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We study the Haldane-Hubbard model by exact Renormalization Group techniques. We analyt-
ically construct the topological phase diagram, for weak interactions. We predict that many-body
interactions induce a shift of the transition line: in particular, repulsive interactions enlarge the
topologically non-trivial region. The presence of new intermediate phases, absent in the non inter-
acting case, is rigorously excluded at weak coupling. Despite the non-trivial renormalization of the
wave function and of the Fermi velocity, the conductivity is universal: at the renormalized critical
line, both the discontinuity of the transverse conductivity and the longitudinal conductivity are
independent of the interaction, thanks to remarkable cancellations due to lattice Ward Identities.
In contrast to the quantization of the transverse conductivity, the universality of the longitudinal
conductivity cannot be explained via topological arguments.
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I. INTRODUCTION

The current understanding of topological matter1–3 is
mostly based on a single-particle description. A paradig-
matic example is the integer quantum Hall effect: in the
absence of interactions, the Hall conductivity has a deep
topological interpretation4,5, which explains its quantiza-
tion and stability. A more recent example is provided by
the classification of time-reversal invariant insulators6–13,
which, again, relies on the properties of the noninteract-
ing Bloch functions. Understanding the effect of inter-
actions on topological matter has become a very active
area of research14.

A natural model in which to explore such issues is the
Haldane-Hubbard model. The Haldane-Hubbard model
describes spin-1/2 electrons on the honeycomb lattice, in-
teracting via a local Hubbard interaction of strength U .
The electrons hop between nearest neighbor sites with
hopping strength t1, and between next-to-nearest neigh-
bor sites with alternating hopping parameters t2e

±iφ: the
phases ±φ describe a transverse magnetic field, with zero
net flux through the honeycomb plaquette. Finally, the
system is also exposed to a staggered chemical potential,
with strength ±W on the two triangular sublattices. In
the absence of interactions15 this model shows, depend-
ing on the value of its parameters, a trivial insulating
phase with vanishing transverse conductivity σ12 = 0, or

a quantum Hall phase with σ12 = ±2 e
2

h . These topo-
logical phases are separated by two critical curves in the
(φ,W ) plane, intersecting at the crossing points (0, 0)
and (π, 0). Along the critical curves, the energy bands
touch at a conical intersection; at the crossing points,
there are two such conical intersections, as in standard
graphene. Indeed if t2 = W = 0 the system describes
graphene with short range interaction.

From a theoretical viewpoint, the Haldane topologi-
cal phases have been argued to emerge in pure graphene
sheets by spontaneous mass generation, due to the
strong, unscreened Coulomb repulsion16–23. From an ex-

perimental viewpoint, the Haldane model has been real-
ized in Ref.25, and the topological phase transition has
been observed. The inclusion of a tunable Hubbard inter-
action seems to be accessible by the present technology.
Therefore, studying its effects on the transport coeffi-
cients is of fundamental importance for the next gen-
eration of cold atom experiments. So far, the proper-
ties of the Haldane-Hubbard model have been investi-
gated mostly via mean-field, variational and numerical
analyses26–40.

Concerning the transverse conductivity, topological ar-
guments for interacting systems41,42 ensure that, away
from the critical curves, σ12 can only take integer values,
in units of e2/h (here σij are the elements of the conduc-
tivity matrix, in the limit of zero frequency and zero tem-
perature). However, its specific value at a given point in
the phase diagram can be different from the correspond-
ing non-interacting value, in particular in the vicinity of
the critical curves (at weak coupling, far from the crit-
ical lines, the conductivity is known to be independent
of the interaction43,44). The relevant question here is
to distinguish between two scenarios: the first, in which
small interactions are not able to generate new phases
and their main effect is a shift of the critical curves,
as found in certain 3D topological insulators45–47; and
a second one, characterized by the emergence of a novel,
interaction-induced, topological phase, like the one cor-

responding to σ12 = ± e
2

h , predicted for the Haldane-

Hubbard model in Ref.26–29,39,40. Regarding the lon-
gitudinal conductivity, in the absence of interactions it

is equal to e2

h
π
4 , for all the values of (φ,W ) on the

critical lines, with the exception of the crossing points

(φ,W ) = (0, 0), (π, 0), where it is equal to e2

h
π
2 (of course,

away from the critical lines σii = 0). There are no
topological arguments ensuring that the critical longi-
tudinal conductivity should remain quantized when the
interaction is switched on: therefore, the relevant ques-
tion here is whether the interaction introduces correc-
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tions breaking this exact quantization or not. This ques-
tion is related to a similar one discussed in the context
of graphene, in which recent experiments48 showed that
the optical longitudinal conductivity is essentially uni-
versal, and in excellent agreement with the value com-
puted for the non-interacting model49; on the contrary,
the interaction produces dramatic effects on other phys-
ical quantities, such as the Fermi velocity50. On the the-
oretical side, the universal behavior in graphene is still
not completely understood51–60, see, in particular, Ref.58

for a recent review. A rigorous result for short range
interaction61 showed that, in order to get exact univer-
sality of graphene’s longitudinal conductivity, one needs
to fully take into account the non linear correction to the
bands, even if such terms are irrelevant in the Renormal-
ization Group (RG) sense.

In this paper we compute the conductivity matrix of
the Haldane-Hubbard model via exact RG methods, close
to and at the critical lines, for weak interactions. We take
lattice effects into account, and we exploit lattice symme-
tries in order to reduce the number of independent run-
ning couplings, in a way similar to Ref.61–64 for graphene.
The use of exact RG methods is motivated by the fact
that the computation of conductivity is extremely sensi-
tive to the choice of the regularization scheme60. Even
though they are irrelevant in the RG sense, lattice and
interaction effects produce, in general, finite corrections
to the physical observables, and they must be taken into
account in order to prove or disprove the emergence of
new interaction-induced topological phases, as well as to
address the issue of universality of the critical longitudi-
nal conductivity.

By choosing the chemical potential µ ≡ µ(U) so to
fix the Fermi energy half-way between the valence and
conduction bands, the band gap can only close at the two
Fermi points ~pωF = ( 2π

3 , ω
2π

3
√

3
), where ω = ± is the valley

index. We prove that, close to criticality, the interacting
Euclidean two-point function is:

Ŝ2(k0, ~p
ω
F + ~k′) =

= −
(
ik0Z1,R −mR vR(−ik′1 + ωk′2)
vR(ik′1 + ωk′2) ik0Z2,R +mR

)−1(
1 +R(k0,~k

′)
)

where the error term R(k0,~k
′) is subleading in the effec-

tive mass mR, in the Matsubara frequency k0 and in the

quasi-momentum ~k′. The parameters Z1,R, Z2,R, vR,mR,
depend non-trivially on the valley index ω and on the in-
teraction. In particular, the renormalized mass mR ≡
mR,ω reads:

mR,± = W ± 3
√

3 t2 sinφ− F±(U,W, φ) (1)

where ± is the valley index, and F± is expressed in the
form of a convergent renormalized series, whose first non-
trivial order is given by Eq.(B4) below. The dressed
critical lines, defined by the condition that the renor-
malized mass vanishes, are also modified by the inter-
action, see Fig.1. Similarly, the Fermi velocity vR and

the wave function renormalizations Z1,R, Z2,R have non-
trivial interaction corrections and, remarkably, Z1,R and
Z2,R are different, as shown in Fig.2. All these non-
universal renormalizations are absent in effective rela-
tivistic descriptions: by neglecting the (irrelevant) non-
linear corrections to the energy bands, one would obtain
a Nambu-Jona Lasinio model, in which Lorentz and chi-
ral symmetry would imply the invariance of vR, the in-
variance of the critical lines and Z1,R = Z2,R. However,
these extra symmetries are broken by the lattice, and the
renormalization of the effective parameters is a physical
signature of many body interaction that should be visi-
ble in real systems, e.g., in cold atom experiments. These
non-universal parameters also enter the computation of
the conductivity: remarkably, they are related by exact
lattice Ward identities, which induce non-trivial cancella-
tions and imply subtle universality properties, as stated
in the following theorem. We recall that σij are the el-
ements of the Kubo conductivity matrix, in the limit of
zero frequency and zero temperature. We also denote by
σcrij their values on the renormalized critical curves.
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√
3t2

0

3
√
3t2
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FIG. 1. Interacting phase diagram of the Haldane-Hubbard
model for t1 = 1, t2 = 0.1, and different values of U . σ12 =
(e2/h)ν, where the values of ν are reported in the figure. for
ν = ±2 the system is a topological insulator (TI), while for
ν = 0 the system is a trivial, normal, insulator (NI).

Theorem. There exists U0 > 0 such that for −U0 < U <
U0, the system is massless if and only if the right side of
Eq.(1) vanishes. This condition defines two renormal-
ized critical curves intersecting at (φ,W ) = (0, 0), (π, 0),
separating two non-trivial topological phases, character-
ized by transverse conductivity σ12 = ±2(e2/h), from two
standard insulating phases, see Fig.1. On the renormal-
ized critical curves, the critical longitudinal conductivity
σcrii , i = 1, 2, is quantized: if φ 6= 0, π,

σcr
ii =

e2

h

π

4
, (2)



3

while σcr
ii = e2

h
π
2 at (φ,W ) = (0, 0), (π, 0).
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FIG. 2. The difference of the wave function renormalizations
∆Z = Z1,R − Z2,R on the critical line, as a function of φ, for
different values of U . This difference would be zero for the
effective relativistic theory.

