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4. ABSTRACT 

Transdifferentiation entails the direct conversion between terminally differentiated cells, 

without passing through the pluripotent state. Strikingly, through the exogenous expression 

of few transcription factors (TFs), the starting cell epigenome is restructured, allowing the 

generation of a cell that can be embryologically distant. This is the case of BAM (i.e., 

Brn2, Ascl1, Myt1l) factors, whose transduction in mouse embryonic fibroblasts (MEFs), 

deriving from the mesoderm, allows their transdifferentiation into induced neuronal cells 

(iNs), which derive instead from the ectoderm.  

The gene networks that characterize each MEFs-to-iNs transdifferentiation phase have 

been recently described, but to date it is still unclear how BAM factors guide such a 

conspicuous epigenetic remodelling. 

MLL1 and MLL2 are two H3K4 trimethylases, belonging to the Trithorax protein family, 

discovered for their role in the regulation of Hox genes, which are fundamental for cell 

identity specification. Although during neuronal development and differentiation the 

function of the Trithorax axis has not been clearly identified, some hints suggest the 

involvement of MLL1 and MLL2 in both in vivo and in vitro neuronal differentiation.    

Therefore, I studied the role of MLL1 and MLL2 during MEF-to-iNs transdifferentiation. 

Whether transdifferentiation could envisage the same temporal epigenetic changes of 

physiological differentiation is still an open debate. What is evident is that in these two 

types of lineage specification (normal differentiation and transdifferentiation) starting cells 

have very different epigenomes, so a complete overlap of the epigenetic remodelling steps 

seems implausible. However, transdifferentiation remains a good tool to gain more insights 

both on neuronal differentiation and on the driving factors of transdifferentiation itself, 

which are often “terminal selector genes” or TFs fundamental during cell specification in 

development. 
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First, I extensively characterized the impact of the deletion of either Mll1, Mll2 or both, 

measuring transdifferentiation efficiency and iNs maturation. In particular, I showed that 

the absence of MLL1 does not affect neither transdifferentiation efficiency nor iNs 

neuronal morphology. Mll1 deletion is only detrimental for the survival rate of 

transdifferentiating MEFs. On the contrary, transdifferentiation efficiency is compromised 

in the absence of Mll2, and Mll2-/- iNs show an impairment in neurite elongation. The co-

deletion of Mll1 and Mll2 impinges on cell viability as the knock-out of Mll1 and it further 

exacerbates the Mll2-/- transdifferentiation defect. Moreover the few Mll1-/-Mll2-/- iNs 

generated have very short neurites. These results suggest a role for MLL2-mediated H3K4 

methylation in the control of transdifferentiation. Therefore, I defined the direct and 

indirect MLL2 targets through the integrative analysis of: i) the RNA-seq on iNs, ii) the 

ChIP-seq for MENIN, the specific common subunit of MLL1 and MLL2, for the 

delineation of the direct MLL2 targets which were not compensated by MLL1 and iii) the 

H3K4me3 ChIP-seq, to identify which are the genes that need to be trimethylated to allow 

transdifferentiation. I showed that in the absence of Mll2 a conspicuous fraction of the 

transcriptome is down-regulated and/or loses the H3K4me3 mark. Therefore, MLL1, 

despite being the MLL2 homolog, is not capable of compensating for the absence of MLL2 

during transdifferentiation. Moreover, many deregulated genes (either differentially 

expressed or differentially marked by H3K4me3) are linked to neuronal differentiation and 

maturation, as expected by the phenotype analysis. Finally, among the others, also the 

Polycomb axis is dysregulated, suggesting its possible involvement in the Mll2-/- defective 

transdifferentiation. 
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5. INTRODUCTION 

5.1 Cell fate plasticity 

5.1.1 Cell fate plasticity: a historical perspective 

 
From an evolutionary perspective we could expect that the genome size increases along 

with the organism complexity. Paradoxically, higher order organisms do not necessarily 

have both a higher DNA content and a greater number of genes. This is the so-called C-

value enigma or, indeed, paradox (C.A. Thomas Jr, 1971). However, the layers of 

epigenetic control of gene expression and gene accessibility co-evolved with genome size1-

3. This, on one side, could partially reconcile the C-value enigma. Moreover, the epigenetic 

configuration, since the cells of an organism have the same DNA content, defines the 

identity/the lineage commitment of the considered cell. 

Conrad Hal Waddington was the father of the term epigenetics, defined as “the branch of 

biology which studies the causal interactions between genes and their products, which 

bring the phenotype into being”4. He also stated, regarding “the “whole complex of 

developmental processes” that connects genotype and phenotype that “It is convenient to 

have a name for this complex; ‘epigenotype’ seems suitable”5,6. 

With the growth of the knowledge in this topic, epigenetics, nowadays, comprehends all 

the inheritable modifications at the DNA level, but not to its sequence, and at the histone 

proteins associated to DNA.  

Conrad Hal Waddington also fathered the seminal metaphor of the epigenetic landscape. 

He depicted the pluripotent cell as a marble rolling down the epigenetic landscape (Figure 

1). Every valley and hill that the marble encounters represents a different lineage choice, 

respectively more or less energetically favourable. Progressively the marble becomes more 

and more committed until it reaches its final valley: the terminally differentiated state. We 

could envisage the cell/marble modifying its epigenome along the descent and therefore 
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we could consider that each step of differentiation is defined by a different epigenome 

configuration (Figure 1).  

Due to the unfavourable energetic condition, the marble was considered unable to get back 

on top of the epigenetic landscape (i.e., back to pluripotency) and to cross the epigenetic 

hills that separate the diverse lineage fates (i.e., change commitment).  Although the 

metaphor of differentiation remains valid, the notion of irreversibility of the fate choice has 

by now been surpassed. 

	

                           

Figure 1: The Waddington landscape model 

In the Waddington model the pluripotent cell is depicted as a marble rolling down the epigenetic 

landscape until its final differentiated state is reached (From Waddington, 1942). 

 

5.1.2 Epigenetics: crossing the barriers 

 
In 1950s, Briggs, King and Gurdon, taking advantage of the Somatic Cell Nuclear Transfer 

(SCNT) technique, demonstrated that some components of the cytoplasm of an enucleated 

frog oocyte, at that time unidentified, were able to “reprogram” the transferred nucleus of 

somatic, terminally differentiated Xenopus laevis cells, back to pluripotency, allowing the 

formation of new tadpoles7,8. SCNT was demonstrated effective also in different 

organisms, such as the Mus musculus (Figure 2d). This discovery set the foundations for 

the seminal study of Yamanaka and Takahashi of reprogramming of differentiated cells 
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into induced Pluripotent Stem Cells (iPSCs) in 2006 (Figure 2b)9. Yamanaka and 

Takahashi showed that through the ectopic expression of Oct3/4, Sox2, Klf4 and c-Myc, 

four transcription factors (TFs) important for the maintenance of pluripotency and for the 

proliferation of Embryonic Stem Cells (ESCs), they were able to reprogram mouse 

fibroblasts, both embryonic and adult, into pluripotent cells. iPSCs expressed pluripotency 

markers, formed teratomas if transplanted in nude mice and contributed to mouse 

development when they were introduced into the blastocyst, three fundamental features of 

ESCs and hallmarks of pluripotency9. The reprogramming protocol has been adapted also 

to human cells10,11 and to cells of different lineages12-15, revolutionizing the stem cell field. 

The discoveries of Gurdon and Yamanaka showed that lineage-specific TFs are able to 

reprogram and reset the epigenome of a differentiated cell16: the epigenome, therefore is 

not fixed in a static and incontrovertible configuration (Figure 2b). 

Another proof that lineage specification of a cell is not irreversible came from cell fusion 

studies. Heterokaryons are non-dividing multinucleated cells that originate by fusion of 

cells with different identities. In the heterokaryons formed by mouse myotubes and 

differentiated human cells, human muscle cell markers are up-regulated in the latter17 

(Figure 2e). This evidence shows that the identity of differentiated cells, and therefore their 

epigenetic configuration are actively maintained by instructive factors, able to orient the 

fusion partner to their lineage. These TFs are called also “terminal selectors genes”, which, 

by controlling a plethora of effector genes, directly specify the cell identity during 

development and preserve it in mature cells. 

In 1979 Taylor and Jones demonstrated that treating mouse fibroblasts with the 

demethylating agent 5-azacytidine (5-azaC) they formed myotubes18. In the following 

years the helix-loop-helix TF Myogenic Differentiation 1 (MYOD1) was identified as the 

main driver of myogenic conversion19. The direct passage, without passing through the 

pluripotent state, between differentiated cells of diverse lineages is called 

transdifferentiation or cell conversion (Figure 2c and 2f). Nowadays there are many other 
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examples of experimental transdifferentiation, also between cells that derive, unlike 

fibroblasts and muscle cells, from different germ layers and that therefore do no share the 

majority of the epigenetic marks.  

 

 

 

Figure 2: The exceptions to the Waddington’s model 

a. Cell development path according to Waddington’s model. b. Reprogramming to pluripotency. 

Unexpectedly the marble, from the differentiated state, can also roll back to the top (the pluripotent 

state). c. Transdifferentiation. Cells can convert into other differentiated cells, both deriving from 

the same progenitor (short arrow) and with different embryological origins (long arrow), without 

passing through the pluripotent state. d. Schematic of somatic cell nuclear transfer. Through the 

transfer of a somatic nucleus into an enucleated oocyte, the nucleus-receiving cell is reprogrammed 

to pluripotency, from which also an entire organism can be derived. e. Schematic of Cell Fusion 

a	

b

c	

d

e

f	
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between different cell types, which leads to the formation of heterokaryons. f. Schematic of 

transcription factors-mediated reprogramming towards different cell fates. 

(Adapted from Ladewig et al., Nature Reviews Molecular Cell Biology 2013 and Vierbuchen and 

Wernig, Molecular Cell 2012) 

 

These breakthrough studies amplified the vision of Waddington. Cell identity is 

dynamically preserved by lineage instructor factors that, on one side, keep lineage specific 

cascades active (i.e., SCNT and heterokaryons studies). On the other side they 

epigenetically maintain non-lineage specific signalling switched off (i.e., 5-azaC 

experiments). This equilibrium is, however, perturbable, precisely thanks to the ectopic 

expression of specific TFs for different lineages. Cells are therefore more plastic than 

previously thought. Although the hierarchical epigenetic landscape is still perfect to depict 

cell differentiation, it does not apply to the description of reprogramming and 

transdifferentiation. One alternative representation is the “epigenetic disc” proposed by 

Brüstle and colleagues (Figure 3)20. Since it is now almost equally simple to reprogram 

cells to pluripotency and to differentiate or to transdifferentiate them, the epigenetic disc is 

a model where all the cell identities are holes (the unstable pluripotent state is an open 

hutch) lining the border of a disc. In this representation, a slight tilt of the disc (the 

expression of specific TFs) is sufficient to make the marble (i.e., the cell) roll towards the 

desired cell lineage, abolishing the concept of hierarchies.  
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Figure 3: The epigenetic disc model 

The cell is depicted as a marble, as in Waddington’s model, but all the cell identities are 

represented as holes along the margins of a disc, thus eliminating the hierarchy embedded in 

Waddington’s model. By tilting the disc (i.e., the transduction of specific TFs), the marble can 

reach other differentiated states including the pluripotent one. Since pluripotency is a metastable 

condition, it is represented as an open hutch rather than a hole.  

(From Ladewig et al., Nature Reviews Molecular Cell Biology 2013) 

 

5.1.3 Stability of a differentiated cell  
	
The identity of a cell is differently maintained depending on the cell type, through 

networks that are more or less stable. 

In cells that are highly plastic (e.g., B cells) this network could be as simple as a cross-

inhibitory regulation between two instructor TFs: the active one directs and maintains the 

current lineage, inhibiting the other that would be responsible for the alternative 
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specification (Figure 4a). In this case the ablation of the expressed TF would lead to the 

activation of the alternative pathway, and consequently to lineage switching. One example 

of this univocal type of cross-regulation is the misexpression of the CCAAT/enhancer 

binding protein α (C/EBPα) and C/EBPβ in B cells. These two TFs inhibit Pax5, the 

instructive factor for B cell commitment, leading to macrophages transdifferentiation21. 

Another case is the ablation of forkhead box L2 (Foxl2) gene, a TF fundamental for female 

gonad development, in granulosa and theca cells, which induces their transdifferentiation 

into Sertoli and Leydig cells22. Thus on one side, in the hierarchical tree of differentiation, 

the choice between two closely related cell lineages branches is exerted by the mutually 

exclusive expression of driver TFs. On the other side, since these cell types are 

developmentally proximal and in most of the cases deriving by the same progenitor, their 

epigenomes present only minor differences. Therefore the resetting of the lineage-specific 

epigenetic marks is not massive as in the case of transdifferentiation between cells deriving 

by different germ layers. 

In the case of stable/less plastic cells, instead (e.g., neurons) the sole ablation of the lineage 

specific TF or misexpression of the alternative TF are not sufficient to drive 

transdifferentiation in the mutually exclusive cell-fate, because of a higher internal 

regulation of the differentiation/maintenance pathway and a stronger blockade of the 

alternative pathway by epigenetic modifications (Figure 4b). One example is Nurr1, the 

fundamental TF for dopaminergic differentiation, which leads only to the down-regulation 

of some dopaminergic markers upon ablation in adult mice. On the contrary if it is 

embryonically deleted, this results in the totally absence of dopaminergic neurons23. The 

tighter regulation in the adult implicates a fine preservation of the integrity of the tissue.  

A third case comprises stable cells in which the two driver TFs activate pathways that have 

both a high internal regulation and that do not intersect (Figure 4c). This is also the case of 

cells deriving from different germ layers. 
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Figure 4: The Networks preserving cell identity 

a. Cell identity is controlled only by one TF (A), which inhibits the mutually exclusive activity of 

the TF (B) governing the alternative cell fate acquisition. b. The deletion of the TF (A or B), that 

maintains the cell identity, is not sufficient to induce the alternative cell fate, because of internal 

cross regulatory mechanisms. c. The deletion of the TF (A or B), that maintains the cell identity, 

does not lead to the acquisition of the alternative cell fate, because the networks depending from A 

and B do not intersect.  

(From Holmberg and Perlmann, Nature Reviews Genetics 2012) 

 

5.2 Epigenetics and cell fate acquisition 

5.2.1 Basic notions of epigenetics 

	
Eukaryotic DNA is wrapped around nucleosomes, multiprotein complexes composed by 

eight histone subunits: two histones 2A (H2A), two H2B, two H3 and two H4. The 

complexes of DNA with nucleosomes and other DNA-bound proteins constitute 

chromatin. When chromatin is in a closed conformation and is not accessible for instance 

to TFs binding, it is called heterochromatin, whereas in an open conformation is called 
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euchromatin. As written above the term epigenetics comprises all the inheritable 

modifications to DNA, but not in its sequence, and to the nucleosomes.  

Up to date several post translational modifications of histone tails have been identified, 

including: phosphorylation, acetylation, ubiquitination, and sumoylation. These “histone 

marks” constitute a chromatin signature drawn and recognized by specific epigenetic 

remodellers and adaptors whose binding influences the chromatin structure itself, gene 

transcription and DNA replication. Among the major epigenetic modifiers, Polycomb 

group (PcG) and Trithorax group (TrxG) protein complexes have been characterized.  

These two complexes were discovered as the causative agents, when mutated, of the 

transformation of one Drosophila melanogaster (D. melanogaster) body segment into 

another (i.e., homeotic transformation)24-26. During development the identity of each D. 

melanogaster body segment is specified by the spatial and temporal expression pattern of 

Homeobox genes (HOX genes), determined by maternal and zygotic TFs that, however, are 

present only during the early stages. At later time points only PcG and TrxG preserve the 

memory of HOX genes transcriptional states, by depositing specific histone marks. Hence 

their perturbation leads to homeotic transformations. 

PcG proteins are mainly transcriptional repressors responsible for the trimethylation of the 

lysine 27 of histone H3 (H3K27me3), in the case of the Polycomb repressive complex 2 

(PRC2) and for the ubiquitination of the lysine 119 of histone H2A (H2AK119ub,) in the 

case of Polycomb repressive complex 1 (PRC1). On the other side, TrxG proteins deposit 

an activating mark, methylating the lysine 4 of the histone H3 (H3K4me1, H3K4me2, 

H3K4me3).  

The epigenome and, consequently, the transcriptome of a cell define its identity. Indeed the 

epigenetic configurations at enhancers (i.e., genomic sequences, proximal or distal with 

respect to the transcription start site (TSS), recognized by specific TFs, which positively or 

negatively modulate gene transcription) and promoters, highly influenced by TrxG and 

PcG proteins, regulate gene expression27,28. In particular, H3K4me3 has been found to be 
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associated with active gene promoters, while H3K27me3 with repressed ones. H3K4me3 

and H3K27me3 are co-present in promoters of developmental regulator genes, allowing 

low mRNA transcription. This specific epigenetic configuration, called bivalent chromatin 

domain29, has been discovered in ESCs and confers plasticity to cells: during lineage 

specification, if the trimethylation of H3K27 is removed, the gene is activated. On the 

contrary, if H3K4me3 is erased the gene is permanently silenced. 

Also enhancers can be classified on the basis of the different TrxG and PcG epigenetic 

marks distribution. In particular the presence of only H3K4me1 characterizes the 

enhancers primed for activation and the co-presence of H3K4me1 and H3K27me3 defines 

the poised enhancers. In the latter configuration if the H3K27me3 mark is replaced by 

H3K27 acetylation the enhancer is considered active, whereas if only the H3K27me3 is 

present the enhancer is silenced. TrxG and PcG are therefore antagonistic epigenetic 

remodellers, finely tuned during development and differentiation.  

 

5.2.2 Polycomb group Proteins 

 
The catalytic components of the PRC1 are RING1A and RING1B, the E3 ubiquitin ligases 

responsible for the deposition of the H2AK119ub, an epigenetic mark linked to chromatin 

compaction and transcriptional repression. RING1A and RING1B were found to be 

associated with different components, forming the canonical and noncanonical PRC1 

complexes. In the canonical complex they associate with CBX, which allows the 

recruitment of PRC1 to specific targets marked by H3K27me3, making the chromatin 

binding PRC2-dependent30 and with BMI1, which is fundamental for the complex 

formation and activity31. On the contrary noncanonical PRC1 complexes contain RYBP 

and bind to chromatin in a PRC2-independent manner32. 
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The catalytic subunits of PRC2 are instead EZH2 or its homolog EZH1 that through their 

SET domain deposit the H3K27me3 mark. EED and SUZ12, two components of PRC2 

complexes, support the catalytic activity of EZH2/133. The binding of PRC2 complexes is 

modulated by RBAP46/48, responsible of nucleosome recognition34 and JARID2, that is 

also both a binding partner and a substrate for PRC2 itself35,36. In D. melanogaster specific 

genomic sequences responsible for PRC2 binding have been identified and named 

Polycomb responsive elements (PRE). To date an equivalent of PRE has not been 

identified in mammals. However, recently, unmethylated CpG islands associated with 

silenced enhancers have been suggested as PRC2 recruiting sites37. 

 

5.2.3 Trithorax group Proteins 

 
The first H3K4 mono-, di- and trimethylation enzyme was reported in Saccaromices 

cerevisiae (S. cerevisiae): the SET domain-containing 1 (Set1)38. To be functional Set1 has 

to be part of the COMplex of Proteins ASSociated with Set1 (COMPASS) and it is SET 

the domain that possesses the catalytic methylating activity. TrxG proteins, as mentioned 

before, were discovered in D. melanogaster thanks to homeotic transformation observed 

when they were mutated. In the fly, differently from S. cerevisiae, three H3K4 methylases 

are present: the homolog of Set1-COMPASS, the trithorax COMPASS-like and the 

trithorax-related COMPASS-like complex.  

Similarly to PcG, TrxG complexes in D. melanogaster recognize a specific sequence in the 

genome: the TrxG responsive elements (TRE). As for PRE, up to date this type of 

sequence has not been found in mammals. 

Because of the gene duplication that occurred during evolution, each complex acquired 

two paralogs in mammals39-43. The Set1-COMPASS can contain either SET1A (also 

known as KMT2 histone-lysine N-methyltransferase 2F (KMT2F)) or SET1B (also known 
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as KMT2G). The catalytic protein present in the COMPASS-like complex can be MLL1 

(also called KMT2A) or MLL2 (also known as KMT2B, MLL4, TRX2 and WBP7), while 

in the case of trithorax-related complex the methylating protein can be MLL3 (also called 

KMT2C) or MLL4 (also known as KMT2D, MLL2 and ALR) (Figure 6). To avoid 

misunderstanding, from now on KMT2B will be referred as MLL2 and KMT2D as MLL4. 

The three different COMPASS sub-classifications have some shared and some specific 

components (Figure 6). WDR5, ASH2, RBBP5 and DPY30 (WARD) are the four proteins 

falling into the commonly found components of all KMT2 complexes that function as 

complex stabilizers and enhancers of KMT2 activity44,45. Set1-COMPASS complexes 

associate specifically with WDR82 and CFP1 (CXXC finger protein 1), the trithorax 

COMPASS-like complexes with MENIN and the trithorax-related COMPASS-like with 

UTX, PTIP, PA1 and NCOA6.  
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Figure 5: The COMPASS complexes in yeast, D. melanogaster and Human 

In yeast only one COMPASS complex is present, while D. melanogaster has three COMPASS 

complexes. The components with the methylase activity in Drosophila are: SET1A, Trithorax and 

Trithorax-related. During the evolution each of them acquired two homologs. Grey subunits are 

shared among all complexes. In green the specific subunits for the trithorax-related COMPASS-

like complexes, in purple the specific subunit of trithorax COMPASS-like complexes, while in blue 

the subunits of SET1-COMPASS complexes. (From Mohan et al., Nature Reviews Cancer 2010) 

	
	
	
	
	



	

	 30	

5.2.4 Functions and localization of Trithorax group Proteins 
 
SET1A and SET1B are the two trithorax members responsible for the majority of H3K4 

methylation46. In particular, as their ancestor Set1 in Caenorhabditis elegans, SET1A and 

SET1B can catalyse mono-, di-, and trimethylation (H3K4me1, H3K4me2 and 

H3K4me3)47. As mentioned before their specific components are WDR82 and CFP1. 

WDR82 is fundamental for proper H3K4 methylation upon H2B monoubiquitination46 and 

it associates with the phosphorylated (on serine-5 of the C-terminal domain) Polymerase II 

allowing the co-transcriptionally deposition of H3K4me348. On the contrary, CFP1 guides 

SET1A and SET1B binding to unmethylated CpG islands. Hence these two methylases 

preferentially associate with promoters and TSS (Figure 7). In the WDR82-dependent 

binding they are recruited after transcription has initiated49 as their counterpart Set1 in C. 

elegans48, whose deletion, indeed, leads to modest variation in the yeast transcriptome50. In 

the alternative case, their transcription-independent recruitment could most likely influence 

transcription. 

