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Abstract

We present a Virtual Element Method (VEM) for possibly nonlinear elastic and inelastic problems, mainly focusing on a small
deformation regime. The numerical scheme is based on a low-order approximation of the displacement field, as well as a suitable
treatment of the displacement gradient. The proposed method allows for general polygonal and polyhedral meshes, it is efficient in
terms of number of applications of the constitutive law, and it can make use of any standard black-box constitutive law algorithm.
Some theoretical results have been developed for the elastic case. Several numerical results within the 2D setting are presented,
and a brief discussion on the extension to large deformation problems is included.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The Virtual Element Method (VEM), introduced in [1], is a recent generalization of the Finite Element Method
which is characterized by the capability of dealing with very general polygonal/polyhedral meshes and the possibility
to easily implement highly regular discrete spaces [2,3]. Indeed, by avoiding the explicit construction of the local basis
functions, the VEM can easily handle general polygons/polyhedrons without complex integrations on the element (see
[4] for details on the coding aspects of the method). The interest in numerical methods that can make use of general
polytopal meshes has recently undergone a significant growth in the mathematical and engineering literature. Among
the large number of papers, we cite as a minimal sample [5–14]. Indeed, polytopal meshes can be very useful for
a wide range of reasons, including meshing of the domain (such as cracks) and data (such as inclusions) features,
automatic use of hanging nodes, use of moving meshes, adaptivity.

∗ Corresponding author.
E-mail addresses: lourenco.beirao@unimi.it (L. Beirão da Veiga), carlo.lovadina@unipv.it (C. Lovadina), dmora@ubiobio.cl (D. Mora).

http://dx.doi.org/10.1016/j.cma.2015.07.013
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.07.013&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.07.013
http://www.elsevier.com/locate/cma
mailto:lourenco.beirao@unimi.it
mailto:carlo.lovadina@unipv.it
mailto:dmora@ubiobio.cl
http://dx.doi.org/10.1016/j.cma.2015.07.013


328 L. Beirão da Veiga et al. / Comput. Methods Appl. Mech. Engrg. 295 (2015) 327–346

In the framework of Structural Mechanics, recent applications of Polygonal Finite Element Methods, which is a
different technology employing direct integration of complex non-polynomial functions, have shed light on some very
interesting advantages of using general polygons to mesh the computational domain. This include, for instance, the
greater robustness to mesh distortion [15], a reduced mesh sensitivity of solutions in topology optimization [9,16],
better handling of contact problems [17] and crack propagation [18]. Unfortunately, Polygonal Finite Elements suffer
from some serious drawbacks, such as the strong difficulties in the three dimensional case (polyhedrons) and in the use
of non convex elements. On the contrary, the VEM is free from the above-mentioned troubles, and thus it represents
a very promising approach for Computational Structural Mechanics problems.

Aim of the present paper is to initiate the investigation on the VEM when applied to non-linear elastic and
inelastic problems in small deformations. More precisely, we mainly focus on the following cases: (1) non-linear
elastic constitutive laws in a small deformation regime which, however, pertain to stable materials; (2) inelastic
constitutive laws in a small deformation regime as they arise, for instance, in classical plasticity problems. We remark
that we are not going to consider here situations with internal constraints, such as incompressibility, which require
additional peculiar numerical treatment. Virtual elements for the linear elasticity problem were introduced in [19,20].
The scheme in the present paper is one of the very first developments of the VEM technology for nonlinear problems,
and it is structured in such a way that a general non linear constitutive law can be automatically included. Indeed,
on every element of the mesh the constitutive law need only to be applied once (similarly to what happens in
one-point Gauss quadrature scheme) and the constitutive law algorithm can be independently embedded as a self-
standing black-box, as in common engineering FEM schemes. Therefore, in addition to the advantage of handling
general polygons/polyhedra, the present method is computationally efficient, in the sense that the constitutive law
need to be applied only once per element at every iteration step. The risk of ensuing hourglass modes is avoided
by using an evolution of the standard VEM stabilization procedure used in linear problems. However, we highlight
that the proposed method is described for general d-dimensional problems (d = 2, 3), but the performed numerical
experiments are confined to the two dimensional setting.

A brief outline of the paper is as follows. In Section 2 we describe the continuous problems we are interested in.
In particular, we distinguish between the elastic, possibly non-linear, case (Section 2.1), and the general inelastic case
(Section 2.2). Section 3 deals with the VEM discretization. After having introduced the approximation spaces and
the necessary projection operators (Section 3.1), we detail the discrete problems for the elastic case in Section 3.2,
and for the inelastic case in Section 3.3. In Section 4, combining ideas and techniques from [21] and [1], we provide
some theoretical results concerning the convergence of the proposed scheme in the elastic situation. We remark that our
analysis is confined to cases where the non-linear constitutive law fulfills suitable continuity and stability properties, as
stated at the beginning of the section. Section 5 presents several numerical examples which assess the actual behavior
of the proposed scheme. In Sections 5.1 and 5.2 we consider non-linear elastic cases, in Section 5.3 we present a
soft material problem with a hard inclusion, while in Section 5.4 a von Mises plasticity problem with hardening is
detailed. Furthermore, an initial brief discussion about a possible extension to large deformation problems is included
(Section 5.5). Finally, we draw some conclusion in Section 6.

Throughout the paper, we will make use of standard notations regarding Sobolev spaces, norms and seminorms,
see [22], for instance. In addition, C will denote a constant independent of the meshsize, not necessarily the same at
each occurrence. Finally, given two real quantities a and b, we will write a . b to mean that there exists C such that
a ≤ Cb.

2. The continuous problems

In the present section we describe the problem considered in this paper. Although the elastic case could be
considered as a particular instance of the inelastic case, we prefer to keep the presentation of the two problems
separate. This will allow us a clearer presentation of the ideas of the virtual element scheme in the following section.

2.1. The elastic case

We consider an elastic body Ω ⊂ Rd (d = 2, 3) clamped on part Γ of the boundary and subjected to a body load f.
We are interested, assuming a regime of small deformations, in finding the displacement u : Ω → Rd of the deformed
body.
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We are given a constitutive law for the material at every point x ∈ Ω , relating strains to stresses σ , through the
function

σ = σ (x, ∇u(x)) ∈ Rd×d
symm (1)

where ∇u represents the gradient of the displacement u.
Given the law (1), the deformation problem reads−div σ = f in Ω ,

u = 0 on Γ ,

σn = 0 on ∂Ω/Γ ,

(2)

where n denotes the unit outward normal to ∂Ω .
Let now V denote the space of admissible displacements and W the space of its variations; both spaces will, in

particular, satisfy the homogeneous Dirichlet boundary condition on Γ . The variational formulation of the elastic
deformation problem reads Find u ∈ V such that

Ω
σ (x, ∇u(x)) : ∇v(x)dx =


Ω

f(x) · v(x)dx ∀v ∈ W.
(3)

Remark 2.1. The generalization of the results of the present paper to other type of loadings (for instance in the
presence of boundary forces) and boundary conditions (for instance in the presence of enforced displacements) is
trivial. Our choice in (2) allows to keep the exposition shorter.

2.2. The inelastic case

We assume a small deformation regime and restrict ourselves to rate independent inelasticity. We consider a
material body Ω ⊂ Rd (d = 2, 3) clamped on part Γ of the boundary and subjected to a body load f(t, x) depending
also on a pseudo-time variable t ∈ [0, T ]. The interested reader can find more details in [23,24], for instance. We are
interested in finding the displacement u : Ω → Rd of the deformed body at a given final time T .