Thus, the critical lines acquire non-universal,
interaction-dependent corrections, but they still separate
topological regions labelled by ν = ±2 from the trivial
ones, labelled by ν = 0, see Fig.1. New intermediate
phases characterized by the quantum number ν = ±1 are
rigorously excluded at weak coupling: the universality
class of the topological transition remains unchanged.
The effect of the repulsive interaction is to enlarge the
topologically non-trivial region, see Fig.1. This enhance-
ment agrees with the numerical findings of Ref.39,40

and is presumably a sign that repulsive interactions
in graphene-like systems can favor the spontaneous
generation of the topological insulating phase16–23.

Even if not protected by any topological argument, the
critical longitudinal conductivity σcr

11 is exactly universal
and equal to half the one of graphene, on the whole criti-
cal line, with the exception of the special crossing points
(0, 0) and (π, 0), at which the value of σcr

11 is the same ob-
tained for interacting graphene61, namely (e2/h)(π/2):
each Dirac cone contributes with a universal quantity
(e2/h)(π/4) to the critical longitudinal conductivity. Of
course, away from the critical curves, the longitudinal
conductivity is exactly zero.

Our results are in agreement with a low energy descrip-
tion in terms of an effective action that includes a non-
trivial Chern-Simons term, whose coefficient (the Hall
conductivity) is proportional to the difference of the signs
of the renormalized masses, sign(mR,−) − sign(mR,+),
rather than the bare ones, as one would get in the rela-
tivisitic approximation24.

The theory that we develop is non perturbative, in the
sense that it allows us to express all the correlations and

transport coefficients in terms of convergent series. As
it will appear from the analysis, our non-perturbative
bounds on the correlation functions, once combined with
Ward Identities, allow us to conclude the universality of
the conductivity, without exploiting explicit cancellations
at all orders. We have not tried to optimize the estimate
for the radius of the convergence domain, which, there-
fore, is expected to be far from the values of U where
interaction-induced phase transitions might take place.
However, we believe that the range of validity of our con-
vergent expansions could be improved by combining our
analysis with numerical techniques, as it is done, for in-
stance, for the stability of KAM tori in classical mechan-
ics. Finally, we stress that our analysis only requires the
interaction to be short-ranged, we considered the Hub-
bard interaction just for the sake of definiteness.

The paper is organized as follows. In Section II we
define the Haldane-Hubbard model, and derive the exact
lattice Ward Identities for its correlation functions. In
Section III we perform an exact Renormalization Group
analysis for the correlations, we classify the allowed run-
ning coupling constants by the exact lattice symmetries
of the system, and we compute the decay of the corre-
lations at large distances, as well as the renormalized
critical line. In Section IV we prove the quantization
of the Hall conductivity across the critical line, and the
universality of the critical longitudinal conductivity.

II. THE HALDANE-HUBBARD MODEL

The Haldane-Hubbard model describes interacting
fermions on the honeycomb lattice Λ, which can be un-
derstood as the superposition of two triangular sublat-
tices ΛA and ΛB ; see Fig. 3. The triangular sublattice
ΛA is generated by the basis vectors

~̀
1 =

1

2
(3,−

√
3) , ~̀

2 =
1

2
(3,
√

3) . (3)

With each sublattice, we introduce fermionic creation
and annihilation operators a±~x,σ, b±~y,σ, where σ is the spin
degree of freedom, σ =↑, ↓. The Hamiltonian is:

H = H0 + UV − µN , (4)

where: H0 is the noninteracting Hamiltonian, UV is the
Hubbard interaction and −µN fixes the chemical poten-
tial. The noninteracting Hamiltonian is15:

H0 = −
∑
σ=↑↓

∑
〈~x,~y〉

t1
[
a+
~x,σb

−
~y,σ + b+~y,σa

−
~x,σ

]
−
∑
σ=↑↓

∑
〈〈~x,~y〉〉

[
t2(~x, ~y)a+

~x,σa
−
~y,σ + t2(~x, ~y)∗b+~x,σb

−
~y,σ

]
+W

∑
σ=↑↓

[ ∑
~x∈ΛA

a+
~x,σa

−
~x,σ −

∑
~y∈ΛB

b+~y,σb
−
~y,σ

]
; (5)

the first sum is over nearest-neighbours on Λ, while the
second is over next-to-nearest neighbours. Each site on
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ΛA is connected to its three nearest-neighbours on ΛB
by the vectors:

~δ1 = (1, 0) , ~δ2 =
1

2
(−1,

√
3) , ~δ3 =

1

2
(−1,−

√
3) .

(6)
The next-to-nearest neighbour hopping parameter
t2(~x, ~y) is defined as:

t2(~x, ~x+ ~γi) = eiφt2 , t2(~x, ~x− ~γi) = e−iφt2 , (7)

for i = 1, 2, 3. Explicitely (see Fig. 3):

~γ1 = ~̀
1 − ~̀2 , ~γ2 = ~̀

2 , ~γ3 = −~̀1 . (8)

The Hubbard interaction term is, as usual:

V =
∑
~x

[
n~x,↑ −

1

2

][
n~x,↓ −

1

2

]
, (9)

where the sum ranges over the full honeycomb lattice;
the density operator n~x,σ is:

n~x,σ =

{
a+
~x,σa

−
~x,σ for ~x ∈ ΛA

b+~x,σb
−
~x,σ for ~x ∈ ΛB

, (10)

in terms of which we also have N =
∑
~x,σ n~x,σ. The

factors −1/2 in Eq. (9) amount to a redefinition of µ,
and simplify the functional integral representation of the
model (see Section III A).

We denote the finite volume version of H by HL, with
periodic boundary conditions. The finite volume and fi-
nite temperature Gibbs state is:

〈·〉β,L = Tr{e−βHL ·}/Tr{e−βHL} , (11)

and we let

〈·〉β = lim
L→∞

〈·〉β,L , 〈·〉 = lim
β→∞

〈·〉β,L . (12)

BA

~δ1

~δ2

~δ3

~x

~γ1

~γ2

~γ3

FIG. 3. The honeycomb lattice of the Haldane-Hubbard
model.

Correlations, current and conductivity. It is convenient
to define

Ψ+
~x,σ =

(
a+
~x,σ, b

+

~x+~δ1,σ

)
, Ψ−~x,σ =

(
Ψ+
~x,σ

)†
; (13)

also, for any inverse temperature β, we let Ψ±~x,σ(x0) =

eHx0Ψ±~x,σe
−Hx0 be their evolution at ‘imaginary time’

x0 ∈ [0, β). For general x0 ∈ R, we extend Ψ±~x,σ(x0) anti-

periodically (of anti-period β) beyond the basic interval
[0, β). The Fourier transform of the fields is defined as

Ψ±~x,σ =
∫
B
d~k
|B|e

±i~k·~xΨ̂±~k,σ, where B is the Brillouin zone67.

The 2-point function is

S2(x,y) = 〈TΨ−~x,σ(x0)Ψ+
~y,σ(y0)〉

=

∫
R×B

dk

2π|B|
e−ik(x−y)Ŝ2(k),

where x = (x0, ~x), y = (y0, ~y), T is the fermionic time-
ordering operator (which orders imaginary times in de-

creasing order68), and k = (k0,~k), where k0 is the Mat-
subara frequency. Note that S2 is a 2 × 2 matrix (with
indices in the ‘sublattice’ space) and its definition is in-
dependent of the choice of σ =↑, ↓.

The current is defined via the Peierls’ substitution (see
App.A), and is equal to

~J~p(x0) =
∑
σ=↑↓

∫
B

d~k

|B|
Ψ̂+
~k+~p,σ

(x0) ~M(~k, ~p)Ψ̂−~k,σ(x0) . (14)

The two components Mi(~k, ~p), i = 1, 2, of ~M(~k, ~p) are
the bare vertex functions, which are 2× 2 matrices, with
elements labelled by the spinor indices. For the explicit
expression of the bare vertex functions, see App.A.