MLL1 and MLL2 are able to mono-, di-, and trimethylate (even if at a lower rate) H3K4 as 

SET1A and SET1B47, but they have a restricted set of targets (i.e., MLL1 is responsible for 

the trimethylation of  less than 5% H3K4 trimethylated promoter genes51). Both MLL1 and 

MLL2 can bind to promoters-associated unmethylated CpG islands through the CXXC 

domain, a type of zinc finger, whereas they can also be recruited to enhancers through the 

interaction with specific TFs (Figure 7)52,53,54. Moreover MENIN, their exclusive 

component, is the subunit that is mainly responsible for the interaction between TFs and 

trithorax COMPASS-like complexes. In particular MENIN is a tumor suppressor gene, 

which favours MLL1 and MLL2 localization at their most known targets, such as HOX 

genes43,55-57. Indeed mice knock-out for the Mll1 SET domain are viable, but show an 

impairment in Hox expression58. Hence, differently from SET1A and SET1B, MLL1 and 
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MLL2 are recruited exclusively before transcription has initiated and they can actively 

influence gene expression.  

MLL1 and MLL2 are cleaved by taspase 1, which creates an N-terminal fragment 

containing the phenylalanine and tyrosine-rich region FYRN (phenylalanine and tyrosine-

rich N-terminal) and a C-terminal fragment containing both FYRC (phenylalanine and 

tyrosine-rich C-terminal) and the highly conserved SET domain (Figure 8)59,60. FYRN and 

FYRC heterodimerize to generate a functional complex. Indeed taspase deficient mice 

present homeotic transformation61.  

MLL2 augments in vitro chromatin transcription, only if S-adenosyl-methionine (SAM), 

the co-substrate of methylation, is present, directly linking the enhancement of 

transcription to H3K4 methylation62. Moreover the MLL2-deposited H3K4me3 prevents 

H3K27me3 deposition63,64 and CpG methylation, playing an anti-silencing role65. 

MLL3 and MLL4, instead, are mostly monomethylases47 that preferentially bind to 

enhancers (Figure 7)66,67. PTIP and NCOA6, the MLL3 and MLL4 specific subunits, 

interact with the PAX family of TFs and nuclear receptors42,68,69, while CFP1 (CXXC 

finger protein 1) recruits Set1-COMPASS complexes to unmethylated CpG 

dinucleotides70. Since UTX, one of the demethylases of H3K27me3, is a component of the 

trithorax-related COMPASS-like complexes68, the monomethylation of H3K4 occurs 

concomitantly with the removal of H3K27 methylation71. Afterwards P300/CBP is 

recruited to acetylate H3K27. The co-occurrence of H3K4me3 and H3K27ac, as 

aforementioned, is a signature of an active enhancer. 
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Figure 6: Functions and localization of KMT2 proteins 

Schematic representation of KMT2 binding. KMT2C and KMT2D (MLL3 and MLL4), mostly 

bind at enhancer (through the interaction with TFs) and are responsible for H3K4me1. KMT2F and 

KMT2G (SET1A and SET1B) are the main responsible for H3K4 trimethylation at promoters. 

They can interact with TFs, with RNApolII and with CpG islands through the CFP1 subunit. 

KMT2A and KMT2B (MLL1 and MLL2), instead, can bind both to promoters (through their 

CXXC domain or through the interaction with TFs) and to enhancers (through the interaction with 

TFs) and deposit mostly the H3K4me3 mark.  

(From Rao and Dou., Nature Reviews Cancer 2015) 

 

 
 

Figure 7: Protein domains of KTM2 enzymes 

The specific and shared protein domains are depicted. In particular KMT2A and KMT2B (MLL1 

and MLL2) possess a taspase cleavage site. Upon taspase cleavage the two protein fragments form 

a heterodimer through FYRN and FYRC, in order to be functional. In pink the catalytic SET 

domain. 

(Adapted from Rao and Dou., Nature Reviews Cancer 2015) 
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5.2.5 Trithorax group Proteins and redundancy 

 
In the case of TrxG genes, evolution corresponds to gene duplication. This on one side is 

synonymous with redundancy, but on the other side it increases the level of complexity and 

specification of H3K4 methylation deposition by each COMPASS member. Despite gene 

duplication, some specific and non-redundant functions still pertain to each trithorax 

member. Indeed the single knock-out mice for Mll1 and Mll2 are embryonic lethal, 

pointing to the absence of a complete compensation among the two paralogs55,56.  

Moreover, although the components composition and the protein domains are the same in 

each of the three sub-classifications (Figure 8), they display different subnuclear 

localizations72,73. In the current view each TrxG protein has a specific role, which is 

temporally and spatially modulated. Mll2 represents a clear example, since it is 

fundamental during gastrulation until day E.8.5/9.5 of gestation64. Only the deletion in this 

time frame results in embryonic lethality. Then, MLL2 is again essential during 

oogenesis74 and spermatogenesis64. 

Mll1, instead, is required later during development, especially for the hematopoietic 

lineages acquisition75. 

Moreover during in vitro retinoic acid (RA)-ESC differentiation, MLL1 and MLL2 

regulate different Hox clusters76.  

Recently, MLL2 has been found to be required for H3K4me3 deposition on bivalent 

promoters in ESCs while MLL1 is redundant76,77. 

Hence, these two paralogs present non-redundant activities, regulated spatially (i.e., they 

are the main H3K4 methylases of specific cell types and they have specific targets) and 

temporally (i.e., they are fundamental in specific developmental time frames). 
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5.2.6 Trithorax group Proteins, cell cycle and cell mortality 

 
TrxG proteins regulate and are regulated by the cell cycle. MLL1 presents a biphasic 

expression: it peaks during G1-S and G2-M transitions and it is degraded during late S and 

M phases by respectively the E3 ubiquitin ligase SCF bound to S-phase kinase-associated 

protein 2 (SCFSKP2) and by the anaphase-promoting complex bound to its coactivator 

CDC20 (APC/CCDC20) (Figure 9)78.  

MLL1, however, remains bound to DNA during replication and mitosis, such as its fly 

homolog Trx, preserving the transcription of cell-cycle genes and maintaining histone 

marks in the newly assembled nucleosomes79,80 (Figure 9). Since an epigenetic 

modification is inheritable by definition, this observation makes the H3K4me3 a bona fide 

epigenetic mark. The turnover of other MLL proteins has not been investigated yet. 

In the case of DNA damage, the phosphorylation on serine 516 of MLL1 reduces its 

degradation by SCFSKP2 81. Consequently H3K4me3 deposition at late replication origins 

increases, impeding the binding of CDC45, a component of the pre-replication complex, 

and therefore the replication of the damaged DNA (Figure 9). 

 

 
 

Figure 8: Cell cycle dependent degradation of MLL1 
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MLL1 is degraded during late S and M phases, while it peaks at the G1/S and G2/M transitions. 

MLL1 remains associated to chromosomes during mitosis and replication. In case of DNA damage, 

MLL1 phosphorylation of serine 516 reduces its degradation, increasing the H3K4me3 deposition 

at late origins and inhibiting the binding of CDC45. This impedes the replication of damaged DNA. 

Moreover both MLL1 and MLL2 interact with E2F proteins regulating the cell cycle. 

(Adapted from Schuettengruber et al., Nature Reviews Molecular Cell Biology 2011) 

 
On the other side, in the presence of DNA damage, one of the targets of MENIN-

containing complexes is p21, the primary downstream effector of p53, and p1682.  

In the absence of damage, cell cycle regulator genes, such as p27 and p18 are 

transcriptionally switched on by MLL1 and MLL2 COMPASS-like complexes in 

fibroblasts83. Furthermore these complexes modulate also the expression of cyclin 

dependent kinase inhibitors (CDKI)82 and of cyclins61. 

Moreover multiple cell types Mll2-/- present a higher cell death rate than the controls. Mll2-

/- embryos die before E.10.5 due to a growth retardation that culminates in a high cell 

death56. Mll2-/- ESCs show a higher apoptotic rate than wild-type (wt) controls, likely due 

to Bcl2 down-regulation, while cell cycle length and cell cycle phases distribution are not 

affected84. If Mll2 is deleted in 2 months-old male mice, this results in infertility associated 

with an increase apoptosis of spermatogonia64. Finally if Mll2 is conditionally knocked-out 

in oocytes, pro-apoptotic genes, such as Bax, Casp6 and Setd7, which stabilizes p53, are 

up-regulated74.   

MLL1 and MLL2 associate also with cell-cycle regulatory TFs as E2F to regulate G1-

phase cell cycle genes85. Moreover the two proteins modulate different E2F genes 

suggesting again their non-redundancy. 

Cellular senescence is associated with the activation of p16, whose H3K4 trimethylation 

increases during cellular ageing, counteracting the role of PcG proteins,82 fundamental in 

young cells55,86. 
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5.3 Transdifferentiation 

5.3.1 Models of TF mediated cell reprogramming and conversion 

 
TFs that drive cell fate change frequently are terminal selector genes in the resultant cell.  

Four models have been proposed to describe how a TF can start the process of lineage 

conversion87. In the first case (Figure 5a), despite the fact that the promoters of the genes 

important for transdifferentiation or reprogramming are in an epigenetically closed 

configuration, their enhancers are accessible to the TF. The TF binding can induce 

chromatin remodelling at the promoter, and subsequently the activation of 

transdifferentiation/reprogramming effector genes. The majority of polycomb targets, the 

genes trimethylated at H3K27, have exactly this configuration88. 

Pioneer factors, instead, are able to bind also to closed chromatin, displacing the 

nucleosomes and recruiting other chromatin modifiers and TFs thus initiating the process 

of cell conversion (Figure 5b). 

In other cases the TF can access its binding sites stochastically, for example during their 

temporary unwinding from the nucleosome or during nucleosome turnover (Figure 5c). 

During cell division, instead, there could be a time window in which the repressive marks 

are still not re-deposited and therefore the TF could bind (Figure 5d). 
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Figure 9: Models of reprogramming/transdifferentiation TF-binding  

a. If the enhancer is in a permissive configuration the TF can bind, triggering chromatin 

remodelling at the promoter. b. Pioneer factors are able to bind to chromatin even if it is in a close 

conformation, leading to its subsequent remodelling. c. In the stochastic model TFs can bind to 

chromatin for example when, by chance, a specific sequence becomes accessible upon temporary 

nucleosome shifting. d. During cell division nucleosome are displaced and the new ones are 

initially not modified, giving to the TF a time window opportunity for binding. 

(From Vierbuchen and Wernig, Molecular Cell 2012) 

	
	
	
	

5.3.2 Neuronal transdifferentiation 
 
In 2002 the group of Götz reported one of the first cases, in literature, of neuronal 

transdifferentiation89. They showed that the forced expression of Pax6 in astrocytes, one of 
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the main drivers of neurogenesis in vivo, orients them towards neuronal fate. Subsequently, 

other works demonstrated that astrocytes can be converted into neurons also through the 

expression of different genes, such as Ngn290. In these protocols, however, both the 

original cell and the transdifferentiated resultant derive from ectoderm. 

In 2010 Wernig and colleagues screened 19 genes for their ability to induce cell 

conversion of mouse embryonic fibroblasts (MEFs) into neurons, hence cells deriving 

from two completely different germ layers91. Criteria for including genes were their 

neuronal expression and their role in neural development and in the reprogramming to 

pluripotency.  

They showed that the combination of three TFs, Brn2, Myt1l and Ascl1 (BAM pool), was 

able to transdifferentiate MEFs (ca. 20% efficiency) and mouse tail tip fibroblasts (ca. 6% 

efficiency) into functional neurons (i.e., able to fire action potential and to form synapses) 

in 14 days. They named the transdifferentiated cells induces Neuronal cells (iNs) to 

distinguish them from induced neurons (i.e., brain-derived cells). Also the BAZ pool, in 

which Mytl1 was replaced by Zic1, was efficient in MEFs transdifferentiation, but BAZ-

iNs presented a less complex morphology.  

When they functionally and morphologically analysed BAM-iNs, they observed that the 

majority of them were excitatory, expressing vGLUT1 and Tbr1, markers of cortical 

excitatory neurons and that, if co-cultured with astrocytes, iNs released excitatory post-

synaptic currents (EPSC). Only a small fraction of iNs, instead, expressed GAD, a 

GABAergic marker and no inhibitory post-synaptic currents (IPSC) were recorded. 

Hence, Wernig and colleagues demonstrated that cells deriving from the mesoderm can 

transdifferentiate into cell deriving from the ectoderm, implying that the BAM pool can 

drive a conspicuous and efficient epigenetic remodelling.   

Just a year later, the same group demonstrated that also hepatocytes, deriving from 

endoderm, upon BAM pool transduction, transdifferentiate into functional iNs with an 

efficiency similar to that of tail tip fibroblasts92.  
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Once the new cell identity is well-established, a fully transdifferentiated cell should 

become independent from the driver instructor factor(s). BAM genes were administered 

through lentiviral vectors, whose expression was induced and sustained by doxycycline 

(dox) administered in the medium throughout the protocol. They indeed showed that 5 

days of dox administration was enough to generate both hepatocytes- and MEF-iNs, even 

if at a low percentage92. Removing dox 11 days after transduction did not change 

transdifferentiation efficiency at 22 days. This is likely due to the up-regulation of the 

endogenous levels of Ascl1, Brn2 and Myt1l genes. At day 11-12 Ascl1 reaches a plateau, 

while the levels of Brn2 and Myt1l increase continuously until day 24. 

 

5.3.3 Human induced neuronal cells 
 
When Wernig and colleagues used the BAM pool to transdifferentiate human fetal 

fibroblasts into neurons, they observed β-III tubulin-positive (Tuj1+) cells after 7-10 days, 

but these human iNs appeared functionally immature93. Adding NEUROD1 to the pool, 

they finally succeeded in the generation of firing action potential iNs, that, like mouse iNs, 

were mostly excitatory. However the efficiency of conversion remained low (ca. 2-4%, 10 

time less than MEFs) and transdifferentiation lasted around 35 days. Similar results were 

obtained using the five factors effective in mouse (5F pool: Brn2, Olig2, Ascl1, Myt1l, 

Zic1)91,94.  

Alternatively miR-9/9* and miR-124 alone, specifically expressed in postmitotic neurons, 

were used as factors to transdifferentiate human fibroblasts, but the resulting iNs were 

functionally immature95. If NEUROD2, ASCL1 and MYT1L were added to the miRNA, 

they acted synergistically: transdifferentiation efficiency increased and iNs were 

functional. Moreover also the combination of miR-124, BRN2 and MYT1L led to neuronal 

transdifferentiation, even if iNs generated presented less competent synapses96.   
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In all the aforementioned reports, however, iNs were composed of a mixed population.  

	

5.3.4 Disease modelling using iNs 
	
In the case of 5F pool-iNs, the starting population consisted of fibroblasts derived from 

control and patient with Familial Alzheimer’s Disease (FAD), carrying a PSEN mutation. 

FAD-iNs presented a disease-specific phenotype, showing amyloid precursor protein 

(APP) puncta in endosomes, rescued by the wt expression of PSEN194. This was the first 

demonstration that, when affected cell types, such as neurons, are not easily accessible, 

transdifferentiation can be exploited with the purpose of disease modelling.  

Another proof of principle that transdifferentiation can be exploitable to model disease 

came from Südhof’s laboratory. They showed that the transdifferentiation of MEFs with 

the autism-related neuroligin-3 mutation is not affected, but that mutated iNs resemble in 

vivo affected hippocampal neurons. Indeed, mutated iNs present a reduction in the surface 

level of AMPA receptors with the consequent decrease of miniature EPSC both in 

amplitude and in frequency. This suggests that, even though the process of 

transdifferentiation does not follow the canonical physiological differentiation path, the 

resulting neurons are comparable to the primary ones97.  

To model disease and to study development, many successful attempts have been made to 

transdifferentiate fibroblasts into specific neuronal types involved in pathologies, such as 

dopaminergic neurons for Parkinson’s disease. Pfisterer and colleagues demonstrated that 

the addition of LMX1a and FOXA2 to BAM factors was effective for the 

transdifferentiation of human fetal fibroblasts into dopaminergic iNs (purity: 25% of all 

iNs generated)98. A higher purity was reached using the combination of Ascl1, Nurr1 and 

Lmx1a, effective both for mouse and human fibroblasts (efficiency 18%; purity 85% and 

60% of iNs were dopaminergic, in mouse and human respectively)99. However the 

transcriptome of dopaminergic iNs was different from bona fide dopaminergic neurons. 
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Alternatively Ascl1, Pitx3, Lmx1a, Nurr1, Foxa2, En1, SHH and FGF8 were used to 

generate iNs, which in this case were also able to compensate for the absence of dopamine 

in vivo100. Despite the usage of eight TFs and their effectiveness when transplanted, the iNs 

gene expression profile was still different from the one of dopaminergic neurons. 

Another fundamental type of neurons is constituted by motor neurons. Through the 

combination of BAM factors with Lhx3, Hb9, Isl1 and Ngn2  (and NEUROD1 for human 

fibroblasts) mouse and human fibroblasts were transdifferentiated into motor neuron 

iNs101. iNs expressing the mutated gene SOD1, that causes amyotrophic lateral sclerosis 

(ALS), phenocopied the disease-survival defects of affected motor neurons. 

These are only some examples of transdifferentiation towards specific neuronal types. A 

perfect combination of factors for the generation of iNs that fully recapitulate (by their 

function and their expression profiles) in vivo neurons has not yet been discovered. These 

studies can anyway give more insights on neuronal development and on the role of the TFs 

used for transdifferentiation. iNs, however, remain a promising, but still perfectible, tool to 

study disease-affected neurons. When the right “factors cocktail” will be found, hopefully 

in the near future, iNs could be exploited in regenerative medicine. With this purpose non-

integrative transdifferentiation protocols, such as transfection of the factors with 

poly(amidoamine)102 and adenoviral gene delivery103, have been established. Since iNs are 

not expandable and the efficiency of transdifferentiation of human fibroblasts is low, 

protocols have been adapted to overcome these limitations. With the usage of small 

molecules inhibiting glycogen synthase kinase-3β and SMAD signaling, MEF-to-iNs 

conversion, driven by ASCL1 and NGN2, increases up to 200%104. Alternatively, 

transdifferentiation towards expandable induced neural precursor cells (iNPCs), prior to 

iNs, was achieved to overcome limitation on abundance105.  
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5.3.5 How the BAM pool works 
	
BAM factors act synergistically for the generation of iNs, inducing a conspicuous 

transcriptome remodelling: 2522 genes are differentially expressed between MEFs and 

iNs106. The resetting of the transcriptome should reflect a major restructuring of the 

epigenome; however, to date, no data are present on how the epigenetic landscape changes 

in iNs and on how BAM factors guide this remodelling. 

If the MEFs-to-iNs transdifferentiation system were to be classified in the aforementioned 

four TFs-mediated reprogramming systems, it would fall in the “immediate access” 

category. ASCL1 is in fact a pioneer factor that can immediately bind chromatin leading, 

in a 5F pool transduced MEFs, to the first Tuj1+ (Neuronal- specific Class III β-tubulin) 

cells appearance already 3 days after infection91. In particular ASCL1 functions as a 

transcriptional activator, recognising a newly discovered epigenetic mark: the trivalent 

chromatin state, characterized by the co-presence of the H3K4me1, the H3 lysine 9 

trimethylation (H3K9me3) and the H3K27 acetylation (H3K27ac)106. Accordingly, it has 

been demonstrated that cell types with an enrichment of the trivalent chromatin state have 

a higher transdifferentiation efficiency. Moreover cell proliferation is dispensable for the 

occurrence of direct cell conversion. One day after transgene induction only a minority of 

cells still proliferates91 and blocking DNA replication does not affect the appearance of 

iNs107. Single cell RNA-sequencing (RNA-seq) of MEFs Ascl1-transduced, showed that 

upon transgene induction the switched-off or down-regulated genes are the ones linked to 

mitosis, confirming that cell division is not required for transdifferentiation108. In parallel 

ASCL1 up-regulates genes associated to cytoskeletal reorganization, synaptic activity and 

neurite extension, confirming its essential role throughout transdifferentiation108. 

Zfp238, a transcriptional repressor whose expression increases upon BAM pool dox-

induction, was discovered as one of the main targets of ASCL1106. When Zfp238 is 

expressed in combination with Myt1l and other neuronal TFs up-regulated during 
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transdifferentiation (i.e., Rfx1, Lmo2 and Tcfl5) it induces the formation of neuronal-like 

structures in MEFs, without the need of the expression of ASCL1. Hence Zfp238 is one of 

the key effectors of ASCL1.  

Interestingly, a portion of MEFs infected with Ascl1 alone does not become iNs and 

activates the myocyte transcriptional program, while concomitantly down-regulating 

Ascl1108. This transcriptional deviation is however blocked in the presence of BRN2 and 

MYTL1L. Moreover, iNs at day 22, transduced only with Ascl1, fail to mature and mostly 

acquire the myogenic expression profile. Hence BRN2 and MYT1L present a major 

involvement in neuronal maturation in later stages of transdifferentiation106,108. It is 

ASCL1 that recruits BRN2 to some of its targets, otherwise not accessible, confirming its 

role as pioneer factor106.  

The definition of transdifferentiation excludes the passage through the pluripotent state. In 

the case of neuronal transdifferentiation this has been so far ruled out because of the 

rapidity of appearance of Tuj1+ cells and of the absence of cells positive for pluripotency 

markers91. Recently it has been shown that during the first phases of MEFs conversion, 

their transcriptome clusters with the one of NPCs108. Then, as soon as iNs maturation 

progresses, their expression signature detaches from the one of NPCs and gets closer to the 

one of iNs108.  However the two main NPC markers, Sox2 and Pax6, are never induced 

during the process, implying that MEFs pass through an intermediate stage that only 

resembles NPCs.  

All transduced MEFs are equally competent for the activation of the transdifferentiation 

program: the transcriptional analysis of starting MEFs does not show the presence of 

subgroups that could be less or more prone to cell conversion. Infected MEFs 

homogenously induce Ascl1-targets and silence MEF-genes108. Hence the 20% efficiency 

should be ascribed to the aforementioned silencing of Ascl1 and activation of myogenic 

pathway, but the reason why this occurs only in some cells remains unknown. 
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5.3.6 PcG, TrxG and transdifferentiation 
 
In certain species transdifferentiation occurs physiologically during both development 

and/or regeneration. For instance, the lens of the newt regenerates through the 

transdifferentiation of pigmented epithelial cells. As stated earlier, this entails a fine-tuned 

balance between plasticity and cell identity stability. To allow the cell to change fate, the 

activation of target cell genes and the repression of starting cell ones are essential. Hence 

the orchestrated activity of TrxG and PcG proteins is likely to be one of the main drivers.  

In D. melanogaster each imaginal disc, a fly larval developmental structure, gives origin to 

a specific segment with a cuticular structure. The pre-determined imaginal disc clusters of 

cells can transdifferentiate during regeneration, upon the ectopic expression of morphogens 

and in the case of deregulation of PcG genes. Hence PcG proteins have a role in the 

suppression of the alternative cell fate acquisition, as demonstrated for the homeotic 

transformations. Fly cells, during regeneration, down-regulate PcG through the c-Jun N-

terminal kinase (-) pathway and PcG mutant flies show a higher rate of 

transdifferentiation109. If transdifferentiation is artificially induced, members of the PcG 

and the TrxG families change their expression, and when some of them are mutated, 

transdifferentiation frequency is increased110. Hence, in D. melanogaster, the two families 

of histone methylases are the guardians of the cell fate identity that is not however, 

irreversibly crystallized.  