We are given an inelastic constitutive law for the material, relating strains to stresses σ , through the function

σ = σ (x, ∇u(x), Hx ) ∈ Rd×d
symm (4)

where the vector Hx contains all history variables at the point x .
The above rule is to be coupled with an evolution law L for the history variables in time

Ḣx = L(x, ∇u(x), ∇̇u(x), Hx ), (5)

where, as usual, a dot above a function stands for a pseudo-time derivative. Since we consider a quasi-static problem,
at each time instant the stresses and displacements must satisfy the equilibrium and boundary conditions in (2).

We here avoid to write a rigorous variational formulation for the problem above, and limit ourselves to the minimal
setting that will be needed to introduce the associated discrete problem. As in the elastic case, let V denote the space of
admissible displacements and W the space of its variations. Then, assuming an initial value for the history variables,
the quasi-static inelastic deformation problem can be written as For all t ∈ [0, T ] find u(t, ·) ∈ V such that

Ω
σ (x, ∇u(t, x), Hx (t)) : ∇v(x)dx =


Ω

f(t, x) · v(x)dx ∀v ∈ W,
(6)

where the displacements and history variables are sufficiently regular in time and must satisfy the evolution law (5)
almost everywhere.
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3. The virtual element approximation

In the present section we introduce the virtual element discretization of problems (3) and (6). In what follows,
given any subset ω of Rd (d = 2, 3) and k ∈ N, we denote by Pk(ω) (respectively Pk(ω)) the scalar (respectively
vector with d components) polynomials of degree up to k on ω.

3.1. The virtual spaces and operators

We consider a mesh Ωh for the domain Ω , made of general polygonal/polyhedral conforming elements. For the
time being, we only assume that such mesh is compatible with the boundary conditions, i.e. that Γ is union of faces
(edges) of the mesh. We denote by E ∈ Ωh the generic element of the mesh and by f the generic face (or edge if
d = 2). The symbols hE and |E | will represent, respectively, diameter and volume (or area) of the element E . As
usual, h will indicate the maximum element size.

We start by introducing the discrete virtual space for displacements, that is essentially the same as in [19]. We first
consider the two dimensional case. Given any E ∈ Ωh , let the local virtual space

Vh,E :=

v ∈ [H1(E) ∩ C0(E)]2

: ∆v = 0 in E, v| f ∈ P1( f ) ∀ f ∈ ∂ E

, (7)

where ∆ denotes the component-wise Laplace operator. The space Vh,E is a space of harmonic functions that on the
boundary of the element are piecewise linear (edge by edge) and continuous. Such space is virtual in the sense that is
well defined but not known explicitly inside the element.

Note that P1(E) ⊆ Vh,E ; in the case of a triangular element, we recover exactly the standard P1 space. It is easy
to check [19] that a set of degrees of freedom for the space Vh,E is simply given by the collection of the vertex values:

• Pointwise values {v(ν)}ν∈∂ E with ν denoting a vertex of E .

Once the above degrees of freedom values are given, since v ∈ Vh,E is linear on each edge, the value of v on the
boundary ∂ E is completely determined. Therefore, an integration by parts allows to compute the integral average of
the gradient

1
|E |


E

∇vdx =
1

|E |


f ∈∂ E


f

v ⊗ n f ds ∀ v ∈ Vh,E , (8)

with n f indicating the outward unit normal at each edge f .
We now define the virtual local spaces for the three dimensional case. Given a polyhedron E ∈ Ωh , any face

f ∈ ∂ E is now a polygon. We denote by Vh, f the virtual bi-dimensional space (7) on the polygon f adjusted with
three components:

Vh, f :=

v ∈ [H1( f ) ∩ C0( f )]3

: ∆v = 0 in f, v|e ∈ P1(e) ∀e ∈ ∂ f

, (9)

where the symbol e represents the generic edge of the polyhedron and ∆ denotes the planar Laplacian on f . We then
define

Vh,E =

v ∈ [H1(E)]3

: ∆v = 0 in E, v| f ∈ Vh, f ∀ f ∈ ∂ E

. (10)

The space Vh,E is a space of harmonic functions that on the boundary of the element are continuous and, on each face,
functions of Vh, f . Note that, as a consequence, the functions of Vh,E are linear on each edge of the polyhedron.

Again we note that P1(E) ⊆ Vh,E ; in the case of a tetrahedral element, we recover exactly the standard P1 space.
It is easy to check that a set of degrees of freedom for the space Vh,E is again given by

• Pointwise values {v(ν)}ν∈∂ E with ν denoting a vertex of E .

An integration by parts exactly as in (8) allows to compute, for all E ∈ Ωh the integral average of the gradient,
provided one is able to compute the face integrals


f v ⊗ n f ds for all f ∈ ∂ E and v ∈ Vh,E . Such face integrals can

be easily computed by introducing the virtual space modification proposed in [25], that we do not detail here. The
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result is
f

v ⊗ n f =


ν∈∂ E

ωνv(ν),

where the scalars {ων}ν∈∂ E are the weights of any integration rule on the face that is exact for linear functions (see
also [20]).

Once the local virtual spaces are defined, all that follows holds identically in two and three dimensions. We can
now present the global virtual space

Vh :=

v ∈ V : v|E ∈ Vh,E ∀E ∈ Ωh


.

A set of degrees of freedom for Vh is given by all pointwise values of v on all vertices of Ωh , excluding the vertices
on Γ (where the value vanishes).

In the following, we will denote by Π 0 the tensor valued L2 projection operator on the space of piecewise constant
functions and by Π 0

E its restriction to the generic element E ∈ Ωh . More precisely, for any G ∈ (L2(Ω))d×d , we have
(Π 0G)E = Π 0

E (G|E ) with the local operators defined as

Π 0
E G|E =

1
|E |


E

Gdx ∀E ∈ Ωh . (11)

We have the following important remark, which is a direct consequence of (8).

Remark 3.1. For all functions v ∈ Vh,E and all elements E ∈ Ωh , the operators Π 0
E (∇v) are explicitly computable.

We moreover introduce a second projection operator Π ∇ , defined on Vh as follows. For any v ∈ Vh , we have
(Π ∇v)E = Π ∇

E (v|E ) ∈ P1(E) with the local operators defined as ∇(Π ∇

E (v|E )) = Π 0
E (∇v|E ),

ν∈∂ E

(Π ∇

E v)(ν) =


ν∈∂ E

v(ν) (12)

for all E in Ωh . Note that, by definition, Π ∇v is a (discontinuous) piecewise linear function on Ωh . On each element
E , Π ∇

E (v|E ) is the unique linear function such that:

1. its (constant) gradient equals the mean value over E of the function ∇v;
2. its vertex value average equals the vertex value average of v.

We notice that the second condition in (12) is only to fix the constant part of Π ∇v on each element. Recalling
Remark 3.1, it is immediate to check that the operator Π ∇ is explicitly computable.

3.2. The elastic case

The main missing step is to introduce the local forms that will be used in the discrete variational formulation.
We assume that the constitutive law (1) is piecewise constant with respect to the mesh Ωh . Therefore, instead of
σ (x, ∇u(x)), we will write σ E (∇u(x)) to represent the constitutive law on E , E ∈ Ωh and x ∈ E . In addition, for
every pair v ∈ V and w ∈ W , we introduce the forms aE (v, w) and a(v, w) as:

aE (v, w) =


E

σ E (x, ∇v(x)) : ∇w(x)dx,

a(v, w) =


Ω

σ (∇v(x)) : ∇w(x)dx .

