the quantities of all the structural genes of the 

flavonoids biosynthesis. Therefore the presence of the anthocyanin pigments in the new 

coloured sugary line is a nodal point because they also seem to boost the amounts 

of other flavonoids and health-promoting compounds too: the anthocyanin presence 

makes the new sugary coloured line a good candidate as an everyday functional food in 

the diet of many people. The DPPH scavenging ability test seems to strengthen this 

hypothesis (Fig. 4A): the raw uncoloured commercial sugary seed extract showed a much 

lower antioxidant ability compared to the raw coloured one, attesting the anthocyanins‘ 

remarkable power (Fig. 4A). This is in agreement with previously reported data about a 

coloured popcorn line (Lago et al., 2013), consequently the coloured sweet corn can be 

considered a new functional food. Although while part of the sweet corn crop is 

consumed as fresh grains or fresh ears, most of it is consumed as processed canned 

sweet corn (Dewanto et al., 2002). Some of the thermal procedures required for sweet 

corn processing are known to lower the nutritional level of grains and vegetables in 

comparison with the fresh ones (Lathrop et al., 1980; Rao et al., 1981; Burge et al., 

1995; Murcia et al., 2000; Dewanto et al., 2002). Therefore it is important to understand 
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the effect of sweet corn processing on the anthocyanin molecules, at both quantitative 

and qualitative levels. 

Big companies, e.g. Bonduelle and Conserve Italia in Italy, and Allens in USA, studied the 

best methods for thermal processing and conservation of canned food: first of all small 

amounts of salt water and sugars are added to the kernels inside the can, where the 

vacuum is imposed. Then the product underwent a steam cooking, but the presence of 

the vacuum allows a lowering and shortening of the heating procedure, so that the 

kernels are subjected only to a sterilization and not to a proper cooking. As a 

consequence the vegetable can keep its flavour and its nutritional properties. The 

correct balance between vacuum and temperature is often held as a trade secret by the 

companies (http://www.bonduelle.it/lacottura-al-vapore-secondo-bonduelle/ accessed 

26 august 2013). For this reason we decided to subject the two sweet corn lines to 

different cooking processes: a mild cooking with steam and a severe one with the 

autoclave. The steam cooking treatment seems to only slightly decrease the 

anthocyanins amount (Table 1), as already found by Vallejo et al. (Vallejo et al., 2003). 

The autoclave cooking on the other hand resulted in a more dramatic effect causing the 

reduction of the anthocyanins level by about 83% in comparison with the untreated 

kernels. This result was in agreement with previous data reporting that the stability of 

anthocyanins in cooked foods is dependent on the temperature and on the heating time 

of the thermal process (Cabrita et al., 2000; Abdel-Aal et al., 2003; Hiemori et al., 

2009). The big difference in the degrading ability of the cooking processes used could be 

explained by the fact that the steam cooking was not only milder but also shorter than 

the autoclave treatment so that it was able only to inactivate some oxidative enzymes 

and not to destroy the pigments that are present in the edible part of the vegetable 

(Howard et al., 1994; Vallejo et al., 2003). 

Moreover steam cooking seems to increase flavonols and phenolic acids in both the 

coloured (+42.25% and +28.76%, respectively) and the uncoloured line (+26.51% and 

+22.06%, respectively) (Table 1). 

The autoclave cooking caused an increase of 9.75% for the flavonols and 7.44% for the 

phenolic acids in the coloured kernels and of 94.46% and of 71.40% respectively in the 

uncoloured ones (Table 1). This was in agreement with the results of Dewanto et al. 

(Dewanto et al., 2002) who found that the free phenolic portion in their sweet corn 

significantly increased after the thermal process. This can be explained by the fact that 
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the heating, causing the breakdown of the cellular constituents allowed the release of 

the bound phenolic acids portion (Dewanto et al., 2002). 

At this point it was important to understand whether the cooking was able to change the 

structure of the pigments and consequently the antioxidant ability of the leftover 

anthocyanins, not degraded by the heating. With this purpose the DPPH assay was also 

performed on the extracts coming from the raw, the steam cooked and from the 

autoclaved coloured kernels, equalized through proper dilutions on the basis of the 

anthocyanin amount. Anthocyanin amounts being equal among them, the raw and 

steamed kernels showed the same scavenging ability (Fig. 4B), attesting that no 

structural changes occurred in the leftover pigment molecules after the steam cooking. 

On the contrary the extract obtained from the autoclaved kernels had a much lower 

antioxidant power (Fig. 4B). This could be caused by the strong treatment of the 

autoclave, in contrast to the lighter one of the steam treatment: probably one hour of 

heating coupled with the high pressure was able to degradate not only the anthocyanin 

molecules but also some other antioxidant compounds, such as for example vitamin C 

(Burge and Fraile, 1995; Murcia et al., 2000; Dewanto et al., 2002) or β-carotene and 

lutein carotenoids (Kurilich and Juvik 1999; Tokuji et al., 2009). 