In C. elengans, during development, a specific hindgut cell (i.e., the Y cell) physiologically 

transdifferentiates to form a motor neuron. Mutations of the demethylase of H3K27, 

Jmjd3-3.1, and of the ortholog of Set1-COMPASS complex, Set-2, lead to 

transdifferentiation defects111. Moreover C. elegans germ cells knock-out for PRC2 show a 

higher rate of TF-mediated transdifferentiation toward both neurons and muscle cells112. 

Hence, also in C. elegans, the two antagonistic families play a major role during 

transdifferentiation and the preservation of cell identity. 
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Furthermore some of the TFs that drive, in mammals, in vitro transdifferentiation (e.g., 

MyoD1, Cebpa, Pdx1, etcetera) are repressed by H3K27me3 in the starting cell while they 

are active in the resultant cell, pointing to the role of PcG proteins in the silencing of 

terminal selector genes of other cell identities113.	

	

5.3.7 Histone methylation and corticogenesis 
 
In the currently accepted model of corticogenesis, epigenetics plays a major role114. Radial 

glia (RG) cells, specific neural stem cells that reside in the ventricular zone, either directly 

or indirectly (through the generation of basal progenitors (BPs)) give rise to cortical 

neurons and only later to glia. The six cortical layers are generated in a temporally 

programmed fashion as well.  It has been demonstrated both in vitro and in vivo that at 

each time point neural progenitors are “committed” to generate defined neurons in a 

largely cell-autonomous manner115-117. The sequential modification of the epigenetic 

profile of the RG cells could be responsible for the acquisition of their different 

differentiation potential. One of the most attractive hypotheses is the presence of a 

repressor, which is down-regulated during RG cell cycles, leading to the derepression of 

targets relevant for the differentiation into that time-specific cell type. Ezh2 shows indeed 

this expression pattern: it is down-regulated both along the 11 cell cycles of RG cells and 

during neurons generation118. However, the ablation of this enzyme through different 

methods in vivo led to interestingly opposite results118,119, further underscoring the 

importance of precise timing in the execution of its molecular function. Moreover the 

highly dynamic H3K27 methylation mark during neuronal differentiation in vitro120 and 

the aforementioned theory of progressive Polycomb target derepression in the RG suggest 

a role for one of the main H3K27 demethylating enzymes, JMJD3. Our group has already 

demonstrated that this demethylase is fundamental for neural lineage commitment121 and is 
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also currently unravelling its role during corticogenesis in vivo with the generation of 

constitutive and conditional knock-out mice122. 

Conversely, the role of H3K4me3 is less well understood, but it has been still associated 

with neurogenesis. It has been recently shown in C. elegans that the Set1 complex 

participates to the process of dedifferentiation of the hindgut cells that will subsequently 

redifferentiate in motor neurons111. 

MLL1 and MLL2 have been shown to be essential in neural commitment. Indeed the 

differentiation of Mll1-/- Subventrincular Zone Neural stem cells (SVZ NSCs) into neurons 

is impaired, while their proliferation rate is not altered123. This deficit is not attributable to 

a reduced trimethylation at MLL1 targets because the level of H3K4me3 is not altered. 

This implies a possible compensation operated by the homolog MLL2. The authors 

described the absence of the erasure of H3K27me3 at important neuronal targets as the 

cause of the defect in neuronal differentiation. Furthermore it has been recently shown that 

MLL1 is essential for neural development in Danio rerio124. In particular the absence of 

Mll1 in zebrafish leads to a reduction in the proliferation of neural progenitor cells and to 

an anticipated neuronal differentiation. On the other side Mll2-/- ESCs have a severe delay 

in ectodermal in vitro differentiation84, but they are able to differentiate and they are 

positive for mature neuronal markers upon retinoic acid treatment. However, the 

expression of maturation genes in these cells is highly affected. It has been shown recently 

that in ESCs MLL2 is responsible of H3K4 trimethylation at bivalent promoters67,76. 

During neuronal differentiation this defect is only partially overcome, also through the 

compensation of MLL1, but Mll2-/- ESCs can anyway respond to retinoic acid 

treatment67,76. Moreover the Mll2 deletion in the excitatory neurons of the forebrain 

impairs both short and long term memory125. 161 genes have been found to be 

differentially expressed in Mll2-/- dorsal dentate gyrus with respect to controls by 

microarray analysis. The majority of them are down-regulated and linked to memory 

formation and neuronal plasticity. The levels of H3K4me3 and H3K4me2 it these genes 
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are reduced, as assessed through Chromatin Immunoprecipitation coupled to detection by 

quantitative real-time PCR (ChIP-qPCR), further defining them as MLL2 targets and 

excluding the compensation by other TrxG proteins. However, surprisingly, Mll2-/- brains 

and neurons do not present an altered morphology.  

Hence, despite the fact that Mll1 and Mll2 arise from gene duplication56,126,127 and share the 

classical Trithorax core components, plus specific components such as MENIN and 

HCF1O, they have precise and non-replaceable roles during neuronal differentiation. 

 

5.4 Aim of the thesis 
 
The aim of this study is the characterization of the role of MLL1 and MLL2 during BAM 

factors-driven MEFs-to-iNs transdifferentiation. This protocol offers three main 

advantages: i) it fosters the transition between cell lineages that derive from different germ 

layers, therefore requiring the transition across a “high epigenetic hill”; ii) it allows the 

complete erasure of the MEF epigenetic signature and the establishment of the neuronal 

one; iii) it is a remarkably efficient and fast process. Hence this system is appropriately 

suited for investigating how a massive TF-mediated epigenome resetting occurs at the 

molecular level. Moreover BAM factors are fundamental during physiologic neuronal 

differentiation, but it is unclear how they coordinate the massive epigenetic remodelling 

which occurs during direct cell conversion and what are the epigenetic remodellers with 

which they cooperate to achieve the complete epigenome restructuring. On this perspective 

we decided to unravel whether and how MLL1 and MLL2 are relevant during 

transdifferentiation, since they actively participate to both in vivo and in vitro neuronal 

differentiation. This will allow first to dissect a possible involvement of these two 

methylases during transdifferentiation process per se. Furthermore it will give more 

insights on their role during neuronal specification.  
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6. MATERIALS AND METHODS 

6.1 Mouse Models 
	
- Conditional knock-out for Mll: mouse models used in this study were conditional knock-

out for Mll1128, for Mll256 or for both. In these mice the exon 2 of Mll1 or/and Mll2 gene 

was flanked by two LoxP sites and the mice also harboured the ROSA26-CreERT2 allele to 

enable tamoxifen-induced Cre-mediated recombination. They were crossed with mice 

presenting the YFP in the ROSA26 locus, downstream to a stop cassette between LoxP 

sites. Hence Cre was maintained in heterozygosis, reducing its toxicity. Control MEFs 

were derived from Mll+/+YFP+Cre+ mice and in the case of Mll1 also from Mll1fl/+ 

YFP+Cre+ ones.  

- NOD SCID IL2Rγ-/- were bought from Charles River Laboratories and bred in house. 

All mice were housed and bred in a specific pathogen free (SPF) animal house. 

Mice were genotyped extracting DNA from tail biopsies. In particular tails, in 400µl of 

Lysis Buffer (100mM Tris-HCl pH 8.5, 5mM EDTA, 0.2% SDS, 200mM NaCl, 100 µg 

Proteinase K/ml), were digested at 55°C in agitation. Afterwards DNA was precipitated 

with isopropanol and washed in 70% ethanol. After ethanol evaporation, DNA was 

resuspended in ddH2O. PCR were run on TAE 1% Agarose gel (2% in the case of Mll2).  

Primers used are listed in Table 1. 

	
	

Table 1: Sequences of primers used for genotyping 
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6.2 Derivation of transdifferentiation starting cells 

6.2.1 MEFs derivation  
	
Embryos were harvested at E.13.5 of development. After removal of both the head and the 

liver, cells were enzymatically and mechanically dissociated. In particular, the embryo 

body was finely cut with scissor and afterwards 1ml of trypsin was added. Cells were 

incubated at 37° C, 3% O2, 5% CO2 for 30 minutes pipetting every 10 minutes. Dissociated 

MEFs were seeded in MEFs medium and cultured at 37 °C, 3% O2 and 5% CO2. 

MEFs medium: 

Dulbecco’s Modified Eagle Medium without L-Glutamine (DMEM) (Lonza, catalog 

number BE12-614F) 

10% Fetal Bovine Serum (FBS) (HyClone, catalog number SH30088.03) 

1% Penicillin/Streptomycin (Life Technologies, catalog number 15140-122) 

1% L-Glutamine 200mM (Life Technologies, catalog number 25030-024) 

1% Sodium pyruvate (Lonza, catalog number BE13-115E) 

1% Non-essential aminoacids (Lonza, catalog number BE13-114E) 

0.2% β-mercaptoethanol 50mM (Life Technologies, catalog number 31350-010) 

	

6.2.2 MEFs 4-OHT treatment  
	
To allow exon 2 deletion MEFs, at passage 2 maximum, were treated for 5 days with 4-

Hydroxytamoxifen (4-OHT), added to the MEFs medium in a final concentration of 

1000ng/ml, and then left either 2 or 7 days in medium not supplemented with 4-OHT. 

MEFs Mll+/+ 4-OHT-treated were used as control for MEFs Mllflox/flox 4-OHT treated, to 

rule out Cre and 4-OHT toxicity in all the experiments. However, for Mll1 ScanR 

experiments, MEFs Mll1flox/+ 4-OHT treated MEFs were used as control. 
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6.2.3 Assessment of exon2 deletion of both Mll1 and Mll2 
	
To determine the entity of Mll exon 2 deletion, TaqMan assays were performed collecting 

the MEFs the day were plated for transdifferentiation. In particular, TaqMan was executed 

on 7900HT Fast Real-Time PCR system (Applied Biosystems), analyzing each sample in 

triplicate and using Tert as housekeeping. The Primers and reporters sequences are listed in 

Table 2. 

 
Table 2: Sequences of primers and probes used for Taqman assays 

 

DNA was extracted through DNeasy Blood and Tissue kit according to manufacturer’s 

instruction (Qiagen, catalog number 69504). Briefly, cells were lysed in the appropriate 

buffer (with proteinase K added) and loaded onto the DNeasy Mini spin column. Through 

centrifugation only DNA was bound to the column. After the washing of the remaining 

contaminants, DNA was eluted in AE buffer. 

 

6.2.4 Western blot for MLL2 

6.2.4.1 Protein extraction  
	
Pellets, of at least 8 x 106 cells, were collected in the day MEFs were plated for 

transdifferentiation. After washing each 15-cm dish 2 times with cold PBS, 5 ml of cold 

PBS were added and MEFs were scraped and collected in a tube maintained on ice. Cell 

suspensions were centrifuged at 4 °C, 1100 rpm for 5 minutes. The supernatants were 

removed and the pellets were immediately put in dry ice and stored in –80 °C until proteins 

were extracted. 
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When proteins were extracted, pellets were thawed on ice. 4 volumes of RIPA buffer were 

added and tubes were put at 4 °C on a rotating wheel for 30 minutes. Extracts were 

centrifuged for 30 minutes at 13000 rpm at 4 °C and supernatants were transferred in new 

tubes and store at -80 °C. 

RIPA buffer composition: 

10 mM Tris-HCl pH 8 

1% Triton X-100 

0.1% SDS 

0.1% Sodium Deoxycholate 

140 mM NaCl 

1 mM EDTA  

Before usage the protease inhibitor cocktail (PIC) (Sigma Aldrich, catalog number P8340) 

and Phenylmethanesulfonyl fluoride (PMSF) (0.5 mM) (Sigma Aldrich, catalog number 

P7626) were added. 

Proteins were quantified at the spectrophotometer (λ 595nm), through the Bradford protein 

assay as followed: 

200µl of Bio-rad protein Assay Dye reagent Concentrate 

800µl of ddH2O 

1µl of protein extract 

using BSA (NEB) do derive a standard curve. 

 

6.2.4.2 Western blot 

  
Western blot was performed loading at least 70 µg of protein extract, diluted in RIPA 

buffer plus PIC and PMSF. The NuPAGE LDS Sample Buffer (4x) supplemented with 

Dithiothreitol (DTT) (50 mM) was used (ThermoFisher Scientific, catalog number 

NP0007). After denaturation at 95 °C for 3 minutes, proteins were loaded on NuPAGE 

Novex 3-8% Tris-Acetate Proteins Gels (ThermoFisher Scientific, catalog number 
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EA0378BOX). The Novex Sharp Pre-stained Protein Standard (ThermoFisher Scientific, 

catalog number LC5800) was used as marker. Run was executed in the NuPAGE Tris-

Acetate SDS Running buffer (20X) (ThermoFisher Scientific, catalog number LA0041) at 

4°C, initially at 80 V and, when the bands started to separate, at 100 V.  

Wet transfer was performed at 4 °C, 30V with the Immobilon-P, 0.45 µm, PVDF 

membrane (Merck Millipore, catalog number IPVH00010) activated with methanol. 

Transfer buffer was prepared as followed (700ml): 

200 ml methanol 

100 ml Towbin Buffer (TB) 10X (0.25 M Tris base, 1.9 M glycine) 

dH2O to 700 ml 

The quality of transfer was checked through Ponceau staining (VWR) and after the 

washing with TBS-T, the membrane was incubated with the primary antibodies overnight 

at 4 °C. The step of blocking was performed only for the housekeeping (1h in 5% (w/v) 

skimmed milk powder in TBS-T at room temperature).  

TBS-T composition (500ml): 

50 ml TBS 10X (final concentration 25 mM Tris, 150 mM NaCl, 2 mM KCl) 

500 µl Tween-20 (final concentration 0.1%) 

dH2O to 500 ml 

The rabbit anti-MLL2 antibody was provided by Stewart Lab.56. The antibody was raised 

against amino acids 864-980. The 2 expected bands were of 284 (the full length) and 225 

(the taspase product) kDa. The anti-MLL2 antibody was diluted 1:1000 in TBS-T 3% 

BSA.  

The mouse anti-VINCULIN antibody (Sigma Aldrich, catalog number V9131) was diluted 

1:400 in TBS-T with milk (expected band 116 kDa). 

After 3 washes in TBS-T, the membrane was incubated with the secondary antibodies, 

diluted 1:10000 in 5% milk, 1h in agitation at room temperature. 
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Afterwards the membrane was washed 3 times with TBS-T and then the ECL Prime 

Western Blotting detection reagent was used (Sigma-Aldrich, catalog number 

GERPN2236). 

Images were acquire at ChemiDoc with the Image Lab Software of Bio-Rad. 

 

6.3 Transdifferentiation protocol 

6.3.1 Vector production 

 
BAM vectors were generated through calcium phosphate transfection of human embryonic 

kidney 293T (HEK293T) cells and ultracentrifugation. The following transfer plasmids, 

deposited by the Wernig Lab in Addgene, were used: 

Tet-O-FUW-Brn2; 

Tet-O-FUW-Ascl1; 

Tet-O-FUW-Myt1l; 

UbC-rtTA 

BAM vectors were produced using a third generation system (envelope plasmid: pMD2-

VSV-G; packaging plasmids: pMDLg/pRRE and pRSV-REV).  

All plasmids were extracted through the Nucleobond Xtra Maxi kit (Macherey-Nagel, 

catalog number 700414-10) according to manufacturer’s instructions. 

9x106 of HEK293T cells (harboring the mutant gene of SV40 Large T Antigen) were 

plated in a 15-cm dish in Iscove’s Modified Dulbecco’s Medium (IMDM) (Sigma Aldrich, 

catalog number I3390), 10% FBS, Penicillin and Streptomycin (25U/mL each) and 1% L-

Glutamine 200mM and incubated at 37°C, 21% O2, 5%CO2. The day after, 1h before 

transfection, medium was replaced with 22.5 ml of fresh IMDM. In the meanwhile the 

following mix was prepared: 

transfer vector: 36 µg  
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pMD2-VSV-G: 9 µg 

pMDLg/pRRE: 12,5 µg  

pRSV-REV: 6,25  µg  

0.1X TE/ddH2O (2:1) to a final volume of 1125 µl. 

Finally, 125 µl of 2.5 M CaCl2 were added to the mix and the tube was put on a rotating 

wheel for at least 20 minutes. 

DNA precipitate was obtained by drop wise addition, on vortex at full speed, of 1250 µl 

2X HBS solution (281 mM NaCl, 100mM HEPES, 1.5 mM Na2HPO4 pH 7.12, 0.22 µM 

filtered) to the 1250 µl mix previously prepared. This preparation was immediately added 

to HEK293T cells supernatant, maintaining the pipette on the medium surface, and cross 

movements were executed. 

Cells were successively incubated at 37°C, 21% O2, 5% CO2 for 14 hours and afterwards 

medium was replaced with 16 ml of fresh IMDM medium. 30 hours after medium 

changing, the supernatant was filtered through a 0.22 µm pore nitrocellulose filter and 

ultracentrifuged at 20000 rpm in SW32Ti rotor (Optima L-60 preparative Ultracentrifuge; 

Beckman) for 2 hours at 20 °C. Pellets were resuspended, without doing bubbles, in a 

volume of sterile PBS representing 1/400 of the starting medium volume. Finally vector 

was aliquoted and stored at -80°C. Usually, to have enough vector for a single experiment, 

14 15-cm dishes per vector were transfected.  

 

6.3.2 Transdifferentiation protocol 

 
Transdifferentiation was performed according to the protocol published in the original 

paper91.  

2 or 7 days after 4-OHT treatment MEFs were seeded in MEFs medium on Matrigel 

Basement Membrane Growth Factor Reduced (BD Biosciences, catalog number 354230) 

coated dishes. Matrigel was thawed on ice and diluted 1:50 in DMEM/F-12 (1:1) (F-12 
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Nut Mix (1X) + GlutaMAX; Gibco, catalog number 31765-027). Polymerization was 

performed either at 37 °C for 30 minutes or overnight at 4 °C. In the second case, before 

plating the cells, dishes and/or multichambers were left at room temperature for at least 1 

h. 

The excess of matrigel was removed and the desired number of MEFs was seeded. The 

following day MEFs were transduced with the four vectors (0.5 µl of each vector for each 

50000 cells). 

Doxycycline (1:1000, mother stock 2 µg/µl) was administered the day after transduction 

and then every other day until the end of the analysis. 

The 5th day after plating, MEFs medium was replaced with Neurobasal medium (plus 

doxycycline). 

Neurobasal medium composition: 

Neurobasal minus phenol red (ThermoFisher Scientific, catalog number 12348017) 

1% Penicillin/Streptomycin (Life Technologies, catalog number 15140-122) 

1% L-Glutamine (Life Technologies, catalog number 25030-024) 

1% N-2 Supplement 100X (ThermoFisher Scientific, catalog number 17502048) 

2% B-27 Supplement, serum free 50X (ThermoFisher Scientific, catalog number 

17504044) 

 

6.4 Transdifferentiation outcome evaluation 

6.4.1 ScanR images acquisition 

6.4.1.1 Immunofluorescence  
	
For ScanR experiments MEFs were seeded in different concentrations in Nunc Lab-Tek 

permanox chamber slides (2 wells, Sigma Aldrich, catalog number C6682). 
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One day after doxycycline and 13 days after plating, cells were fixed with 4% 

paraformaldehyde, 20 minutes on ice. 

Afterwards cells were washed 3 times with PBS and permeabilized with PBS, 10% FBS, 

0.1% Triton X-100 30 minutes at room temperature. 

Fixed cells were incubated with primary antibodies, diluted in PBS, 10% FBS, at 4°C 

overnight in agitation. 

The day after 3 washes with PBS were executed followed by 1 h incubation with the 

secondary antibodies (diluted in PBS, 10% FBS) at room temperature, in agitation. DAPI 

was added to the secondary antibodies mix. 

Subsequently slides were mounted with Vectamount AQ Mounting Medium (Vector 

Laboratories, catalog number H-5501) and imaged the day after. 

The list of antibodies is reported in Table 3 and Table 4. 

 

 

Table 3: Primary antibodies used for immunofluorescence 

	
 

 

Table 4: Secondary antibodies and DAPI used for immunofluorescence 
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6.4.1.2 Images acquisition 
	
A grid of 100 images per embryo in duplicate was acquired with the BX61 upright 

microscope equipped with a motorized stage from Olympus. 

The software name was ScanR (Olympus) and the objective utilized was the 20x with a 

0.75 Numerical Aperture. 

 

6.4.1.3 Images analysis 

 
One day after doxycycline the number of cells per image was manually evaluated as 

number of DAPI. Each concentration was analysed and, at the end, only conditions with 

the same cell number at this time point were compared. At 13 days after plating, cells 

positive for Class III β-tubulin (Tuj1) were classified as iNs and manually quantified. The 

efficiency of transdifferentiation was calculated as the percentage of Tuj1+ cells among the 

number of DAPI at 3 days after plating.  

To calculate neurite length an Imagej plugin called NeuriteTracer was used129. This plugin 

traces neurites in images stained with a neuronal marker, present also in dendrites and 

axons, such as Tuj1. Then it estimates the area covered by them subtracting from this value 

the area of nuclei that intersect them. Because this calculation depends on the number of 

neurons the plugin-retrieved value was divided for the number of Tuj1+ cells. 

For the experiments executed with ScanR unpaired t test was performed as statistical 

analysis.  
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6.4.2 Cytofluorimetric analysis 

6.4.2.1 Samples preparation 

 
Cells were detached with Accutase (Sigma-Aldrich, catalog number A6964) and counted 

with the Countess Automated Cell Counter (ThermoFisher Scientific) in duplicate, 5, 7, 9, 

13 and 21 days after they were plated for transdifferentiation. After their centrifugation, in 

a tabletop refrigerated centrifuge at 4 °C for 10 minutes, at the minimum speed, they were 

resuspended in up to 106 cells per 100 µl of cold PBS-FACS (Fluorescence-Activated Cell 

Sorting) (PBS 0.5% FBS, 2nM EDTA). 10µl of Polysialic Acid Neural Cell Adhesion 

Molecule (PSA-NCAM) antibody (Miltenyi, catalog number 130-093-273) were added 

and the suspension was mixed and kept in the dark on ice for 10 minutes. Afterwards cells 

were washed with 1 ml of cold PBS-FACS and centrifuged in a tabletop refrigerated 

centrifuge at 4 °C for 10 minutes at the minimum speed. Pellet was resuspended in 300µl 

of cold PBS-FACS and 3 minutes before each tube was acquired, 5-10 µl of Propidium 

Iodide (PI) (Sigma Aldrich, catalog number P4170-1G. stock 50µg/ml in dH20) were added 

and mixed. Tubes were kept in the dark on ice. 

 

6.4.2.2 Samples acquisition and analysis 

 
Samples were acquired at BD FacsCalibur with the BD CellQuest Pro Software and 

analysed with the Flowjo software. 

As statistical analysis unpaired t test was executed. 
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6.5 High-throughput experiments 

6.5.1 FACS sorting 

 
FACS sorting was executed on 4-OHT treated MEFs (5 days) left in culture 7 days before 

transdifferentiation. 107 MEFs were plated on matrigel coated dishes both for the RNA-seq 

and the ChIP-seq on iNs at 13 days. Cells were sorted for PSA-NCAM positivity after a 

short detachment with Accutase. The protocol of staining was the same as the one used for 

the cytofluorimetric analysis (paragraph 6.4.2.1). 