(13)

Therefore, it holds

a(v, w) =


E∈Ωh

aE (v, w) (14)
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and, recalling (3), the elastic problem can be written as Find u ∈ V such that

a(u, v) =


Ω

f(x) · v(x)dx ∀v ∈ W.
(15)

We now consider, for all E ∈ Ωh and all vh, wh ∈ Vh,E , the following preliminary form

ah,E (vh, wh) =


E

σ E (Π 0
E (∇vh)(x)) : (Π 0

E (∇wh)(x))dx

= |E |σ E (Π 0
E (∇vh)) : Π 0

E (∇wh), (16)

where the identity above follows since all the involved functions are constant on the element. The above form is
P1-consistent, in the sense that it recovers exactly the original form whenever the first entry is a linear polynomial.
Indeed, it follows from (11) and (12) that

ah,E (q, vh) =


E

σ E (Π 0
E (∇q)(x)) : (Π 0

E (∇vh)(x))dx

=


E

σ E (∇q(x)) : (Π 0
E (∇vh)(x))dx =


E

σ E (∇q(x)) : ∇vh(x)dx

= aE (q, vh) ∀q ∈ P1(E), ∀vh ∈ Vh,E . (17)

However, unless the elements are triangular/tetrahedral, the formah,E (·, ·) has a non-physical kernel that may lead
to spurious modes in the solution. We therefore follow the idea proposed initially in [1] and introduce the discrete
bilinear form

Sh,E : Vh,E × Vh,E −→ R,

Sh,E (vh, wh) = hd−2
E


ν∈∂ E

vh(ν)wh(ν) ∀vh, wh ∈ Vh,E . (18)

As discussed in [19,1], under suitable mesh regularity assumptions detailed in Section 4, there exist positive
constants c∗, c∗ independent of the element such that

c∗


E

∥∇
symvh∥

2dx ≤ Sh,E (vh, vh) ≤ c∗


E

∥∇
symvh∥

2dx (19)

for all vh ∈ Vh,E with Π ∇

E vh = 0. In other words, on the orthogonal complement of P1(E) with respect to Vh,E ,
the bilinear form Sh,E (·, ·) behaves as the local energy of a linearly elastic body with unitary material constants and
is thus suitable to stabilizeah,E (·, ·) form in such case. In order to take into account different material constants and
also nonlinear materials, the form Sh,E (·, ·) need to be multiplied by a positive constant αE that may depend on the
discrete solution.

We therefore introduce the following local virtual form on Vh,E . For all E ∈ Ωh and all sh, vh, wh ∈ Vh,E

ah,E (sh; vh, wh) =ah,E (vh, wh) + αE (sh)Sh,E (vh − Π ∇

E vh, wh − Π ∇

E wh), (20)

where the stabilizing parameter αE > 0 depends on the additional entry sh . We remark that the form ah,E (·; ·, ·) is
still P1-consistent. This follows from (17) and the observation that q − Π ∇

E q = 0 for every q ∈ P1. The choice that
we here propose for the parameter αE is

αE (sh) = |||
∂σE

∂∇u
(Π 0

E∇sh |E )||| ∀E ∈ Ωh, ∀sh ∈ Vh, (21)

with ||| · ||| representing any norm on the fourth order tensor space, for instance the maximum of the absolute values of
all the entries, see Remark 3.2.
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We present also the global form

ah(sh; vh, wh) =


E∈Ωh

ah,E (sh; vh, wh) ∀sh, vh, wh ∈ Vh . (22)

Given sh ∈ Vh , a possible virtual discretization of Problem (3) is
Find uh ∈ Vh such that
ah(sh; uh, vh) = ⟨f, vh⟩h ∀vh ∈ Vh .

(23)

Above, the load approximation term

⟨f, vh⟩h =


ν∈∂ E

ωνf(ν)vh(ν)

is a vertex-based quadrature rule with weights ων chosen to provide the exact integral on E when applied to linear
functions. Furthermore, a reasonable choice for sh could be sh = uh .

We instead propose a modification of (23), that is more practical from the implementation viewpoint. We assume
the usual incremental loading procedure for the solution of the nonlinear discrete problem: given a positive integer N ,
let the partial loadings fn

= (n/N )f for all n = 1, 2, . . . , N . Then, given the initial displacement u0
h (for instance the

zero function), one applies for n = 1, 2, . . . , N the iterative procedure
Find un

h ∈ Vh such that
ah(un−1

h ; un
h, vh) = ⟨fn, vh⟩h ∀vh ∈ Vh .

(24)

The final solution is then uh = uN
h . The nonlinear problems above can be solved with the Newton scheme. Note

that, since the stability constants αE (see (20)) are computed by using un−1
h , the tangent matrix in the Newton

iterations turns out to be simpler. Since N is typically taken large (at least 10, but often much more) the effect of such
modification is not detrimental for the discrete approximation; the constants αE are only used as scaling parameters
and do not enter the accuracy of the algorithm.

We close the section with some observations regarding the local forms ah,E used in the scheme. First, we recall
that the proposed forms are P1(E)-consistent, in the sense that for all E ∈ Ωh , we have:

ah,E (sh; q, vh) =


E

σ E (∇q) : ∇vhdx ∀sh, vh ∈ Vh,E , ∀q ∈ P1(E). (25)

Identity (25) is a fundamental condition for approximation and, in particular, guarantees the satisfaction of the patch
test. Moreover, such forms are explicitly computable for any polygonal/polyhedral element (even non-convex). Finally,
the constitutive law need to be computed only once per element and thus the method, from this point of view, is as
cheap as finite elements with one point gauss integration rule. This observation has an even bigger impact in the
inelastic case, where the constitutive laws are typically more expensive to compute.

Remark 3.2. The motivation for choice (21) and (24) is to better mimic the stability properties of the material for the
current displacement. For materials in which the stress–strain incremental relation does not depend too strongly on
the value of the current displacement, the constants αE can be taken as independent of un−1

h . For instance, a scaling
directly proportional to the local material constants could be used. On the other hand, the choice proposed in (21)
and (24) give good results for a wider range of materials. Examples and investigations in this direction can be found
in Section 5.

3.3. The inelastic case

We start by introducing a sub-division of the “time” interval [0, T ] into smaller intervals [tn−1, tn] for n =

1, 2, . . . , N , where for simplicity we assume that tn = nT/N . We will denote the partial loadings by fn
= (n/N )f for

all n = 1, 2, . . . , N .
We assume, as in standard engineering procedures, a constitutive algorithm that is an approximation of the

constitutive and evolution laws (4), (5). In Finite Element analysis, this pointwise algorithm can be coded
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independently from the global FE construction and can be regarded as a “black-box” procedure that is applied at
every Gauss point and at every iteration step. In the present Virtual Element method, we want to keep the same
approach; in other words, our scheme will be compatible with any black-box constitutive algorithm that follows the
general setting below and that can be imported from other independent sources.

We assume that the constitutive law is piecewise constant with respect to the mesh Ωh . Let σ̂ E represent the
constitutive algorithm for the element E ∈ Ωh . For any x ∈ E , given a value for the displacement gradient ∇un−1

h (x)

at time tn−1, a value Hn−1
x for the history variables at time tn−1 and a tentative value for the displacement gradient

∇un
h(x) at time tn , the algorithm computes the stresses (and updates the history variables) at time tn . We thus write

the computed stress as

σ E (∇un−1
h (x), Hn−1

x , ∇un
h(x)).

As part of the approximation procedure of our method, we assume that the history variables Hx are piecewise constant
with respect to the mesh, and therefore write Hn

E to represent the value assumed on the element E ∈ Ωh at time tn .
Consistently, Hn will represent the collection of all {Hn

E }E∈Ωh .
In our scheme, instead of applying the constitutive algorithm at Gauss points, we make use of the projections

introduced in the previous sections and of the same stabilization as in the elastic case. The Virtual Element scheme
reads, for n = 1, 2, . . . , N :

Find un
h ∈ Vh(and the updated Hn) such that

ah(un−1
h , un

h, Hn−1, vh) = ⟨fn, vh⟩h ∀vh ∈ Vh,
(26)

where the form

ah(un−1
h , un

h, Hn−1, vh) =


E∈Ωh

ah,E (un−1
h , un

h, Hn−1
E , vh)

with, for all E ∈ Ωh ,

ah,E (un−1
h , un

h, Hn−1
E , vh) = |E |σ E (Π 0

E∇un−1
h , Hn−1

E ,Π 0
E∇un

h) : Π 0
E (∇vh)

+ αE (un−1
h )Sh,E (un

h − Π ∇

E un
h, vh − Π ∇

E vh).