The current-current and the vertex correlations are de-
fined, respectively, as

K̂µν(p) =

∫
R
dx0e

−ip0x0〈〈T J~p,µ(x0); J−~p,ν(0)〉〉∞,

Ĝµ(k,p) =

∫
R
dx0

∫
R
dy0 e

−ip0x0+i(k0+p0)y0 ×

×〈〈T J~p,µ(x0); Ψ̂−~k+~p,σ
(y0)Ψ̂+

~k,σ
〉〉
∞
, (15)

where µ, ν ∈ {0, 1, 2},

J~p,0(x0) =
∑
~x∈ΛA

∑
σ=↑↓

e−i~p·~xΨ+
~x,σ(x0)M0(~p)Ψ−~x,σ(x0),

with

M0(~p) =

(
1 0
0 e−i~p1

)
; (16)

the labels µ = 1, 2 refer to the components of the
current defined in Eq. (14). Moreover, 〈〈·〉〉∞ =
limβ→∞ limL→∞ L−2〈·〉β,L is the trace per unit volume,
and the semi-colon indicates that the expectation is trun-
cated.
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For later reference, we also introduce the vertex func-
tion:

Γ̂µ(k,p) = Ŝ−1
2 (k + p)Ĝµ(k,p)Ŝ−1

2 (k), (17)

where Ŝ−1
2 (k) is the inverse of the 2-point function,

thought of as a 2× 2 matrix.
Finally, the d.c. Kubo conductivity is defined in terms

of the current-current correlation, in units such that e2 =
~ = 1, as:

σij = − lim
p0→0+

1

Ap0

[
K̂ij(p0, 0)− K̂ij(0)

]
, (18)

where i, j = 1, 2 and A = |~̀1 × ~̀2| = 3
√

3/2 is the area
of the fundamental cell.

Ward Identities. The continuity equation for the lat-
tice current Eq. (14), when averaged against an arbi-
trary number of field operators, implies exact identities
among correlation functions (Ward Identities), valid for
any value of the interaction U . In particular, the one
relating the 2-point and the vertex functions, which will
play an important role in the following, reads as follows:

2∑
µ=0

(i)δµ,0pµĜµ(k,p) = Ŝ2(k + p)M0(~p)−M0(~p)Ŝ2(k).

(19)
If we derive this equation with respect to p, compute the
result at p = 0 and recall the definition (17) of the vertex
function, we find:

Γ̂µ(k,0) = (−i)δµ,0∂µŜ−1
2 (k)+

[
∂µM0(~0), Ŝ−1

2 (k)
]
. (20)

In the following, Γ̂µ(k,0) will be denoted simply by

Γ̂µ(k).

The non-interacting case. If U = 0, the band structure
and the phase diagram can be computed explicitly: the
Bloch Hamiltonian is15

Ĥ0(~k) = (21)

=

(
−2t2 cosφα1(~k) +m(~k) −t1Ω∗(~k)

−t1Ω(~k) −2t2 cosφα1(~k)−m(~k)

)
where Ω(~k) = 1 + e−i

~k·~̀1 + e−i
~k·~̀2 and

α1(~k) =

3∑
i=1

cos(~k · ~γi) , α2(~k) =

3∑
i=1

sin(~k · ~γi)

m(~k) = W − 2t2 sinφα2(~k) . (22)

The corresponding energy bands are

ε±(~k) = −2t2 cosφα1(~k)±
√
m(~k)2 + t21|Ω(~k)|2 .

To make sure that the energy bands do not overlap, we
assume that t2/t1 < 1/3. The two bands can only touch
at the Fermi points ~p±F =

(
2π
3 ,±

2π
3
√

3

)
, which are the two

zeros of Ω(~k), around which Ω(~p±F+~k′) ' 3
2 (ik′1±k′2). The

condition that the two bands touch at ~pωF , with ω = +,−,
is that mω = 0, with

mω ≡ m(~pωF ) = W + ω3
√

3 t2 sinφ .

Therefore, the unperturbed critical curves are given by
the values of (φ,W ) such that:

W = ±3
√

3 t2 sinφ , (23)

which correspond to the dotted curves in Fig.1. Fixing
the chemical potential in such a way that the Fermi en-
ergy lies in between the two bands,

µ = −2t2 cosφα1(~p±F ) = −3t2 cosφ , (24)

the system passes from a semi-metallic behavior, when
(φ,W ) is on the critical line, to an insulating behavior,
characterized by the exponential decay of correlations,
when W 6= ±3

√
3t2 sinφ.

The insulating phase consists of four disconnected re-
gions in the (φ,W ) plane, two of which are ‘topologically
trivial’, while the other two have non-zero Hall conduc-
tivity, see Fig.1: more precisely, if W 6= ±3

√
3t2 sinφ,

σ12 =
ν

2π
, ν = sign(m−)− sign(m+) .

III. RENORMALIZATION GROUP ANALYSIS

We now construct the interacting correlations and
phase diagram, by using a convergent renormalized ex-
pansion, in the spirit of Ref.44,61,62. In this section, we in-
troduce the functional integral formulation of the model,
discuss the exact lattice symmetries of the fermionic ac-
tion, and describe the infrared integration, including the
study of the flow of the running coupling constants. One
of the main results of this section is the equation for the
interacting critical line.

A. Functional integral formulation

We are interested in the semi-metallic and insulating
regimes of the interacting system. We, therefore, set the
chemical potential accordingly (its value will be different,
in general, from the unperturbed one):

µ = −2t2 cosφα1(~p±F )− ξ,

where ξ (the shift of the chemical potential) must be
chosen as a function of U,W, φ, so that the renormalized
propagator either has a linear, ‘conical’, infrared singu-
larity (along the interacting critical line), or is gapped
(in the insulating phase).

The generating function W(f,A) for correlations, in
which f is the external field conjugated to the fermionic
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fields, and A is the external field conjugated to the cur-
rent, can be written as the following Grassmann integral:

eW(f,A) =

∫
P (dψ)e−V (ψ)+(ψ,f)+(j,A)∫

P (dψ)e−V (ψ)
, (25)

where: ψ±x,σ, with x = (x0, ~x) ∈ R×ΛA and σ ∈ {↑, ↓}, is
a two-component Grassmann spinor (it is the Grassmann
counterpart of Ψ±~x,σ(x0)), whose components will be de-

noted by ψ±x,σ,ρ, with ρ = 1, 2; P (dψ) is the fermionic
Gaussian integration with propagator

g(x,y) =

∫
R×B

dk

2π|B|
e−ik(x−y)ĝ(k), (26)

where, letting R(~k) = −2t2 cosφ
(
α1(~k)− α1(~p±F )

)
,

ĝ(k) =

(
−ik0 +R(~k) +m(~k) −t1Ω∗(~k)

−t1Ω(~k) −ik0 +R(~k)−m(~k)

)−1

and, at contact, g(x,x) should be interpreted as

limε→0+ [g(x + (ε,~0),x) + g(x− (ε,~0),x)];

V (ψ) =

∫
R
dx0

∑
~x∈ΛA

∑
ρ=1,2

(
Unρx,↑n

ρ
x,↓ + ξ

∑
σ=↑,↓

nρx,σ
)
,

where nρx,σ = ψ+
x,σ,ρψ

−
x,σ,ρ; and, finally,

(ψ, f) =

∫
R
dx0

∑
~x∈ΛA

∑
σ=↑↓

(ψ+
x,σf

−
x,σ + f+

x,σψ
−
x,σ),

(j, A) =

∫
R3

dp

(2π)3
Âp,µ̂p,µ,

where ̂p,µ =
∑
σ=↑↓

∫
R×B

dk
2π|B| ψ̂

+
k+p,σΓµ(~k, ~p)ψ̂−k,σ, in

which Γµ(~k, ~p) are the bare vertex functions, namely:

Γ0(~k, ~p) = M(~p), and, if i = 1, 2, Γi(~k, ~p) are the two

components of the (matrix-valued) vector ~M(~k, ~p) de-
fined in (14) and following lines. In terms of these defi-
nitions, the correlations can be re-expressed as

S2(x,y) =
∂2W

∂f+
x,σ∂f

−
y,σ

(0, 0) ,

Kµν(x,y) =
∂2W

∂jx,µ∂jy,ν
(0, 0) , (27)

and of suitable linear combinations of

G2,1;µ(x,y, z) =
∂3W

∂Ax,µ∂f
+
y,σ∂f

−
z,σ

(0, 0) . (28)

We now compute the generating function Eq. (25) via
a renormalized expansion, which is convergent uniformly
close to (and even on) the critical line. Note that, on
this line, the Grassmann integral has an infrared prob-
lem. In order to resolve and re-sum the corresponding
singularities, we proceed in a multi-scale fashion. First
of all, we distinguish the ultraviolet modes, correspond-
ing to large values of the Matsubara frequency, from the

infrared ones, by introducing two compactly supported
cut-off functions, χ±(k), supported in the vicinity of the
Fermi points (more precisely, we let χ±(k) = χ0(k−p±F ),
where χ0 is a smoothed out characteristic function of
the ball of radius a0, with a0 equal to, say, 1/3, and
p±F = (0, ~p±F )) and by letting χuv(k) = 1−

∑
ω=± χω(k).