Cells were sorted at MoFlo Astrios (Beckman Coulter) with the Software Summit v6.2. 

 

6.5.2 RNA-seq 

6.5.2.1 RNA extraction 

 
RNA was extracted immediately after sorting with RNeasy micro kit (QIAGEN 74004). 

This kit was chosen because it is exploitable for low cell amounts and it is optimum for the 

extraction of messenger RNA (mRNA) (due to the prevalent selection of RNA molecules 

longer than 200 nucleotides).  

Briefly, cells were resuspended in a denaturing buffer containing guanidine-isothiocyanate 

(RLT buffer) plus β-mercaptoethanol, to inactivate the RNases, and then passed 5 times 

through a blunt 20-gauge needle. Afterwards ethanol was added to the solution to favour 

the exclusive binding of RNA to the RNeasy MinElute spin column. DNA contamination 

was eliminated adding the DNase I directly to the column and incubating for 15 minutes. 

After some washes, RNA was eluted in 14 µl of RNase free water and quantified at 

Nanodrop Spectrophotometer. RNA quality was evaluated at Agilent 2100 Bioanalyzer 

with the Agilent RNA 6000 Nano kit (catalog number 5067-1511). 
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6.5.2.2 Libraries preparation 

 
Libraries were prepared following the TruSeq Stranded Total RNA Sample Preparation 

manufacturer’s guidelines (Illumina) starting from 100 ng of RNA per sample.  

Briefly, the steps that this protocol entailed were the following. First, through the usage of 

biotinylated oligos that recognized ribosomal RNA (rRNA) and of ad hoc beads (Ribo-

Zero rRNA magnetic removal beads), mRNA was purified. 

Afterwards mRNA was fragmented using divalent cations at 94 °C and retrotranscribed 

with random primers. The second cDNA strand was synthesised using the DNA 

polymerase I and the RNAse H. Beads (AMPure XP beads) were used to purify the ds 

cDNA. Overhangs resulting from fragmentation were converted into blunt ends using an 

End Repair Mix. Afterwards a single adenine was added to the 3’ ends of cDNA and 

specific adapters were ligated to it, through their 3’ overhang thymine. Finally a step of 

PCR amplification was performed, using primers specific for the adapters, to enrich only 

for ligated cDNA. 

The quality of the libraries was tested at Agilent 2100 Bioanalyzer with the High 

Sensitivity DNA kit (catalog number 5067-4626). 

Libraries were sequenced with the Illumina HiSeq machine at a read length of 100 bp, 

paired end, and a coverage of 120 millions of reads. 

 

6.5.2.3 RNA-seq bioinformatic analysis 

6.5.2.3.1 Alignment and quantification 

	
RNA-seq reads were aligned with TopHat v2.0.10130, first to mm10 Refseq transcriptome, 

and genes without a perfect alignment were realigned to genome (i.e., --read-edit-dist 2). 

Quantification was performed on the Refseq transcriptome using Cuffquant v2.2.1, with 



	

	 61	

multi-read correction (-u)130. This pipeline was selected because it was one of the highest-

performing quantification methods in our recent benchmark131. 

 

6.5.2.3.2 Differential expression analysis 

	
For the differential expression analysis, we first excluded genes which had an average read 

count across samples below 50. We used edgeR v.3.12.1 (which outperformed other 

methods according to our benchmark) on the TMM-normalized estimated fragment counts. 

Specifically, edgeR fitted a generalized linear model that takes sex into account 

(~sex+genotype) on the normalized log-transformed count of each gene, and then tested, 

using a likelihood ratio test, whether the model including the genotype variable 

significantly improved the fit over the model not including it. We considered differentially 

expressed with high confidence genes with a FDR below 0.01 and an absolute 

log2(foldchange) greater than log2(1.5). 

 

6.5.2.3.3 Alternative splicing/Differential exon usage 

	
Alternative splicing is notoriously difficult to test statistically, and the most robust method 

for doing so is based on differential exon usage132. Differential exon usage is not exactly 

the same as alternative splicing: strictly speaking, it detects changes in the coverage of an 

exon that are associated with the independent variable, and that are discordant with 

variations in the other exons of the same gene. This means that alternative TSS or 

transcription end site results in differential exon usage, although they are generally not 

considered alternative splicing. However, all alternative splicing events result in 

differential exon usage. 

Differential exon usage is based on the number of fragments overlapping each exon, we 

which obtained using featureCounts v.1.4.4133 with the -O -f options on the TopHat 
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alignments. We then tested for significant differences using DEXseq v.1.16.7 as described 

in the manual. 

 

6.5.2.3.4 Enrichment analyses 

	
Gene Ontology enrichment analyses were performed using the goseq v.1.22.0 R package in 

order to correct for RNA-seq transcript length bias134, using Fisher's test and excluding 

genes without annotation. Categories with at least 10 genes and maximum 1500 genes 

were considered. When the number of enriched categories was large, we focused on the 

most specific categories by removing any category with enriched children categories. 

(based on the graphs of the GO.db R package). Quilts were generated using the treemap R 

package. 

 

6.5.2.5 RNA-seq validation 

 
The RNA was retrotranscribed through the SuperScript VILO cDNA Synthesis Kit 

(Invitrogen, catalog number 11754-050). 

Real Time Quantitative PCR (RT-qPCR) was performed on 7500 Fast Real-Time PCR 

system (Applied Biosystems) using Sybr green (Applied Biosystem) as detecting reagent. 

Each sample was analyzed in triplicate and normalized to Gapdh. Relative mRNA quantity 

was calculated by the comparative cycle threshold (Ct) method using the formula 2-ΔCt. 

cDNA was amplified (in triplicate) in a reaction volume of 20 µl containing 9µl of cDNA 

in ddH2O and 11µl of 10 µM primers and Sybr green. The protocols envisaged the 

following steps: 20 seconds at 95°C, followed by 40 cycles of 3 seconds at 95°C, 30 

seconds at 60°C and 15 seconds at 95°C. Afterwards a dissociation stage was present: 1 

minute at 60°C, 15 seconds at 95°C and 15 seconds at 60°C. Each primers pair was 

checked for its efficiency of amplification. If y= - ax + q was the trendline equation, 
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obtained by amplification of quadratic increasing quantity of cDNA, the efficiency was 

calculated as (10^(-1/a)-1)*100. Only pairs of primers with efficiency between 95 and 110 

were used for further analysis.  

Primers are listed in Table 5. 

 

Table 5: Primers used in qRT-PCR 

 

6.5.3 Chromatin immunoprecipitation coupled to deep-sequencing (ChIP-seq) 

6.5.3.1 ChIP-seq libraries preparation 

 
107 MEFs were plated for the ChIP-seq for MENIN and H3K4me3 at 13 days, while, in 

the case of the ChIP-seq for H3K4me3 at 5 days, 5 millions of MEFs were seeded, in both 

cases in 15-cm dishes.  

At the desired time point, medium was removed and cells were fixed with 15 ml of PBS 

1% formaldehyde for 10 minutes. By this step proteins and DNA were cross-linked. To 

stop fixation 1 ml of glycine 2 M (final concentration 0.125 M) was added for 5 minutes. 

Plates were washed twice with PBS and then cells were scraped and collected in SDS 

Buffer. At this point cells could be stored at -80 °C until they were processed. Thawing 

occurred in water bath at room temperature. Cells were centrifuged in a tabletop centrifuge 

for 10 minutes at 400 g and then resuspended in 3 ml of ice-cold IP buffer.  

Sonication was performed on ice through the Digital Sonifier 450 (Branson) with the 102C 

CONVERTER (Branson). 
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ChIP-seq for Menin (5 days) 3 cycles 30’’ on/30’’ off at 30% amplitude, length 700 bp. 

ChIP-seq for H3K4me3 (5 days) 7 cycles 30’’ on/30’’ off at 30% amplitude, length 200 

bp. 

ChIP-seq for H3K4me3 (sorted cells, 13 days) 4 cycles 30’’ on/30’’ off at 30% amplitude, 

length 200 bp. 

Part of the sonicated material was decrosslinked with the decrosslinking buffer for 1h at 65 

°C, purified with the QiaQuick PCR Purification kit (Qiagen, catalog number 28104), 

according to manufacturer’s guidelines, and run on a TAE 1% agarose gel to evaluate the 

DNA fragments length. 

Sonicated chromatin was centrifuged at full speed for 30 minutes and the supernatant was 

transferred to a new tube. The quantity of chromatin was estimated using Bradford assay, 

using BSA (NEB) to derive a standard curve. 2 µl of sonicated chromatin were diluted in 

800 µl of water plus 200 µl of Biorad Protein Assay and the absorbance at 595 nm was 

measured by a spectrophotometer. 

Immunoprecipitation was performed in 1 ml of IP buffer on a rotating wheel at 4°C 

overnight using the antibodies and the conditions listed in the Table 6.  

 

 

Table 6: Antibodies used for ChIP-seq 

 

10 µl of sonicated chromatin was kept as input control (1% input). 

The following day 30 µl of protein G dynabeads (ThermoFisher Scientific, catalog number 

10003D) (pre-equilibrated with IP Buffer) were added and the mix was incubated for 4 h 

on a rotating wheel at 4°C. Afterwards beads were washed 3 times with 1 ml of 150 mM 

Wash Buffer and once with 1 ml of 500 mM Wash Buffer with the use of a Dynamag 

magnet (ThermoFisher Scientific, catalog number 12321D). 



	

	 65	

Afterwards beads (and the 1% input) were resuspended in 120µl of Decrosslinking Buffer 

and put in agitation (at full speed) at 65 °C overnight. 

Finally DNA was purified with the QiaQuick PCR Purification kit (Qiagen, catalog 

number 28104), eluted in 40µl of ddH2O and quantified with Qubit dsDNA HS Assay Kit 

(ThermoFisher Scientific, catalog number Q32851) at the Qubit 2.0, following 

manufacturer’s instructions. 

The purified DNA was given to the sequencing facility of the IFOM/IEO Campus that 

prepared the libraries as in paragraph 6.5.2.2. The starting amount of DNA was 5 ng for 

MENIN and H3K4me3. Libraries were sequenced on a HiSeq 2000 instrument (Illumina) 

following manufacturer's protocol. Sequencing was performed in single end, 50 bp, with a 

coverage of 30 millions of reads for inputs, H3K4me1 and menin ChIP-seq. 

Buffers: 

SDS Buffer: 

100mM NaCl  

50mM Tris-HCl pH 8.1  

5mM EDTA pH 8  

0.5% SDS  

 

Triton Dilution Buffer: 

100mM NaCl 

100mM Tris-HCl pH 8.6 

5mM EDTA pH 8  

5% Triton X-100  

 

IP Buffer: 

2 volumes SDS Buffer: 1 volume Triton Dilution Buffer 

 

150mM Wash Buffer: 

150mM NaCl  
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20mM Tris-HCl pH 8  

2mM EDTA pH 8  

0.1% SDS  

1% Triton X-100  

 

500mM Wash Buffer: 

500mM NaCl  

20mM Tris-HCl pH 8  

2mM EDTA pH 8  

0.1% SDS  

1% Triton X-100  

 

Decrosslinking Buffer  

1% SDS 

0.1M NaHCO3 

 

6.5.3.2 ChIP-seq bioinformatic analysis 

6.5.3.2.1 Alignment and peak calling 

 

ChIP-seq reads were trimmed for potential adapter contamination using scythe 0.981 (min 

4 nucleotides) before being aligned to the mm10 genome using bowtie 1.0135 with -v 2 -m 

1, and peaks were called using MACS 2.0.9136 with default settings. MACS uses sliding 

windows to look for significant enrichment over the input, and relies on a shifting model 

(detecting the average fragment size from the gap between sub-peaks originating from 

each end of the fragments) to refine the boundaries of the modification or binding event. 

Although we relied mostly on quantitative analyses (below) to compare across replicates 

and conditions, when comparing peaks directly we considered peaks as overlapping if they 

shared at least one nucleotide. 
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6.5.3.2.2 Identification of target genes 

	
Proximally bound genes were defined as having a peak within a -2.5kb/+1kb window 

around any of their RefSeq TSS. To identify the putative targets of intergenic sites bound 

by MENIN but in contact with a TSS only through chromatin conformation, we relied on 

Hi-C data from the most similar cell type available, namely neural progenitors. We 

downloaded already processed, statistically significant interactions from the Gene 

Expression Omnibus entry GSE68582, extracted a bed file containing each region 

interacting with a RefSeq TSS, and intersected it (using intersectBed) with our regions of 

interest to find distal targets. 

 

6.5.3.2.3 Quantitative analysis of ChIP-seq data 

	
Peak calling is very sensitive to coverage and technical variation, and quantitative analysis 

of read distribution yields considerably more robust findings. To find differences across 

conditions, we therefore worked on the distribution of reads falling within relevant 

genomic windows. For each protein/mark, the windows were defined by merging the 

enriched regions across samples (i.e., with BedTools: cat *.bed | sortBed -i - | mergeBed -i 

-). In this way, all regions enriched in at least one sample were considered for statistical 

testing, without duplicate genomic regions. The read counts were then compared across 

conditions using edgeR v.3.12.1137,  using the total number of mapped reads as library size 

and the TMM method for normalization. Differentially enriched regions were identified 

using the classical dispersion model of edgeR (based on a negative binomial model) and 

the exact test.  

For the MENIN ChIP-seq, given the low quality of the peak calling (very low and variable 

number of peaks across samples, probably owing to a low and highly variable coverage), 

we performed a peak-call-agnostic differential enrichment analysis using diffReps138, 
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which uses sliding windows to directly identify regions of significant difference between 

sets of enrichment profiles. 

 

6.5.3.2.4 Data representation (RNA-seq and ChIP-seq) 

	
Principal component analyses were performed on the normalized, log-transformed FPKM 

(for RNA-seq) or read counts (for ChIP-seq). Unless specified otherwise, all heatmaps 

show row z-scores of log-transformed normalized counts. Heatmaps were produced using 

the pheatmap R package. +1 was added before log-transform to avoid errors on null values. 

 

6.5.3.2.5 External data (RNA-seq and ChIP-seq) 

For external datasets, we used the authors' original peak calls (ChIP-seq) or quantification 

(RNA-seq) that are available from the respective GEO entries.  

 

6.6 Embryonic Stem cells (ESCs) MLL2-EGFP 

6.6.1 ESCs culture 

	
ESCs were cultured on 0.2% gelatin coated dishes. Medium, supplemented with G418 

(200 µg/ml), was changed every day. Cells were passaged by Accutase. 

As control for in vitro differentiation studies the ESCs E14TG2alpha have been used and 

cultured as ESCs MLL2-EGFP. 

ESCs Medium composition: 

DMEM without L-Glutamine (Lonza, catalog number BE12-614F) 

15% FBS (Euroclone, catalog number ECS0196D) 

0.2% LIF (produced by the Transgenic Unit of the IFOM-IEO campus) 

1% L-Glutamine 200mM (Life Technologies, catalog number 25030-024) 

1% Non-essential aminoacids (Lonza, catalog number BE13-114E) 
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0.2% β-mercaptoethanol 50 mM (Life Technologies, catalog number 31350-010) 

 

plus or minus 2 inhibitors (2i): 

MEKi PD-0325901 1 µM (mother stock 10mM Sigma-Aldrich, catalog number PZ0162) 

GDK3i CT-99021 3 µM (mother stock 10mM Sigma-Aldrich, catalog number SML1046) 

Mll2 exon 2 copy number was tested through Taqman as in the paragraph 6.2.3. 

Immunofluorescence was performed as in the paragraph 6.4.1.1. 

 

6.6.2 ESCs differentiation toward fibroblasts 

6.6.2.1 In vitro differentiation 

	
Differentiation was performed adapting the protocol of the paper of Xu and coworkers139. 

Briefly 3.7 106 ESCs were plated in 10cm nonadherent cell culture dishes in: 

DMEM without L-Glutamine (Lonza, catalog number BE12-614F) 

1 mM L-Glutamine (Life Technologies, catalog number 25030-024) 

0.1 mM β- mercaptoethanol (Life Technologies, catalog number 31350-010) 

10% FBS (HyClone, catalog number SH30088.03) 

1% Nonessential aminoacids (Lonza, catalog number BE13-114E) 

After 4 days the clear appearance of embryoid bodies (EB) was observed. EBs were 

replated on 0.2% (w/v) gelatin coated dishes for 9 days. The EBs outgrowth cells were 

dissociated in 2mg/ml collagenase type II for 30 minutes at 37°C and replated in MEFs 

medium (paragraph 6.2.1). Afterwards cells were passaged in trypsin. 

Immunofluorescence was performed as in paragraph 6.4.1.1. 

 

6.6.2.2 MEFs derivation from chimeras 

 
ESCs injection into the blastocysts was performed by the Transgenic Unit of the IFOM-

IEO campus. 
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Briefly, blastocysts were harvested 3.5 days post coitum from 3 weeks C57Bl/6 female 

mice treated with Pregnant Mare Serum Gonadotropin (PMSG) (5 UI/female) and human 

Chorionic Gonadotropin (hCG) (5 UI/female), subsequently bred with C57Bl/6 males. 

Pseudo-pregnancy was induced through the breeding of C57Bl/6 females with 

vasectomized mice. Once plugged they were anesthetized (Avertin 1.25%, analgesic 

Rimadyl (5mg/kg) or Tramador (20µg/g)) and the chirurgic embryo transfer was 

performed (20-28 blastocysts per female). 

Embryos were harvested at E.13.5 and MEFs preparation was executed as in paragraph 

6.2.1.  

MEFs selection was performed supplementing MEFs medium with G418 (100 µg/ml or 

200 µg/ml). Mll2 exon 2 copy number was tested through Taqman as in the paragraph 

6.2.3. 

6.6.2.3 Fibroblasts derivation from teratomas 

 
106 ESCs per side were injected subcutaneously in the flank of NOD SCID IL2Rγ-/- mice.  

Teratomas were harvested and digested in collagenase I (750U/ml) for 1h. Then they were 

filtered through 0.1µm pore nitrocellulose filter and centrifuged at 500g for 3 minutes. Red 

blood cells were lysed 1 minute in ACK lysing buffer (ThermoFisher Scientific, catalog 

number A1049201). MEFs medium was added to stop the lysis and cells were centrifuged 

at 500g for 3 minutes. 

Pellet was dissociated in trypsin, subsequently inactivated by the medium addition. Finally 

cells were centrifuged at 500g for 3 minutes and plated in MEFs medium at 37°C, 5%CO2 

3%O2.  

Parts of the teratoma were not dissociated, but washed in PBS and fixed overnight in 4% 

formalin solution. The following day they were processed by an automatized tissue 

processor and included in paraffin blocks.  4 µm thick sections were cut with a Leica 

microtome and stained with haematoxilin and eosin to assess the trilineage specification.  
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The immunohistochemistry staining was performed by the IEO hospital Molecular 

Pathology Unit. 

Sections were washed in Bioclear (Bio Optica), hydrated through descending graded 

alcohol series and then wash in ddH2O. Subsequently the antigen retrieval (in EDTA 1mM, 

Tween-20 0.05% pH 8) at 95°C was performed and endogenous peroxidase was quenched 

with 3% H2O2 for 5 minutes. 

Sections were then incubated in blocking buffer (2% BSA in TBST) for 20 minutes and, 

subsequently with the rabbit anti-GFP antibody (Santa Cruz, sc-8334), diluted in blocking 

buffer, for 1h. After 3 washes, the secondary antibody (anti-rabbit Dako EnVision+ 

System-HRP Labeled Polymer) was added for 30 minutes. 

Afterwards they were incubated with Dako Liquid DAB + Substrate Chromogen System, 

counterstained with hematoxylin (10 seconds), dehydrated through ascending graded 

alcohol series and mounted with Eukitt (Bio Optica). Signals were revealed using Dako 

EnVision+ Kit. 
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7. RESULTS 

7.1 Establishment of the experimental system 
 
The mouse models used in this study are conditional knock-out for Mll1128, Mll256 or both, 

since the straight knock-out for these genes is embryonic lethal55,56. The strategy envisaged 

in Mll1, Mll2 and Mll1/Mll2 conditional knock-out is the same: mice harbour a tamoxifen 

inducible Cre (CreERT2) in the ROSA26 locus, and the exon 2 of the gene encoding the 

specific methylase is flanked by LoxP sites (Figure 10a). Upon 4-hydroxytamoxifene (4-

OHT) administration the exon 2 is deleted causing a frameshift mutation. In particular 

Mll1 and Mll2 mRNA translation is immediately blocked, due to a new stop codon being 

formed at the beginning of exon 3 (Figure 10b). These mouse models bear also the YFP 

gene in the ROSA26 locus, downstream to a stop cassette flanked by LoxP sites. Initially 

we used the YFP positivity as an indirect indication of the entity of CRE recombination, 

but we later replaced this assay by ad hoc TaqMan assays. 

 

 

 

Figure 10: Schematic of the mouse models used in this study 

a. Transgenic alleles of the mouse models. All the transgenic mice used in this study harbour the 

CreERT2 and YFP genes in the Rosa26 locus. The latter is downstream to a stop cassette between 

LoxP sites (blue triangles). Moreover the Mll gene, depending on the considered conditional knock-

out analysed, has the exon 2 (ex2) flanked by LoxP sites. b. Deletions occur upon 4-OHT 
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administration. Once 4-OHT is added to the culture medium, CRE is activated leading to the 

deletion of both the stop cassette and the Mll exon 2. This causes a frameshift mutation in the Mll 

gene. 

 

To obtain the complete deletion of exon 2, reducing to the minimum the toxicity of 4-OHT 

itself and of Cre activity, I conducted several experiments to define the optimal 4-OHT 

concentration and length of the treatment, that resulted in 5 days 1000ng/ml of 4-OHT 

(Figure 11a). As controls we used MEFs Mll1+/+Mll2+/+CreERT2+YFP+ 4-OHT-treated, to 

discriminate between the effects due to the absence of the specific MLL protein and the 

toxicity and aspecific effects of 4-OHT administration and Cre activity. Before MEFs were 

replated on matrigel for transduction with BAM factors they were left to recover in the 

medium without 4-OHT for either 2 or 7 days (Figure 11a). By leaving MEFs 7 additional 

days in culture before plating them, any residual MLL1 and/or MLL2 protein should be 

degraded and/or diluted. Hence, also the H3K4me3 mark at MLL1 and MLL2 targets 

should cease to be maintained, given our current knowledge of the dynamics of this mark. 

The degradation of MLL1 is timely regulated by the cell cycle. Indeed, MLL1 remains 

associated with DNA during replication, preserving the configuration of the epigenome79,80 

and it is degraded during late S and M phases78. It is therefore reasonable to expect that 5 

days of 4-OHT treatment plus 2 days of normal medium should be already sufficient for 

the degradation of the residual MLL1 and for the removal of the MLL1-H3K4me3-

deposited mark. The ESCs used to derive the Mll2 conditional knock-out strain used in this 

study show the disappearance of MLL2 with as little as 2 days of 4-OHT treatment64. 