Here above, the bilinear form Sh,E and the scalar αE are calculated as already shown in (18) and (21), respectively.
Note that, as already mentioned in Section 3.2, the constitutive algorithm need to be applied only once per element.

Remark 3.3. An extension of this method to the case of higher order is not at all beyond reach (and could be the
scope of further work). Indeed, one could make use of the general Virtual spaces of degree k of [1] and, instead of
(11), of an element-wise projection of the strains onto [Pk−1(E)]d×d . We nevertheless prefer to keep the present paper
simpler to understand and avoid the further complication of a general degree k.

4. Theoretical results

We here develop an error analysis for the method described in Section 3.2, under some additional hypotheses on
the function σ (x, ∇u(x)) = σE (∇u(x)). More precisely, we assume that the following properties are satisfied.

Hypotheses (RPC)

• The function τ → σE (τ ) belongs to C1(Rd×d) for every E ∈ Ωh ;
• for every E ∈ Ωh , the differential ∂σE

∂τ
(τ ) satisfies

1. there exists Cα > 0 such that

∂σE

∂τ
(τ ) s : s ≥ Cα∥s∥2

∀ τ , s ∈ Rd×d , (27)

2. there exists CM > 0 such that

∂σE

∂τ
(τ ) s : t ≤ CM∥s∥ ∥t∥ ∀ τ , s, t ∈ Rd×d . (28)
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We now make explicit the shape regularity conditions that are needed for the theoretical results of the present paper.
We assume that there exists a positive constant Cs such that all the elements E of the mesh sequence are star shaped
with respect to a ball of radius ρ ≥ CshE and that all the edges e of E have length he ≥ CshE .

Lemma 4.1. Let the bilinear forms aE (·, ·), a(·, ·), ah,E (·; ·, ·) and ah(·; ·, ·) be defined by (13), (20) and (22).
Suppose that the Hypotheses (RPC) introduced above are satisfied. Then, it holds

|vh − wh |
2
1,Ω . ah(sh; vh, vh − wh) − ah(sh; wh, vh − wh) ∀ vh, wh, sh ∈ Vh . (29)

aE (v, r) − aE (w, r) . |v − w|1,E |r|1,E ∀ v, w, r ∈ V. (30)

ah,E (sh; vh, rh) − ah,E (sh; wh, rh) . |vh − wh |1,E |rh |1,E ∀ vh, wh, sh, rh ∈ Vh . (31)

Proof. We first note that (27) and (28), together with (21), imply the existence of positive constants c1 and c2 such
that

c1 ≤ αE (sh) ≤ c2 ∀E ∈ Ωh, ∀sh ∈ Vh . (32)

Step (i): proof of (29). From (27), by a first order Taylor expansion we deduce that

(σE (s) − σE (t)) : (s − t) =
∂σE

∂τ
(τ̃ ) (s − t) : (s − t) ≥ C∥s − t∥2

∀ s, t ∈ Rd×d , (33)

where τ̃ = θs + (1 − θ)t for some θ ∈ (0, 1). Therefore, for every v, w ∈ V we have

aE (v, v − w) − aE (w, v − w) =


E

(σE (∇v) − σE (∇w)) : (∇v − ∇w) ≥ C |v − w|
2
1,E , (34)

by which

|v − w|
2
1,Ω . a(v, v − w) − a(w, v − w) ∀ v, w ∈ V. (35)

For every vh, wh, sh ∈ Vh , we have (see (20))

ah,E (sh; vh, vh − wh) − ah,E (sh; wh, vh − wh)

=ah,E (vh, vh − wh) −ah,E (wh, vh − wh)

+ αE (sh)Sh,E ((vh − wh) − Π ∇

E (vh − wh), (vh − wh) − Π ∇

E (vh − wh)). (36)

We now notice that (see (16))

ah,E (vh, vh − wh) −ah,E (wh, vh − wh)

=


E

σ E (Π 0
E (∇vh)) : (Π 0

E (∇vh) − Π 0
E (∇wh))

−


E

σ E (Π 0
E (∇wh)) : (Π 0

E (∇vh) − Π 0
E (∇wh))

=


E


σ E (Π 0

E (∇vh)) − σ E (Π 0
E (∇wh))


: (Π 0

E (∇vh) − Π 0
E (∇wh)). (37)

First using (33) with s = Π 0
E (∇vh) and t = Π 0

E (∇wh), then recalling (12) we get

ah,E (vh, vh − wh) −ah,E (wh, vh − wh) ≥ C∥Π 0
E (∇vh) − Π 0

E (∇wh)∥2
0,E

= C ∥∇(Π ∇

E (vh − wh))∥2
0,E = C |Π ∇

E (vh − wh)|21,E . (38)

In addition, we have, using (32) and (19):

αE (sh)Sh,E ((vh − wh) − Π ∇

E (vh − wh), (vh − wh) − Π ∇

E (vh − wh))

≥ C |(vh − wh) − Π ∇

E (vh − wh)|21,E . (39)



336 L. Beirão da Veiga et al. / Comput. Methods Appl. Mech. Engrg. 295 (2015) 327–346

Combining (36) with (38) and (39), we infer

|vh − wh |
2
1,E . ah,E (sh; vh, vh − wh) − ah,E (sh; wh, vh − wh) ∀ vh, wh, sh ∈ Vh . (40)

Summing up over all the elements, we get (29):

|vh − wh |
2
1,Ω . ah(sh; vh, vh − wh) − ah(sh; wh, vh − wh) ∀ vh, wh, sh ∈ Vh . (41)

Step (ii): proof of (30) and (31). From (28), we deduce that

(σE (s) − σE (t)) : τ ≤ C∥s − t∥ ∥τ∥ ∀ s, t, τ ∈ Rd×d , (42)

from which we easily get (30):

aE (v, r) − aE (w, r) . |v − w|1,E |r|1,E ∀ v, w, r ∈ V. (43)

We now notice that (see (16))

ah,E (vh, rh) −ah,E (wh, rh) =


E


σ E (Π 0

E (∇vh)) − σ E (Π 0
E (∇wh))


: Π 0

E (∇rh). (44)

Using (42), identity (44) yields

ah,E (vh, rh) −ah,E (wh, rh) . |vh − wh |1,E |rh |1,E ∀ vh, wh, rh ∈ Vh . (45)

To continue, since Sh,E (·, ·) is a bilinear form and using continuity arguments, we have for every sh ∈ Vh (see (19))

αE (sh)Sh,E (vh − Π ∇

E (vh), rh − Π ∇

E (rh)) − αE (sh)Sh,E (wh − Π ∇

E (wh), rh − Π ∇

E (rh))

= αE (sh)Sh,E ((vh − wh) − Π ∇

E (vh − wh), rh − Π ∇

E (rh))

. |vh − wh |1,E |rh |1,E . (46)

From (20), using (45) and (46), we deduce (31). �

Theorem 4.1. Let u ∈ V be the solution of Problem (3). Given any sh ∈ Vh , let uh ∈ Vh be the solution of Prob-
lem (23):

Find uh ∈ Vh such that
ah(sh; uh, vh) = ⟨f, vh⟩h ∀vh ∈ Vh .

