
    

 

 

 

 

 

Synthesis of [bis(hexamethylene)cyclopentadienone]iron 

tricarbonyl and its application to catalytic reductions of C=O 

bonds 
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Albrecht Berkessel,b* and Umberto Piarullia* 

Abstract: Herein, we report the synthesis of 

[bis(hexamethylene)cyclopentadienone]iron tricarbonyl (1b) by 

reaction of cyclooctyne with Fe(CO)5, and the investigation of its 

catalytic properties in C=O bond reduction. Owing to the peculiar 

reactivity of cyclooctyne, complex 1b was formed in good yield 

(56%) by intermolecular cyclative carbonylation/complexation with 

Fe(CO)5. Compound 1b was fully characterized, and its crystal 

structure was determined by X-ray analysis. Catalytic tests revealed 

that, upon in situ activation with Me3NO, complex 1b promotes the 

hydrogenation of ketones, aldehydes and activated esters, as well 

as the transfer hydrogenation of ketones, showing higher activity 

compared to the classical “Knölker complex” (1a). Studies on the 

hydrogenation kinetics in the presence of 1a and 1b (respectively) 

suggest that this difference in terms of activity is probably due to the 

better stability of the 1b-derived complex compared to the in situ 

generated Knölker-Casey catalyst. 

Introduction 

In recent years there has been a growing interest for developing 

efficient homogeneous base metal catalysts[1] with the ultimate 

goal to replace the precious and often toxic noble metals (e.g., Ir, 

Pd, Pt, Rh) in homogeneous catalysis. In this context, iron is 

particularly appealing for its abundancy (2nd most abundant 

metal in the Earth’s crust) and for its low toxicity, which stems 

from being ubiquitous in biological systems.[ 2 ] The accepted 

limits for residual iron traces in fine chemicals and pharma 

intermediates are significantly higher compared to noble 

metals,[3] which makes iron a very attractive candidate for the 

development of cheap and sustainable catalysts.[4] Besides the 

well-established applications in oxidation and cross-coupling 

processes, increasing efforts have been recently put in the 

development of homogeneous Fe-catalytic reduction 

methodologies as hydrogenation,[5, 6, 7] transfer hydrogenation [5, 

7, 8 ] and hydrosilylation.[5, 9 ] However, most of these 

methodologies suffer from serious drawbacks, such as difficult 

synthesis and lack of robustness of the catalyst, moderate 

activity/selectivity and/or high cost/poor atom economy of the 

catalysed process. 
A promising class of pre-catalysts which is partially exempt from 

this limitations is represented by (cyclopentadienone)iron 

complexes (1 in Figure 1),[ 10 ] firstly reported by Reppe and 

Vetter in 1953.[ 11 ] These compounds, which were studied in 

more detail much later by Knölker[12] and Pearson,[13] can be 

easily synthesized and purified owing to their stability to air, 

moisture and chromatography. In 1999, Knölker and co-workers 

synthesized and isolated the first (hydroxycyclopentadienyl)iron 

hydride complex (2a, Figure 1 B) from the corresponding 

(cyclopentadienone)iron complex (1a) using the Hieber 

reaction.[14] 

Figure 1. A: (Cyclopentadienone)iron complexes (1), and their activation to 
the catalytically active complexes act-1 and 2. B: the so-called “Knölker 
complexes” 1a and 2a. 

The catalytic potential of (hydroxycyclopentadienyl)iron 

complexes (2) remained concealed until 2007, when Casey and 

Guan[15] reported that complex 2a is a highly efficient catalyst for 

the hydrogenation of aldehydes and ketones under mild 

conditions. The main drawback of the active hydride 2a is its 

sensitivity to air and moisture, which makes glovebox essential 
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for its synthesis and manipulation. Later contributions 

demonstrated that (hydroxycyclopentadienyl)iron complexes 2 

can be formed in situ upon decoordination of one CO ligand 

from 1 (by oxidative cleavage with Me3NO,[ 16 ] or under UV 

irradiation[17]) in the presence of H2 (Figure 1 A, Activation a and 

b).  