We correspondingly split the propagator in its ultraviolet
and infrared components:

g(x,y) = g(1)(x,y) +
∑
ω=±

e−i~p
ω
F (~x−~y)g(≤0)

ω (x,y) (29)

where g(1)(x,y) and g
(≤0)
ω (x,y) are defined in a simi-

lar way as Eq. (26), with ĝ(k) replaced by χuv(k)ĝ(k)
and by χ0(k)ĝ(k + pωF ), respectively. We then split the
Grassmann field as a sum of two independent fields, with
propagators g(1) and g(≤0):

ψ±x,σ = ψ±(1)
x,σ +

∑
ω=±

e±i~p
ω
F ~xψ±(≤0)

x,σ,ω

and we rewrite the Grassmann Gaussian integration as
the product of two independent Gaussians: P (dψ) =
P (dψ(≤0))P (ψ(1)). By construction, the integration of
the ‘ultraviolet’ field ψ(1) does not have any infrared sin-
gularity and, therefore, can be performed in a straightfor-
ward manner, thus allowing us to rewrite the generating
function W(f,A) as the logarithm of

eW
(0)(f,A)

N0

∫
P (dψ(≤0))e−V

(0)(ψ(≤0))+B(0)(ψ(≤0),f,A),

(30)
where V (0) and B(0) are, respectively, the effective po-
tential and the effective source (which depend explicitly
on, respectively, ψ(≤0) and ψ(≤0), f, A), W(0) is inde-
pendent of ψ(≤0) (and depends explicitly on f,A), and

N0 =
∫
P (dψ(≤0))e−V

(0)(ψ(≤0)). Both V (0) and B(0) are
expressed as series of monomials in the ψ, f,A fields,
whose kernels (given by the sum of all possible Feyn-
man diagrams with fixed number and fixed location of
the external legs) are analytic functions of the interaction
strength, for U sufficiently small. The proof of their ana-
lyticity is based on a determinant expansion and on a sys-
tematic use of the Gram-Hadamard bounds, see Ref.44,62.

B. Symmetries

Before tackling the multi-scale integration of the in-
frared modes, we make a digression about the symmetry
structure of the effective potential, and in particular of
its local parts: the purpose is to classify the possible
relevant and marginal coupling constants. In the case
t2 = W = µ = 0 (standard graphene model) the lattice
symmetries severely constrain the form of the quadratic
terms in the effective potential: in particular, the interac-
tion does not shift the chemical potential, nor does it gen-
erate a mass61–64. In the general case (W, t2, φ 6= 0) the
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model is invariant under the following symmetry trans-
formations (since they do not mix the spin indices, for
notational convenience we temporarily drop the spin la-
bels from the formulas).

We discuss the symmetries in the absence of external
fields, since we will use them only to infer the structure
of the relevant and marginal contributions to the effec-
tive potential V (0). Once the structure of these terms
is known, the structure of the marginal contributions to
the effective source B(0) can be computed by using the
Ward Identity (20).

(1) Discrete rotations:

ψ̂−k → ei
~k(~δ3−~δ1)n− ψ̂−Tk , ψ̂+

k → ψ̂+
Tke
−i~k(~δ3−~δ1)n−

(31)
where, denoting the Pauli matrices by σ1, σ2, σ3, we de-
fined

n− = (1− σ3)/2 , Tk = (k0, e
−i 2π3 σ2~k) ; (32)

that is, T is the spatial rotation by 2π/3 in the counter-
clockwise direction.

(2) Complex conjugation:

ψ̂±k → ψ̂±−k , (33)

combined with

c→ c∗ , φ→ −φ , (34)

where c is a generic constant appearing in P (dψ) or in
V (ψ).

(3) Horizontal reflections:

ψ̂−k → σ1ψ̂
−
Rhk

, ψ̂+
k → ψ̂+

Rhk
σ1 , (35)

with

Rhk = (k0,−k1, k2) , (W,φ)→ (−W,−φ) (36)

(4) Vertical reflections:

ψ̂±k → ψ̂±Rvk , (37)

with

Rvk = (k0, k1,−k2) , φ→ −φ. (38)

(5) Particle-hole:

ψ̂−k → iψ̂+,T
Pk , ψ̂+

k → iψ̂−,TPk , (39)

with

Pk = (k0,−k1,−k2) , φ→ −φ . (40)

Note that, at fixed W,φ, the theory is invariant under
the transformations (1), (2)+(4), and (2)+(5). In par-
ticular, these transformations leave the quadratic part

Q(0)(ψ) =
∑
σ

∫
dk

(2π|B|) ψ̂
+
k,σŴ2(k)ψ̂−k,σ of the effective

potential V (0)(ψ) invariant. This means that:

Ŵ2(k) = e−i
~k(~δ1−~δ2)n−Ŵ2(T−1k)ei

~k(~δ1−~δ2)n−

= Ŵ ∗2 (−k0,−k1, k2) (41)

= Ŵ †2 (−k0, k1, k2).

As we will see in the next section, the values of Ŵ2(k) and
of its derivatives at the Fermi points define the effective
coupling constants. By (41), we find, for ω = ±,

Ŵ2(pωF ) = e−i
2π
3 ωn−Ŵ2(pωF )ei

2π
3 ωn−

= Ŵ ∗2 (pωF ) = Ŵ †2 (pωF ),

which implies that

Ŵ2(pωF ) = ξω + δωσ3, (42)

for two real constants ξω and δω.
If we derive (41) with respect to k and compute the

result at pωF , we find:

∂kŴ2(pωF ) = e−i
2π
3 ωn−T∂kŴ2(pωF )ei

2π
3 ωn−

= (−Rv)∂kŴ ∗2 (pωF ) (43)

= (−P )∂kŴ
†
2 (pωF ),

where Rv (resp. P ) is the diagonal matrix with diagonal
elements (1, 1,−1) (resp. (1,−1,−1)). By using (43), it
is straightforward to check that

k′∂kŴ (pωF ) =

(
−iz1,ωk0 −uω(−ik′1 + ωk′2)

−uω(ik′1 + ωk′2) −iz2,ωk0

)
,

(44)

where k′ = k − pωF = (k0, ~k′), and uω, z1,ω, z2,ω are
real constants. In conclusion, for general values of W,φ,
the linearization of Ŵ2(k) at pωF is parametrized by 5
real constants, namely ξω, δω, uω, z1,ω and z2,ω, the first
two are relevant coupling constants, and the other three
are marginal. Note that, in general, the values of these
constants depend on ω (therefore, there are 5 of them
at p+

F and 5 more at p−F ). Note also that, in general,
z1,ω 6= z2,ω, i.e., the wave function renormalization de-
pends explicitly on the spinor index, an effect that can be
checked explicitly at second order in perturbation theory
(see below), and cannot be explained purely in terms of
the relativistic approximation of the model around the
Fermi points.

Note that there are special points in the (W,φ) plane,
for which the model has more symmetries, and where the
number of independent couplings is smaller than in the
general case. For instance, if W = φ = 0, the model is
invariant under all the 5 symmetry transformations listed
above, in which case it is straightforward to see that

ξω = ξ−ω , δω = 0 , uω = u−ω ,

z1,ω = z2,ω = z1,−ω = z2,−ω . (45)

A similar discussion applies to the case W = 0, φ = π.
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Finally, if φ = π/2, the model is invariant under the
following additional symmetry transformation (see also
Ref.65):

ψ̂−k,σ → −iσ1σ3ψ̂
−
−Rvk,σ , ψ̂+

k,σ → −iψ̂
+
−Rvk,σσ3σ1 ,

(46)
which implies that

Ŵ2(k) = −σ3σ1Ŵ2(−k0,−k1, k2)σ1σ3,

so that, in particular,

ξω = 0 , z1,ω = z2,ω . (47)

A similar discussion applies to φ = −π/2.

C. Infrared integration

Let us now describe the integration of the infrared
fields. We shall focus on the semi-metallic behavior of
the system at, or very close to, a generic point of the
critical line. Moreover, since we are interested in the be-
havior of the current-current correlations around p = 0,
we shall assume that the external field Âp,µ is supported
in the vicinity of the origin (in particular, we assume that
it vanishes in the vicinity of pωF − p−ωF , ω = ±).

By dimensional considerations, the quadratic terms in
the effective action are relevant, and, the ones corre-
sponding to the renormalization of the mass are of par-
ticular importance. The flow of the effective mass tends
to diverge linearly under the RG iterations, which sig-
nals that, in general, the location of the critical lines
is changed by the interaction. In order to construct a
convergent expansion, we need to dress the mass, after
which we determine the location of the renormalized crit-
ical lines, which is given by the condition that the dressed
mass vanishes.