(47)

For any uI ∈ Vh and uπ ∈ [L2(Ω)]d such that uπ |E ∈ P1(E) for all E in Ωh , it holds:

|u − uh |1,Ω . sup
vh∈Vh

⟨f, vh⟩h − (f, vh)

|vh |1,Ω
+ |u − uI |1,Ω + |u − uπ |1,h, (48)

where (·, ·) is the [L2(Ω)]d -scalar product, and | · |1,h is the usual broken H1-seminorm with respect to the decom-

position Ωh , i.e. |v|1,h :=


E∈Ωh

|v|
2
1,E

1/2
.

Proof. Given uI ∈ Vh , we set δh = uh − uI . For every uπ ∈ [L2(Ω)]d such that uπ |E ∈ P1(E), using (29) we have

|uh − uI |
2
1,Ω . ah(sh; uh, δh) − ah(sh; uI , δh)

= ⟨f, δh⟩h −


E∈Ωh

ah,E (sh; uI , δh)

= ⟨f, δh⟩h −


E∈Ωh


ah,E (sh; uI , δh) − ah,E (sh; uπ , δh)


+ ah,E (sh; uπ , δh)


. (49)
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Since (25) implies ah,E (sh; uπ , δh) = aE (uπ , δh), from (49) we get

|uh − uI |
2
1,Ω . ⟨f, δh⟩h −


E∈Ωh


ah,E (sh; uI , δh) − ah,E (sh; uπ , δh)


+ aE (uπ , δh)


= ⟨f, δh⟩h −


E∈Ωh


ah,E (sh; uI , δh) − ah,E (sh; uπ , δh)


−


E∈Ωh


aE (uπ , δh) − aE (u, δh)


− a(u, δh)

=

⟨f, δh⟩h − (f, δh)


−


E∈Ωh


ah,E (sh; uI , δh) − ah,E (sh; uπ , δh)


−


E∈Ωh


aE (uπ , δh) − aE (u, δh)


. (50)

We then obtain, using (30) and (31)

|uh − uI |
2
1,Ω .


sup

vh∈Vh

⟨f, vh⟩h − (f, vh)

|vh |1,Ω
+ |uI − uπ |1,h + |uπ − u|1,h


|δh |1,Ω , (51)

by which, recalling that δh = uh − uI , we infer

|uh − uI |1,Ω . sup
vh∈Vh

⟨f, vh⟩h − (f, vh)

|vh |1,Ω
+ |uI − uπ |1,h + |uπ − u|1,h . (52)

The triangle inequality thus gives

|u − uh |1,Ω . sup
vh∈Vh

⟨f, vh⟩h − (f, vh)

|vh |1,Ω
+ |u − uI |1,Ω + |u − uπ |1,h . � (53)

Remark 4.1. Theorem 4.1 applies also to Problem (24) at the final step N . Indeed, it is sufficient to make the choices
f = fN , sN = uN−1

h in (47), and to identify uh in (47) with uN
h in (24).

Corollary 4.1. Following the same notation of Theorem 4.1, let moreover u ∈ [H2(Ω)]d . Then the linear convergence
bound holds

|u − uh |1,Ω . h|u|2,Ω .

Proof. The results follows immediately combining Theorem 4.1 with standard polygonal approximation estimates for
the spaces Vh,E and P1(E), see [1,26]. �

5. Numerical tests

In the present section we test our virtual method. In the first two examples (see Sections 5.1 and 5.2), the body
occupies the region Ω := (0, 1)2, where lengths are expressed in meters. We employ the following types of mesh (see
also Figs. 1 and 2):

• Ω1
h : Structured hexagonal meshes.

• Ω2
h : Non-structured hexagonal meshes made of convex hexagons.

• Ω3
h : Regular subdivisions of the domain in N × N subsquares.

• Ω4
h : Trapezoidal meshes which consist of partitions of the domain into congruent trapezoids, all similar to the

trapezoid with vertices (0, 0), ( 1
2 , 0), ( 1

2 , 2
3 ), and (0, 1

3 ).
• Ω5

h : Triangular mesh.

In what follows, Nh denotes the number of vertices in the mesh under consideration.
To test the convergence properties of the methods, we introduce the following discrete maximum norm: for any

sufficiently regular function v,

|||v|||0,∞ := max
v∈Vh

|v(v)|∞ (54)
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Fig. 1. Sample meshes: Ω1
h (left) and Ω2

h (right).

Fig. 2. Sample meshes: Ω3
h (left), Ω4

h (center) and Ω5
h (right).

where Vh represents the set of vertices of Ωh and | · |∞ denotes the l∞ vector norm. We also introduce the following
discrete H1 like norm:

|||v|||1,2 :=


f ∈Eh

he

 ∂v
∂te

2

0,e

1/2

, (55)

where Eh and he denote the set of edges in the mesh and the length of the edge f , respectively. Moreover, te denotes
one of the two tangent vectors to the edge e, chosen once and for all. Accordingly, we denote by

Eh
0,∞ := |||u − uh |||∞ Eh

1,2 := |||u − uh |||1,2

the corresponding errors and we measure the experimental order of convergence as

R := −2
log(E(·)/E ′(·))

log(Nh/Nh′)
,

where Nh and Nh′ denote the number of vertices in two consecutive meshes, with corresponding errors E and E ′.

5.1. Hencky-von Mises elasticity problem with analytical solution

The first constitutive law we consider, taken from [27], is the non-linear Hencky-von Mises elasticity model, for
which

σ = σ (x, ∇u(x)) = λ̃(dev(ε(u)))tr(ε(u))I + 2µ̃(dev(ε(u)))ε(u).

Here above, λ̃ and µ̃ are the nonlinear Lamé functions, ε(u) :=
1
2 (∇u+(∇u)T ) is the small deformation strain tensor,

the symbol tr represents the trace operator and dev(τ ) = ∥(τ −
1
2 tr(τ )I )∥ is the Frobenius norm of the deviatoric part

of the tensor τ .
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Table 1
Approximation of u: convergence analysis of the virtual method (24) and FEM.

Mesh Nh Eh
0,∞

R0,∞ Eh
1,2 R1,2

64 3.4192e−2 – 4.5675e−1 –
192 8.2511e−3 2.59 2.4445e−1 1.14

Ω1
h 640 2.4353e−3 2.03 1.2803e−1 1.07

2304 6.7066e−4 2.01 6.5274e−2 1.05
8704 1.7495e−4 2.02 3.2919e−2 1.03

33792 4.4619e−5 2.01 1.6527e−2 1.02

64 5.6458e−2 – 5.0007e−1 –
192 1.9675e−2 1.92 2.7166e−1 1.11

Ω2
h 1280 6.4750e−3 1.85 1.4054e−1 1.09

2304 2.01403−3 1.82 7.1120e−2 1.06
8704 5.4860e−4 1.96 3.5590e−2 1.04

33792 1.4070e−4 2.01 1.7817e−2 1.02

25 6.1947e−2 – 7.1975e−1 –
81 9.3599e−3 3.21 3.5627e−1 1.19

Ω3
h 578 1.7576e−3 2.62 1.7809e−1 1.09

1089 4.2329e−4 2.14 8.9038e−2 1.04
4225 1.0516e−4 2.05 4.4518e−2 1.02

16641 2.6254e−5 2.02 2.2259e−2 1.01

25 1.5401e−1 – 1.0516e−0 –
81 3.3021e−2 2.62 5.3972e−1 1.14

Ω4
h 578 7.1005e−3 2.42 2.7525e−1 1.06

1089 1.6650e−3 2.19 1.3832e−1 1.04
4225 4.1133e−4 2.06 6.9382e−2 1.02

16641 9.0462e−5 2.21 3.2452e−2 1.05

24 1.6326e−1 – 1.5080e−0 –
80 4.7167e−2 2.06 6.5812e−1 1.38

Ω5
h (FEM) 291 1.0165e−2 2.38 3.3273e−1 1.06

1125 2.4367e−3 2.11 1.6328e−1 1.05
4389 6.0517e−4 2.05 8.1761e−2 1.02

17215 1.7410e−4 1.82 4.1358e−2 1.00

We take the Lamé functions as follows:

µ̃(ρ) :=
3
4


1 + (1 + ρ2)−1/2


· 104 MPa and λ̃(ρ) :=

3
4

(1 − 2µ̃(ρ)) · 104 MPa ∀ρ ∈ R+.