To confirm that no structural or chemical changes in anthocyanin molecules occurred 

after the thermal processes, Thin Layer Chromatography was performed (Fig. 3). The 

spots of the coloured samples clearly showed that the anthocyanin aglycons did not 

change their structure following cooking, only their amount decreased (Fig. 3A). We 

noticed the presence of a little spot above the pelargonidin one (Fig. 3A): it is not 

present in other B/Pl maize genotypes, such as the coloured popcorn (Lago et al., 2013). 

This could be explained by the fact that sweet corn is a fresh product, composed by 

developing kernels that are still accumulating pigments in the pericarp; therefore the 

metabolite profile is not definitive as in the dry maize kernels. Deeper and more precise 

analyses are needed to finely characterize the metabolite profile of this coloured line. 

In the meantime the acceptability of the new product in comparison to the uncoloured 

one was tested on 12 blinded subjects, randomly chosen (Table 2). The kernels were 

tested with no cooking, no salt and no dressing in order to level the taste. The 

appreciation scores did not show significant differences between the uncoloured and 

coloured sugary kernels (Table 2), suggesting that the healthier properties due to the 

pigment presence could persuade the consumer to prefer the coloured sweet corn to the 

uncoloured one. 
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Conclusions 

This study suggested that the new coloured sugary line is a good source of anthocyanins, 

of other beneficial flavonoids and of antioxidant potential, and thus it can be considered 

a good functional food. Our results also suggest that to preserve the healthy properties 

of the coloured sweet corn it is better to consume it fresh but if processing is needed it 

would  be better to use a mild process, such as the steam treatment, in order to benefit 

from the best nutritional composition. It could be likely that consumers will choose this 

new product for its healthy properties given that no differences in appreciability were 

scored. 
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Figures 

 

 

Figure 1. Recurrent Selection Scheme: the cross between the B1Pl1 line, source of the 

regulatory biosynthetic genes and the commercial uncoloured sugary corn gave rise to 

heterozygous plants for the B/Pl genes. Among them, the highest anthocyanin content 

plants were selected for the backcrossing with the recurrent parent. Then the best 

plants underwent some cycles of self-pollination (A). Phenotype of uncoloured (left) and 

coloured (right) sweet corn kernels (B). 

 

  



Chapter 3 
 

115 
 

 

Figure 2. Marked Assisted Selection: the nc009 SSR, part of the pl1 gene and the 

bnlg1064 SSR, next to the b1 gene, was found to be  polymorphic between the coloured 

and the colourless parents. The heterozygous individuals were easily detected and 

selected to carry on the breeding selection scheme. P1 colourless sugary corn line; P2 

B1Pl1 line; BC5F3 coloured sugary corn line developed. 
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Figure 3. Pictures of the TLC plate taken under visible (a) or UV (b) light. The spots 

represent: from lane 1 to 3, the delphinidin, cyanidin and pelargonidin standards, from 

lane 4 to 6 the anthocyanin extracts coming from the coloured raw, steamed cooked and 

autoclaved kernels, while the respective uncoloured controls are represented in lanes 7 

to 9. 
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Figure 4. Comparison of the antioxidant ability in the DPPH radical scavenging assay of 

the coloured raw vs the uncoloured raw seed extracts (a) and of the raw vs steam 

cooked vs autoclaved coloured seed extracts (b), equalized and diluted according to the 

anthocyanins concentration. 
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Supporting information 

 

 

SI1. Comparison of the mean seed weight of the fresh and dried kernels of the 

uncoloured control line with the new coloured sugary line 
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Abstract 

 

Zea mays L. represents one of the main source of energy in the diet in many African 

countries, especially in the sub-Saharan regions. White maize varieties, characterized by 

the lack of carotenoids, are usually widely preferred in Africa for human consumption, 

and this contributes to the occurrence of vitamin A deficiency; yellow varieties, often 

derived from commercial hybrids, are usually destined for animal feeding. In this study 

we characterized from the phenotypical and nutritional points of view one white and 

one yellow South African landrace maize cultivar obtained directly from the farmers in 

the rural region of Qwa-Qwa (Free State Province). Calorific value, oil, protein, starch, 

minerals, flavonoids and carotenoids content were determined, together with free and 

phytic P. Both the varieties showed low protein and Fe content in comparison to the 

ones used as control, and the yellow one also had a low content of Zn. The white variety 

was characterized by a higher free P content but also by a very low level of carotenoids. 

Our data show that there are no nutritional reasons to prefer the white variety for 

human consumption, with the exception of the large size of the seeds, which make them 

particularly adapted for milling; hence the nutritional value of these varieties, and in 

particular of the white one, should be improved (protein, Fe and carotenoids), 

contributing in this way to tackle the problem of malnutrition in South African rural 

areas. 
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Introduction 

 

Maize is diffused all over the world where temperatures unable its cultivation. In Africa, 

16 of the 22 countries where corn represents the main source of energy in the diet are 

located (Dowswell et al., 1996; Nuss and Tanumihardjo, 2011).  

Maize consumption in the local cuisine is comparable to that of rice in Asia. Its flour is 

used to produce beverages and porridges (Gouse et al., 2006; Nuss and Tanumihardjo, 

2011). In South Africa, where pap (white maize meal porridge) (Fig. 1C) is a staple food 

for a great part of the population (Oldewage-Theron et al., 2005), corn represents the 

30% of the daily energy and protein intake (Doria et al., 2015). 