Hence, as for Mll1, 5 days of 4-OHT plus 2 days in normal medium should be sufficient to 

eliminate the MLL2 translated prior to the induction of Cre recombinase activity. 

Moreover we hypothesised that waiting an additional week before plating the MEFs for 

transdifferentiation would let us be more confident about MLL1 and MLL2 degradation. 

Even though the compensation by the homolog protein (which is, however, not present in 
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the double knock-out MEFs) or by other TrxG members can not be excluded by this 

strategy, any observed deficiency in transdifferentiation can be ascribed to a role of the 

specific MLL protein during cell conversion. 

In all the experiments cells were collected and tested for the efficiency of exon 2 deletion 

on the day when they were plated for transdifferentiation. Specifically the deletion was 

confirmed at the genomic level, with TaqMan assays (Figure 11c), and in the case of Mll2 

also at the protein level (Figure 11d).  

To understand whether the absence of the two MLLs plays a role during 

transdifferentiation I performed two types of experiments: immunofluorescence with 

images acquired at a modular microscope-based imaging platform (ScanR experiments) 

and cytofluorimetric analysis (FACS experiments) (Figure 11b). The aim of ScanR 

experiments was the semi-quantitative assessment of transdifferentiation efficiency and 

cell mortality, but more importantly of iNs morphology/maturation, not appreciable with 

other techniques. FACS kinetics was instead performed to measure the percentage of 

transdifferentiating MEFs and the mortality rate during the entire process. 

For what concerns ScanR analysis, the experiments were carried out as follows. Different 

concentrations of cells were plated for experimental (flox/flox 4-OHT treated, named -/- in 

the rest of the thesis) and control conditions (+/+ 4-OHT treated or fl/+ 4-OHT treated, in 

the case of Mll1, named respectively +/+ and +/- in the rest of the thesis). The number of 

DAPI cells was counted at day 3, one day after the first doxycycline administration (i.e., 

the plausible onset of transdifferentiation) and at the end only the conditions that at this 

time point were in the same number were compared to calculate transdifferentiation 

efficiency (Figure 11b). In fact, since any of the two epigenetic modulators is important for 

the regulation of cell viability/cycle61,84,85,140 despite plating the same number of cells there 

could be a different number of cells in the control and the experimental condition at the 

moment of induction of the TFs. This could influence the final number of iNs. Since it has 

been demonstrated that in the day after the first doxycycline administration the majority of 
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the cells are postmitotic91, it was considered as the starting point. By using this strategy 

any difference in transdifferentiation efficiency is imputable to an effect of MLL on the 

process per se or on the cell viability, both testable by our analysis. 

In the case of FACS experiments only Mll+/+ was included as control, and Polysialylated-

neural cell adhesion molecule (PSA-NCAM) was used as a neuronal surrogate marker141, 

whereas mortality was evaluated with Propidium Iodide (PI) staining. Moreover at the 

same time points of FACS analysis, cells were also counted to better assess the cell death 

rate. 
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Figure 11: Experimental set-up 

a. After 4-OHT treatment MEFs were plated for transduction with BAM factors either after 2 or 7 

days in normal media. b. For ScanR experiments (time points in green boxes) experimental and 

control MEFs were plated in multichambers in different concentrations and imaged 3 and 13 days 

after plating. Only conditions that at 3 days after plating were in the same number were compared 

at the end (red boxes). For FACS experiments (time points in blue boxes) cells were analysed 5, 7, 

9, 13 and 21 days after plating. c. Representative TaqMan results for exon 2 copy number of both 

Mll1 and Mll2. Means +/- Standard Error of the Mean (SEM) are reported. d. Western blot for 

MLL2 (bands at 284 kDa and 225 kDa) with VINCULIN as housekeeping (116 kDa) in ESCs and 

4 Mll1+/+Mll2+/+, 3 Mll2-/- and 1 Mll1-/-Mll2-/- MEFs treated 5 days with 4-OHT and left 7 days in 

MEFs medium without 4-OHT. 

 

7.2 MLL1 is dispensable during transdifferentiation 
 
Two ScanR experiments were performed plating MEFs 2 days after the last 4--OHT 

administration and using Mll1+/- MEFs as control.  

In the first experiment we observed a higher mortality of Mll1-/- than controls (Figures 12a 

and 12c on the left) and, consequently, both a lower percentage of Tuj1+ cells at day 13 

(Figure 12d) and an overall lower transdifferentiation efficiency in the experimental 

condition (Figure 12f on the left). On the contrary, in the second experiment, the mortality 

rate of Mll1+/- was higher (Figures 12b and 12c on the right), at 13 days there was no 

difference in the percentage of Tuj1+ cells between the experimental condition and the 

control (Figure 12e) and the transdifferentiation efficiency was higher in Mll1-/- (Figure 12f 

on the right).  
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Figure 12: Transdifferentiation in the absence of MLL1: ScanR experiments 

a. and b. Cell mortality in the absence of Mll1 in experiments 1 and 2 respectively (exp1 and exp2). 

The number of DAPI in 100 images per genotype is reported. On the left the two conditions in the 

same number, one day after the first doxycycline administration (starting point, +3) and on the 

right the number of DAPI in the chosen concentration at 13 days (end of the protocol, +13). Means 

+/- SEM are reported. c. Cell mortality reported as the ratio between the sum of DAPI calculated 1 

day after doxycycline administration at the chosen concentration (DAPI start) and the sum of DAPI 

of the corresponding chamber at 13 days (DAPI end) in the two experiments (exp1 and exp2). 

Means +/- SEM are reported.  d. and e. Percentage of Tuj1+ cells among total DAPI in 100 images 

acquired for the chosen concentration at 13 days, for the experiment 1 and the experiment 2 

respectively (exp1 and exp2). ). Means +/- SEM are reported. f. Efficiency of transdifferentiation in 

the two experiments (exp1 and exp2). The number of Tuj1+ cells for the chosen concentration at 13 

days was calculated and related to the number of DAPI quantified 1 day after doxycycline 

administration. Means +/- SEM are reported. *** p<0.0001; ** p<0.001; *p<0.01; ns not 

significant p>0.01. 

 

These results suggest that the differences observed in transdifferentiation efficiency are the 

consequence of a difference in mortality rate among experiments. However, having only 

one copy of the Mll1 gene could be sufficient for altering the cell mortality rate and/or the 

transdifferentiation efficiency. Afterwards, FACS experiments were performed using 
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Mll1+/+ as a control and leaving MEFs in culture one additional week before plating them 

for BAM factors transduction. By means of this strategy we could exclude both a role of 

haploinsufficiency and that the phenotype observed was due to some residual MLL1 

present in the knock-out MEFs at the onset of transdifferentiation. Unfortunately there are 

no effective commercial anti-MLL1 antibodies to test its presence. 

The mortality rate was slightly higher during all analysed time points in the experimental 

condition with respect to the control (Figures 13a and 13b). The percentage of PSA-

NCAM+ cells, instead, was similar in Mll1+/+ and Mll1-/- throughout the experiment and as 

long as 21 days after plating (Figure 13c).  

However, when transdifferentiation efficiency was calculated as the percentage of PSA-

NCAM+ cells generated at 13 days with respect to the number of MEFs plated for BAM 

transduction it resulted lower in the Mll1-/- condition compared to the control (Figure 13d).  
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Figure 13: Transdifferentiation in the absence of MLL1: FACS experiments 

a. The total number of cells was calculated 5, 7, 9, 13 and 21 days after plating with the Countess 

Automated Cell Counter. The percentage of dead cells was calculated over the initial number of 

plated MEFs. Means +/- SEM are reported. Mll1-/- n=3; Mll1+/+ n=3 at all time points, but day 21: 

n=2. b. Mortality rate as percentage of PI+ cells 5, 7, 9, 13 and 21 days after plating, assayed with 

FACS analysis. Means +/- SEM are reported.  Mll1-/- n=3 at all time points, but day 21 in which 

n=2; Mll1+/+ n=3 at all time points, but day 21 in which n=1. c. Percentage of PSA-NCAM+ cells 5, 

7, 9, 13 and 21 days after plating, assayed with FACS analysis. Means +/- SEM are reported.  Mll1-

/- n=3 at all time points, but day 21 in which n=2; Mll1+/+ n=3 at all time points, but day 21 in which 

n=1. d. Efficiency of transdifferentiation calculated as the percentage of PSA-NCAM+ iNs cells at 

13 days with respect to the number of plated cells. Means +/- SEM are reported. Mll1-/- n=3; Mll1+/+ 

n=9. *** p<0.0001; ** p<0.001; *p<0.01; ns not significant p>0.01. 

 

Since the percentage of PSA-NCAM+ cells for the two genotypes remained the same 

throughout the experiment, the observed lower efficiency should be attributable to the 

higher cell death rate in Mll1-/- condition. 

Hence, also with the inclusion of the Mll1+/+ cells as control, the lower transdifferentiation 

efficiency observed in Mll1-/- cells corresponds to a higher cell death.  

Finally, in 2 out of 2 experiments, neurites of Mll1-/- iNs extended as in the Mll1+/- control 

(Figures 14a and 14c), further suggesting that MLL1 has no appreciable role during 

transdifferentiation. Although an ad hoc experiment would be required to prove it 

numerically, it is highly unlikely that this was due to haploinsufficiency because neurite 

length in the Mll1+/- condition was visually comparable to Mll1+/+ one. Moreover both 

Mll1-/- and Mll1+/- iNs at 13 days were positive for the Microtubule associated protein 2b 

(MAP2b) (Figure 14b), a more mature neuronal marker, underlining that the absence of 

Mll1 does not impair transdifferentiation.  
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Figure 14: The absence of Mll1 does not impair iNs morphology 

a. Representative images of Mll1+/- (upper panels) and -/- (lower panels) iNs (DAPI is in blue and 

Tuj1 in red) at 13 days. b. Representative images of Mll1+/- (upper panels) and -/- (lower panels) iNs 

(DAPI is in blue, Tuj1 in red, MAP2b in green) at 13 days. c. Average neurite length per neuron 

calculated with Neuritetracer. Means +/- SEM are reported. ns: not significant (p>0.01). 

 

7.3 MLL2 is necessary during transdifferentiation 
	
The absence of MLL2 could impair the number of iNs generated because MLL2 has an 

active role during transdifferentiation, but also because Mll2 deletion could lead to a higher 

cell mortality. However the cell viability of Mll2-/- transdifferentiating MEFs did not result 

affected, as demonstrated by ScanR experiments (3 out of 3 experiments) (Figures 15a and 

15d on the left) and by PI staining (Figure 16d). 
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Figure 15: Transdifferentiation in the absence of MLL2: ScanR experiments 
a. Cell mortality in the absence of Mll2 in one representative experiment. The number of DAPI in 

100 images per genotype is reported. Means +/- SEM are reported. On the left the two conditions 

in the same number one day after the first doxycycline administration (starting point, +3) and on 

the right the number of DAPI in the chosen concentration at 13 days (end of the protocol, +13). b. 

and e. Percentage of Tuj1+ cells among total DAPI in 100 images acquired for the chosen 

concentration at 13 days, respectively plated 2 and 7 days after 4-OHT treatment. Means +/- SEM 

are reported. c. and f. Average neurite length per neuron, generated starting from MEFs plated, 

respectively, 2 and 7 days after 4-OHT treatment, calculated with Neuritetracer. Means +/- SEM 

are reported. Representative experiments are reported. d. Cell mortality reported as the ratio 

between the sum of DAPI calculated 1 day after doxycycline administration at the chosen 

concentration (DAPI start) and the sum of DAPI of the corresponding chamber at 13 days (DAPI 

end) of MEFs plated 2 (on the left) and 7 (on the right) days (2d and 7d) after 4-OHT treatment. 

Means +/- SEM are reported. *** p<0.0001; ** p<0.001; *p<0.01; ns not significant p>0.01. 

 

Moreover if knock-out MEFs were left in culture one additional week before transduction 

with BAM factors, mortality rate was not affected (Figure 15d on the right and 16e) as also 

demonstrated by the comparison of absolute counts of experimental condition and control 

at the same time points of FACS analysis (Figure 16f). 
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Figure 16: Transdifferentiation in the absence of MLL2: FACS experiments 

a. Percentage of PSA-NCAM+ cells 5, 7, 9 and 13 days after plating, assayed with FACS analysis. 

MEFs were plated for transdifferentiation 2 days after the end of 4-OHT treatment. Means +/- SEM 

are reported. Mll1+/+ Mll2+/+ n=1 at day 0, 7 and 9, n=4 at day 5 and 13; Mll2-/- n=1 at day 0, 7 and 9, 

n=3 at day 5 and 13. b. The percentage of PSA-NCAM+ cells 5, 7, 9 and 13 days after plating, 

assayed with FACS analysis, is reported for one representative experiment. MEFs were plated for 

transdifferentiation 7 days after the end of 4-OHT treatment. Means +/- SEM are reported. Mll1+/+ 

Mll2+/+ n=1; Mll2-/- n=2. c. Percentage of YFP+ cells in the PSA-NCAM+ population assayed with 

FACS analysis 5, 7, 9 and 13 days after plating. MEFs were plated for transdifferentiation 7 days 

after the end of 4-OHT treatment. Means +/- SEM are reported. Mll1+/+ Mll2+/+ n=2; Mll2-/- n=2. d. 

Mortality rate as percentage of PI+ cells 5, 7, 9, 13 and 21 days after plating, assayed with FACS 

analysis. MEFs were plated for transdifferentiation 2 days after the end of 4-OHT treatment. Means 

+/- SEM are reported. Mll1+/+ Mll2+/+ n=1 at day 0, 7 and 9, n=4 at day 5 and 13; Mll2-/- n=1 at day 

0, 7 and 9, n=3 at day 5 and 13. e. Mortality rate as percentage of PI+ cells 5, 7, 9, 13 and 21 days 

after plating, assayed with FACS analysis, in one representative experiment. MEFs were plated for 

transdifferentiation 7 days after the end of 4-OHT treatment. Means +/- SEM are reported. Mll1+/+ 

Mll2+/+ n=1; Mll2-/- n=2.  f. The total number of cells was calculated 5, 7, 9 and 13 days after plating 

with the Countess Automated Cell Counter. The percentage of dead cells was calculated over the 

initial number of plated MEFs. One representative experiment is reported with means +/- SEM. 

MEFs were plated for transdifferentiation 7 days after the end of 4-OHT treatment. Mll1+/+ Mll2+/+ 

n=1; Mll2-/- n=2.  

 

a	

d	

b	

e	 f	

2	days	a'er	4-OHT	 7	days	a'er	4-OHT	

7	days	a'er	4-OHT	

7	days	a'er	4-OHT	
c	



	

	 83	

In the ScanR experiments where MEFs were immediately plated after 4-OHT treatment, 

transdifferentiation efficiency did not decrease in any of the 2 experiments (Figure 17a on 

the left). When the efficiency rate was calculated by FACS, using the same experimental 

timeline of ScanR experiments, an initial decrease in PSA-NCAM+ cells was observed, 

which was later overcome at 13 days (the time point analysed by ScanR) (Figure 16a). 

Indeed, the efficiency of transdifferentiation was higher in Mll2-/- than Mll2+/+, such as in 

ScanR experiments (Figure 17b on the left), but knock-out cells still proliferated after 

doxycycline administration (Figure 17c). 

If MEFs were instead plated one week after 4-OHT treatment, we observed a lower 

transdifferentiation efficiency of Mll2-/- MEFs than Mll2+/+ both in ScanR and FACS 

analyses (Figures 17a on the right and 17b on the right). The initial lower percentage of 

PSA-NCAM+ Mll2-/- iNs was maintained throughout the entire transdifferentiation process 

and was not overcome even 13 days after plating (Figure 16b). Moreover we can exclude 

that Mll2-/- cells were counterselected, since at 13 days the majority of iNs in the 

experimental and control conditions were YFP+, which is expressed only upon Cre-

mediated removal of the stop cassette upstream to the yfp gene (Figure 16c).  Hence YFP 

positivity can be exploited as an indirect surrogate marker to assess the percentage of 

recombined cells throughout transdifferentiation. 

One possible explanation for the observed discrepancy among the results of the two 

experimental set-ups is the following: in the case of MEFs immediately plated after 4-OHT 

treatment there could be a residual level of MLL2 protein and of H3K4me3 at its gene 

targets, respectively degraded (as confirmed by western blot) and erased/diluted if waiting 

for one additional week. To test this hypothesis the western blot for MLL2 has to be 

performed immediately after 4-OHT treatment. 
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Figure 17: Transdifferentiation efficiency in the absence of MLL2 

Efficiency of transdifferentiation in ScanR and FACS experiments. a. The number of Tuj1+ cells 

for the chosen concentration was calculated and related to the number of DAPI quantified 1 day 

after doxycycline administration. On the left the experiments with MEFs plated 2 days after 4-OHT 

treatment (2d) and on the right with MEFs plated 7 days after 4-OHT treatment (7d). Means +/- 

SEM are reported.b. Efficiency of transdifferentiation calculated as the percentage of PSA-NCAM+ 

iNs cells at 13 days with respect to the number of plated cells. On the left the experiments with 

MEFs plated 2 days after 4-OHT treatment (2d) (Mll1+/+ Mll2+/+ n=4; Mll2-/- n=3) and on the right 

with MEFs plated 7 days after 4-OHT treatment (7d) (Mll1+/+ Mll2+/+ n=9; Mll2-/- n=7). Means +/- 

SEM are reported.*** p<0.0001; ** p<0.001; *p<0.01; ns not significant p>0,01. c. Absolute cell 

number, evaluated through the Countess Automated Cell Counter, of Mll2-/- (n=2) and 

Mll1+/+Mll2+/+ (n=3), 5 and 13 days after plating for transduction. MEFs were left in normal 

medium 2 days after 4-OHT treatment, before they were plated for transdifferentiation. Means +/- 

SEM are reported. 

 

In 3 out of 3 experiments, independently of whether MEFs were plated 2 or 7 days after 4-

OHT treatment and with different levels of affection, neurite elongation was impaired in 

Mll2-/- iNs with respect to control (Figures 15c, 15f and 18a). Despite this the Mll2-/- iNs, 
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in a preliminary experiment, were positive for MAP2b and NeuN, more mature neuronal 

markers (Figures 18 b and c). 

 

                           

 

Figure 18: The absence of Mll2 impairs iNs morphology 

a. Representative images of Mll1+/+ Mll2+/+ (upper panels) and Mll2-/- (lower panels) iNs (DAPI is 

in blue and Tuj1 in red) at 13 days. b. Representative images of Mll1+/+ Mll2+/+ (upper panel) and 

Mll2-/- (lower panel) iNs (DAPI is in blue, Tuj1 in red, NeuN in green) at 13 days. c. 

Representative images of Mll1+/+ Mll2+/+ (upper panel) and Mll2-/- (lower panel) iNs (DAPI is in 

blue, Doublecortin in red, MAP2b in green) at 13 days. 
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7.4 Lack of both MLL1 and MLL2 severely impairs 

transdifferentiation 
	
Since MLL1 and MLL2 are two homolog proteins, to better characterize specific functions 

not visible in the single knock-out because of the compensation of the other methylase, we 

also studied the transdifferentiation of Mll1-/-Mll2-/- MEFs. This strategy allowed the 

investigation of the overall role of the MLL1-MLL2 COMPASS-like complexes during the 

direct conversion MEFs-to-iNs. As in the case of transdifferentiation of Mll1-/- and Mll2-/- 

MEFs, also for the double knock-out I performed both the assessment of the 

transdifferentiation efficiency and the morphological analysis of Mll1-/-Mll2-/- iNs through 

ScanR and FACS. In particular ScanR-based experiments were carried out on MEFs plated 

immediately after 4-OHT treatment, while the FACS experiment on MEFs plated one 

week later, to ensure the degradation of the two methylases and the erasure of the 

H3K4me3 mark, deposited prior to Cre activity induction. 

During 4-OHT treatment, no difference in cell death was detected between Mll1-/-Mll2-/- 

and control MEFs (Figures 19a and 19b). However upon infection with BAM factors and 

their induction with doxycycline, cell vitality massively dropped in the double knock-out 

MEFs both in ScanR and FACS experiments (Figures 20a, 20d and 20e).  

 

 

Figure 19: MEFs vitality upon deletion of both Mll1 and Mll2 
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a. The total number of cells was calculated 2, 5 and 9 days after the first 4-OHT administration 

with the Countess Automated Cell Counter. Means +/- SEM are reported. Mll1+/+ Mll2+/+ n=5; Mll1-

/-Mll2-/-  n=3. b. Mortality rate as percentage of PI+ cells 2, 5 and 9 days after the first 4-OHT 

administration. Means +/- SEM are reported. Mll1+/+ Mll2+/+ n=5; Mll1-/-Mll2-/-  n=3.  

 

The initial decrease in the percentage of iNs generated was maintained until the last time 

point analysed (13 days) both in FACS and ScanR (Figures 20c and 20f).  

 

	

Figure 20: Transdifferentiation in the absence of both MLL1 and MLL2 

a. Cell mortality reported as the ratio between the sum of DAPI calculated 1 day after doxycycline 

administration at the chosen concentration (DAPI start) and the sum of DAPI of the corresponding 

chamber at 13 days (DAPI end) in 2 independent experiments (exp1 on the left and exp2 on the 

right). b.  Efficiency of transdifferentiation of ScanR experiments (exp1 on the left and exp2 on the 

right). The number of Tuj1+ cells for the chosen concentration was calculated and related to the 

number of DAPI quantified 1 day after doxycycline administration. c. Percentage of Tuj1+ cells 

among total DAPI in 100 images acquired for the chosen concentration at 13 days. One 

representative experiment is reported showing also means +/- SEM. d. The total number of cells 

was calculated 5, 7, 9 and 13 days after plating with the Countess Automated Cell Counter. The 

percentage of dead cells was calculated over the initial number of plated MEFs.  Means +/- SEM 

are reported. Mll1+/+ Mll2+/+ n=3; Mll1-/-Mll2-/-  n=3. e. Mortality rate as percentage of PI+ cells 5, 7, 

9 and 13 days after plating, assayed with FACS analysis. Means +/- SEM are reported. Mll1+/+ 
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Mll2+/+ n=3; Mll1-/-Mll2-/-  n=3. f. Percentage of PSA-NCAM+ cells 5, 7, 9 and 13 days after plating, 

assayed with FACS analysis. Means +/- SEM are reported. Mll1+/+ Mll2+/+ n=3; Mll1-/-Mll2-/-  n=3. 

*** p<0.0001; ** p<0.001; *p<0.01; ns not significant p>0.01. 

 

The transdifferentiation efficiency in Mll1-/-Mll2-/- resulted very low both in ScanR (2 out 

of 2 independent experiments) (Figure 20b) and in FACS experiments (Mll1-/-Mll2-/- n=3 

batches of MEFs derived from different embryos; Mll1+/+Mll2+/+ n=3 batches of MEFs 

derived from different embryos) (Figure 21c). Moreover the few iNs generated presented 

very short neurites (Figures 21a and 21b). 