More in detail, we proceed as follows. We perform the
integration of the infrared modes in (30) iteratively, by

decomposing the fermionic fields as ψ
±(≤0)
x,σ,ω as ψ

±(≤0)
x,σ,ω =∑

h≤0 ψ
±(h)
x,σ,ω, where ψ

±(h)
x,σ,ω is a Grassmann field whose

propagator is supported on the momenta k such that
|k−pωF | ∼ 2h, and by integrating the fields ψ(0), ψ(−1), . . .
step by step. After the integration of the modes on
scales 0,−1, . . . , h + 1, we rewrite the generating func-
tion W(f,A) as the logarithm of

eW
(h)(f,A)

Nh

∫
P (dψ(≤h))e−V

(h)(ψ(≤h))+B(h)(ψ(≤h),f,A),

(48)
where V (h) and B(h) are, respectively, the effective po-
tential and source terms, to be defined inductively in the
following. Moreover, P (dψ(≤h)) is the Grassmann Gaus-
sian integration with propagator (diagonal with respect
to the σ and ω indices)

g(≤h)
ω (x,y) =

∫
P (dψ(≤h))ψ−(≤h)

x,σ,ω ψ+(≤h)
y,σ,ω

=

∫
dk′

2π|B|
e−ik

′(x−y)ĝ(≤h)
ω (k′),

where k′ = (k0,~k
′) and, letting rω(~k′) = R(~k′ + ~pωF ),

sω(~k′) = −t1[Ω(~k′ + ~pωF ) − 3
2 (ik′1 + ωk′2)] and χh(k′) =

χ0(2−hk′) (here χ0 is the cutoff function defined a few
lines before (29)),

ĝ(≤h)
ω (k) = χh(k′)

(
a1,ω,h(k′) b∗ω,h(k′)
bω,h(k′) a2,ω,h(k′)

)−1

, (49)

with

aρ,ω,h(k) = −ik0Zρ,ω,h + rω(~k′) + (−1)ρ−1mω,h(~k′),

bω,h(k′) = −vω,h(ik′1 + ωk′2) + sω(~k′) . (50)

in which Zj,ω,h, mω,h(~k′) and vω,h are, respectively, the
wave function renormalizations, the effective mass and
effective velocities, to be defined inductively in the fol-
lowing. Their initial values are:

Zj,ω,0 = 1 , mω,0(~k′) = m(~k′ + ~pωF ) , vω,0 =
3

2
t1.

(51)
In order to clarify the inductive definition of the effec-

tive potential, source, etc, we now describe the integra-
tion step at scale h. We start from (48), where V (h)(ψ)
is a sum of even monomials in the ψ fields, whose kernels

of order n are denoted by W
(h)
n (for notational simplicity,

we temporarily drop the space-time, spin, spinor and val-
ley indices of the fermionic fields). Similarly, we denote
the kernels of B(h) of order n in ψ, m in f and q in A,
by Wn,m,q. The scaling dimension of the kernels Wn and
Wn,m,q is (see Ref.44,61,62)

D = 3− n−m− q, (52)

with the convention that D > 0 corresponds to relevant,
D = 0 to marginal, and D < 0 to irrelevant operators.
Note that the only relevant terms are those with n+m =
2, and the only marginal terms are those with n+m = 2
and q = 1 (note that, by construction, n+m is positive
and even). In particular, the effective electron-electron
interaction, corresponding to the case n = 4 and m =
q = 0, is irrelevant.

In order to define a convergent renormalized expan-
sion, we need to re-sum the relevant and marginal terms.
For this purpose, we split V (h) and B(h) into their lo-
cal and irrelevant parts (here, for simplicity, we spell out
the definitions only in the f = 0 case, the general case
is treatable analogously, along the lines of, e.g., Sect.
12 of Ref.66, or Ref.61): V (h) = LV (h) + RV (h) and
B(h) = LB(h) + RB(h), where, denoting the quadratic
part of V (h) by∑

ω,σ

∫
dk′

2π|B|
ψ̂+
k′,σ,ωŴ

(h)
2;ω (k′)ψ̂−k′,σ,ω,

and the part of B(h) of order (2, 0, 1) in (ψ, f,A) by∑
ω,σ

∫
dp

(2π)3

∫
dk′

2π|B|
Â−p,µψ̂

+
k′+p,σ,ωŴ

(h)
2,1;µ,ω(k′,p)ψ̂−k′,σ,ω
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we let:

LV (h)(ψ) =
∑
ω=±

∑
σ=↑↓

∫
dk′

2π|B|
×

×ψ̂+
k′,σ,ω[Ŵ

(h)
2;ω (0) + k′∂k′Ŵ

(h)
2;ω (0)

]
ψ̂−k′,σ,ω,

and

LB(h)(ψ, 0, A) =
∑
ω=±

∑
σ=↑↓

2∑
µ=0

∫
dp

(2π)3

∫
dk′

2π|B|
×

×Âp,µψ̂
+
k′+p,σ,ωŴ

(h)
2,1;µ,ω(0,0)ψ̂−k′,σ,ω.

By the symmetries discussed in the previous section
(see, in particular, (42) and (44))

LV (h)(ψ) =
∑
ω=±

∫
dk′

2π|B|

[
2hξω,hψ̂

+
k′,σ,ωψ̂

−
k′,σ,ω + (53)

+ψ̂+
k′,σ,ω

(
−iz1,ω,hk0 + δω,h −uω,h(−ik′1 + ωk′2)
−uω,h(ik′1 + ωk′2) −iz2,ω,hk0 − δω,h

)
ψ̂−k′,σ,ω

]
,

where ξω,h, δω,h, zj,ω,h, uω,h are real constants. Moreover,
by using the Ward Identity (20), we find that

LB(h)(ψ, 0, A) =
∑
ω=±

∑
σ=↑↓

2∑
µ=0

∫
dp

(2π)3

∫
dk′

2π|B|
×

×Âp,µψ̂
+
k′+p,σ,ωγµ,ω,hψ̂

−
k′,σ,ω, (54)

where

γ0,ω,h = −
2∑
ρ=1

(Zρ,ω,h + zρ,ω,h)nρ

γ1,ω,h = −(vω,h + uω,h)σ2

γ2,ω,h = −ω(vω,h + uω,h)σ1 (55)

in which nρ = (1+(−1)ρ−1σ3)/2 and σi are the standard
Pauli matrices.

Once the effective potential and source have been split
into local and irrelevant parts, we combine the part of
LV (h) in the second line of (53) with the Gaussian in-
tegration P (dψ(≤h)), thus defining a dressed measure

P̃ (dψ(≤h)) whose propagator g̃
(≤h)
ω (x,y) is analogous to

g
(≤h)
ω (x,y), with the only difference that the functions
aρ,ω,h, bω,h in (49)-(50) are replaced by

ãρ,ω,h−1(k) = −ik0Z̃ρ,ω,h−1(k′) + rω(~k′)

+(−1)ρ−1m̃ω,h−1(k′),

b̃ω,h−1(k′) = −ṽω,h−1(k′)(ik′1 + ωk′2) + sω(~k′),

with

Z̃ρ,ω,h−1(k′) = Zρ,ω,h + zρ,ω,h χh(k′),

m̃ω,h−1(k′) = mω,h(~k′) + δω,h χh(k′),

ṽω,h−1(k′) = vω,h + uω,h χh(k′).

Now, by rewriting the support function χh(k′) in

the definition of g̃
(≤h)
ω (x,y) as χh(k′) = fh(k′) +

χh−1(k′), we correspondingly rewrite: g̃
(≤h)
ω (x,y) =

g̃
(h)
ω (x,y) + g

(≤h−1)
ω (x,y), where g

(≤h−1)
ω (x,y) is defined

exactly as in (49)-(50), with h replaced by h − 1, and
Zρ,ω,h−1,mω,h−1, vω,h−1 defined by the flow equations:

Zρ,ω,h−1 = Zρ,ω,h + zρ,ω,h,

mω,h−1(~k′) = mω,h(~k′) + δω,h, (56)

vω,h−1 = vω,h + uω,h.

At this point, we integrate the fields on scale h, and de-
fine:

e−V
(h−1)(ψ)+B(h−1)(ψ,f,A)+w(h)(f,A) = Ch

∫
P̃ (dψ(h))×

×e−F
(h)
ξ (ψ(h)+ψ)+RV (h)(ψ(h)+ψ)+B(h)(ψ(h)+ψ,f,A),

where P̃ (dψ(h)) is the Gaussian integration with prop-

agator g̃
(h)
ω , F

(h)
ξ (ψ) =

∑
ω 2hξω,h

∫
dk′

2π|B| ψ̂
+
k′,σ,ωψ̂

−
k′,σ,ω,

and C−1
h =

∫
P̃ (dψ(h))e−F

(h)
ξ (ψ(h))+RV (h)(ψ(h)). Finally,

letting W(h−1) = W(h) + w(h), we obtain the same ex-
pression as (48), with h replaced by h−1. This concludes
the proof of the inductive step, corresponding to the in-
tegration of the fields on scale h.

The integration procedure goes on like this, as long as
the two effective masses m±,h are small, as compared to
2h. If we are not exactly at the ‘graphene point’ W =
φ = 0, i.e., if we are close to, or at, any other point
on the critical line but the origin, then after a while we
reach a scale h1 at which maxω |mω,h1

| ≡ |mω1,h1
| ' 2h1

(possibly, h1 = 0, in the case that maxω |mω| is of order 1,
i.e., ifW,φ are far enough from the graphene point). Note

that, once we reach scale h1, the field ψ
(≤h1)
k′,σ,ω1

is massive

‘on the right scale’ 2h1 . At that point, we integrate out

the field ψ
(≤h1)
k′,σ,ω1

in a single step, and we are left with a

(chiral) theory, whose only dynamical degree of freedom

is ψ
(≤h1)
k′,σ,ω2

, with ω2 = −ω1.