Denutrition and micronutrient malnutrition or deficiency are still relevant public health 

problems in South Africa (Vorster et al., 1997; Steyn et al., 2006; Acham et al., 2012): 

more than the 20% of the local population is affected by stunting/underweight (Doria et 

al., 2015). Iron and zinc intakes are particularly low (Oelofse et al., 2002). More than 

the 10% of the population is affected by iron and vitamin A deficiency (Doria et al., 

2015). Vitamin A deficiency can cause anemia and blindness, reduces resistance to 

infections and increases the risk of death (Gannon et al., 2014). Zinc intake is 

inadequate for 45.3% of South African children between 1 and 9 years of age (Samuel et 

al., 2010). Zinc represents a key component in enzymes which are crucial for 

metabolism and body functions and is also an anti-inflammatory and antioxidant agent 

working in cell-mediated immune processes (Prasad, 2007); its deficiency in children can 

cause adverse effects on both physical growth and cognitive development (Black, 1998; 

Brown et al., 2001; Gibson, 2006). 

Thanks to its wide diffusion, maize can greatly help to improve nutrition in several 

countries,  considering its important role in the diet of many people.  

Maize seeds are characterized by a high starch content (about 75-80% of their weight), 

they contain protein (10-15%) (even though the content of essential aminoacids 

tryptophan and lysine is low) and lipids (5%) (Panzeri et al., 2011), and they also 

represent a source of micronutrients and macronutrients (e.g. Na, Mg, P, K, Ca, Fe, Zn). 

Phosphorus availability is a relevant issue for seeds‘ nutritional value, in fact it is 

present in the kernel in three fractions: free P, phytic P (as a component of the phytate 

salts) and cellular P (bound to other cellular compounds). 
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Phytic acid is accumulated mainly in the scutellum (O‘Dell et al., 1972; Raboy, 1990), 

and is the main form of phosphate present in the seed, representing about 50-80% of the 

total amount of phosphorus (Doria et al., 2015), as a mixture of phytate salts of several 

cations, such as potassium, iron, zinc, magnesium (Raboy, 2002). During seeds‘ 

germination phytic acid is degraded by phytase, leading to the release of free P, myo-

inositol and cations necessary for seedling growth (Badone et al., 2010). Furthermore, 

phytic acid has a relevant role in protecting the seeds‘ embryos from ageing-related 

damage, thanks to its antioxidant activity, avoiding a decrease in their germination 

capacity (Badone et al., 2010). Despite the potential health benefits due to its 

antiradical power, phytic acid represents an anti-nutritional factor for monogastric 

animals (and humans), since it is able to interfere with protein and starch digestion, and 

to chelate metal cations, reducing their availability in the digestive apparatus (Nuss and 

Tanumihardjo, 2011), thus contributing to deficiencies of nutrients in the most 

vulnerable  members of the population.  

Many phenolic compounds are accumulated in maize seeds; flavonoids and in particular 

anthocyanins and flavonols are among the main classes. After ingestion, free phenolics 

are rapidly absorbed by the small intestine and conjugate, leading to a reduced 

aglycones accumulation in the blood (Scalbert and Williamson, 2000): instead bound 

phenolics are released only through colonic fermentation (Andreasen et al., 2001; Adom 

and Liu, 2002). Maize is known to contain a higher amount of phenolics compared to 

other cereals (Adom and Liu, 2002; Ndolo and Beta, 2014). They are mainly present in 

the insoluble-bound form, associated with cell wall polysaccharides; the free form 

represents only a small fraction of the total amount (Lloyd et al., 2000; Bunzel et al., 

2001). Phenolics are mainly accumulated in the outermost layers of the grains: Das and 

Singh (2016) observed that 74-83% of bound phenolics are accumulated in the pericarp, 

and the remaining fraction is accumulated mainly in the germ (Das and Singh, 2016). 

Anthocyanins, flavonols and phenolic acids are able to exert positive effects on human 

health thanks to their antioxidant activity, contributing to reduce the negative effects 

of several degenerative and chronic diseases (Lago et al., 2014; Lago et al., 2015). 

Anthocyanins are water-soluble pigments belonging to the class of flavonoids (Escribano-

Bailòn et al., 2004); they confer a purple-blue pigmentation to maize seeds and other 

plant tissues (Lago et al., 2015), but they are present only in traces in the kernels of 

yellow and white varieties.  
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Carotenoids can also be accumulated in maize seeds; they are tetraterpenes, conferring 

a yellow-orange pigmentation to seeds‘ endosperm, depending on their concentration. 