Analogous to frustrated Lewis pairs, the (cyclopentadienone)iron 

complexes act-1, bearing a vacant coordination site, are able to 

split H2 and form the active hydrides 2. Alternatively, hydrides 2 

can be generated in situ from the (cyclopentadienone)iron 

complexes 1 by Hieber reaction in the presence of aqueous 

bases (Figure 1 A, Activation c).[ 18 ] In situ activated 

(cyclopentadienone)iron complexes have found application in 

several reactions involving transfer of H2, such as hydrogenation 

(of ketones,[16b,h,i,18a] aldehydes,[18a] imines,[16b] 

CO2/NaHCO3
[16d,17b] and, very recently, activated esters[16k]), 

transfer hydrogenation of ketones,[16e,g] reductive amination (of 

aldehydes and ketones),[16a,c,d] alcohol dehydrogenation[16g,n] and 

amination of benzylic alcohols.[16f,l,m] 

 

Figure 2. Examples of structural variation of (cyclopentadienone)iron 
complexes 1, and the new [bis(hexamethylene)cyclopentadienone]iron 
complex 1b reported in this paper. 

A number of variations were introduced in the structure of the 

(cyclopentadienone)iron complexes 1, both before the discovery 

of their catalytic applications,[12,13] and afterwards, with the goal 

to improve their catalytic activity and to expand the application 

scope. To this end, a first approach (Figure 2 A) consisted in the 

replacement of one of the three carbon monoxide moieties with 

other types of ligands such as nitriles[16a,19,20] pyridines,[15c] N-

heterocyclic carbenes,[ 21 ] phosphines[13b] and chiral 

phosphoramidites.[16g,17] In a second approach (Figure 2 B) the 

structural elements of the cyclopentadienone ligand, such as the 

substituents at the 2,5-positions[16a,d,f,i,18a] and/or the 3,4-

positions of the cyclopentadienone were modified.[16a,b,e-i] 

Following this strategy, several chiral complexes were also 

synthesized by Wills and co-workers[16e,g] and also by our 

group,[16h,i] and these complexes were used in the asymmetric 

hydrogenation and transfer hydrogenation of ketones. 

In line with this latter approach, we report herein the first efficient 

synthesis and the full characterization of 

[bis(hexamethylene)cyclopentadienone]iron tricarbonyl 1b 

(Figure 2 B), a Knölker-type complex featuring cyclooctene rings 

fused to the 2,3 and 4,5 positions of the cyclopentadienone 

ring,[22] as well as its application as pre-catalyst for the reduction 

of C=O bonds. 

Results and Discussion 

(Cyclopentadienone)iron complexes are usually synthesized by 

one-pot tethered cyclative carbonylation of diynes with large 

excesses of iron pentacarbonyl, Fe(CO)5 or diiron nonacarbonyl 

Fe2(CO)9, which results also in complexation of the iron 

tricarbonyl moiety. It should be noted that Fe(CO)5 is 

inexpensive, so the use of a large excess is acceptable. This 

approach requires a significant synthetic effort to obtain the 

diyne precursor with the proper functionalization, thus somehow 

limiting the possibility to tune the substitution pattern at the 

cyclopentadienone ring. In principle, an intermolecular cyclative 

carbonylation/complexation reaction could also be envisioned, 

starting from two discrete alkynes in the presence of the iron 

carbonyl reagent [Fe(CO)5 or Fe2(CO)9]. However, this approach 

has a limited scope, as it has been reported to occur in good 

yields only with very specific types of alkyne substitution, such 

as silyl groups[12a] or some electron withdrawing substituents 

(e.g., Cl, OtBu and CF3).
[ 23 ] Very low yields (< 15%) were 

reported for the cyclization of more common alkynes such as, for 

example, phenylacetylene and diphenylacetylene.[24] 

Cyclooctyne (4 in Scheme 1), the smallest isolated cyclic alkyne, 

is known to be very reactive, undergoing degradation upon 

prolonged standing. The compound is not commercially 

available, but can be easily synthesized in very good yields 

starting from cyclooctene (Scheme 1):[ 25 ] first the alkene is 

brominated with Br2 to form the corresponding 1,2-

dibromoalkane, from which HBr is eliminated by addition of 

KOtBu to yield 1-bromocyclooctene (3). Then, a second 

elimination reaction in the presence of LDA allows to obtain the 

desired product (4). According to the literature, when 

cyclooctyne (4) was reacted with Ni, W, Co and Fe carbonyl 

complexes,[22] several products were isolated, among which 

were, in the case of iron, substantial amounts of 

tris(hexamethylene) benzene 5 (derived from cyclotrimerization), 

and minor quantities of the 

bis(hexamethylene)cyclopentadienone iron complex 1b 

(Scheme 1). This peculiar behavior raised our attention, and 

induced us to investigate the reaction, in order to optimize the 



    

 

 

 

 

 

formation of complex 1b. The cyclative carbonylation of 

cyclooctyne (4) was then performed in toluene using Fe(CO)5 

and carefully controlling the temperature. Much to our delight, 

the reaction at 90 °C afforded complex 1b in a respectable 56% 

yield. 