From that scale on, we integrate ψ
(≤h1)
k′,σ,ω2

=∑
h≤h1

ψ
(h)
k′,σ,ω2

in a multi-scale fashion, analogous to the
one discussed above, with the important difference that
only the running coupling constants corresponding to the
valley index ω = ω2 continue to flow. The multi-scale
integration goes on until we reach a scale h2 such that
|mω2,h2

| ' 2h2 , at which point we can integrate out the
remaining degrees of freedom in a single step. The criti-
cality condition, i.e., the condition that the system is on
the (renormalized) critical line, corresponds to the con-
dition that h2 = −∞.

D. The flow of the running coupling constants

The multi-scale integration described in the previous
section defines a flow for the effective chemical potential
νω,h, the effective mass mω,h = mω,h(~0), the effective
wave function renormalization Zρ,ω,h, and the effective
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Fermi velocity vω,h. The flow of mω,h, Zρ,ω,h and vω,h is
driven by Eqs.(56), while

ξω,h−1 = 2ξω,h + βξω,h,

where βhξ is the (ξ-component of the) beta function,
which is defined in terms of the sum of all the lo-
cal quadratic contributions in renormalized perturbation
theory, and should be thought of as a function of U and
of the sequence of the effective coupling constants. Re-
member that the flow drives the effective couplings with
both ω = + and ω = −, up to the scale h1; then the
flow of the couplings with ω = ω1 is stopped, and only
the couplings with ω = ω2 continue to flow until scale h2

(possibly h2 = −∞).
The multi-scale procedure is well defined, and the ef-

fective potentials are, step by step, given by convergent
expansions, provided: (i) U is small enough, (ii) ξω,h
remain small for all scales, and (iii) Zρ,ω,h, vω,h remain
close to their initial (bare) values, for all scales. Note
that, in order for condition (ii) to be valid, we need to
properly fix the initial condition on the chemical poten-
tial, as discussed in the following. In addition, note that,
once that the flows of Zρ,ω,h and vω,h are controlled, then
the marginal contributions to the effective source term
LB(h)(ψ, 0, A) are automatically under control, thanks
to (54) and following lines.

The key fact, which allows us to control the flow of the
effective couplings, is that, since the electron-electron in-
teraction is irrelevant, with scaling dimension D = −1
(cf. with (52)), then the scaling dimensions of all di-
agrams with at least one interaction vertex can be ef-
fectively improved by one, see Ref.62. In particular,

|βξω,h| ≤ cε|U |2(1−ε)h, for any ε > 0 and a suitable con-
stant cε > 0, and similarly for the beta functions of Zρ,ω,h
and vω,h. [The reason why we lose, in general, an ε in
the decay exponent as h→ −∞, is that we need to use a
little bit of decay 2εh in order to sum over all diagrams
and scales, see Ref.62 for details.]

In order to guarantee that the flow of the chemical po-
tential remains bounded, we fix the initial data (via a
fixed point theorem, such as the contraction mapping
theorem) so that limh→−∞ ξω2,h = 0, in the limit as

h2 → −∞. Thanks to the dimensional gain of 2(1−ε)h,
due to the irrelevance of the interaction, we actually find
that ξω2,h tends to zero, as h → −∞, exponentially

fast: |ξω1,h| ≤(const.)|U |2(1−ε)h. Once we imposed that
ξω2,h remains bounded for all scales h ≤ 0, we can a
posteriori check that ξω1,h is also bounded for all scales

h1 ≤ h ≤ 0: in fact, the beta function βξω1,h
, for h ≥ h1,

can be rewritten as βξω2,h
+ [βξω1,h

− βξω2,h
], where the

difference in square brackets can be straightforwardly
shown to be proportional to mω1

[if all the masses mω,h

were zero, then the model would be symmetric under
the exchange of ω in −ω, as in Ref.62, see also Sec-

tion III B above; therefore, the difference βξω1,h
− βξω2,h

between the contributions with different valley indices
must be proportional to a mass term |mω,h|, which is

smaller than (const.)|mω1
|]. Therefore, the flow of ξω1,h,

for h ≥ h1, remains close to the one of ξω2,h (which
is uniformly bounded for all scales), up to terms that
are proportional to mω1

and, therefore, are bounded by
(const.)|U ||mω1

|2−h2(1−ε)h (here 2−h is the dimensional
amplification factor arising from the scaling dimension
D = +1 of the chemical potential terms, while 2(1−ε)h is
the dimensional gain coming from the irrelevance of the
interaction). Recalling that 2h1 ' |mω1

|, we find that
|ξω1,h| ≤(const.)|U |2(1−ε)h, for all scales h ≥ h1.

Finally, once the chemical potential is fixed so that
|ξω,h| ≤(const.)|U |2(1−ε)h, we immediately infer that
the beta functions of Zρ,ω,h and vω,h are bounded by

(const.)|U |2(1−ε)h, as well: therefore, their flows converge
exponentially fast, and the dressed values of Zρ,ω,h and
vω,h are analytic functions of U , analytically close to their
bare values.

E. Lowest order computations

The discussion in the previous section guarantees that,
once the chemical potential is properly fixed, then the
flows of the chemical potential, wave function renormal-
izations, and Fermi velocity converge exponentially fast.
The values of the chemical potential, as well as of the
dressed wave functional renormalizations, dressed Fermi
velocity, and dressed critical lines are expressed in terms
of convergent expansions (they are analytic functions of
U), which are dominated by the first non trivial order
in perturbation theory, provided U is not too large (note
that the condition of convergence of the renormalized ex-
pansion is uniform in the gap, and is valid, in particular,
on the critical line). The explicit lowest order contri-
butions to the chemical potential ξ, to the renormalized
Fermi velocity vR ≡ vω2,−∞ and the wave function renor-
malizations Zρ,R ≡ Zρ,ω2,−∞ on the renormalized critical
line h2 = −∞ are the following:

1. Chemical potential:

ξ = −U
2

2

2∑
ρ=1

∫
dkdq

(2π|B|)2
ĝρρ(k + pω2

F )ĝρρ(q)ĝρρ(k + q);

2. Fermi velocity:

vR =
3

2
t1−iU2

∫
dkdq

(2π|B|)2
∂k1 ĝ12(k+pω2

F )ĝ12(q)ĝ21(k+q);

(57)

3. Wave function renormalizations:

Zρ,R = 1+iU2

∫
dkdq

(2π|B|)2
∂k0 ĝρρ(k+pω2

F )ĝρρ(q)ĝρρ(k+q).

(58)

Moreover, the equation for the critical line h2 = −∞
reads:

mω2 =
U

2

∫
d~k

|B|
m(~k)√

m2(~k) + t21|Ω(~k)|2
,
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where mω, m(~k) and Ω(~k) where defined after (21). This
is a fixed point equation for mω2

, whose solution leads to
the plot in Fig.1.

Note that, as discussed in Sect.III B, there is no sym-
metry reason why Z1,R should be equal to Z2,R. Actu-
ally, an explicit computation shows that Z1,R − Z2,R is
different from zero along the critical line, unless we are
at one of the highly symmetric points φ = 0 or φ = π/2,
see Fig.2, where we plot the value of Z1,R − Z2,R on the
critical line at second order in U , for two different values
of U .

IV. QUANTIZATION OF THE CONDUCTIVITY

In this section we compute the jump discontinuity of
the Hall conductivity across the critical line, as well as the
value of the longitudinal conductivity on the same line,
and prove a universality result for both of them, i.e., we
prove that their values are quantized and exactly inde-
pendent of the interaction strength U . Note that this fact
is highly non-trivial, due to the unusual renormalization
of the Fermi velocity and of the wave function renormal-
izations, which depends explicitly on the spinor index
and break the asymptotic relativistic invariance of the
propagator: the cancellations behind universality need
to take lattice (and, therefore, RG-irrelevant) effects into
account, and do not follow from asymptotic relativistic
computations.

We stress that our result is exact at all orders of the
(convergent, renormalized) expansion for the conductiv-
ity. One key ingredient used in the proof is the lattice
Ward Identity (19), which is rigorously valid (without
any sub-leading correction), thanks to the exact lattice
symmetries and the fact that the correlations appearing
at both sides can be computed in terms of convergent
expansions, following from the multi-scale construction
described above.

A. Quantization of the Hall conductivity across the
critical line

Here we compute the universal jump discontinuity of
the Hall conductivity across the renormalized critical
line. For the moment, we assume not to be at the
graphene points W ,φ = 0 and W = 0, φ = π; we shall
discuss later the (straightforward) adaptation to these
special cases. Therefore, the goal is to compute:

∆ = lim
mR→0+

σ12 − lim
mR→0−

σ12 ,

where mR ≡ mω2,h2 is the mass gap of the dressed propa-
gator. The condition that we are not at a graphene point
means that mω1,h1 should be kept finite as mR → 0. Us-

ing the definition (18), as well as the fact that K̂ij(p) is

differentiable in p outside the critical line, we can rewrite

∆ = − 1

A

[
lim

mR→0+
∂p0K̂12(0)− lim

mR→0−
∂p0K̂12(0)

]
.