This function µ̃ corresponds to the Carreau law for viscoplastic materials. It is easy to verify that the hypotheses at
the beginning of Section 4 are fulfilled by our choice of λ̃ and µ̃. We have taken the load f such that the solution u of
Problem (2) is given by:

u1(x, y) = u2(x, y) = sin(πx) sin(πy).

In Table 1, we report the convergence history of the virtual method (24) applied to our test problem with different
families of meshes. Moreover, we report in the last row the errors obtained solving the same problem using the finite
element formulation of the problem on a family of triangular meshes (Ω5

h ). The table includes the number of mesh
vertices, the convergence rates R, and the discrete errors Eh

0,∞ and Eh
1,2.

We observe from Table 1 a clear first order convergence rate in the discrete H1-like norm (in agreement with
Corollary 4.1) and a quadratic rate in the discrete L∞ norm. As expected, we notice that the proposed VE method
has the same order of accuracy as the standard FEM, with comparable errors. However, we remark that this test
is designed only to assess the performance of our VEM scheme, and not to prove any superior behavior upon the
FEM approach. Instead, an example where the VEM philosophy is advantageous with respect to FEMs is provided in
Section 5.3.
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Table 2
Approximation of u: convergence analysis of the virtual method (24).

Mesh Nh Eh
0,∞

R0,∞ Eh
1,2 R1,2

64 4.1122e−2 – 4.6371e−0 –
192 1.7816e−2 1.52 2.6318e−0 1.03

Ω1
h 1280 5.0006e−3 2.11 1.3317e−0 1.13

2304 1.2449e−3 2.17 6.6288e−1 1.08
8704 2.9750e−4 2.15 3.3092e−1 1.04

33792 8.2512e−5 1.90 1.6553e−1 1.02

64 8.1685e−2 – 5.1698e−0 –
192 2.3823e−2 2.24 2.9790e−0 1.00

Ω2
h 1280 1.4234e−2 0.86 1.5553e−0 1.08

2304 5.9189e−3 1.37 7.6103e−1 1.12
8704 1.7906e−3 1.80 3.6614e−1 1.10

33792 4.7067e−4 1.97 1.7981e−1 1.05

25 1.8457e−1 – 9.6706e−0 –
81 5.2374e−2 2.14 4.0009e−0 1.50

Ω3
h 578 1.5787e−2 1.89 1.8538e−0 1.21

1089 4.5978e−3 1.86 9.0144e−1 1.09
4225 1.2340e−3 1.94 4.4672e−1 1.04

16641 3.1086e−4 2.01 2.2279e−1 1.02

25 1.4957e−1 – 11.0527e−0 –
81 3.6140e−2 2.41 5.4418e−0 1.20

Ω4
h 578 1.1670e−2 1.78 2.6376e−0 1.13

1089 3.6360e−3 1.76 1.3130e−0 1.05
4225 1.1048e−3 1.76 6.5565e−1 1.02

16641 3.1365e−4 1.83 3.2786e−1 1.01

24 1.4440e−1 – 15.3026e−0 –
80 6.6418e−2 1.29 7.2515e−0 1.24

Ω5
h (FEM) 291 2.4030e−2 1.57 3.4552e−0 1.15

1125 3.0160e−3 3.07 1.6447e−0 1.10
4389 1.0006e−3 1.62 8.2164e−1 1.02

17215 2.2482e−4 2.18 4.1551e−1 1.00

5.2. A benchmark elasticity model problem with analytical solution

In this test case, we select the constitutive load as

σ = σ (x, ∇u(x)) = µ̂(ε(u))ε(u),

where µ̂ is defined by the following nonlinear function:

µ̂(ε(u)) := 3(1 + ∥ε(u)∥2) · 104 MPa,

with

∥ε(u)∥2
=

2
i, j=1

|εi j |
2.

We have taken the load f such that the solution u of Problem (2) is given by:

u1(x, y) = u2(x, y) = 10 sin(πx) sin(πy).

We remark that this choice does not actually correspond to any elastic material. Instead, it has been chosen as a
“benchmark model” which does not satisfy the assumption at the beginning of Section 4: condition (28) does not hold,
in particular.

Table 2 shows the convergence history of the virtual method (24) applied to our test problem with different families
of meshes. Moreover, we report in the last row the errors obtained solving the same problem using the finite element
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Table 3
Case 1: relative errors for the updated and fixed choice of the scaling.

Mesh Nh Updated αE Fixed αE

Mesh 1 199 1.715e−2 1.174e−2
Mesh 2 800 3.580e−3 3.392e−3
Mesh 3 3179 1.287e−3 8.946e−4

Table 4
Case 2: relative errors for the updated and fixed choice of the scaling.

Mesh Nh Updated αE Fixed αE

Mesh 1 199 2.384e−2 2.685e−0
Mesh 2 800 9.299e−3 9.555e−1
Mesh 3 3179 3.132e−3 2.090e−1

formulation of the problem on a family of triangular meshes (Ω5
h ). The table includes the number mesh vertices, the

convergence rates R, and the discrete errors Eh
0,∞ and Eh

1,2.
Again, a quadratic order of convergence in the discrete L∞ norm and a linear order convergence rate in the discrete

H1-like norm (in agreement with Corollary 4.1) can be clearly appreciated from Table 2. As in Section 5.1, we
conclude that the proposed VE method has the same order of accuracy as the standard FEM.

We now consider the same Ω and the same constitutive law, but we choose a couple of different loads. The purpose
is now to show the importance of updating the choice of the stability constant appearing in the elastic form (20), for
instance by employing the recipe detailed in (21) (see Remark 3.2). Therefore, we consider two different external
forces, compatible with the following two analytical solutions:

Case 1: u =


x(1 − x)y(1 − y), x(1 − x)y(1 − y)

T
,

Case 2: u = 80 ∗


x(1 − x)y(1 − y), x(1 − x)y(1 − y)

T
.

We notice that in Case 1 the solution gives rise to deformations of moderate magnitude, while in Case 2 much larger
deformations occur. We consider a single family of three regular Voronoi meshes, generated using the algorithm
in [28]. Moreover, we choose the following relative error measure, involving both the displacement components at all
the vertices v of the mesh:

E∞ =

max
v∈Ωh , i=1,2

|ui (v) − (uh)i (v)|

max
v∈Ωh , i=1,2

|ui (v)|
.

In Table 3 we report the relative errors computed for Case 1, using both the updated scalings introduced in (21)
and a fixed scaling. We notice that convergence is attained for both the strategies of the scaling choice.

In Table 4 we report the relative errors computed for Case 2, using both the updated scalings introduced in (21) and
a fixed scaling. We notice that for this case, convergence is attained when using the updating strategy, while choosing
a fixed scaling provides unsatisfactory results. In particular, on the finest mesh the error is still around 20%. Moreover,
the solution is highly oscillating due to the presence of unstable numerical modes (figure not shown).

5.3. A problem with a hard inclusion

In order to show a simple example where employing a VEM scheme can be preferable than using a standard FEM
scheme, we here consider the following test, modeling a soft material with a harder circular inclusion. Let the domain
Ω = ]0, 1[

2 and its circular subset (all distances are reported in meters)

ω =

(x, y) ∈ Ω : (x − 0.5)2

+ (y − 0.5)2
≤ (0.35)2.
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Fig. 3. Polygonal mesh V2 and triangular mesh F2, after deformation.