The most abundant carotenoids in maize are the xanthophylls lutein (β,ε-carotene-3,3'-

diol) and zeaxanthin (β,β-carotene-3,3'-diol), that constitute together 90% of the total 

amount (Doria et al., 2015). Other compounds belonging to this family can be 

accumulated in the kernel: the xanthophylls β-cryptoxanthin (β,β-caroten-3-ol), the 

carotenes, β-carotene (β,β-carotene) and α-carotene (β,ε-carotene), and also pro-

vitamin A. This class of molecules plays a role in the prevention of several degenerative 

diseases (e.g. cardiovascular diseases, cancer and cataracts), and in particular in the 

prevention of age-related macular degeneration (AMD), one of the main causes of 

irreversible blindness (Snodderly, 1995; Faulks and Southon, 2001; Ahmed et al., 2005; 

Kuhnen et al., 2011). In African countries white maize varieties are usually preferred for 

human consumption, rather than yellow ones which are often destined for animal 

feeding. Unfortunately white varieties are unable to accumulate high amounts of 

carotenoids due to the presence of recessive homozygous mutations belonging to the ys 

class (Lago et al., 2015); this also confers on them a lower antioxidant power compared 

to yellow and pigmented ones (Lago et al., 2015).  

In this study we characterized from the phenotypical and nutritional point of view two 

South African maize landrace cultivars: a white one used for human consumption, and a 

yellow one used for animal feeding. The seeds were sampled directly from the farmers 

in the Qwa-Qwa region, a mountainous area in Free State province, not far from the 

northern Lesotho border. We analysed the seeds to assess their nutritional value for 

several parameters (calorific value, oil, protein, starch, mineral nutrients, repartition 

between free and phytic P, flavonoids and carotenoids content). 

Our results led us to plan a breeding program aimed to increase the nutraceutical 

properties of this staple food, contributing in this way to tackle the problem of 

malnutrition affecting a considerable fraction of the population in South Africa.  
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Materials and methods 

 

Plant material 

The maize varieties studied in this article were sampled in South Africa in the 

mountainous region of Qwa-Qwa, Thibela, Phomolong (28° 37‘ 20.81‖ S, 28° 53‘ 58.07‖ 

E), and cultivated in the experimental field of the University of Milan situated in 

Landriano (PV), Italy (45°18‘ N, 9°15‘ E). 

Flour samples used for the analysis were obtained by grinding seeds, cleaned from the 

glumes, with a Retsch MM200 (Retsch GmbH Germany) ball mill for 3 min at 21 Hz.  

 

Phenotypical characterization 

To determine the repartition between germ and endosperm 6 seeds for each variety 

were imbibed overnight in distilled water and the germ was manually separated from 

the endosperm using a scalpel. The germ and the endosperm were dried separately at 

60°C for 24 hours and weighed again to determine their dry weight.  

Seeds of both the varieties (n>50 each) were germinated in the dark after a disinfectant 

treatment (2% NaClO for 10 min) to determine their germination rate. Plantlets were 

kept in the dark for 6 days before being exposed to the light, and observed for 15 days 

to determine the seedlings‘ tissue-specific pigmentation, both in the dark and in the 

light. 

25 seeds of both the varieties were sown in the same agronomic conditions at 45° of 

latitude. The plants so obtained were measured after flowering: plants height was 

measured at the tip of the flag leaf; the height of the ears was measured at their 

attachment to the stalks. 

 

Bromatological analysis (calorific value, dry matter, crude 

protein, and ether extract) 

Dry seed weight was calculated after weighing in three replicates for each sample. 

Calorific value measures and chemical analyses were performed using approximately 50 

g of seeds for each genotype. Gross energy value was determined using an adiabatic 

calorimeter (IKA 4000, Staufen, Germany). Chemical analyses were performed according 
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to AOAC standard methods (AOAC, 2000), milling and analysing the samples for dry 

matter, crude protein, and ether extract (oil).  

 

Determination of ionomic content (Na, Mg, P, K, Ca, Fe, Zn) in 

maize flour 

For the determination of elements of interest, 0.3 g of maize flour samples were 

digested by a microwave digestor system (Anton Paar MULTIWAVE-ECO) in Teflon tubes 

filled with 10 mL of 65% HNO3 by applying a one-step temperature ramp (at 210°C in 10 

min, maintained for 10 min) 

After 20 min of cooling time, the mineralized samples were transferred into 

polypropylene test tubes.  

Samples were diluted 1:40 with MILLI-Q water and the concentration of elements was 

measured by ICP-MS (BRUKER Aurora-M90 ICP-MS). An aliquot of a 2 mg/L of an internal 

standard solution (72Ge, 89Y, 159Tb) was added both to samples and calibration curve to 

give a final concentration of 20 μg/L. 

Typical polyatomical analysis interferences were removed by using CRI (Collision-

Reaction-Interface) with an H2 flow of 93 mL/min flown through skimmer cone. 

Average values regarding Na, Mg, K, Ca, Fe, Zn were expressed as μg/g seed flour; 

values regarding P were indicated as mg/g seed flour. 