 

 
Scheme 1. Synthesis of the bis(hexamethylene)cyclopentadienone iron 

complex 1b. 

Control of the temperature is important to minimize the formation 

of the trimerization product 5, and 90 °C seems to be the optimal 

value. Indeed, when the reaction was performed at r.t., 5 was 

the only observed product, but also setting the temperature to 

110 °C led to an increased formation of trimer 5 at the expense 

of the desired complex 1b, which was obtained in only 45% yield. 

The proposed mechanism for the formation of 1b (Scheme 2) 

consists of a stepwise iron-mediated [2+2+1] cycloaddition 

which is initiated by the sequential replacement of two carbon 

monoxides by the two alkyne molecules, thus generating the 

tricarbonyl[bis-η2-alkyne] iron complex A. At this stage, iron(0) 

promotes the oxidative coupling of the two bound alkynes to 

form the intermediate ferrocyclopentadiene structure B. Insertion 

of a molecule of carbon monoxide into the iron-carbon bond 

followed by a subsequent rearrangement of the 

ferrohexadienone structure C affords the tricarbonyliron-

complexed cyclopentadienone 1b. 

 
Scheme 2. Proposed mechanism for the formation of complex 1b. 

Release of the ring strain of cyclooctyne probably plays an 

important role in facilitating the intermolecular cyclative 

carbonylation/complexation process. To confirm this hypothesis, 

we subjected cyclododecyne 6,[26] which mainly differs from 4 for 

the lesser ring strain, to the same reaction conditions adopted in 

the synthesis of 1b (Scheme 3). As expected, the reaction of 

compound 6 in the presence of Fe(CO)5 afforded the desired 

complex 1c only in very poor yield (5%, together with unreacted 

cyclododecyne), and no improvement could be obtained by 

changing the solvent (toluene, xylene) or varying the reaction 

temperature. 

 
Scheme 3. The low-yielding synthesis of 

bis(decamethylene)cyclopentadienone iron complex 1c. 

Complex 1b was thoroughly characterized spectroscopically, 

and crystals suitable for X-ray diffraction analysis could be 

grown by cooling a saturated solution of the bis(hexamethylene) 

cyclopentadienone iron complex 1b in n-hexane/DCM. The X-

ray structure reveals the usual piano-stool geometry with a 

significant deviation from planarity of the cyclopentadienone ring 

(see the Supporting Information, Tables S1 and S2, for the 

relevant parameters).  

 
Figure 3. Crystal structure of the [bis(hexamethylene)cyclopentadienone]iron 

complex 1b. 

We then set to investigate the catalytic activity of complex 1b in 

the hydrogenation of acetophenone (S1). We firstly screened the 

above-mentioned methodologies for the in situ activation of the 

pre-catalyst (Table 1). Use of K2CO3 (in situ Hieber reaction)[18] 

only led to a moderate conversion (Table 1, entry 1), while the 

other activation strategies (entries 2-3) were more successful: 

photolysis of a CO ligand by UV irradiation[17] allowed to obtain 

full conversion, and oxidative cleavage with Me3NO[16] gave 52% 

conversion. Increasing the hydrogen pressure to 30 bar allowed 

to reach 51% conversion in the presence of K2CO3 (entry 4) and 

full conversion in the presence of Me3NO (entry 5). 



    

 

 

 

 

 

 

Table 1. Test of pre-catalyst 1b in the hydrogenation of acetophenone S1 and 

screening of different activators.
[a]

 

 

Entry Activator PH2 [bar] T [°C] Conv. [%]
[b]

 

1 K2CO3 10 70 < 5 

2 hν
[c]

  10 40  > 99 

3 Me3NO 10 70 52 

4 K2CO3 30 70 51 

5 Me3NO 30 70 > 99 

[a] Reaction conditions: S1/1b/activator = 100:1:2, solvent: 5:2 iPrOH/H2O, c0 

(S1) = 1.43 M, reaction time = 16 h. [b] Determined by GC (see the Supporting 

Information). [c] Reaction vessel irradiated at λmax = 352 nm and 8 W; solvent: 

toluene. 