Table 5
Test with harder inclusion. Number of degrees of freedom, horizontal
and vertical displacement of the upper right corner for the six
considered meshes and a finer reference grid.

Mesh DoFs Horizontal displ. Vertical displ.

F1 338 0.075209 −0.169819
V1 226 0.075196 −0.169807
F2 1306 0.075983 −0.171824
V2 812 0.075970 −0.171812
F3 5138 0.076193 −0.172375
V3 3088 0.076180 −0.172363
Ref 19862 0.076263 −0.172558

Outside of Ω , i.e. for all points x ∈ Ω\ω, we consider the same Hencky-von Mises elastic law of Section 5.1 with

µ̃(ρ) :=
1
4


1 + (1 + ρ2)−1/4


· 103 MPa and λ̃(ρ) :=

1
4

−
µ̃(ρ)

2
∀ρ ∈ R+,

while inside the inclusion ω both µ̃ and λ̃ are amplified by a factor 103:

µ̃(ρ) :=
1
4


1 + (1 + ρ2)−1/4


· 106 MPa and λ̃(ρ) :=


1
4

−
µ̃(ρ)

2


· 103

∀ρ ∈ R+.

The body is clamped on the left edge {0}×[0, 1], free on the remaining boundary and subjected to the constant volume
loading f = (0, −5) · 107 N/m3.

We consider two different families of meshes. The first family (meshes V 1, V 2, V 3) is composed of polygonal
grids such that the hard inclusion ω is meshed by a single (multi-sided) polygon, while outside ω a standard triangular
grid is used. Instead, the second family (meshes F1, F2, F3) is composed of standard finite element triangular meshes
over the whole Ω . Of course, in order to keep conformity of the grid, also the inclusion ω need to be sub-divided into
triangles. Two samples (F2 and V2) of such meshes after deformation are shown in Fig. 3.

In Table 5 we report the value of the horizontal and vertical displacement of the upper right corner of the structure.
Moreover, we report the number of degrees of freedom associated to each mesh. The last line in the table shows the
reference values obtained with a very fine triangular mesh. We notice that the number of correct digits is the same for
Fi and Vi , i = 1, 2, 3, but the polygonal meshes obtain the same accuracy with a much smaller number of degrees
of freedom. Here, the flexibility of VEMs to mesh the hard inclusion (where little deformation occurs) with a single
element, saves many degrees of freedom when compared to a standard FEM approach.

5.4. Von Mises plasticity

In the present section we show a numerical example for an inelastic material, von Mises plasticity with linear
hardenings. We consider the classical problem of a strip with circular hole in plain strain regime under enforced
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Fig. 4. Left: depiction of the geometry for the perforated strip problem. Right: sample Voronoi mesh V2.

displacements of δ amplitude at two ends. Due to the symmetry of the problem, we can consider one quarter of the
strip, as depicted in Fig. 4 (left). The geometric data are

B = 100 mm, H = 180 mm, B0 = 50 mm, δ = 10 mm.

We consider a J2 plasticity model with linear kinematic and isotropic hardenings (see for instance [24]) with material
parameters

E = 70 MPa, ν = 0.2 MPa, σy,0 = 0.8 MPa, Hiso = 10 MPa, Hkin = 10 MPa.

For comparison purposes, we take as “exact solution” one obtained with linear finite elements on a fine triangular
mesh with 45,312 elements. Note that, since the considered model includes hardenings, there is no risk of volumetric
locking and thus triangular elements are a good choice. We solve the problem on a sequence of four Voronoi meshes
(mesh V1–V4) generated with the code PolyMesher [28]. We depict a sample mesh V2 in Fig. 4 (right) while the
number of vertices in each grid can be found in Table 6. In all cases we use the incremental loading procedure
described in Section 3.3 with 100 time-steps. At each time step the constitutive law is solved using a classical radial
return map algorithm (see for instance [24], Chapter 3). For each mesh we show the following values in Table 6:

• The vertical displacement at the point A of coordinates (0 mm, 50 mm), where the axes origin is at the center of
the hole;

• the horizontal displacement at the point C of coordinates (50 mm, 0 mm);

• the maximum stress σmax;

• the total stress σT , i.e. the integral over Ω of the stress amplitude ∥σ∥ =


i, j=1,2 |σi j |
2
1/2.

Note that, on purpose, in Table 6 we consider quantities for which is easy to obtain convergence (displacement at point
A and total stress) and other ones for which is harder (displacement at point C and maximum stress). In all cases we
can appreciate the convergence of the method towards the reference values; finer Voronoi meshes would be needed
for a better approximation of the maximum stress.

In Fig. 5 we depict the value of the plastic consistency parameter γ for the V4 and for the fine reference mesh.
The parameter γ indicates if and how much plastification has occurred locally for the material; we refer again to [24]
for a detailed description of the model. Again, the results for the proposed method are in good accordance with the
reference one.
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Table 6
Number of mesh vertices, displacements at points A and C, maximum stress and total
stress for the four Voronoi meshes and for a reference value obtained with a fine
triangular mesh.

Mesh Nh Displ. A Displ. C σmax σT

V1 129 0.7839 −0.3181 3.3842 244.2324
V2 511 0.8173 −0.3928 4.1354 240.1062
V3 2032 0.8253 −0.4212 4.4266 238.7653
V4 8131 0.8277 −0.4300 4.7755 238.3688
Reference 22921 0.8284 −0.4334 4.9891 238.2631

Fig. 5. Depiction of the plastic flow γ , mesh V4 on the left and reference triangular mesh on the right.

5.5. Finite strain elasticity

The method detailed in Sections 3.1 and 3.2 can also be applied to elastic problems in a large strain regime.
However, we remark that the complexity of the finite elasticity problem requires a much deeper design and analysis
than the one here presented. Therefore, the following discussion should be intended only as a very preliminary study
towards the VEM discretization of large deformation elastic problems.

We here focus on neo-Hookean hyperelastic materials, but different constitutive laws could be considered.
Following a material description (see [29–31], for instance), the variational formulation of the elastic large
deformation problem reads as in (3): Find u ∈ V such that

Ω
P(x, ∇u(x)) : ∇v(x)dx =


Ω

f(x) · v(x)dx ∀v ∈ W,
(56)

where the first Piola–Kirchhoff stress tensor P(x, ∇u(x)) is not necessarily symmetric. As for Problem (3), in (56)
the symbol V denotes the space of admissible displacements and W the space of its variations. A homogeneous
neo-Hookean material is described by the constitutive law:

P(x, ∇u(x)) = µ[(I + ∇u) + (I + ∇u)−T
]

+ λΘ(det(I + ∇u))π(det(I + ∇u))(I + ∇u)−T . (57)

Above, λ and µ are given constants, Θ : R+
−→ R is a suitable smooth function, and π is defined as

π(s) = Θ ′(s)s. (58)

Here, we choose Θ(s) = s − 1, so that π(s) = 1.
A possible virtual method for Problem (56) can be designed exactly as in Sections 3.1 and 3.2, simply by

systematically substituting P in place of σ .
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Table 7
Computed displacements using triangular (T1, . . . ,T4), square (Q1,
. . . ,Q4), and hexagonal Voronoi (V1, . . . ,V4) meshes.

Mesh Nh x-Displ. at P y-Displ. at P

T1 55 0.9865 −0.0438
T2 183 1.0615 −0.0398
T3 727 1.0848 −0.0358
T4 2810 1.0967 −0.0354
Q1 49 0.9979 −0.0736
Q2 196 1.0730 −0.04791
Q3 784 1.0950 −0.0391
Q4 3025 1.1005 −0.0364
V1 52 0.9125 −0.0673
V2 199 1.0344 −0.0520
V3 800 1.0722 −0.0408
V4 3179 1.0918 −0.0368
Reference 35459 1.1018 −0.0353

Fig. 6. Deformed body obtained with the triangular mesh T2 (left), the square mesh Q2 (center), and the hexagonal Voronoi mesh V2 (right).