 

	

Figure 21: The absence of Mll1 and Mll2 highly affects transdifferentiation 

a. Representative images of Mll1+/+ Mll2+/+ (upper panels) and Mll1-/- Mll2-/- (lower panels) iNs 

(DAPI is in blue and Tuj1 in red) at 13 days. b. Average neurite length per neuron calculated with 

Neuritetracer. Means +/- SEM are reported. c. Efficiency of transdifferentiation calculated as the 

percentage of PSA-NCAM+ iNs cells at 13 days with respect to the number of plated cells. Means 

+/- SEM are reported. Mll1+/+ Mll2+/+ n=9; Mll1-/- Mll2-/- n=3. *** p<0.0001; ** p<0.001; *p<0.01; 

ns not significant p>0.01. 
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7.5 Comparison of transdifferentiation efficiency across the 

different genotypes 
	
If we pooled the transdifferentiation analysis of Mll1-/-, Mll2-/-, Mll1-/-Mll2-/- and 

Mll1+/+Mll2+/+ MEFs, in FACS experiments Mll1-/- showed a reduction in 

transdifferentiation efficiency (Figure 22d), accompanied, however, by a mortality rate 

higher than Mll1+/+Mll2-+/+ transdifferentiating MEFs (Figure 22b). In the case of ScanR-

experiments, instead, Mll1-/- MEFs immediately plated presented the same mortality rate 

and transdifferentiation efficiency of Mll1+/+Mll2+/+ and Mll1+/- transdifferentiating MEFs 

(Figure 23a). While this excludes that Mll1 is haploinsufficient for cell fate reassignment, 

it also suggests that one additional week in culture before plating the MEFs for 

transdifferentiation might be necessary to eliminate any residual MLL1 protein and hence 

expose the full impact of its depletion. Therefore the choice of plating the MEFs for 

transdifferentiation 2 or 7 days after 4-OHT treatment could explain the differences in cell 

mortality and in transdifferentiation efficiency between the two experimental strategies. 

Indeed, by FACS (in which MEFs were plated 7 days after 4-OHT), the efficiency resulted 

reduced for Mll1-/- MEFs (Figure 22d). Alternatively, we hypothesised that the prolonged 

absence of MLL1 could severely affect cell cycle/cell viability already at the MEFs state. 

Hence the observed defects could be the consequence of the highly compromised starting 

cells and not of the role of MLL1 during the transdifferentiation process per se (Figure 

22b). Therefore, the reduction we observed in transdifferentiation efficiency should be 

only the consequence of lower cell viability in Mll1-/- MEFs. 

Both in ScanR and FACS analysis, instead, the mortality rate of Mll2-/- transdifferentiating 

MEFs was the same as in the control ones (Figures 22b and 23a). Hence the observed 

reduction in transdifferentiation efficiency is indicative of the role of MLL2 specifically 

during transdifferentiation (Figures 22d and 23b). 
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Mll1-/- Mll2-/- MEFs presented the highest cell death rate (Figures 22b and 23b) and the 

lowest transdifferentiation efficiency (Figures 22d and 23a). In particular, in the FACS 

analysis, the percentage of dead cells was the same of the one of Mll1-/- transdifferentiated 

MEFs (Figure 22b), but the transdifferentiation efficiency was lower (Figure 22d). This 

underlines that MLL2 is the main MLL1-MLL2- COMPASS-like member involved in cell 

conversion and that it does not play a role in cell viability. 

Finally, pooling all FACS experiments together, we observed that throughout 

transdifferentiation the Mll1-/- Mll2-/- condition had the lowest percentage of PSA-NCAM+ 

cells of all; this percentage was slightly higher in Mll2-/-, while Mll1-/- and Mll1+/+ Mll2+/+ 

possessed similarly high percentages of iNs (Figure 22a). Moreover the defective 

morphology of Mll2-/- iNs was maintained up to day 21 (Figure 23c). 

The comparison of transdifferentiation efficiency across different genotypes confirms that, 

while the absence of Mll1 only impairs cell viability, the knock-out of Mll2 impinges on 

the efficiency of direct cell conversion. MLL2 is therefore the main MLL1-MLL2 

COMPASS-like member recruited during transdifferentiation. Indeed, the double knock-

out, despite having the same cell death rate of Mll1-/- transdifferentiating MEFs, showed 

the lowest transdifferentiation efficiency, further underpinning a role for H3K4 MLL2-

deposited trimethylation during transdifferentiation. 
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Figure 22: Comparison of transdifferentiation efficiency in all conditions: FACS analysis 

a. The percentage of PSA-NCAM+ cells 5, 7, 9 and 13 days after plating, assayed with FACS 

analysis, is reported for Mll1+/+Mll2+/+, Mll1-/-, Mll2-/- and Mll1-/-Mll2-/- transdifferentiating MEFs. 

Means +/- SEM are reported. b. The total number of cells was calculated 13 days after plating with 

the Countess Automated Cell Counter. The percentage of dead cells 13 days was calculated over 

the initial number of plated MEFs. Means +/- SEM are reported. c. Numbers of Mll1+/+ Mll2+/+, 

Mll1-/-,  Mll2-/- and Mll1-/-Mll2-/- samples analysed for time point. The number of samples analysed 

in b. and d. corresponds to the day 13th. d. Efficiency of transdifferentiation calculated as the 

percentage of PSA-NCAM+ iNs cells at 13 days with respect to the number of plated cells. Means 

+/- SEM are reported.  *** p<0.0001; ** p<0.001; *p<0.01; ns not significant p>0.01.  
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Figure 23: Comparison of transdifferentiation efficiency in all conditions: ScanR analysis 

a. Cell mortality reported as the ratio between the sum of DAPI calculated 1 day after doxycycline 

administration at the chosen concentration (DAPI start) and the sum of DAPI of the corresponding 

chamber at 13 days (DAPI end). Means +/- SEM are reported. 2d: MEFs plated 2 days after 4-OHT 

treatment; 7d: MEFs plated 7 days after 4-OHT treatment. b.  Efficiency of transdifferentiation in 

ScanR experiments. The number of Tuj1+ cells for the chosen concentration was calculated and 

related to the number of DAPI quantified 1 day after doxycycline administration. Means +/- SEM 

are reported. 2d: MEFs plated 2 days after 4-OHT treatment; 7d: MEFs plated 7 days after 4-OHT 

treatment.  c. Numbers of Mll1+/+ Mll2+/+, Mll1-/-,  Mll2-/- and Mll1-/-Mll2-/- samples analysed in 

graphs b. and d. 2d: MEFs plated 2 days after 4-OHT treatment; 7d: MEFs plated 7 days after 4-

OHT treatment. d. Representative images of 21 days Mll1+/+Mll2+/+ (left panel), Mll1-/-, (middle 

panel) and Mll2-/- (right panel) iNs acquired at the bright field microscope. 

	
 

7.6 Transcriptomic and epigenomic analysis set-up 
	
To dissect how MLL2 modulates the epigenome and trascriptome resetting in order to 

enable transdifferentiation, a comparative transcriptomic and epigenomic analysis between 
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the experimental and control conditions was performed. We established the 5th and the 13th 

day after BAM factors transduction as the time points where to execute, respectively 

Chromatin Immunoprecipitation coupled to deep sequencing (ChIP-seq) for H3K4me3 and 

MENIN (5th day) and ChIP-seq for H3K4me3 and RNA-sequencing (RNA-seq) (13th day) 

(Figure 24). We selected the 5th day of transdifferentiation because at this stage MEFs have 

been cultured already 1 day in neuronal medium and 3 days have elapsed since the 

induction of the BAM factors. Hence transdifferentiating MEFs should be at the peak of 

the cell conversion process and therefore of epigenome resetting. Accordingly, at day 5 

transdifferentiating MEFs, infected with Ascl1 only, still do not express Tau-EGFP+, but 

they are actively changing toward neuronal identity108. Only ~10% of Mll2-/- cells is PSA-

NCAM+ at day 5 (Figure 22a) and we assumed that all the infected MEFs are equally 

competent to transdifferentiate at this stage108. Hence we performed the ChIP on the entire 

population of transdifferentiating MEFs.  

As previously described, transdifferentiation does not have 100% efficiency. Therefore, at 

13 days, iNs have to be separated from non-transdifferentiated MEFs for RNA-seq and 

ChIP-seq analyses. Moreover neurons are fragile cells for which sorting represents a major 

stress. Hence we performed an extensive set-up to allow the retrieval of good 

quantity/quality RNA and chromatin from pure populations of iNs. 
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Figure 24: Experimental outline for the dissection of MLL2 role 

After leaving 4-OHT-treated MEFs 7 days in medium not supplemented with 4-OHT, ChIP-seq 

was performed 5 and 13 days after plating. These time points were chosen because at 5 days cells 

are equi-competent to become iNs and are actively resetting their epigenomes. At day 13, instead, 

iNs were separated from non-transdifferentiated MEFs by FACS sorting and ChIP-seq was 

executed. In particular, at day 5 I performed the ChIP-seq for H3K4me3 and MENIN and at day 13 

the ChIP-seq for H3K4me3. 

 

I did a first pilot sorting for PSA-NCAM+ cells 7 days after plating. At this time point 

neurites are not elongated and therefore iNs should be less fragile. The goal was then to 

replate the pure population of sorted iNs and to extract RNA 7 days later (13 days after the 

MEFs plating for transdifferentiation, the time point used for all the analyses). However, 

almost all sorted cells died few days after plating. 

Afterwards an extensive screening was performed to choose the detaching reagent less 

stressful for iNs. The final protocol provided sorting at 13 days after plating and the use of 

Accutase as detaching reagent. Accutase was selected because it allows, in 2-3 minutes, to 
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have all the adherent cells detached with relatively low mortality. To retrieve at least 100 

ng of RNA and enough chromatin (i.e., 100 µg), 107 cells were plated for 

transdifferentiation. 

 The gating strategy is reported in Figure 25a. The samples from which RNA was extracted 

and chromatin cross-linked had a purity of around 90% (Figure 25b). In the case of RNA-

seq, after the collection of the positive fraction of each sample, RNA was immediately 

extracted with RNeasy micro kit (to obtain RNA with the level of purity required for RNA-

seq) and stored at -80 °C. Extracted RNA presented both an RNA integrity number (RIN) 

close to 10 and a good rRNA Ratio (28s/18s) (Figure 25c). In the case of ChIP, as soon as 

the positive fraction was collected, iNs were immediately fixed.		
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Figure 25: Sorting of PSA-NCAM+ fraction and RNA extraction for RNA-seq 

a. Gating strategy used for sorting: doublets/ physical parameters/ PSA-NCAM positive cells. 

Unstained sample (upper panel); stained sample (lower panel). b. Analysis of purity post sorting. c. 

RNA analysis at Bioanalyzer. Two representative Mll1+/+Mll2+/+ (upper panels) and two Mll2-/- 

(lower panels) RNA samples, extracted from different embryos, are shown. 

	
	
	
	
	

a	 b	

c	

Mll1+/+	Mll2+/+	n.1	 Mll1+/+	Mll2+/+	n.2	
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7.7 RNA-seq analysis 
	
RNA-seq was performed on 5 Mll2+/+ (ctrl_1, ctrl_3, ctrl_6, ctrl_I15, ctrl_I17) and 5 Mll2-/- 

(KO_11, KO_17, KO_F16, KO_F11, KO_E10) PSA-NCAM+ iNs derived from 10 

different embryos, sorted at day 13. In particular, in order to discriminate sex-linked 

differences, we included 3 males and 2 females Mll2+/+ transdifferentiating MEFs and 4 

males and 1 female Mll2-/- MEFs. We sequenced each sorted sample with a coverage of 

120 millions of reads at a read length of 100 bp, paired end. Since the H3K4me3 has been 

associated with alternative splicing142-145, with this setup we could determine also if some 

genes were differentially spliced in the absence of Mll2. 

The unsupervised clustering of the transcriptomes showed a clear distinction between Mll2-

/- and control iNs samples (Figure 26a). Hence, although this analysis comprises two 

different RNA-seq rounds (i.e., two different infections and sortings), iNs did not show 

signs of a batch effect. 

With a false discovery rate (FDR) < 0.01 and a fold change (FC) > 1.5, 1828 genes 

resulted differentially expressed between Mll2+/+ and Mll2-/- iNs and the majority of them 

were down-regulated in the latter, consistently with a gene activator function of MLL2 

(Figure 26b). 
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Figure 26: RNA-seq analysis of Mll2+/+ and Mll2-/- iNs 

a. Principal component analysis (PCA) of Mll2+/+ and Mll2-/- iNs before (upper graph) and after 

(lower graph) genes normalization. b. Heat map of the differentially expressed genes between 

Mll2+/+ and Mll2-/- iNs with a FDR < 0.01 and a FC > 1.5. The colour scale (-2 blue to +2 red) 

represents Z-Score. Mll2+/+: ctrl_1, ctrl_3, ctrl_6, ctrl_I15, ctrl_I17; Mll2-/-: KO_11, KO_17, 

KO_F16, KO_F11, KO_E10. 

 

Moreover Magohb, the best characterize MLL2-exclusive target so far64, was down-

regulated in Mll2-/- iNs, confirming the absence of a counterselection during the 14 days of 

transdifferentiation (Figure 27c). The B-cell lymphoma 2 (Bcl2) was down-regulated in 

Mll2-/- iNs as in ESCs84, but the Bcl-2 associated X protein (Bax) and the Bcl-2 associated 

agonist of cell death (Bad) had similar level of expression between knock-out and control 

iNs (Figure 27e). 

In Mll2-/- iNs Mll2 was not down-regulated, both in RNA-seq (Figure 27a on the left) and 

in real time quantitative PCR (RT-qPCR) (Figures 27b and 27d), pointing to the lack of its 

b	a	

Ro
w
	Z
-S
co
re
	



	

	 99	

degradation by nonsense-mediated decay. Moreover, Mll1 and menin were not up-

regulated to compensate for the absence of Mll2 (Figure 27a). 

 

 

 

Figure 27: RNA level of MLL1-MLL2 COMPASS-like subunits, of Magohb and of apoptosis 

related genes 

a. Fragments Per Kilobase of exon per Million fragments mapped (FPKM) of Mll2, Mll1 and 

menin in RNA-seq analysis. Means and Standard Deviation (SD) are reported. b. Mll2 RNA level 

of sorted iNs at 13 days, assayed by RT-qPCR. Means and SD are reported. Mll1+/+Mll2+/+ n=2; 

Mll2-/- n=1. c. FPKM of Magohb in RNA-seq analysis. Means and SD are reported. d. Mll2 RNA 

iNs	13	days	

transdifferen/a/ng	
MEFs	5	days	
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level in transdifferentiating MEFs at 5 days assayed by RT-qPCR. Means + SD are reported.  

Mll1+/+Mll2+/+ n=1; Mll2-/- n=2. e. FPKM of Bcl2, Bax and Bad in RNA-seq analysis.  Means and 

SD are reported.   

* FDR <0.01; ns not significant p>0.01. 
 

Among the 10 genes, already reported by Wapinski and colleagues to be induced to guide neuronal 

transdifferentiation106, 6 were repressed in Mll2-/- iNs in a statistically significant manner (Figure 

28a).  

 

 

Figure 28: RNA level of neuronal induced genes 

FPKM of genes reported to be induced during transdifferentiation by Wapinski and colleagues106. 

Means and SD are reported. * FDR <0.01. 

 

Recently, the network of genes involved in transdifferentiation has begun to be 

elucidated108. In particular a subdivision has been proposed between the MEF subnetwork, 

the initiation subnetwork and the maturation subnetwork, based on the stage of cell fate 

conversion that the genes regulate (Figure 29a). When we analysed the behaviour of these 

genes in our RNA-seq analysis, only 3 out of ~30 genes belonging to the MEFs 

subnetwork (Figure 29c) and 3 out of ~25 genes belonging to the initiation subnetwork 

were misregulated (Figure 29e), while 7 out of 25 genes of the maturation subnetwork 

were down-regulated, and 1 up-regulated, in Mll2-/- iNs with respect to control (Figure 
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29g). In particular, the 3 genes involved in the MEFs subnetwork were down-regulated in 

Mll2-/- iNs, suggesting that MLL2 is, directly or indirectly, necessary for their up-

regulation. On the contrary the 3 genes of the initiation subnetwork had an opposite trend 

from the one published by Wernig and colleagues. Indeed Maf, up-regulated at 13 days 

(Figure 29d on the left) had lower expression in Mll2-/- iNs than in controls (Figure 29e on 

the left), while Tsdp2 and Zfp238, both down-regulated at 13 days (Figure 29d in the 

middle and on the right), were more highly expressed in Mll2-/- iNs than in controls (Figure 

29e in the middle and on the right). This was the case also for Insm1, down-regulated at 13 

days (Figure 29f). Therefore the analysis showed that the genes of the maturation 

subnetwork were the most affected in the absence of MLL2 and that the down-regulation 

of a repressor in Mll2-/- iNs could be the cause of the observed up-regulation of specific 

genes. 
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Figure 29: Misregulation of transdifferentiation subnetworks 

a. Modified image from Treutlein et al., Nature 2016108. b. Reads per Kilobase per Million mapped 

reads (RPKM), during transdifferentiation, of the 3 genes of the MEFs subnetwork down-regulated 

in Mll2-/- iNs. Means and SD are reported. Source data: Wapinski et al., Cell 2013106. c. FPKM of 

the 3 genes of the MEFs subnetwork down-regulated in Mll2-/- iNs in our RNA-seq at 13 days. 

Means and SD are reported. d. RPKM of the 3 genes of the initiation subnetwork, misregulated in 

Mll2-/- iNs, during transdifferentiation. Means and SD are reported. Source data: Wapinski et al., 
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Cell 2013106. e. FPKM of the 3 genes of the initiation subnetwork, misregulated in Mll2-/- iNs, in 

our RNA-seq at 13 days. Means and SD are reported. f. RPKM during transdifferentiation of the 

Insm1, the only misregulated gene of the maturation subnetwork, up-regulated in Mll2-/- iNs. 

Means and SD are reported. Source data: Wapinski et al., Cell 2013106. g. FPKM of the 8 genes of 

the maturation subnetwork misregulated in Mll2-/- iNs in our RNA-seq at 13 days. Means and SD 

are reported. * FDR <0.01. 

 

When we analysed the top 30 most differentially expressed genes, which stood out for their 

statistical significance and/or for their FC, as expected, the majority of them were down-

regulated in Mll2-/- iNs and related to neuronal function (Figure 30). 

 

 

Figure 30: Top 30 differentially expressed genes 

Volcano plot of the differentially expressed genes, in Mll2-/- with respect to control, with a FDR 

<0.01 and a FC > 0.5. 

 

5 out of 30 genes promote physiological neurite extension, in accordance with the main 

defect observed in Mll2-/- iNs. The Protein phosphatase 1 regulatory subunit 9A (Ppp1r9a) 

or Neurabin-I, is a neuronal specific-F-actin binding protein important for neurite 

outgrowth and dendritic spine formation, hence crucial both at precocious and late stages 

of neuronal maturation. Its deletion impairs cortical and hippocampal neuron projection 
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elongation146-148, in line with our results. Also Myosin 16 (Myo16), which belongs to 

Neuronal tYrosine-phosphorylated Adaptor for the PI 3-kinase (NYAP)	phosphoproteins 

family, favours neuritogenesis through the interaction with the	WASP-family verprolin 

homologous protein (WAVE) complex and the Phosphatidylinositol 3 (PI3) kinase149,150. 

Calsyntenin 3 (Clstn3) is involved in both excitatory and inhibitory axon presynaptic 

organization. Mice Clstn3-/- present a reduction in synapse density151. Moreover both 

MYO16 and CLSTN3 interact with NEUREXIN-1151,152, also down-regulated in Mll2-/- iNs 

(Figure 31b), fundamental for synapse differentiation and transmission. The Leucine-rich 

repeat and fibronectin type III domain-containing protein 1 (Lrfn1), and to a lower extent 

the other family members Lrfn3 and Lrfn5, are genes down-regulated in the knock-out 

(Figure 31c) (their trend during transdifferentiation is reported in Figure 31a), that by 

similarity of the domains they encode have been associated with neurite outgrowth153. 

Finally the type I-beta regulatory subunit of protein kinase A (Prka1b) has been linked to 

neurophilament phosphorylation, the main axon cytoskeleton components154,155. 

 

 

a	

c	

b	

d	



	

	 105	

Figure 31: Differentially expressed genes involved in synapse and neurite formation 

a. RPKM, during transdifferentiation, of the genes of Lrfn family. Means and SD are reported. 

Source data: Wapinski et al., Cell 2013106. b. FPKM of Nrxn1 in our RNA-seq at 13 days. Means 

and SD are reported. c. FPKM of Lrfn family members in our RNA-seq at 13 days. Means and SD 

are reported. d. FPKM of Jph3 in our RNA-seq at 13 days. Means and SD are reported. * FDR 

<0.01. 

 

8 genes were linked to synapse formation and neurotransmission. JUNCTOPHILIN 4 

(Jph4) and Jph3 (Figure 31d) are the two brain-specific proteins involved both in the 

formation of complexes between the plasma membrane and the endo-sarcoplarmatic 

reticulum (i.e., subsurface cisternae) and in the synaptic plasticity156. Synaptophysin (syp) 

encodes for a synaptic vescicle transmembrane protein, important for synaptic vescicle 

endocytosis157 and SYNAPTOBREVIN (i.e., a synaptic vescicle transmembrane protein, 

important for synaptic vescicle exocytosis) retrieval158. Mice syp-/- do not show 

neurotransmission defects159, but their learning and memory are altered160. The absence of 

a clear synaptic transmission phenotype is attributed to the compensation of other synaptic 

vescicles proteins: the SYNAPTOPORIN and the SYNAPTOGYRINS (syngr1-4). 

Interestingly, among synaptogyrins, only syngr1 and syngr3 are up-regulated as long as 

transdifferentiation process progresses106 (Figure 32b) and they were both down-regulated 

in Mll2-/- iNs (Figure 32a).  
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Figure 32: Synaptogyrins 

a. FPKM of Synaptogyrin (Syngr) genes in our RNA-seq at 13 days. Means and SD are reported.  

b. RPKM, during transdifferentiation, of the genes of Syngr family. Means and SD are reported.  

Source data: Wapinski et al., Cell 2013106.*FDR <0.01. 

 

The sulfotransferase family 4A member 1 (Sult4a1) is associated with schizophrenia, since 

it is located in a region often deleted in schizophrenic patients161 and is believed to possess 

a role in neurotransmitter metabolism. The protein tyrosine phosphatase receptor type N 

(PTPRN) or insulinoma associated protein 2 (IA-2) is a membrane-associated vescicular 

protein that, despite being one of the main type 1 diabetes autoantigens, is involved in 

neurotransmitter release162 and in the nervous system it is mainly localized in neurites163. 

Cell adhesion molecule 3 (Cadm3) belongs to the immunoglobulin-like family and it is 

important for the synapse formation and also for myelinisation and axon bundles164. Type-1 

adenylyl cyclase (Adcy1) is fundamental for memory formation, coupling Ca2+ release to 

cyclic AMP. Finally the glutamate ionotropic receptor NMDA type subunit 2B (Grin2b) 

encodes, as the acronym states, for the subunit with the agonist binding site of the NMDA 
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receptor, while the ACHETYLCOLINESTERASE (Ache) hydrolyzes the neurotransmitter 

acetylcolin. 

The programmed cell death 5  (Pdcd5) is a gene whose level increases during apoptosis165. 