The interacting current-current correlation can be com-
puted via the multiscale renormalized expansion dis-
cussed in Sect. III C: in particular, proceeding as in
Ref.61, among the contributions to K̂ij we can distinguish
the dominant contribution, coming from the ‘dressed
bubble’, from the sub-dominant one, which is the sum
over all the renormalized diagrams with at least one inter-
action term. Thanks to the irrelevance of the interaction,
these sub-dominant diagrams have a dimensional gain (of
order 2h on scale h), which makes the corresponding con-

tribution to K̂ij(p) differentiable at p = 0, in the limit
mR → 0. In particular, they give zero contribution to ∆.

The dominant contribution to K̂ij(p) (i.e., the ‘dressed
bubble’) is

K̂dom
ij (p) = −2

∫
dk

2π|B|
Tr
{
Ŝ2(k)Γ̂i(k,p)×

× Ŝ2(k + p)Γ̂j(k + p,−p)
}
,

where Γ̂j is the vertex function defined in (17), and the
factor 2 in front of the integral takes into account the
spin degrees of freedom. Both Ŝ2(k) and Γ̂i(k,p) are
given by convergent renormalized series, which depend
on the details of the microscopic model.

The finite contribution to the jump-discontinuity of
∂p0K̂12(0) acrossmR = 0 comes from the integration over
k in the vicinity of pω2

F , since the rest is continuous as
mR → 0. For the same reason, for the purpose of comput-
ing ∆, we can replace Γ̂i(k,p) by Γ̂i(p

ω2

F ) = Γ̂i(p
ω2

F ,0),

and Ŝ2(k) by its linearization S̄(k′) at pω2

F ,

S̄(k′) =

(
−ik0Z1,R +mR −vR(−ik′1 + ω2k

′
2)

−vR(ik′1 + ω2k
′
2) −ik0Z2,R −mR

)−1

,

(59)
where Zρ,R and vR are analytic functions of U , for U
small, whose expansions at second order in U are given
explicitly by (57)-(58). Recall that, a priori, Γ̂i(p

ω2

F ) are
complicated infinite series in U . Thus, a direct computa-
tion of the jump-discontinuity, starting from the expres-
sion of the dressed bubble and from the Feynman rules
for the generic term in the renormalized expansions for
Zρ,R, vR and Γ̂(pωF ), would be hopeless.

The key fact is that, thanks to the Ward Identity (20),

Γ̂i(p
ω2

F ) = ∂k′i S̄
−1(0) (60)

that is,

Γ̂1(pω2

F ) = −vRσ2 , Γ̂2(pω2

F ) = −ω2vRσ1 . (61)

Therefore,

∆ =
(

lim
mR→0+

− lim
mR→0−

)∫
|~k′|≤ε

d~k′

2π2

∫
R

dk0

2π
×

×Tr
{
S̄(k′)∂1S̄

−1(0)∂0S̄(k′)∂2S̄
−1(0)

}
, (62)
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where we used that A|B| = 4π2, and we denoted by ε a
small, arbitrary, positive constant. Using the identity

∂0S̄(k′)S̄−1(k′) = −S̄(k′)∂0S̄
−1(k′), (63)

and replacing S̄(k′)∂0S̄
−1(k′) by S̄(k′)∂0S̄

−1(0) (which
is allowed, for the purpose of computing ∆, simply be-
cause the difference is continuous at mR = 0), we can
further rewrite ∆ as

∆ = −
(

lim
mR→0+

− lim
mR→0−

)∫
|~k′|≤ε

d~k′

2π2

∫
R

dk0

2π
×

×Tr
{
S̄(k′)∂1S̄

−1(0)S̄(k′)∂0S̄
−1(0)S̄(k′)∂2S̄

−1(0)
}
.

The integral over k0 can be evaluated explicitly and, after
a straightforward computation, we get

∆ =
ω2v

2
R

4π2

Z1,R + Z2,R

(Z1,RZ2,R)2
lim

mR→0+
mR ×

×
∫
|~k′|≤ε

d~k′
[m2

R

4

( 1

Z1,R
+

1

Z2,R

)2
+

v2
R|~k′|2

Z1,RZ2,R

]−3/2

.

Thus, introducing

ṽR =
vR√

Z1,RZ2,R

, m̃R = mR
Z1,R + Z2,R

Z1,RZ2,R
, (64)

we see that ∆ can be rewritten as, performing the change

of variables ṽR~k
′ → ~k′:

∆ =
ω2

4π2
lim

m̃R→0+
m̃R

∫
|~k′|≤εṽR

d~k′
[m̃2

R

4
+ |~k′|2

]−3/2

=
ω2

4π2
lim

m̃R→0+

∫
|~k′|≤εṽR/m̃R

d~k′
[1

4
+ |~k′|2

]−3/2

=
ω2

π
, (65)

where we recall that the result is expressed in units such
that e2 = ~ = 1. Therefore, the cancellation between the
parameters vR, Z1,R, Z2,R gives a universal result. Fi-
nally, at the graphene points, the analogous computation
gives twice the same value, because of an extra factor 2
coming from the valley degeneracy.

B. Quantization of the longitudinal conductivity on
the critical line

A similar discussion as the one in the previous subsec-
tion can be repeated for the longitudinal conductivity on
the renormalized critical line. The point here, as com-
pared to the computation of ∆ in the previous subsec-
tion, is to take first the limit mR → 0, and then p0 → 0+

(recall the definition of conductivity, Eq. (18)). Once
again, we assume for definiteness not to be exactly at
the graphene point (a similar discussion applies there,
too).

Note that, by the very definition of current-current cor-
relations, K̂ii(p0,~0) is even in p0. Therefore, all the con-

tributions to K̂ii(p0,~0) that are differentiable in p0 give

zero contribution to the longitudinal conductivity on the
critical line. By repeating a strategy analogous to the
one that led us to (62), for the purpose of computing the
longitudinal conductivity on the critical line, we can: (i)
replace the full current-current correlation by its domi-
nant contribution (from the ‘dressed bubble’); (ii) restrict
the integration over the loop momenta in the vicinity of
pω2

F ; (iii) linearize the propagators and vertex functions
around pω2

F ; (iv) use the Ward identity Eq. (60) to re-
place the vertex functions by the derivatives of the inverse
two-point function.

After these replacements, we get (denoting the value of
the longitudinal conductivity on the critical line by σcr

ii ):

σcr
ii =

2

A
lim

p0→0+

1

p0

∫
|~k′|≤ε

d~k′

|B|

∫
R

dk0

2π

[
F (k′, p0)−F (k′, 0)

]
,

with

F (k′, p0) = Tr
{
S̄0(k′)∂iS̄

−1
0 (0)S̄0(k0 + p0,~k

′)∂iS̄
−1
0 (0)

}
= v2

RTr
{
S̄0(k′)σiS̄0(k0 + p0,~k

′)σi
}

(66)

where S̄0(k′) is the linearized propagator (59), computed
at mR = 0, and the last step follows from (60), (61).
By evaluating the integral over k0 explicitly, and set-
ting ṽR = vR/

√
Z1,RZ2,R as in Eq. (64), the computa-

tion of σcr
ii reduces to the contribution of just one Dirac

cone to the longitudinal conductivity of noninteracting
graphene49,61, with Fermi velocity ṽR. Thus, proceeding
as in Ref.61, we get, in units such that e2 = ~ = 1:

σcr
ii =

1

2π
lim

p0→0+

∫ ṽRε

0

p0

p2
0 + 4x2

dx =
1

8
. (67)

Notice that, as for graphene, the Fermi velocity (in gen-
eral a nontrivial function of the Hubbard interaction
strength U) disappears, thus yielding a universal result.
The analogous computation performed at the graphene
points gives twice the same value, in agreement with the
result of Ref.61.

V. CONCLUSIONS

We studied the Haldane-Hubbard model by rigorous
Renormalization Group techniques. Our analysis pre-
dicts that the critical lines separating the distinct topo-
logical phases are modified non-trivially by the Hubbard
interaction, in particular that the non-trivial topological
phase, characterized by the topological quantum number
ν = ±2, is enlarged by weak repulsive interactions. More-
over, our results rule out the presence of new interaction-
induced topological phases in the vicinity of the phase
boundaries. Such predictions may be verified experi-
mentally in optical lattice realizations of the system25,
where the on-site interaction can be produced and tuned
by means of Feshbach resonances. Concerning numerical
simulations, our results agree with those of Ref.39,40.
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The interaction affects the relativistic structure of the
two-point function by non-universal renormalizatized co-
efficients, which differ from those obtained by approx-
imate treatments of the system based on the effective
Dirac theory. In particular, we find that there are two
different wave function renormalizations, one for each
pseudo-spin index. Despite the non-universal renormal-
ization of the two-point function and of the vertex func-
tions, lattice Ward identities guarantee the quantization
and the universality of the conductivity matrix at the
critical line. Concerning the transverse conductivity σ12,
its quantization follows from topological arguments; how-
ever, these arguments do not provide any information
regarding which values σ12 might take. For instance, nu-
merical and mean-field analyses predict that, at interme-
diate coupling strengths, new topological phases might
appear, corresponding to the values σ12 = ±e2/h, which
are not present in the noninteracting theory. Our exact
analysis rules out such new phases at small coupling.