We test the method considering a square block of side length 1 m, which initially occupies the region Ω = (0, 1)2.
We impose clamped boundary conditions on the side Γc = {0} × [0, 1], while the remaining part of the boundary is
free. The material parameters are chosen as µ = 2.6316 · 104 MPa and λ = 5.1086 · 104 MPa. The load is given by
f = (1, 0)T 10.5 · 1010 N/m3.

Table 7 displays the computed displacements of the material point P = (1, 1)T , when using triangular (T1,
. . . ,T4), quadrilateral (Q1, . . . ,Q4), and hexagonal Voronoi (V1, . . . ,V4) meshes. A reference solution at the same
point, obtained with a very fine triangular mesh of 70,344 elements, corresponding to 35,459 mesh vertices, is also
reported. Finally, Fig. 6 depicts the deformed body when using the triangular mesh T2, the square mesh Q2 and the
hexagonal Voronoi mesh V2 of Table 7. We notice that for every considered scheme, convergence to the reference
solution occurs, and the deformed shapes appear to be sensible.

6. Conclusions

We have presented a Virtual Element Method to deal with fairly general non-linear elastic and inelastic problems.
Our scheme is based on a low-order approximation of the displacement field, together with a suitable treatment of the
numerical displacement gradient. The proposed method allows for general polygonal/polyhedral meshes, is efficient
in terms of number of applications of the constitutive law, and can make use of any standard black-box constitutive
law algorithm. We have presented several numerical tests assessing the computational performance of the proposed
methodology. However, we remark that this study is intended as a first step towards the design of efficient Virtual
Element Methods for non-linear Computational Mechanics problems. Many possible extensions and improvements
could be of interest. For instance, large deformation problems require a much deeper investigations, and other inelastic
cases such as perfect plasticity or damage could be considered.



346 L. Beirão da Veiga et al. / Comput. Methods Appl. Mech. Engrg. 295 (2015) 327–346

Acknowledgments

D. Mora was partially supported by CONICYT-Chile through FONDECYT project No. 1140791 and by project
Anillo ACT 1118 (ANANUM).

References

[1] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic principles of virtual element methods, Math. Models
Methods Appl. Sci. 23 (2013) 119–214.

[2] F. Brezzi, L.D. Marini, Virtual element method for plate bending problems, Comput. Methods Appl. Mech. Eng. 253 (2012) 455–462.
[3] L. Beirão da Veiga, G. Manzini, A virtual element method with arbitrary regularity, IMA J. Numer. Anal. 34 (2) (2014) 759–781.
[4] L. Beirão da Veiga, F. Brezzi, L.D. Marini, A. Russo, The hitchhikers guide to the virtual element method, Math. Models Methods Appl. Sci.

24 (8) (2014) 1541–1573.
[5] F. Brezzi, K. Lipnikov, M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes,

SIAM J. Numer. Anal. 43 (5) (2005) 1872–1896.
[6] L. Beirão da Veiga, K. Lipnikov, G. Manzini, The Mimetic Finite Difference Method for Elliptic Problems, in: series MS&A, vol. 11, Springer,

2014.
[7] N. Sukumar, A. Tabarraei, Conforming polygonal finite elements, Int. J. Numer. Methods Eng. 61 (2004) 2045–2066.
[8] M. Floater, A. Gillette, N. Sukumar, Gradient bounds for Wachspress coordinates on polytopes, SIAM J. Numer. Anal. 52 (1) (2014) 515–532.
[9] C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, Polygonal finite elements for topology optimization: A unifying paradigm, Int. J.

Numer. Methods Eng. 82 (2010) 671–698.
[10] J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013) 103–115.
[11] J. Wang, X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp. 83 (289) (2014) 2101–2126.
[12] D. Di Pietro, A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Methods Appl. Mech. Eng.

283 (0) (2015) 1–21.
[13] D. Di Pietro, A. Ern, Hybrid high-order methods for variable-diffusion problems on general meshes, C. R. Acad. Sci., Paris I 353 (1) (2015)

31–34.
[14] B. Cockburn, J. Gopalakrishnan, R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for

second order elliptic problems, SIAM J. Numer. Anal. 47 (2) (2009) 1319–1365.
[15] H. Chi, C. Talischi, O. Lopez-Pamies, G.H. Paulino, Polygonal finite elements for finite elasticity, Int. J. Numer. Meth. Engrg. 101 (4) (2015)

305–328.
[16] A.L. Gain, G.H. Paulino, L. Duarte, I.F.M. Menezes, Topology optimization using polytopes, Comput. Methods Appl. Mech. Eng. 293 (2015)

411–430.
[17] S. Biabanaki, A. Khoei, P. Wriggers, Polygonal finite element methods for contact-impact problems on non-conformal meshes, Comput.

Methods Appl. Mech. Eng. 269 (2014) 198–221.
[18] S.E. Leon, D. Spring, G.H. Paulino, Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements, Int. J.

Numer. Meth. Engrng. 100 (2014) 555–576.
[19] L. Beirão da Veiga, F. Brezzi, L.D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal. 51 (2013) 794–812.
[20] A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes,

Comput. Methods Appl. Mech. Eng. 282 (2014) 132–160.
[21] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[22] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer-Verlag, Berlin Heidelberg, 2013.
[23] W. Han, B.D. Reddy, Plasticity: Mathematical Theory and Numerical Analysis, Springer-Verlag, New York, 2013.
[24] J.C. Simo, T.J.R. Hughes, Computational Inelasticity, Springer-Verlag, New York, 1998.
[25] B. Ahmed, A. Alsaedi, F. Brezzi, L.D. Marini, A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl. 66 (3)

(2013) 376–391.
[26] D. Mora, G. Rivera, R. Rodrı́guez, A virtual element method for the Steklov eigenvalue problem, Math. Models Methods Appl. Sci. 25 (8)

(2015) 1421–1445.
[27] G.N. Gatica, A. Márquez, W. Rudolph, A priori and a posteriori error analyses of augmented twofold saddle point formulations for nonlinear

elasticity problems, Comput. Methods Appl. Mech. Eng. 264 (2013) 23–48.
[28] C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in

Matlab, Struct. Multidiscip. Optim. 45 (3) (2012) 309–328.
[29] J. Bonet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, second ed., Cambridge University Press, 2008.
[30] P.G. Ciarlet, Mathematical Elasticity: Three-dimensional elasticity, vol. 1, Elsevier, 1993.
[31] J.E. Marsden, T.J.R. Hughes, Mathematical Foundations of Elasticity, Dover, 1994.

http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref1
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref2
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref3
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref4
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref5
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref6
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref7
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref8
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref9
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref10
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref11
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref12
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref13
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref14
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref15
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref16
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref17
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref18
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref19
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref20
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref21
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref22
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref23
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref24
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref25
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref26
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref27
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref28
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref29
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref30
http://refhub.elsevier.com/S0045-7825(15)00225-X/sbref31

	A Virtual Element Method for elastic and inelastic problems on polytope meshes
	Introduction
	The continuous problems
	The elastic case
	The inelastic case

	The virtual element approximation
	The virtual spaces and operators
	The elastic case
	The inelastic case

	Theoretical results
	Numerical tests
	Hencky-von Mises elasticity problem with analytical solution
	A benchmark elasticity model problem with analytical solution
	A problem with a hard inclusion
	Von Mises plasticity
	Finite strain elasticity

	Conclusions
	Acknowledgments
	References