Moreover the knock-down of Pdcd5 reduces the apoptosis rate166. Hence its down-

regulation in Mll2-/- iNs further confirms their lower cell death. 

The majority of the other genes are poorly characterized in literature and few of them are 

without a clear relation with the observed phenotype. 

Using as a guiding criterion the gene ontology (GO) analysis we chose for validation 14 

genes linked to neuronal maturation and with a high Fragments Per Kilobase of exon per 

Million fragments mapped (FPKM), but after several trials only for 5 of them (Figures 28, 

29e and 33a) I was able to find primers with a good efficiency of amplification. The 

residual precious RNA was spared to validate the targets coming out from the integrated 

analysis with the H3K4me3 ChIP-seq. In particular we analysed Zfp238 and Syt1, 

fundamental during the establishment of transdifferentiation subnetworks (Figures 28 and 

29d), Ptprn, one of the highest differentially expressed genes (Figure 30) and the 

apolipoptrotein E (ApoE), that, besides having a role in Alzheimer disease, has been 

involved in neurite extension167,168. Also the Kinesin family member 5A (Kif5a) was chosen 

for its role in neurite outgrowth169. In all the analysed genes the reduction was confirmed 

but only 2 of them were statistically significant (Figures 33b-f). Zfp238, one of the main 

down-stream effectors of ASCL1106 was confirmed to be higher in Mll2-/- iNs (Figure 33b). 

We also analysed its level 5, 9 and 13 days after MEFs were plated for transdifferentiation, 

in unsorted cells in two independent experiments observing that this Ascl1-effector was 

highly induced at 5 days in Mll2+/+ cells and lowly repressed at 13 days in Mll2-/- cells 

(Figure 33h). 



	

	 108	

 

 
Figure 33: RNA-seq validation 

a. FPKM of the genes chosen for validation. Means and SD are reported. *FDR <0.01. b. to f. 

RNA level of the genes chosen for validation assayed by qPCR. Means and SD are reported.  *** 

Zfp238	
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p<0.0001; ** p<0.001; *p<0.01. g. Zfp238 RNA level in unsorted cells 5, 9 and 13 days after 

plating, assayed by RT-qPCR. Means and SD are reported. The two graphs represent 2 independent 

experiments. On the left Mll1+/+Mll2+/+ n=1, Mll2-/- n=2. On the right Mll1+/+Mll2+/+ n=2, Mll2-/- 

n=2. 

 

Hence, in the absence of MLL2, the process of transdifferentiation starts, but the networks 

are misregulated, as confirmed by the level of Zfp238 and of all the aforementioned genes. 

Moreover several differentially expressed genes are involved in neurite extension, the main 

defect observed in Mll2-/- iNs. 

 

7.8 Differential splicing 
 
Among the top 30 differentially expressed genes the Serine/Arginine-Rich Splicing Factor 

12 (Srsf12) was present, further suggesting that splicing might be affected (Figure 30). In 

particular SRSF12 induces distal 5’ splicing sites and functions as a repressor of canonical 

Serine Arginine rich proteins170. 

We found 7 genes subjected to differential exons usage in Mll2-/- with respect to the 

control PSA-NCAM+ iNs.  By this analysis Mll2 came out as differentially spliced at exon 

2, confirming the lack of MLL2 in knock-out iNs and therefore the absence of any 

counterselection for Mll2+/+ MEFs that could have survived through the end of 4-OHT 

treatment (Figure 34). 
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Figure 34: Mll2 exon 2 deletion 

In the top graph Mll2 exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. In the middle graph normalized 

read counts. In the bottom graph schematic of the differentially used exons. The statistically 

significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in red. 
 

The ArfGAP with GTPase domain, ankyrin repeat and PH domain 2	 (Agap2) possesses 

two known isoforms (Figure 35d). The first isoform (i.e., NM_001033263) is brain-

specific and negatively associated with neuronal apoptosis through the interaction with 

Phosphatidylinositol 3 (PI3) kinase. Recently it was also demonstrated to be involved in 

neurite outgrowth171. The isoform 2 (i.e., NM_001301014), instead, prevents apoptosis by 

interacting with Akt. In our datasets we detected only the isoform 1, that, moreover, is 

significantly down-regulated in Mll2-/- iNs (Figure 35b). The Mll2-/- Agap2 transcript 

presented a lower usage of exon 7, encoding for part of the small GTPase domain, while 

the Mll2+/+ Agap2 transcript showed a lower usage of exon 19, containing part of the 

ankyrin-repeat containing domain, a protein-protein interaction domain (Figures 35a and 



	

	 111	

c).	

 

 

 

a	 b	

c	

d	



	

	 112	

Figure 35: Agap2 differential exons usage 

a. In the top graph Agap2 exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. In the middle graph 

normalized read counts. In the bottom graph schematic of the differentially used exons. The 

statistically significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in red. b. FPKM of 

Agap2 in our RNA-seq. Means and SD are reported. *t test with a FDR <0.01. c. Ensembl 

schematic of the correspondence between exons and protein domains. d. Agap2 Refseq genes from 

UCSC Genome browser. Assembly Mouse December 2011 GRCm38/mm10. In the purple 

rectangle the alternative spliced exon between the two isoforms. 

 

Also Grin2b and Pdcd5, 2 of the top 30 differentially expressed genes (Figure 30), were 

subjected to alternative exon usage in the knock-out with respect to the control (i.e., 

respectively exons 2, 3 and 4 and exons 3, 4 and 6) (Figures 36a and 36b respectively). 

Both genes have only one isoform annotated (respectively NM_008171 and NM_019746) 

(Figures 36c and 36d). In the case of Grin2b the exon 4 belongs to a known domain, the 

extracellular binding one (Figure 36e), while we were not able to determine the 

correspondence of the other exons with specific domains. 
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Figure 36: Grin2b and Pdcd5 differential exons usage 

a. and b. In the top graph Grin2b (a.) and Pdcd5 (b.) exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. 

In the middle graph normalized read counts. In the bottom graph schematic of the differentially 

used exons. The statistically significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in 
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red. c. and d. Grin2b and Pdcd5, respectively, Refseq genes from UCSC Genome browser. 

Assembly Mouse December 2011 GRCm38/mm10. e. Ensembl schematic of the correspondence 

between exons and protein domains of Grin2b gene.  

 

Myosin 10 (Myo10) has only one validated isoform (NM_019472) (Figure 37c) and it has 

been recently associated with neuronal migration during development thanks to the 

interaction of its FERM domain with N-cadherin172. This domain remained unaffected, 

since the differential used exons were the 1, 2, 3, 4, 11, 12, 18, 19, all belonging to the 

myosin head motor domain (Figure 37a and 37b). 
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Figure 37: Myo10 differential exons usage 

a. In the top graph Myo10 exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. In the middle graph 

normalized read counts. In the bottom graph schematic of the differentially used exons. The 

statistically significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in red. b. Ensembl 

schematic of the correspondence between exons and protein domains of Myo10 gene. c. Myo10 

Refseq gene from UCSC Genome browser. Assembly Mouse December 2011 GRCm38/mm10.  

 

The SH3 and PX domain-containing protein 2A (sh3pxd2a) gene encodes for a protein 

necessary for matrix digestion and therefore, for axon extension173. The differential used 

exons were 2, 3, 5, encoding for the phox homologous domain, which confers affinity to 

PI-3,4-bisphosphate, and exons 6 and 7, encoding for part of the SH3 domain (Figures 38a 

and 38b). In particular exon 6 is the spliced exon between the two validated isoforms (i.e., 

NM_008018.4 long isoform 1; NM_001164717 short isoform 2) (Figure 38c). The isoform 

1, which has been associated with a higher invasion rate of metastatic cells174, was more 

expressed than the isoform 2 in our datasets, with no differences between the knock-out 

and the control (Figure 38d). Recently a new isoform was described, which loses the first 5 

exons and has an alternative start codon upstream of exon 6, which is quite similar to the 

Mll2-/- sh3pxd2a175, but with exon 6 and 7. 
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Figure 38: Sh3pdx2a differential exons usage 

a. In the top graph Sh3pdx2a exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. In the middle graph 

normalized read counts. In the bottom graph schematic of the differentially used exons. The 

statistically significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in red. b. Ensembl 

schematic of the correspondence between exons and protein domains of Sh3pdx2a gene. c. 

Sh3pdx2a Refseq genes from UCSC Genome browser. Assembly Mouse December 2011 

GRCm38/mm10. In the purple rectangle the alternative spliced exon between the two isoforms. d. 

FPKM of the two Sh3pdx2a isoforms in our RNA-seq. Means and SD are reported. 

 

The SH3/ankyrin domain gene 3	(Shank3) is a gene involved in post-synaptic organization 

and dendritic spine maturation. Its microdeletion and point mutation have been associated 

with autism. Shank3 has a finely tuned post-transcriptional regulation and its alternative 

splicing, modulating the protein domains composition, could regulate its function and 

localization176. Despite this, only one isoform has been validated (i.e., NM_021423) 

(Figure 39e). In our RNA-seq Shank3 was down-regulated in Mll2-/- iNs (Figure 39b) that 

showed also a lower usage of exons 4-10 (ankyrin repeat-containing domain), 13-16 (PSD-

95/Discs large/ZO-1	PDZ domain), 19, 21 and 22 (Pro and Sterile Alpha Motif (SAM) 

domains) (Figures 39a, 39c and 39d). The truncated form of Shank3 (i.e., without SAM 

and Pro domains) has been shown to preferentially localize in the nucleus and on the basis 

of domains composition, when overexpressed, it either increases or decreases the spine 

density and length176. Our isoform has not been described in literature, but we can 

hypothesize that, since shank3 was both down-regulated and with only the SH3 domain, 

the post-synaptic compartment in Mll2-/- iNs could also be altered.		
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Figure 39: Shank3 differential exons usage 

a. In the top graph Shank3 exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. In the middle graph 

normalized read counts. In the bottom graph schematic of the differentially used exons. The 

statistically significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in red. b. FPKM of 

Shank3 in our RNA-seq. Means and SD are reported. * FDR<0.01 c. Ensembl schematic of the 

correspondence between exons and protein domains of Shank3 gene. d. Schematic of SHANK3 

protein domains and promoters modified from Wang et al., Molecular Autism 2014176. In red the 

alternative spliced exons. e. Shank3 Refseq gene from UCSC Genome browser. Assembly Mouse 

December 2011 GRCm38/mm10. In the purple rectangle the alternative spliced exon between the 

two isoforms.  

 

The X-linked inhibitor of apoptosis proteins (XIAP) anti-apoptotic function is counteracted 

by the X-linked IAP-associated factor-1 (XAF1), which shows a fine-tuned regulation, for 

example, during motoneurons apoptosis along development177. Two isoforms of Xaf1 have 

been validated: a full length isoform (i.e., isoform 1 NM_001037713) and a shorter one, 

without the exons 3 and 4 (i.e., isoform 2 NM_001291153) (Figure 40b). Only the isoform 

1 was detected in our datasets. However Mll2-/- Xaf1 transcripts presented a lower usage of 

exon 4 and 5, preserving the exon 6, which was instead lost in Mll2+/+ Xaf1 transcripts 

(Figure 40a). The protein N-terminus part, which contains a zinc finger domain 

fundamental for the interaction with XIAP, was therefore maintained in both variants. It 

has been shown that a truncated form of Xaf1 functions as dominant negative178, however 

in our case, the exon 6 was preserved. Hence further investigations should be needed. 



	

	 121	

 

 

Figure 40: Xaf1 differential exons usage 

a. In the top graph Xaf1 exon usage in Mll2-/- and Mll1+/+Mll2+/+ iNs. In the middle graph 

normalized read counts. In the bottom graph schematic of the differentially used exons. The 

statistically significant ones are in purple. Mll2-/- is in blue and Mll1+/+Mll2+/+ in red. b. Xaf1 Refseq 

genes from UCSC Genome browser. Assembly Mouse December 2011 GRCm38/mm10. In the 

purple rectangle the alternative spliced exons between the two isoforms. In red the alternative 

spliced exons. 
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7.9 Identification of MLL2 direct targets 

7.9.1 ESCs with EGFP-tagged MLL2  
	
Since the antibody for MLL2 is not exploitable for ChIP, our first strategy was to import 

ESCs, through a collaboration with Francis Stewart’s laboratory, with both copies of the 

endogenous Mll2 exons 2 flanked by loxP sites and harbouring a BAC (that recapitulates 

the endogenous regulation of Mll2) carrying an EGFP tagged version of MLL276. In 

particular EGFP has been inserted at the N-terminus of the taspase cleavage site (Figure 

41a). This does not affect MLL2 activity and upon exon 2 deletion the MLL2 encoded by 

the BAC can rescue the defects due to the absence of the endogenous Mll276.  

Therefore we needed a protocol to differentiate ESCs into either generic fibroblasts or, 

even better, into MEFs, the starting population of all our transdifferentiation experiments 

(Figure 41b).  
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Figure 41: Identification of the MLL2 direct targets 

a. Schematic of the imported EGFP-MLL2 ESCs. b. Approaches for the ESCs differentiation into 

fibroblasts. c. Once fibroblasts will be obtained they will be treated with 4-OHT and ChIP-seq will 

be performed at day 5 of transdifferentiation. 

  

We could not find in literature mESCs in vitro differentiation protocols, most likely 

because mouse fibroblasts represent a highly accessible cell-type. Hence, we adapted a 

protocol used for human ESCs differentiation that entails the formation of embryoid bodies 

and several passaging steps of cells in trypsin139. Unfortunately, at the end of the protocol 

we were not able to obtain fibroblasts like-cells. Indeed both among control and tagged 

differentiated ESCs, there were cells positive for pluripotency markers and other 

uncharacterized cells (Figures 42a and 42b). 

 
Figure 42: Mixed population by in vitro ESCs differentiation 

Representative images of differentiated control ESCs (E14TG2alpha) (a.) and ESCs MLL2-EGFP 

tagged (b.) tested for the presence of stem cells (left panels, DAPI is in blue and Oct4 in red), of 

neurons and fibroblasts (middle panels, DAPI is in blue, Vimentin in red and Tuj1 in green) and of 

oligodendrocytes (right panels, DAPI is in blue and Olig2 in red).  
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Subsequently we tried two alternative approaches: i) we injected the tagged ESCs into 

blastocysts, with the purpose of deriving MEFs from chimeric embryos; and ii) we 

cultured ESC-derived teratoma cells to allow the ESCs first to differentiate in vivo into the 

three different germ layers and only later, when explanted, to be positively selected for 

fibroblasts. 

We performed four rounds of blastocyst injections, then implanted in 8 pseudo-pregnant 

females, observing a very high rate of abortion (we recovered only 1 or 2 embryos per 

female with respect to the 4-5 commonly retrieved) (Figure 43a). This should not be 

attributed to the overexpression of Mll2 because ESCs carry only 1 additional copy of the 

gene (Figure 43c). We assayed the rate of chimerism through the TaqMan assay for the 

Mll2 exon 2, because the BAC encoded-EGFP is not visible at the microscope. When we 

analysed the recovered embryos they did not show more than 2 copies of Mll2 (Figure 

43d). Also after culturing the EGFP+ MEFs (Figure 43b) with G418, exploiting the 

selection cassette present in the BAC, we could not detect any increase in the exon 2 copy 

number (Figure 43e). Therefore, the concentration of G418 we used was probably too low 

to select only the BAC-engineered MEFs. When I increased the level of G418 in the 

medium, most of the cells died, confirming the low level of chimerism. The few MEFs still 

alive, instead, senesced becoming unusable for high-throughput studies, which envisage 

high numbers of cells. Moreover, since senescence per se could affect transdifferentiation, 

these MEFs were useless. 
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Figure 43: Chimeras formation 

a. Representative picture of one retrieved embryo (left panel) b. Genotyping of EGFP of chimeric 

MEFs. c. Exon 2 Mll2 copy number of ESCs MLL2-EGFP tagged assayed by TaqMan. d. Exon 2 

Mll2 copy number of chimeric MEFs at passage 0 assayed by TaqMan. e. Exon 2 Mll2 copy 

number of chimeric MEFs number 4 and 5 after 2 weeks of G418 selection, assayed by TaqMan. 

Wt: wild type. 

 

In the case of teratoma formation, we injected bilaterally and subcutaneously in 2 females 

NOD/SCID IL2Rγ-/- 106 ESCs previously maintained in culture with G418. After less than 

one month we collected 2 teratoma masses (Figure 44a). Part of them was sectioned and 

stained with haematoxylin/eosin to assess the trilineages specification that was indeed 

confirmed (Figures 44c and 44e), but some transformed areas were identified (Figure 44e). 

We also performed an immunohistochemistry staining for EGFP (Figure 44d). 

Interestingly we observed a widespread localization of EGFP (and therefore, indirectly, of 

MLL2) that was both nuclear and cytoplasmic (Figure 44f). We then cultured the teratoma-

derived-cells in the MEFs medium, containing serum, to positively select only fibroblasts. 

Teratoma cells presented the same Mll2 exon 2 copy number as the ESCs from which they 

derived (Figure 44b), but after 11 passages with trypsin we detected the appearance of 

water	1	 2	 3	 4	 5	1	Kb	
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colonies (Figure 44g) that expressed pluripotency markers (Figure 44h), pointing to a 

probable transformation of the cells. Indeed cells appeared to have lost the contact 

inhibition and were growing faster with respect to the first passages.   

    

 

 

a	 b	

c	 d	



	

	 127	

 

 



	

	 128	

Figure 44: Teratoma formation 

a. Teratoma masses explanted. b. Exon 2 Mll2 copy number of teratoma cells and wild type 

fibroblasts assayed by TaqMan. c. and e. Haematoxylin/eosin staining of teratoma respectively in a 

low and a high magnification. d. and f Immunohistochemistry staining for EGFP of teratoma 

respectively in a low and a high magnification. g. Representative images of teratoma cell culture at 

passage 11 in a low (on the left) and a high (on the right) magnification. h. Representative image of 

teratoma cell culture stained for Oct4 (DAPI is in blue and Oct4 in red). 

 

7.9.2 Identification of the MLL2 direct targets through MENIN  
	
Since MLL2-EGFP tagged ESCs were not exploitable to assess MLL2 targets during 

transdifferentiation, we undertook a different strategy.  

MENIN is the common subunit of only MLL1 and MLL2 TrxG proteins and it is 

fundamental for the positioning at their specific targets43,55-57. Moreover there are ChIP-

grade commercially available anti-MENIN antibodies. Therefore we envisaged MENIN 

ChIP-seq, 5 days after cells were plated for transdifferentiation, in Mll1+/+Mll2+/+ and Mll2-

/- transdifferentiating MEFs as alternative approach. 

Through the immunoprecipitation of MENIN in Mll1+/+Mll2+/+ samples we could 

theoretically obtained an overview of the targets of both methylases at the peak of cell 

conversion. On the contrary, by performing MENIN ChIP-seq in Mll2-/- cells, we could 

identify the MLL2 specific targets, that are not compensated by MLL1 by comparing the 

ChIP peaks that are lost or reduced in the knock-out with respect to the control. 

Since MENIN ChIP-seq was not very sensitive at the level of peak-calling, with a large 

variability in terms of number of peaks per sample, we decided to proceed with a 

quantitative, peak-call-agnostic method for the identification of differentially-enriched 

regions. This analysis identified a very large number of sites with reduced enrichment in 

the knock-out, along with a small number of up-regulated sites, most likely representing 

compensation by Mll1 (Figure 45a). These sites overlapped with the promoters of, 

respectively, 839 and 213 genes. When we performed the GO analysis for the top most 
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specific biological processes, we observed that the genes with a reduction in MENIN 

binding in Mll2-/- iNs were related to the basic metabolism and function of the cell (Figure 

45d). On the contrary the genes that acquired MENIN binding in Mll2-/- iNs, were mostly 

connected to the acquisition of a different cell fate (Figure 45e). The subset of those genes 

that was differentially-expressed at day 13 is shown in Figure 45b. 	

In particular, Magohb, the best characterized direct MLL2 target so far64 was both 

differentially MENIN-bound and lower expressed in the knock-out. In addition, relying on 

interactions observed in Hi-C data from mouse neural progenitors, we identified 98 

additional target genes likely to be in contact with a region with reduced MENIN binding 

in the knock-out, including however only 3 genes that were differentially-expressed 

(shown in Figure 45c).	



	

	 130	

a	 b	

c	

Row	Z-Score	

d	



	

	 131	

 

Figure 45: MENIN ChIP-seq 

a. Volcano plot of the differentially bound MENIN regions, in Mll2-/- with respect to control. b. 

Heatmap of the differentially bound MENIN genes (proximal) that were also differentially 

expressed (FDR <0.01 and a FC > 0.5). The colour scale (-2 blue to +2 yellow) represents Z-Score. 

c. Heatmap of the differentially bound MENIN genes (distal) that were also differentially 

expressed (FDR <0.01 and a FC > 0.5). d. and e. Quilts of the top most enriched Biological 

Process, respectively for the genes with a lower and a higher MENIN binding in Mll2-/- 

transdifferentiating MEFs. 

	

7.9.3 H3K4 MLL2-deposited methylation during transdifferentiation 
	
To identify the fundamental targets that need to be methylated to drive transdifferentiation, 

we performed H3K4me3 ChIP-seq 5 and 13 days after Mll1+/+Mll2+/+ and Mll2-/- MEFs 

were plated for transdifferentiation. In particular, in the 5 days H3K4me3 ChIP-seq, we 

included also one Mll1-/- transdifferentiating MEFs sample. 

The list of samples analysed is reported in Table 7. 
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Table 7: List of samples analysed by H3K4me3 ChIP-seq  

L6 and L7 transdifferentiating MEFs derived from different embryos, such as M6 and M7.  

 

First we performed a Principal Component Analysis (PCA) on the logarithmic normalized 

read counts across the union of H3K4me3 sites (Figure 46a). Interestingly, and as expected 

by the previously demonstrated lack of impact of the absence of MLL1 on 

transdifferentiation, Mll1-/- transdifferentiating MEFs clustered together with the controls 

(i.e., L6 and L7). Hence, either MLL1 is dispensable during MEF-to-iNs cell conversion or 

MLL2 can compensate for its absence, trimethylating MLL1-targets. This was in line with 

the published role of MLL1 and MLL2 during retinoic acid-driven ESCs differentiation 

into neurons76. Indeed it was demonstrated that it is MLL2 the main H3K4 trimethylase at 

bivalent promoters and that in Mll1-/- ESCs, MLL2 can compensate, trimethylating MLL1 

targets. On the other side, contrarily from what has been shown for SVZ NSC 

differentiation123, MLL1 during transdifferentiation is dispensable for the neuronal 

specification. Noteworthy a reduction in H3K4me3 at specific targets was not observed in 

Mll1-/- SVZ NSC pointing, also in this case, to a possible compensation by MLL2. 