For investigating the substrate scope of pre-catalyst 1b, we 

decided to adopt the activation protocol with Me3NO, which is 

compatible with standard hydrogenation equipment as it does 

not require UV irradiation. A number of substrates were 

screened, giving the results shown in Table 2. Several 4-, 3- and 

2-substituted acetophenones were fully hydrogenated (Table 2, 

entries 2-6), regardless the electron withdrawing or electron 

donating nature of the substituent. Notably, reducible groups 

such as carbon-halogen bonds (entries 4 and 6) or nitro group 

(entry 2) were not affected under the reaction conditions. 2-

Acetylpyridine (S7) was also hydrogenated with full conversion 

(entry 7), despite the presence of a coordinating nitrogen atom 

that - in principle - could poison the catalyst. α-Tetralone (S8) 

was the only aryl ketone to be hydrogenated with less than 

quantitative yield (entry 8). Aliphatic ketones S9-10 showed 

quantitative conversion (entries 9-10), as did the α,β-unsaturated 

ketone S11 (entry 11) which, however, gave a 1:1 mixture of 4-

phenyl-3-buten-2-ol (from C=O reduction) and 4-phenylbutan-2-

ol (from reduction of both C=O and C=C). As – in a control 

experiment – 4-phenyl-3-buten-2-ol itself did not react at all 

under the same experimental conditions, we assume that 4-

phenylbutan-2-ol was formed by 1,4-reduction of S11 followed 

by hydrogenation of the C=O double bond. The cyclic α,β-

unsaturated ketone isophorone (S12), instead,  formed only the 

C=O reduction product with a modest conversion (entry 12). 

Quite expectedly, the aldehyde substrates S14-S17 were 

smoothly hydrogenated to the corresponding alcohols (Table 2, 

entries 14-17). In the case of cinnamaldehyde (S17), some 3-

phenyl-1-propanol (from reduction of both C=O and C=C) was 

also obtained, together with the expected cinnamyl alcohol 

(entry 17). However, the amount of over-reduction product (5%) 

was much lower than in the case of the corresponding α,β-

unsaturated ketone S11. This difference is explained by the fact 

that – in the case of S17 – 1,2-reduction of C=O competes more 

efficiently with the 1,4-reduction pathway due to the higher 

reactivity of the aldehyde compared to the keto group. 

Table 2. Substrate screening for C=O hydrogenation in the presence of pre-

catalyst 1b.
[a] 

 

Entry Substrate Conv. [%]
[b] 

1 

S1 

> 99 (98)
[c] 

2 

S2 

> 99 

3 

S3 

> 99 (98)
[c]

 

4 

S4 

> 99 (98)
[c]

 

5 

S5 

> 99 

6 

S6 

> 99 

7 

S7 

> 99 

8 

S8 

80 

9 
S9 

> 99 

10 
S10 

> 99 

11 

S11 

> 99
[c] 

12 

S12 

15 

13 
S13 

> 99  
cis : trans = 60:40 

14 
S14 

> 99 (94)
[c]

 

15 
S15 

> 99 (86)
[c]

 

16 S16 > 99 

17 
S17 

> 99
[d] 

18 

S18 

99 

19 
S19 

0 

[a] 
Reaction conditions: substrate/1b/Me3NO = 100:1:2, PH2 = 30 bar, solvent: 

5:2 iPrOH/H2O, c0 (substrate) = 1.43 M, T = 70 °C, reaction time = 16 h. 
[b]

 

Determined by GC or 
1
H-NMR of the crude reaction mixture. 

[c]
 In brackets, 

isolated yields of 2 mmol-scale reactions. 
[d]

 1:1 4-phenyl-3-buten-2-ol / 4-

phenylbutan-2-ol. 
[e]

 95:5 cinnamyl alcohol / 3-phenyl-1-propanol. 



    

 

 

 

 

 

Activated ester S18 was also hydrogenated (to the 

corresponding alcohol products) with full conversion (entry 18) 

under the conditions that we have recently reported (with pre-

catalyst 1a) for the hydrogenation of trifluoroacetates.[16k] Finally, 

amide S19 (entry 19) was not reduced, consistent with what was 

reported for the other Knölker-Casey-type complexes.[10] 

The catalytic activity of the 

[bis(hexamethylene)cyclopentadienone]iron complex 1b and that 

of the “classical” (cyclopentadienone)iron complex 1a in the 

hydrogenation of acetophenone (S1) were then tested at low 

catalyst loading (0.1 mol%). As can be seen in Table 3, higher 

turnover numbers (TON) and turnover frequencies (TOF) were 

observed for complex 1b compared to 1a. 