 

Determination of phytic phosphate in seeds 

5 mL extraction buffer (0.4 M HCl + 0.7 M Na2SO4) were added to 50 mg seed flour (three 

replicates for each sample); the solutions were vortexed and incubated overnight at 

room temperature. After centrifugation (13000 rpm for 10 min) 1 mL of a 15 mM FeCl3 

0.2 N HCl solution was added to 1 mL supernatant in plastic screw top 2 mL tubes. The 

tubes were left in the dry bath at 100°C for 30 min and centrifuged at 13000 rpm for 10 

min to obtain the ferric phytate precipitate; the supernatant was removed. 1 mL 0.2 N 

HCl was added to wash the pellet, and removed after centrifugation. The samples were 

digested to completion on a hot plate in H2SO4 (400 mL), adding H2O2 every three hours 

until the solution remained clear. All the solutions were diluted adding distilled H2O to 

reach a final volume of 2 mL. Phytic phosphorus in the digests was determined 

spectrophotometrically through the colorimetrical Chen assay (Chen et al., 1956). 
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The reference standard curve was obtained adding 1998 μL, 1996 μL, 1994 μL, 1992 μL, 

1990 μL and 1972 μL of  a freshly prepared Chen‘s reagent (distilled H2O, 6 N H2SO4, 10% 

ascorbic acid and 2.5% ammonium molybdate in the ratio 2:1:1:1 v/v/v/v) to 2 μL, 4 μL, 

6 μL, 8 μL 10 μL and 28 μL of a KH2PO4 solution (atomic P 1μg/μL) respectively. 2 mL 

Chen‘s reagent was used as blank. 1800 μL of Chen‘s reagent were added to 200 μL of 

digested solution for each sample. All the solutions were vortexed and incubated at 

room temperature for 2.5 h before reading the absorbance of the reaction mixture at 

650 nm. The concentration of phytic P in the samples was determined considering the 

measured absorbance, according to the standard curve. 

 

Determination of free phosphorus in seeds 

50 mg seed flour were extract with 2 mL 12.5% trichloroacetic acid (TCA) 25 mM MgCl2 

solution (three replicates for each sample). The solutions were mixed and kept in 

agitation for 30 min at room temperature before being incubated overnight at 4°C. Free 

phosphorus in the extracts was determined spectrophotometrically through the 

colorimetrical Chen assay (Chen et al., 1956). Four solutions, containing respectively 

atomic P 0.62, 1.24, 2.48, 3.72 μg/mL were prepared using a 2 mM Na2HPO4 solution: 

1980 μL, 1960 μL, 1920 μL and 1880 μL of a freshly prepared Chen‘s reagent (distilled 

H2O, 6 N H2SO4, 10% ascorbic acid and 2.5% ammonium molybdate in the ratio 2:1:1:1, 

v/v/v/v) were added to 20 μL, 40 μL, 80 μL and 120 μL of a 2 mM Na2HPO4 solution. 2 mL 

Chen's reagent was also used as the blank and 1800 μL were added to 200 μL of each 

extract collected after centrifuge, to reach a final volume of 2 mL.  

All the solutions were agitated and incubated at 50 °C for 1 h before reading. The 

absorbance of the reaction mixture was measured at 650 nm. 

Free P concentration was calculated according to the standard curve.  

 

Flavonoids quantification 

About 15 mg seed flour were weighed and transferred into a 2 mL tube (four replicas for 

each sample); 200 μL distilled water were added, and the samples were boiled at 100°C 

for 30 min. 1 mL of extraction buffer was added to each sample (94.8 mL EtOH 95%, 2 

mL distilled water and 3.2 mL 37% HCl were mixed to obtain 100 mL extraction buffer). 

The solutions were vortexed and left overnight in agitation. The samples were 

centrifuged at 13000 rpm for 15 min and the supernatants were collected. 500 μL 
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extraction buffer were added to each pellet; the samples were vortexed and left in 

agitation for two hours. After centrifugation (13000 rpm for 15 min) the supernatant was 

collected and unified with the first one. The whole amount of supernatant collected 

from each sample was centrifuged again at 13000 rpm for 30 min before reading. The 

absorbance was measured spectrophotometrically at 530 nm, at 350 and 280 nm 

respectively for anthocyanins, flavonols and phenolic acids, using the extraction buffer 

as blank. The anthocyanin content was calculated as cyanidin 3-glucoside equivalents 

(molar extinction coefficient (ε) 26900 L m-1 mol-1, M.W. 484.82), the amounts of 

flavonols and phenolic acids were calculated as quercetin 3-glucoside (ε 21877 L m-1 mol-

1, M.W. 464.38) and ferulic acid (ε 14700 L m-1 mol-1, M.W. 194.18) equivalents. The 

analyses were conducted four times for each genotype, and the confidence interval 

(C.I.) at 95% was calculated. 

 

Carotenoids extraction and quantification 

3 mL of extraction buffer (acetone, methanol, hexane 1:1:1) were added to 0.25 g seed 

flour in 15 mL tubes (four replicas for each sample). The samples were vortexed and left 

in agitation in ice for 30 min, vortexing them again every 10 min. 1 mL nanopure water 

was added to each sample, then the samples were vortexed and kept in agitation 5 min 

before centrifuge (3000 rpm for 10 min). 1 mL non-polar phase was collected and 

filtered through a 0.22 μm syringe filter. The extracts were conserved at -20°C in the 

dark until reading. 