The second part of our result focuses on the critical
longitudinal conductivity σcr

11 (away from criticality σ11

is trivially zero). In constrast to σ12, this quantity is not
protected by any topological argument. Nevertheless, we
show that it is universal: all interaction and lattice cor-
rections disappear. Each Dirac cone contributes with a
universal quantum of conductivity (e2/h)(π/4); in partic-
ular, at the doubly critical points where the two critical
curves cross (see Fig. 1), the critical longitudinal conduc-
tivity is (e2/h)(π/2), which is the same value measured
in graphene48.

Our results require the interaction to be weak and
short-range; instead, different features are expected in
the presence of long-range interactions. For instance,
it is known that, at the graphene point, long-range
interactions have dramatic effects on several physical
properties23,69, and their role on the renormalization of
the optical conductivity is still actively debated51–60. We
expect such effects to have profound implications for
the Haldane-Hubbard model, especially in the proximity
of the critical lines separating the different topological
phases. We plan to investigate this issue in future work.

The work of A.G. has been carried out thanks to
the support of the A*MIDEX project Hypathie (no
ANR-11-IDEX-0001-02) funded by the “Investissements
d’Avenir” 25 French Government program, managed by
the French National Research Agency (ANR), and by a
C.N.R.S. visiting professorship spent at the University of
Lyon-1. The work of M.P. has been carried out thanks
to the support of the NCCR SwissMap.

Appendix A: Peierls’ substitution and the bare
vertex functions

In order to define the current, we couple the elec-

tron gas to an external vector potential ~A, by mul-
tiplying the hopping strength from ~y to ~x by an ex-

tra phase factor ei(~y−~x)
∫ 1
0
~A((1−s)~x+s~y)ds (Peierls’ sub-

stitution). We denote by H( ~A) the modified Hamil-
tonian, and let the (paramagnetic) current be J~p,i =

δH( ~A)/δÂ~p,i
∣∣
~A=~0

, where i = 1, 2 label the two (or-

thogonal) coordinate directions ê1 = (1, 0) and ê2 =
(0, 1). An explicit computation leads to (14), with

~M(~k, ~p) =

(
~M11(~k, ~p) ~M12(~k, ~p)
~M21(~k, ~p) ~M22(~k, ~p)

)
and, defining ηx =

(e−ix − 1)/(−ix),

~M11(~k, ~p) = −it2
3∑
j=1

∑
α=±

α~γjηα~p·~γje
iα(φ−~k·~γj),

~M12(~k, ~p) = −it1
3∑
j=1

~δjη~p·~δje
−i~k(~δj−~δ1) ,

~M21(~k, ~p) = − ~M12(−~k − ~p, ~p) and ~M22(~k, ~p) =

−e−i~p·~δ1 ~M11(−~k,−~p).

Appendix B: Details of the numerical computations

In this appendix, we discuss some of the details of the
numerical computations from which Figs.1-2 were pro-
duced. The program used to carry them out is available
online70, has been named hhtop, and is released under
an Apache license. The source code includes a documen-
tation file, in which the computations are described in
greater detail.

1. Integration scheme

The numerical computations carried out in this work
involve numerical evaluations of integrals. The algorithm
that was used to carry these out is based on Gauss-
Legendre quadratures, by which, given an integer N > 1,
an integral is approximated by a discrete sum with N
terms: ∫ 1

−1

dx f(x) =

N∑
i=1

wif(xi) + RN (B1)

where x1 < · · · < xN are the roots of the N -th Legendre
polynomial PN , and

wi :=
2

(1− x2
i )P

′
N (xi)

. (B2)

If f is an analytic function, then one can show that
the remainder RN decays exponentially in N . However,
in order to compute the difference of the wave-function
renormalizations, we need to compute the integral of an
integrand that, instead of being analytic, is a class-2
Gevrey function (a class-s Gevrey function is a C∞ func-
tion whose n-th derivative is bounded by (const.)n(n!)s,
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so that analytic functions are class-1 Gevrey functions).
The remainder RN can be shown to be bounded, if f is a
class-s Gevrey function with s ≥ 1 and N is large enough
(independently of f and s), by

|RN | 6 c0c
s−1
1 (2N)1− 1

s e−b(2N)
1
s s! (B3)

for some c0, c1, b > 0, that only depend on f . For a
proof of this statement, see lemma A3.1 in the documen-
tation of hhtop70. In short, this estimate is obtained
by expanding f in Chebyshev polynomials, and using a
theorem of A.C. Curtis and P. Rabinowitz71 that shows
that, if f is the j-th Chebyshev polynomial, then RN is
bounded uniformly in j. The decay of the coefficients of
the Chebyshev expansion of class-s Gevrey polynomials
allows us to conclude.

2. First-order renormalization of the critical line

At first order in U , the correction F±,R(U,W, φ) ap-
pearing in (1) is

F± =
U

2

∫
B

d~k

|B|
m(~k)√

m2(~k) + t21|Ω(~k)|2
. (B4)

There is a single, minor, pitfall in the numerical eval-
uation of F±: we wish to use Gauss-Legendre quadra-
tures (see App.B 1) to carry out the computation, but
the integrand in (B4) is not smooth: indeed, if W =

±3
√

3t2 sinφ, then its second derivative diverges at ~p±F
due to the divergence of the derivative of

√
·. However,

by switching to polar coordinates ~k = p±F +ρ(cos θ, sin θ),
this singularities is regularized, that is, the integrand be-
comes a smooth function of ρ and θ. At this point, there
is yet another danger to avoid: while the integrand is
smooth, the upper bound of the integral over ρ is a func-
tion of θ, which is, due to the rhombic shape of B, only
smooth by parts. The integral over θ must, therefore, be
split into parts in which the bounds of the integral over
ρ are smooth. This can be done very easily using the
2π
3 rotation symmetry. Once both of these traps have

been thwarted, Gauss-Legendre quadratures yield very
accurate results.

In order to compute the correction to the critical line,
we solve

W ± 3
√

3t2 sinφ− F±(φ,W ) = 0 (B5)

for W and φ. For the sake of clarity, we have made the
(φ,W ) dependence of F± explicit. To solve (B5), we fix
φ, and use a Newton algorithm to compute the critical

value of W : we set W0 = ∓3
√

3t2 sinφ, and compute

Wn+1 = Wn −
Wn ± 3

√
3t2 sinφ− F±(φ,Wn)

1− ∂WF±(φ,Wn)
. (B6)

Provided W0 is not too far from the solution of (B5),
Wn converges quadratically (i.e. |Wn+1 − Wn| ≤
(const.)|Wn − Wn−1|2, in which the constant depends
on the supremum of ∂2

WF±, which is bounded) to the
solution of (B5).

3. Second-order wave function renormalization

At second order in U , Z1,R − Z2,R is

U2(z1 − z2) = U2i (∂k0s1|k0=0 − ∂k0s2|k0=0) (B7)

where

si :=

∫
B

d~pd~q

|B|2

∫ ∞
−∞

dp0dq0

(2π)2
ĝi,i(p)ĝi,i(q)ĝi,i(p + q− kωF ).

(B8)
The computation is carried out on the critical line, that
is, when W = −ω3

√
3t2 sinφ. The integrals over p0 and

q0 can be carried out explicitly:

z1 − z2 =

∫
B

d~pd~q

|B|2
·

·

(
(ξp + ξq + ξF )(

mp
ξp

+
mq
ξq
− mF

ξF
− mpmqmF

ξpξqξF
)Z

(Z2 − (ξp + ξq + ξF )2)2

)
(B9)

where, using the definitions of m(~k), R(~k) and Ω(~k) after
(21) and after (26), mp ≡ m(~p), mq ≡ m(~q), mF ≡ m(~p+

~q− ~pωF ), ξ(~k) :=

√
m(~k) + t21|Ω(~k)|2, Z := R(~p) +R(~q)−

R(~p+~q−~pωF ) and ξp ≡ ξ(~p), ξq ≡ ξ(~q), ξF ≡ ξ(~p+~q−~pωF ).
The numerical evaluation of the integral in (B9) in-

volves a similar difficulty to that in (B4): the integrand
has divergent derivatives if any of the following conditions
hold: ~p = ~pωF , ~q = ~pωF or ~p + ~q = 2~pωF . These singulari-
ties cannot be regularized by changing ~p and ~q to polar
coordinates, since ξF is a singular function of the polar
coordinates of ~p and ~q (due to the fact that it behaves,
asymptotically, as ~p−~q approaches 2~pωF , as |~p+~q−2~pωF |,
which has divergent second derivatives). However, there
are coordinates, which we call sunrise coordinates (since
si is the value of the so-called sunrise Feynman diagram),
which regularize these singularities. Their expression is
rather long, and will not be expounded here; the inter-
ested reader is invited to consult the documentation file
bundled with the source code of hhtop70. Once written
in terms of the sunrise coordinates, the integral in (B9)
can be computed using Gauss-Legendre quadratures very
accurately.
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52 I. Herbut, V. Juričić and O. Vafek, Phys. Rev. Lett. 100,

046403 (2008).
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