 

Table 3. Comparison between complexes 1a and 1b in the hydrogenation of 

acetophenone (S1).
[a]

 

Entry Cat. Conv. [%] TON TOF [h
-1

] 

1 1a 13 130 7.5 

2 1b 62 620 35.9 

[a]
 c0 (S1) = 1.429 M, subtrate/1b/Me3NO = 100:0.1:0.2, PH2 = 30 bar, T = 

70 °C, 17 h, solvent = 5:2 iPrOH/H2O. 

Such a remarkable difference in terms of activity, induced us to 

evaluate the kinetics of acetophenone hydrogenation in the 

presence of pre-catalysts 1a and 1b (activated with Me3NO). 

The conversions were calculated from the hydrogen uptake, 

measured with a computer-controlled Parr autoclave system. As 

can be seen in Figure 4, in the initial part of the two experiments 

(t < 23 min) the in situ formed complexes act-1a and act-1b (see 

Figure 1 A) showed similar activity, with pseudo-first order 

kinetic profiles (see Table 4 for the kinetic parameters). However, 

after about 23 min the two catalysts started behaving very 

differently: while the 1b-derived catalyst went on following 

pseudo-first order kinetics (Figure 4, blue diamonds ♦), the act-

1a-catalyzed reaction slowed down (Figure 6, red squares ■) 

and then proceeded until completion at reduced rate. 

These findings seem to suggest that the “classical” 1a-derived 

catalyst undergoes quite fast decomposition,[27] so that most of it 

is transformed into a less active or inactive species before the 

hydrogenation of S1 is complete. On the contrary, the catalyst 

derived from the new 

[bis(hexamethylene)cyclopentadienone]iron complex 1b seems 

to be more robust and not to undergo substantial decomposition 

before the hydrogenation is finished. The lower stability of 

catalyst act-1a/2a compared to act-1b/2b would also explain the 

lower TON, TOF and conversion obtained with the former at 0.1 

mol% catalytic loading (Table 3). 

 

Table 4. Kinetic parameters of the hydrogenation of acetophenone (S1) in the 

presence of pre-catalysts 1a and 1b.
[a,b] 

Entry Pre-cat. kapp [min
-1

]
[c]

 t1/2 [min] k [L mol
-1

 min
-1

]
[c] 

1 1a 0.042 16.3 8.5 

2 1b 0.034 20.5 6.8 

[a]
 S1/pre-cat./Me3NO = 100:1:2; solvent: 5:2 iPrOH/H2O; c0 (S1) = 0.501 M; 

PH2 = 30 bar; T = 70 °C; ccat. = 5 mM; 
[b]

 Kinetic parameters calculated on the 

following time/conversion intervals: 1-23 min (corresponding to 1-63% 

conversion) for 1a, 3-57 min (corresponding to 1-83% conversion) for 1b; 
[c]

 

kapp = k 
.
 ccat. 

The proposed mechanism for the hydrogenation of 

acetophenone, shown in Scheme 4 (Cycle A), is the commonly 

accepted one for Knölker-Casey catalysts:[15c, 28 ] after the 

activation of pre-catalyst 1b by decoordination of one CO ligand, 

the active species act-1b splits H2 generating the 

(hydroxycyclopentadienyl)iron complex 2b. The latter reacts with 

the substrate through a concerted pericyclic transition state (II), 

forming complex act-1b together with the reaction product. 

Casey and Guan reported that the isolated 

(hydroxycyclopentadienyl)iron complex 2a is also able to 

catalyze the transfer hydrogenation of acetophenone (S1) with 

iPrOH.[15a] 

 

 
Figure 4. Kinetics of acetophenone (S1) hydrogenation promoted by pre-catalyst 1a (■) and 1b (♦) activated with Me3NO. Reaction conditions: S1/Pre-

cat./Me3NO = 100:1:2; solvent: 5:2 iPrOH/H2O; c0 (S1) = 0.501 M; PH2 = 30 bar; T = 70 °C; ccat. = 5 mM. 