1.8 mL extraction buffer (acetone, methanol, hexane 1:1:1) was added to 200 μL extract 

(dilution 1:10) to obtain a final volume of 2 mL. The extraction buffer was used as 

blank. The absorbance was measured spectrophotometrically at 450 nm using glass 

cuvettes. Carotenoids content was calculated according to the standard curve obtained 

using five lutein solutions (0.25, 0.5, 1, 2, 4 μg/mg). Standard deviation was calculated. 

 

Informatic tools  

Microsoft Excel®  was used to analyse the collected data. 
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Results and discussion 

 

In this paper two South African maize varieties (a yellow and a white one), sampled 

directly from the farmers in the mountain region of Qwa-Qwa (28°37‘20.81‖S, 

28°53‘58.07‖E) (Fig. 1A, Fig. 1B), were analysed and characterized from the nutritional 

and phenotypical points of view. The white variety, characterized by very big ears and 

large flint dent seeds (Fig. 2B, Fig. 2E) is used by the local population for human 

consumption, and milled to prepare a traditional maize meal porridge called pap (Fig. 

1C), similar to the Italian polenta. The yellow one was characterized by smaller flint 

seeds, with a more pronounced dent shape (Fig. 2A, Fig. 2E); its kernel is manually 

ground by the local farmers and used as feed for poultry. 

Both the varieties were maintained by the local farmers as open pollinated varieties and 

cultivated in kitchen gardens; unfortunately the two varieties were not always kept in 

isolation, as demonstrated by the presence of cross contamination.  

The average dry weight of the white seeds was 0.655 ± 0.065 g, higher than that of the 

yellow seeds (0.389 ± 0.06 g) and also, to our knowledge, higher than that of any 

landrace still cultivated in Europe. Because of their dimensions, white seeds appear 

particularly adapted for milling, allowing the users to obtain flour with a very fine 

particle size thanks to the favorable ratio endosperm/pericarp. 

The germination rate was higher, but not significantly, for the yellow variety (98.18 ± 

3.56%) compared to the white (94.54 ± 6.05%).  Despite this, the seedlings of the white 

variety showed a greater vegetative vigour and a more developed root system. (Fig. 2C, 

Fig. 2D). 

The seedlings of both the varieties were characterized by the absence of tissue 

pigmentation in the dark; the yellow variety showed very weak seedling pigmentation 

after light exposure (Fig. 2C).  All the observed plantlets of the white variety showed 

the accumulation of red-purple pigments in both roots and mesocotyl, following light 

exposure (Fig. 2D) suggesting the presence of a Sn dominant allele.  Sn regulatory gene 

belongs to the r1/b1 gene family, that together with the c1/pl1 gene family, regulates 

anthocyanin accumulation in plant tissues. Sn locus is situated on chromosome 10 near 

the r1 locus, and probably originated from an intrachromosomal duplication (Pilu et al., 

2003). Even if cultivars adapted to low latitudes are often unable to reach maturity and 

set seeds at medium-high latitudes because of the longer photoperiod (Petroni et al., 
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2014), the two South African cultivars, sampled at 28° of latitude, and cultivated in 

open field conditions in Italy at 45° of latitude, were able to reach maturity. Mature 

plants did not have high amounts of pigments in their tissues. Plants of the white variety 

reached 276.6 ± 10.1 cm in height (average height of the ear 197.1 ± 8.1 cm): in fact, 

low latitude origin maize varieties often reach greater heights when grown at higher 

latitudes. However, the plants of the yellow variety only reached an average height of 

162.6 ± 8.3 cm (height of the ear 111.5 ± 6.9 cm); their limited height, despite their 

subtropical origin, suggests a high level of homozygosity causing inbreeding depression, 

probably due to the incorrect conservation of this variety (genetic drift) in recent years. 

It is highly probable that the yellow variety, even if maintained by the local farmers as a 

population, derives from a commercial dent hybrid that lost its hybrid vigour after many 

years of cultivation. 

However, the white cultivar is probably an ancient landrace and appears more 

interesting from the scientific point of view because of its higher variability and its 

characteristically large seeds, so it is a good candidate for future breeding programmes. 

The calorific value, indicated as J/g, and the percentage of oil and protein in the two 

South African varieties was found to be comparable to that shown by colorless modern 

hybrids (Panzeri et al., 2011) (Table 1), which are known for their low nutritional value 

in comparison with  several ancient landraces.  In fact the Scagliolo cultivar (an Italian 

traditional flint maize) was found to show higher values, in particular for its protein 

content (Panzeri et al., 2011) (Table 1). Berta et al. (Berta et al., 2014) also reported a 

higher protein content in the Italian variety Ostiglia (9.5 g/100g), and a starch content 

of 68.7 g/100g, comparable to that in the yellow South African variety (68.4 g/100g). 

The content of micro and macronutrients (Na, Mg, P, K, Ca, Fe and Zn) in the two 

varieties was quantified by ICP-MS (Table 2, Table 3) using the B73/Mo17 colorless 

hybrid and the traditional Spanish Millo Corvo pigmented variety as controls. Among the  

minerals analysed, no significant differences were observed between the two varieties 

for Na, Mg and K content (Table 2).  