    

 

 

 

 

 

 
Scheme 4. Proposed mechanism for ketone hydrogenation (Cycle A) and transfer hydrogenation (Cycle B) promoted by complex 1b activated with Me3NO. 

We thus tested the (cyclopentadienone)iron complex 1a and our 

new [bis(hexamethylene)cyclopentadienone]iron complex 1b, 

activated in situ with Me3NO, in this reaction (Table 5). Just as 

observed in hydrogenation, pre-catalyst 1b was found more 

active than the “Knölker complex” 1a: while only moderate 

conversion was obtained in the presence of the latter complex 

(Table 5, entry 1), use of pre-catalyst 1b allowed to obtain 

almost full conversion (Table 5, entry 2). This finding is in 

agreement with the hypothesis that mechanism and active 

catalytic species are similar to those of the hydrogenation: as 

shown in Scheme 4 (Cycle B), first the active complex act-1b 

dehydrogenates iPrOH (through the pericyclic transition state III) 

forming the hydride 2b, then the latter reduces the substrate 

(through transition state II). 

 

Table 5. Transfer hydrogenation of acetophenone (S1) with iPrOH in the 

presence of pre-catalysts 1a and 1b.
[a] 

 

Entry Pre-cat. Conv. [%] 

1 1a 34 

2 1b 90 

[a]
 S1/Pre-cat./Me3NO = 100:2:4, c0 (substrate) = 0.7 M, T = 70 °C, 17 h, 

solvent: 5:2 iPrOH/H2O. 

 

Conclusions 

In this paper we have reported the first efficient synthesis and 

full characterization of the 

[bis(hexamethylene)cyclopentadienone]iron complex 1b. The 

latter compound has been obtained in preparatively useful yield 

(56%) by reaction of cyclooctyne with Fe(CO)5. The yield 

obtained is remarkable for this kind of intermolecular cyclative 

carbonylation/complex-ation, which usually gives good results 

only with a few, properly substituted alkynes.[12a,23,24] The 

observed reactivity of cyclooctyne – the smallest cyclic alkyne – 

is probably due to ring strain, as suggested by the lack of 

reactivity of its unstrained higher homolog cyclododecyne. 

Complex 1b has been tested as pre-catalyst in the 

hydrogenation of ketones, in which, after activation with Me3NO, 

it displayed a catalytic activity superior (in terms of TON and 

TOF) to that of the well-known complex 1a. The same trend was 

observed also in the transfer hydrogenation of acetophenone, in 

which 1b allowed to obtain a higher conversion compared to 1a. 

Further exploration of the pre-catalyst’s scope showed that 1b 

can promote also the hydrogenation of aldehydes and 

trifluoroacetate esters. Kinetic studies on the hydrogenation of 

acetophenone in the presence of complexes 1a and 1b suggest 

that this difference is due to the higher stability of the 1b-derived 

catalyst compared to the “Knölker-Casey catalyst” generated in 

situ from 1a. 

Experimental Section 

General Remarks. All reactions were performed in flame-dried 

glassware with magnetic stirring under an inert atmosphere 



    

 

 

 

 

 

(nitrogen or argon), unless otherwise stated. The solvents for the 

reactions were distilled from the following drying agents and 

transferred under nitrogen: CH2Cl2 (CaH2), THF (Na), toluene 

(Na). 2-Propanol (over molecular sieves in bottles with crown 

caps) was purchased from Sigma–Aldrich and stored under 

nitrogen. The reactions were monitored by analytical thin layer 

chromatography (TLC) with silica gel 60 F254 precoated glass 

plates (0.25 mm thickness). Visualization was accomplished by 

irradiation with a UV lamp. Flash column chromatography was 

performed with silica gel (60 Å, particle size 40–64 μm) as the 

stationary phase by following the procedure of Still and co-

workers.[29] 