The yellow variety was characterized by a higher content of Ca (50.45 ± 3.65 μg/g) 

compared to the white variety and to the Millo Corvo seeds used as control; even though 

it was somewhat higher, its Ca content was not significantly higher than that of 

B73/Mo17 hybrid (Table 2). 

Zinc is an essential mineral to assure the functioning of many enzymes and transcription 

factors, and also an anti-inflammatory and antioxidant agent working in cell-mediated 
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immune processes (Prasad, 2007; Haase et al., 2008; Tokuji et al., 2009): its deficiency 

can cause adverse effects on both physical growth and cognitive development (Black, 

1998; Brown et al., 2001; Gibson, 2006). Unfortunately 45.3% of South African children 

have an inadequate zinc intake (Samuel et al., 2010), but our results show that the 

white South African variety found in Qwa-Qwa, used for human nutrition, has a 

significantly higher zinc content in the kernel (23.44 ± 6.06 μg/g) compared to the 

yellow one that is fed to animals (15.28 ± 1.21 μg/g); despite this, Zn content in the 

white variety was not particularly high as it was similar to that of one of the varieties 

used as control (Table 2), and lower than that one reported by Berta et al. (Berta et al., 

2014) for the variety Ostiglia (33.5 ± 1.1 μg/g). 

Iron concentration was low in both the South African varieties, especially in the white 

one, compared to the ones used as control (Table 2) and to the value reported for the 

Ostiglia variety: 26.3 ± 1.5 μg/g (Berta et al., 2014); this appears particularly worrying 

considering that iron deficiency affects more than 10% of the South African population 

(Doria et al., 2015). 

To better characterize the two South African varieties from the nutritional point of 

view, the total amount of phosphorus and its repartition between free and phytic forms 

were also quantified (Table 3). The total content of phosphorus quantified through ICP-

MS was found to be higher in the white variety (3.48 ± 0.12 mg/g) than that observed in 

the yellow variety (2.91 ± 0.05 mg/g). Free P reached 0.53 ± 0.07 mg/g in the white 

cultivar and only 0.32 ± 0.02 mg/g in the yellow, corresponding respectively to 15 and 

the 11 percent of the total P amount (Table 3). Phytic P content was similar in the two 

South African varieties: 2.58 ± 0.3 mg/g and 2.39 ± 0.1 mg/g respectively in the white 

and in the yellow one; the remaining amount of P in the two varieties is represented by 

the cellular phosphorus. Both the varieties, especially the white one, contained a higher 

amount of free P and a lower amount of phytic P compared for example, to that 

measured by Pilu et al. (Pilu et al., 2005) in the B73 colorless inbreed line (0.29 mg/g 

and 3.52 mg/g). Considering that free and phytic P in the seeds are accumulated mainly 

in the germ (O‘Dell et al., 1972; Raboy, 1990), we initially supposed that the higher 

content of free P in the white variety could be due to a higher ratio germ/endosperm; 

instead our results showed that the germ represented only 10.5% of the total weight in 

the white seeds, and 14.4% in the yellow; hence free P concentration must actually be 

higher in the white variety. 
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Many compounds can exert an antioxidant activity in seeds, protecting tissues from 

oxidative stresses due to biotic or abiotic stress conditions: the presence of high 

amounts of phenolic compounds and carotenoids in seeds directly contributes to higher 

antioxidant power (Lopez-Martinez et al., 2009; Z ̌ilić et al., 2012; Lago et al., 2015). In 

this paper we quantified spectrophotometrically the amount of anthocyanins, flavonols 

and phenolic acids in the South African varieties, using the Millo Corvo pigmented 

variety, able to accumulate anthocyanins in the seeds‘ aleurone layer (Lago et al., 2015) 

as the coloured control, and the B73 inbred line as the colourless control (Table 4). As 

expected for colourless varieties, both the South African ones showed a very low 

anthocyanin content in the seed flour, expressed as cyanidin 3-glucoside equivalents, 

comparable to that of the B73 colourless inbreed line and lower than that measured in 

the coloured variety Millo Corvo (Table 4). No significant differences were observed 

between the two SA varieties and the ones used as controls for  their flavonols content 

(indicated as quercetin 3-glucoside equivalents) (Table 4). Among the phenolic 

compounds, ferulic acid seems to be very important for health, as it can be beneficial 

for cancer prevention (Virgili and Marino, 2008; Tokuji et al., 2009); both the South 

African varieties showed a content of phenolic acids, expressed as ferulic acid 

equivalents, similar to that of the B73 inbreed line (113 ± 0.2 mg/100g): 94.71 ± 21.07 

mg/100g for the white variety and 130.54 ± 26.58 mg/100g for the yellow, much lower 

(by nearly a half) than that observed in Millo Corvo (216.63 ± 29.05 mg/100g ferulic acid 

equivalents) (Table 4). In fact a higher anthocyanin content, such as the one observed in 

Millo Corvo, is often related to a higher content of others flavonoids sharing a part of 

the same biosynthetic pathway (Lago et al., 2014; Lago et al., 2015). 

Carotenoids are known to exert antioxidant (Handelman, 2001) and anti-angiogenic 

(Kuhnen et al., 2009) actions, contributing to the prevention of degenerative diseases, 

such as cardiovascular diseases, cancer, age-related macular degeneration (AMD) and 

cataract (Faulks and Southon, 2001; Ahmed et al., 2005; Kuhnen et al., 2011). They are 

hydrophobic C40 isoprenoids synthesized in amyloplasts conferring a yellow-orange 

pigmentation to the seeds, depending on their concentration. Those accumulated in 

maize endosperm are mainly lutein and zeaxanthin (Kirk and Tinley-Basset, 1978; 

Kurilich and Juvik, 1999; Tokuji et al., 2009; Z ̌ilić et al., 2012). More than 30 loci are 

involved in their biosynthesis and the main class of mutations reducing or depleting 

carotenoids in maize kernel is ys (Chander et al., 2008); as a consequence of these 

mutations, seeds‘ endosperm appears pale or white (Lago et al., 2015). White maize 



Chapter 4 

142 
 

varieties are worldwide consumed and appreciated, in particular in many developing 

countries, even though they are well known to be lacking in vitamin A (derived from 

carotenoids) which is essential for human health, and thus contributing to the 

occurrence of vitamin A deficiency (VAD) in those populations (West et al., 2002). A 

inadequate consumption of carotenoids may cause blindness, growth retardation and 

anemia, increasing infectious morbidity and mortality (Sommer and Davidson, 2002; Žilić 

et al., 2012). 

Unfortunately the white South African variety that is used for human consumption, 

showed a low carotenoids content (1.09 ± 0.4 μg/g), as expected, which was found to be 

similar to the average value (4.95 ± 0.62 μg/g) observed in three flint maize varieties 

having a white endosperm (the Italian Bianco Perla and Bianco Vitreo, and the Spanish 

Millo Corvo) (unpublished data of our group), suggesting the presence of a recessive 

homozygous mutation belonging to the white endosperm class (y). 

The yellow South African variety contained a higher amount of carotenoids (22.57 ± 2.5 

μg/g), corresponding to the average value observed in 12 Italian flint landraces 

characterized by a yellow endosperm: 21.94 ± 5.74 μg/g (unpublished data of our 

group). Our results are in agreement with the content of carotenoids (lutein and 

zeaxantin) in maize seeds reported by Mangels et al. (Mangels et al., 1993), between 

0.05 and 23 μg/g. 

Finally, a breeding program has been planned to ameliorate the nutritional profile of the 

two cultivars which are already adapted to South African growing conditions (climate, 

photoperiod).  

Pigmented maize varieties, carrying the dominant alleles of the regulatory genes of the 

anthocyanins and carotenoids biosynthesis will be used as pollen donors in a breeding 

programme based on pedigree selection, to obtain enriched varieties, characterized by a 

higher antioxidant power compared to the original ones and contributing to tackle the 

VAD problem.  

Particular attention will be focused on the white variety which is used for human 

consumption: plants will be selected with the aim of increasing protein and Fe content, 

while maintaining the large size of the seeds that makes this variety particularly 

adapted for milling.  

The breeding programme will be also conducted in South Africa, re-distributing the 

seeds to the local farmers in poorer communities, thus involving them in participatory 

plant breeding. 
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Conclusions 

In this work we characterized for the first time, from the phenotypical and nutritional 

points of view two maize varieties cultivated by South African farmers in the rural region 

of Qwa-Qwa: a white variety, used for human consumption, and a yellow one destined 

for animal feeding. The yellow variety shows a low variability and is probably derived 

from a commercial hybrid, sown for many years by the local farmers.  Both the varieties 

showed low oil and protein content compared to the Scagliolo Italian flint variety used 

as control, and low iron content compared to the B73/Mo17 hybrid and to the Millo 

Corvo cultivar. The white variety was characterized by a higher Zn content, but also by 

a lower content of Ca in comparison with the yellow one. The total content of P and 

free P was found to be higher in the white variety, while their content of flavonols and 

phenolic acids was similar, and was low compared to the pigmented Millo Corvo variety. 

As expected, the white variety was also found to lack carotenoids. Despite its low 

nutritional value, the white variety appears interesting because of the large dimensions 

of the seeds that makes them particularly well adapted for milling. Protein, carotenoids 

and Fe content will be increased, together with flavonoids content, through a breeding 

program aimed to obtain improved varieties that could be considered as everyday 

functional foods for the local population. 
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Figures 

 

 

Figure 1. Sampling site of the white and yellow South African maize cultivars in the mountain 

region of Qwa-Qwa (28° 37’ 20.81” S, 28° 53’ 58.07” E) (A). Vegetable garden where the yellow 

variety was cultivated (B). South African traditional Maize meal porridge, pap, obtained using 

white maize flour and water (C). 
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Figure 2. Seeds and seedlings of the two South African varieties. Seeds of the yellow South African 

variety (A) and of the white one (B). Seedlings of the yellow (C) and white (D) South African 

varieties after light exposure. Ears of the white (left) and yellow variety (right) (E).  
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