The 1H NMR spectra were recorded with a spectrometer 

operating at 400.13 MHz. The 1H chemical shifts (δ) are reported 

in ppm relative to tetramethylsilane with the solvent resonance 

as the internal standard (CDCl3 δ = 7.26 ppm). The following 

abbreviations are used to describe spin multiplicity: s = singlet, d 

= doublet, m = multiplet, br = broad signal. The 13C NMR spectra 

were recorded with a 400 MHz spectrometer operating at 100.56 

MHz with complete proton decoupling. The 13C chemical shifts 

are reported in ppm (δ) relative to tetramethylsilane with the 

solvent resonance as the internal standard (CDCl3 δ = 77.16 

ppm). 19F NMR spectra were recorded with a 300 MHz 

spectrometer operating at 282 MHz. 19F NMR chemical shifts are 

reported in ppm (δ) relative to CFCl3 with α,α,α-trifluorotoluene 

(δ = -63.72 ppm) as internal standard. Positive values indicate 

downfield shifts, and the coupling constant values are given in 

Hz. The infrared spectra were recorded with a standard FTIR 

spectrometer. The hydrogenation experiments with UV 

irradiation were carried out in a glass autoclave (total capacity 

20 mL, maximum pressure 25 bar) which was put in a 

photochemical reactor (Rayonet RPR-100, Southern New 

England UV Company, USA). The UV lamps used have the 

specification F8T5BLB, 8 W, 352 nm (Sanyo Denki, Japan). The 

other hydrogenation experiments were run in a 450 mL Parr 

autoclave equipped with a removable aluminium block that can 

accommodate up to fifteen magnetically stirred 7 mL-glass vials. 

For the synthesis of cyclooctyne 4 and cyclododecyne 6, see the 

Supporting Information. 

 

Synthesis of bis(hexamethylene)cyclopentadienone 

irontricarbonyl (1b). Cyclooctyne 4 (230 μL, 1.85 mmol) and 

Fe(CO)5 (1.2 mL, 9.25 mmol, 5 equiv) were dissolved in dry 

toluene (10 mL), under argon, and heated to 90 °C overnight in 

a sealed glass tube. Evaporation of the solvent gave the crude 

product, which was then purified by flash chromatography (7:3 

hexane/AcOEt). Yellow crystals. Yield: 198 mg (56%). m.p. = 

156 °C. 1H NMR (400 MHz CDCl3): δ 1.44-1.59 (m, 10H), 1.74-

1.92 (m, 8H), 2.40-2.49 (m, 2H), 2.59-2.64 (m, 2H), 2.76-2.78 (m, 

2H). 13C NMR (100 MHz CDCl3): δ 23.43, 23.70, 25.77, 26.24, 

28.81, 31.29, 85.54, 102.42 171.42, 209.35. FT-IR: ν = 2924.1, 

2856.6, 2050.3, 1978.9, 1950.0, 1620.2, 1585.5, 1456.3, 1354.0, 

1278.8, 1203.6, 1118.7, 1097.5, 1031.9, 987.5, 817.8, 736.8, 

648.1, 621.1 cm-1.  

HRMS (ESI+): m/z 385.1098 [M + H]+; 407.0919 [M + Na]+ 

(calcd. for C21H24O4Fe: 385,1102; C20H24O4FeNa: 407.0922). 

 

Synthesis of bis(decamethylene)cyclopentadienone 

irontricarbonyl (1c). Cyclododecyne 6 (167μL, 0.91 mmol) and 

Fe(CO)5 (613 μL, 4.6 mmol, 5 eq) were dissolved in dry toluene 

(5 mL), under argon and heated to 110 °C overnight in a sealed 

glass tube. Evaporation of the solvent gave the crude product, 

which was then purified by flash chromatography (6:4 

hexane/AcOEt). Orange solid. Yield: 12 mg (5%). 1H NMR (400 

MHz, CDCl3): δ 2.37-2.35 (4H, br), 2.10-2.08 (2H, br), 1.94-1.97 

(2H, br), 1.78 (2H, br), 1.56-1.30 (27H, m), 1.21-1.19 (3H, br). 

MS (ESI+): m/z 497.11 [M + H]+; 519.11 [M + Na]+ (calcd. for 

C28H41O4Fe: 497.24; C28H40O4FeNa: 519.22). 

General Procedure for the Hydrogenation Reactions. The 

pre-catalyst (0.005 mmol, 0.01 equiv) was weighed in the glass 

vials and then iPrOH (0.25 mL) was added to each vial and 

stirring was started. An aqueous solution of Me3NO (0.01 mmol, 

0.02 equiv, 0.1 mL) was dispensed to each vial. After stirring at 

room temperature under nitrogen for 10 min, the substrate (0.5 

mmol, 1 equiv) was added to the catalyst solutions. Each vial 

was capped with a Teflon septum pierced by a needle, and 

transferred into the autoclave, and stirring was started. After 

purging four times with hydrogen at the selected pressure, 

heating was started. The reactions were stirred under hydrogen 

pressure overnight and then analysed for conversion. 
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