Afterwards, if two lines were drawn between the Mll2-/- and the controls and between the 

day 5 and the day 13, they would be almost orthogonal. Moreover the displacement 

between controls and knock-out was parallel between day 5 and day 13 (Figure 46a, green 

arrows), as the displacement from day 5 to day 13 between controls and knock-out (Figure 

46a, light blue arrows). This suggested that the global mis-deposition of H3K4me3 in Mll2-

/- transdifferentiating MEFs was maintained, and mostly unchanged in Mll2-/- iNs. 
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For this reason, first we executed an analysis considering all samples together and 

adjusting for the differences linked to time points. Among 15405 sites marked by 

H3K4me3 in at least one sample, 1089 were statistically differentially marked in Mll2-/- 

and controls (FDR<0.01) (Figure 46b). In particular 994 sites, mapping at TSS of 545 

genes, showed a decreased H3K4 trimethylation, while 95 sites, mapping at the TSS of 82 

genes, showed an increase in H3K4 trimethylation. Among the 82 genes only Runt-related 

transcription factor 1 translocated to 1 (Runx1t1) was differentially expressed and, 

accordingly to its increased H3K4 trimethylation, was up-regulated in Mll2-/- with respect 

to controls (Figure 46e). Runx1t1 is a transcriptional co-repressor that recently has been 

implicated in RGs differentiation. However, if overexpressed it favours neuronal 

differentiation179. 

Of the 545 genes that showed a decrease in H3K4 trimethylation, 184 were differentially 

expressed at FDR<0.05 and 143 at FDR<0.01. In particular if we performed GO 

enrichments analysis on them, we observed, among the biological process, synaptic 

transmission and membrane transport (Figure 46c). Among the cellular components we 

could find especially membranes, synapses and dendrite, axon and neuron projections 

(Figure 46d). 
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Figure 46: H3K4me3 ChIP-seq 

a. PCA on the logarithmic normalized read counts across the union of H3K4me3 sites. Dashed 

green arrows represent the displacement between controls and knock-out at day 5 and day 13. 

Dashed light blue arrows represent the displacement between day 5 and day 13 in knock-out and 

controls. b. Volcano plot of the differentially H3K4 trimethylated regions. c. Quilt of the gene 

ontology enrichment analysis, regarding the biological processes, of the genes both differentially 

H3K4 trimethylated and expressed (FDR<0.01 and a FC > 0.5). d. Quilt of the gene ontology 

enrichment analysis, regarding the cellular components, of the genes both differentially H3K4 

trimethylated and expressed (FDR<0.01 and a FC > 0.5). e. f. and g. FPKM, in our RNA-seq, 

respectively of Runx1t1, of the genes that showed a decrease in H3K4me3 and were differentially 

expressed and of Tuba4a. Means and SD are reported * FDR<0.01 

 

Of the 143 genes, 13, according to MENIN ChIP-seq, can be considered direct targets of 

MLL2: Slc2a3, Arnt2, Chst10, Creld1, Gnao1, Phactr2, Rtn1, Sntb1, St6galnac3, Tifa, 

Tmem45a, Zfp239 and Zfp27. Moreover, in line to their reduced H3K4 trimethylation, they 

were down-regulated in Mll2-/- with respect to controls (Figure 46f). 

The solute carrier family 2 member 3 (Slc2a3) or Glut-3 is a brain specific glucose 

transporter, while the guanine nucleotide binding protein, alpha O (Gnao1) is a brain-

specific G protein coupled receptor associated to epilepsy180.  
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The Aryl hydrocarbon receptor nuclear translocator 2 (Arnt2) has been implicated in 

zebrafish and mouse brain development. In particular it has been shown to be bivalently 

marked in ESCs and to be induced, upon demethylation of H3K27, during retinoic acid 

induced-ESC differentiation181. 

The carbohydrate sulfotransferase 10 (Chst10) is an enzyme, which synthesised the 

neuronal specific sulfoglucuronyl carbohydrate, involved, among the others, also in neurite 

outgrowth182. 

The phosphatase and actin regulator 2 (Phactr2) is a brain specific protein induced upon 

injury, during neurogenesis183. 

The reticulon 1 (Rtn1) has three isoforms: Rtn1-a, Rtn1-c and Rtn1-c1. In our datasets only 

Rtn1-a and Rtn1-c were expressed and Rtn1-a more than Rtn1-c. Isoform a has been 

associated with neuronal excitation: it encodes for an endoplasmic reticulum membrane 

protein coupled with the ryanodine receptor 2, which modulates calcium oscillation184. 

Isoform c, instead, modulates histone deacetylases activity185. 

Zfp239 and Zfp27 are poorly characterized, but because of their ability to bind DNA, and 

RNA in case of Zfp239186, they are two interesting candidates as MLL2 mediators. 

All the other genes are poorly described in literature or without a clear connection with 

neuronal differentiation. 

Finally, we looked also at the differentially expressed genes that were bound by MENIN in 

the control and without any peak in the knock-out and differentially H3K4me3. The only 

gene which came out from this analysis was the tubulin alpha 4 a (tuba4a) (Figure 46g), a 

specific tubulin with its highest expression in brain and whose mutation is associated to 

familial amyotrophic lateral sclerosis187. 

Therefore MLL2 emerges from these data as having a key role for the modulation of genes 

implied in the acquisition of neuronal functions and metabolism. However few genes came 

out from the integrative analysis of the H3K4me3 ChIP-seq, the MENIN ChIP-seq and the 

RNA-seq, probably because the RNA-seq and MENIN ChIP-seq were performed on 
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different time points. Therefore through the RNA-seq at 13 days we could observe only the 

downstream effectors of MLL2 and not its direct targets. 

Next, we thus looked at the genes differentially bound by MENIN and differentially H3K4 

trimethylated, without considering their expression level (Figure 47a). Indeed, although 

changes in MENIN and H3K4me3 enrichments did not always lead to the corresponding 

change in gene expression, the majority of the genes showed reduced MENIN binding and 

had a lower level of H3K4me3 in Mll2-/- cells. These genes could be considered as the 

direct targets of MLL2, not compensated by MLL1.  

Among the most interesting ones there was Zfp277, a transcriptional repressor that through 

the interaction with the PRC1 complex component BMI1 (up-regulated in Mll2-/- iNs), is 

involved in the Ink4a/Arf locus silencing188. Of note, Bmi1 itself and Chromobox 7 (Cbx7) 

were also differentially-expressed in Mll2-/- iNs (Figure 47b), and the differentially-

expressed genes were enriched for targets of PRC2 (~2-fold enrichment, FDR ~4e-75) in 

mESCs, suggesting that the Polycomb axis of regulation might be responsible for part of 

the dysregulation caused by Mll2 depletion during transdifferentiation. In addition, the 

patched homolog 1 (Ptch1), the receptor of the sonic hedgehog (sh) ligand, is involved in 

the Sonic Hedgehog pathway that is fundamental, in vivo, for axon guidance189. Moreover 

the dedicator of cytokinesis 4 (Dock4), a guanine nucleotide exchange factor for Rac1, has 

been shown to regulate axon-dendrite polarity and dendrites arborisation190,191. A truncated 

mutation of Dock4 affects neurite elongation192. Interestingly, also Mll1-/- 

transdifferentiating MEFs showed a reduced H3K4 trimethylation at day 5, pointing to the 

necessity of the presence of both methylases for its trimethylation. The neuralized homolog 

1 a (Neurl1a) is an E3 ubiquitin ligases that in hippocampal neurons activates CPEB3, 

whose in turn induces glutamate A1 (GluA1) and GluA2 (GluA2 was down-regulated in our 

dataset Figure 47c), important for synapse plasticity193. The Drosophila homolog is 

fundamental for neurogenesis. Indeed, in the fly Notch signal receiving cells, during lateral 
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inhibition process, neuralized ubiquitinates the Delta ligand causing its internalization and 

consequently its degradation194,195. 

A second category of genes was not bound by MENIN, but H3K4 trimethylated in Mll2+/+ 

cells and bound by MENIN, but not H3K4 trimethylated in Mll2-/- cells. We subdivided 

these genes among i) the ones that are stably expressed throughout transdifferentiation 

(Nipal1 and Lhx6), that therefore are already trimethylated at the time point analysed, ii) 

the ones that are activated earlier (2 days after BAM transduction (Syt1) in which, most 

likely the trimethylation, and therefore the MLL2 binding, occurred earlier than the 5 days-

time point analysed and iii) the one whose expression is independent from H3K4me3 

(Csrp2) (Figure 47d). The hypothesis for this category of genes is that either the H3K4me3 

was deposited by MENIN-containing complexes earlier with respect to the time point 

analysed, and therefore MENIN is no more detectable through ChIP, or that the H3K4me3 

deposition at these genes was performed by another TrxG member. In Mll2-/- cells a 

mechanism of compensation probably led to MENIN mis-binding, which however failed in 

H3K4 trimethylation, not present even at 13 days. Alternatively MENIN in the knock-out 

could function as a repressor, interacting, for example, with the Suppressor of variegation 

3-9 homolog 1 (Suv39h1) for the deposition of H3K9 methylation196. However, among 

them, only Syt1 was down-regulated in our dataset, a gene fundamental during 

transdifferentiation, further suggesting a more probable mislocalization of MENIN (Figure 

28).  

A third category was constituted by the genes bound by MENIN, but not H3K4 

trimethylated in Mll2+/+ cells and not bound by MENIN, but H3K4 trimethylated in Mll2-/- 

cells (Nol10, Imp4, Ccdc115, Wdr5 and Leng8). Surprisingly, for this class of genes the 

MLL2-MENIN binding seemed to prevent the H3K4me3 deposition, that was instead 

acquired in Mll2-/- iNs, where the MENIN binding was absent. Interestingly one of them 

was the common component of COMPASS complexes50,51Wdr5 that, besides having a 

stable expression along transdifferentiation (Figure 47e), in Mll2-/- cells acquired H3K4 
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trimethylation, probably also for a compensatory mechanism, but failed to be more 

expressed in the knock-out with respect to the control iNs (Figure 47g). 

The taurine upregulated 1 (Tug1) and the MORC family CW-type finger protein 2A 

(Morc2a), instead, were bound by MENIN and H3K4 trimethylated in Mll2-/- cells. This 

was probably the result of the mislocalization of the trithorax COMPASS-like complexes 

in absence of MLL2. The two genes are stable during transdifferentiation (Figure 47f). In 

particular, Tug1 is a long noncoding RNA induced by p53 that associates with PRC2 and 

regulates many cell cycle genes197. 

Finally the H3K4me3 mark was erased from Ephrinb2 (Efnb2) (important for neuronal 

migration during development198) at 13 days independently from both the genotype and the 

MENIN binding, indicating that the H3K4me3 deposition and erasure on this gene was not 

associated to MLL2. Efnb2 is up-regulated 2 days after BAM transfection and down-

regulated at 13 days (Figure 47h). In Mll2-/- iNs it failed to be down-regulated as in Mll2+/+ 

iNs, despite the erasure of H3K4me3 mark (Figure 47i). 
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Figure 47: Analysis of the genes differentially H3K4me3 and MENIN bound 

a. Heat map of the genes differentially H3K4 trimethylated and MENIN bound in Mll2-/- and 

controls. The colour scale (-2 blue to +2 yellow) represents Z-Score. b. c. g. and i. FPKM in our 

RNA-seq at 13 days of respectively  Polycomb components, GluA2, Wdr5 and Efnb2. Means and 

SD are reported. d. e. f. and h. RPKM, during transdifferentiation, of the genes differentially H3K4 

trimethylated and MENIN bound. Means and SD are reported. Source data: Wapinski et al., Cell 

2013106. * FDR<0.01 

 

Moreover the majority of the genes belonging to the first category had a further decrease in 

H3K4 trimethylation at 13 days. Therefore we performed another analysis focused only on 

this time point.  

112 genes showed a lower H3K4me3 enrichment in Mll2-/- iNs with respect to Mll2+/+ on 

the same day. Among them, 40 were differentially expressed (Figure 48). As expected, all 

the genes that showed a further H3K4 demethylation at 13 days, in Mll2-/- 

transdifferentiating MEFs, were down-regulated in Mll2-/- iNs. 
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Figure 48: Analysis of the genes with reduced H3K4me3 at 13 days 

Heat map of the genes that further lost H3K4 trimethylation at 13 days and their expression in 

RNA-seq at 13 days. The colour scale (-2 blue to +2 yellow) represents Z-Score. 
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8. DISCUSSION 
 
In this thesis I defined the role of MLL1 and MLL2 during MEFs-to-iNs BAM-driven 

transdifferentiation. MLL1 and MLL2 are two H3K4 trimethylases, historically discovered 

for their function in maintaining the expression of Hox genes51,55,77, important during both 

development and differentiation. Furthermore both enzymes were shown to exert 

fundamental roles during neuronal differentiation. Indeed ectodermal in vitro 

differentiation of Mll2-/- ESCs is impaired84, while in Mll1-/- ESCs, MLL2 can compensate, 

trimethylating MLL1-targets genes76. The ablation of Mll2 in excitatory forebrain neurons 

leads to memory defects, but does not impinge brain morphology125. The neuronal 

differentiation of Mll1-/- SVZ NCS is impaired and this is not due to a reduction in 

H3K4me3 mark deposition, but to the absence of the erasure of the H3K27me3 at 

important target genes123. On the contrary, the absence of MLL1 during Danio rerio 

development reduces neural progenitors proliferation, anticipating neuronal 

differentiation124.  

It is therefore conceivable that MLL1 and MLL2 are involved in the conspicuous 

epigenome resetting that allows the conversion between MEFs and iNs, two cell types so 

embryologically distant. Therefore I investigated how the absence of MLL1 and/or MLL2 

affects transdifferention. 

 I took advantage of mouse models conditional knock-out for Mll1128, Mll256 or their 

compound strain, in a tamoxifen inducible system. Interestingly, when I assessed the 

MLL2 level through western blot, despite the fact that in ESCs both the full length and the 

active taspase-cleaved MLL2 were present, in MEFs only the uncleaved protein was 

observed, which, as expected, disappeared upon 4-OHT treatment. This suggests that in 

MEFs, Mll2 is translated, but it is inactive. When I evaluated the level of Mll2 mRNA 5 

and 13 days (both through RT-qPCR and through RNA-seq) after cells were plated for 
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transdifferentiation, I did not observe a decrease in the level of Mll2 transcript due to 

nonsense-mediated decay, probably because MLL2 is maintained inactive in MEFs.  

 

First I showed that MLL1 is dispensable for the MEFs-to-iNs direct conversion. The 

efficiency of transdifferentiation of Mll1-/- cells was reduced at FACS, but this was 

paralleled by their higher cell death (Figure 49b). Moreover the percentage of PSA-

NCAM+ Mll1-/- cells was fully overlapping to the one of control, along the entire 

transdifferentiation process, suggesting that the proportion of dying cells was the same 

among PSA-NCAM+ and PSA-NCAM- cells. Hence the reduced transdifferentiation 

efficiency that we observed was the indirect consequence of the affected cell viability in 

cells deprived by MLL1 (Figure 49b). Indeed MLL1 was demonstrated to be associated to 

cell cycle regulator genes83, but although the straight knock-out embryos showed a 

widespread cell death at E.10.555, there are no any other evidences that directly connect 

MLL1 deletion to apoptosis. Recently it was demonstrated that endoplasmic reticulum 

stress-induced apoptosis is enhanced in Mll1-/- MEFs199, however cell death was not the 

consequence of MLL1 deletion. Because the proportion of dead cells was the same among 

iNs and untransdifferentiated cells, we could not state that it is the transdifferentiation 

process per se that causes cell death in an already compromised starting cell. Most likely 

MLL1 activates anti-apoptotic genes independently from the considered cell type and state.  

In ScanR experiments the efficiency of transdifferentiation of Mll1-/- cells varied 

depending on the cell mortality rate, but MEFs were plated for BAM factors transduction 

immediately after 4-OHT.  Despite the fact that there is no effective anti-MLL1 antibody 

(reactive with mouse), we can be quite confident about its degradation, also in this 

experimental setting. Indeed, it has been shown that MLL1 is degraded each late S and M 

phase78. MEFs cultured in low oxygen and at low passages have a doubling time of ~ 

24h200. Therefore only two additional days before plating the cells for transduction, should 

be enough to ensure MLL1 degradation and the alteration in the transdifferentiation rate of 
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Mll1-/- cells, in this experimental setting, should be attributed to their altered cycling in the 

absence of MLL1. Indeed, depending on the level of cell cycle affection, we observed a 

lower or higher transdifferentiation efficiency. Finally Mll1-/- neurons had the same 

morphology and matured as well as control iNs, further underling that MLL1 is 

dispensable during transdifferentiation.  

When we performed H3K4me3 ChIP-seq on 5 days transdifferentiating MEFs, Mll1-/- cells 

clustered with Mll1+/+Mll2+/+ cells. Therefore, even if only in one sample, the H3K4me3 

redistribution, necessary for transdifferentiation, was not affected in the absence of MLL1. 

This on one side could be reconciled by the lack of a role for MLL1 during neuronal direct 

cell conversion. On the other side MLL2 could compensate its absence, trimethylating 

MLL1 specific targets.  

Therefore, although the Mll1 ablation is detrimental for SVZ NSC neuronal 

differentiation123, transdifferentiation can proceed even if this methylase is deleted, 

accordingly to its role during zebrafish development, where the usage of a specific 

morpholino against Mll1 does not impede, but it prematurely induces neuronal 

differentiation124. This is not counterintuitive because it is not presume, that 

transdifferentiation would undertake the same epigenetic changes of “physiologic” 

differentiation and is even more evident since the starting cells have completely different 

epigenomes.  

The defective neuronal differentiation of Mll1-/- SVZ NSC was specifically due to the lack 

of the erasure of H3K27 trimethylation at critical target genes. To exclude this option and 

to analyse if also for what concerns this histone mark, Mll1-/- transdifferentiating MEFs 

cluster with control, I have already performed the H3K27me3 ChIP-seq on 5 days Mll1-/- 

transdifferentiating MEFs, which will be analysed in the next future.  

 

In the case of Mll2-/- MEFs, plated 2 days after 4-OHT treatment, I observed an initial 

deficit in neuronal transdifferentiation, overcome at 13 days (both in FACS and in ScanR 
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experiments). If, instead, MEFs were plated for transdifferentiation one week after 4-OHT 

treatment the defect overcoming no more occurred (Figure 49c).  
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Figure 49: Schematic model of transdifferentiation in the different knock-out 

Transdifferentiation efficiency and mortality rate assuming to start from the same number of 

MEFs, left in culture 7 days after 4-OHT, before plating them for BAM factors transduction. 1- 

BAM factors transduction; 2- epigenetic remodelling; 3- cell populations observed at 13 days. a. 

Transdifferentiation of Mll1+/+Mll2+/+ MEFs. b. Transdifferentiation of Mll1-/- MEFs. Mortality rate 

is high with respect to Mll1+/+Mll2+/+ transdifferentiating MEFs, but iNs are mature. c. 

Transdifferentiation of Mll2-/- MEFs. Mortality rate is comparable to the one of Mll1+/+Mll2+/+ 

transdifferentiating MEFs, but iNs are immature and the efficiency of cell conversion is lower. d. 

Transdifferentiation of Mll1-/-Mll2-/- MEFs. Mortality rate is comparable to the one of Mll1-/- 

transdifferentiating MEFs; very few iNs are generated and they remain immature. 

 

We can confidently exclude that the absence of MLL2 would make MEFs less prone to 

transdifferentiation. Ascl1 primarily binds to trivalent chromatin states composed by 

H3K4me1, H3K27Ac and H3K9me106. Cells with few trivalent chromatin loci convert into 
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iNs at low efficiency. It has been demonstrated that MLL3 and MLL4 monomethylate 

H3K4 at enhancer67,71 and that in active enhancer H3K4me1 is associated with H3K27ac28. 

It is therefore conceivable that MLL3 and MLL4 are also responsible of H3K4 

monomethylation at trivalent chromatin states. MLL2 instead is mostly a H3K4 

trimethylase, which excludes its possible involvement in structuring the trivalent chromatin 

state. Moreover MLL1, the homolog of MLL2, is responsible for the H3K4 trimethylation 

of only 5% of the MEF promoter genes commonly marked by H3K4me351. Because MLL1 

and MLL2 possess some specific, but also some shared targets and since SET1A and 

SET1B are the main responsible for the deposition of H3K4me3 mark46, we could expect 

that MLL2, on average, would quantitatively trimethylate the same proportion of targets of 

MLL1. Therefore the deletion of MLL2 should not lead to a massive reorganization of 

H3K4me3 and should not affect the specific “MEFs genes” that make this cell type prone 

to transdifferentiation. However to formally prove it an ad hoc ChIP-seq should be 

performed on control and knock-out MEFs. On the other side, in Mll1-/- MEFs, 3% of the 

genes presented also a reduced expression, concomitantly to the reduced H3K4me351. In 

particular, these genes were involved in cell signalling and transcriptional regulation and 

among them also specific Hox genes were dysregulated. A change in cell 

identity/morphology was not reported in this study. Hence, most likely, the down-

regulation of these genes does not perturb the MEF lineage specification per se. However, 

since MLL2 has both specific and shared with MLL1 Hox targets, the alteration of Hox 

gene expression could affects the de novo acquisition of neuronal identity of Mll2-/- MEFs. 

However, in our analysis, Hox genes did not result dysregulated, excluding their possible 

involvement in the defective transdifferentiation observed in the absence of Mll2. 

Contrary to what has been demonstrated in different cellular types and contexts, such as in 

ESCs84, Mll2-/- MEFs showed the same cell death rate of control cells during 

transdifferentiation. Specifically, in Mll2-/- ESCs, the higher cell mortality was attributed to 

the down-regulation of Bcl-2, that was indeed lower expressed also in Mll2-/- iNs with 
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respect to control. However Pdcd5, which encodes for a protein released during apoptosis 

and that favours programmed cell death165,166, was down-regulated in Mll2-/- iNs and came 

out as one of the most differentially expressed genes. Moreover Bax, up-regulated in Mll2-

/- oocytes74, and Bad had similar levels of expression between knock-out and control iNs. It 

has been recently shown that when Bcl2 is co-transduced with Ascl1 during astrocytes-

neurons transdifferentiation, it favours the process of cell conversion in an apoptosis 

unrelated manner201. Therefore we could envisage that the lower expression of Bcl2 would 

further emphasize the reduced transdifferentiation efficiency of Mll2-/- MEFs, more than 

increasing its mortality rate. 

When I immediately plated Mll2-/- MEFs after 4-OHT treatment I did not observe any 

defect in transdifferentiation efficiency at 13 days both in FACS and ScanR experiments. 

This has two possible explanations. First, 5 days in 4-OHT plus 2 days in normal medium 

could be not sufficient for the degradation of MLL2 translated prior to the induction of Cre 

recombinase activity. In ESCs two days of 4-OHT treatment are enough to see the 

disappearance of the MLL2 protein. However in ESCs this methylase could have a 

different turnover rate since, as shown in our western blot, MLL2 seems active in ESCs 

and inactive in MEFs. To check this hypothesis a western blot for MLL2 in MEFs 2 days 

after the end of 4-OHT treatment has to be performed. However, at FACS, we anyway 

observed an initial defect in transdifferentiation in Mll2-/- cells. In a preliminary 

experiment, where I transdifferentiated Mll2-/- and Mll2+/+ MEFs, left in culture after 4-

OHT only 2 days, I observed that, after doxycycline administration, knock-out MEFs still 

proliferate. As I shown in the rest of the thesis, this was not the case for any of the MEFs 

plated one week after 4-OHT treatment, independently from their genotype, as previously 

published91. Despite the fact that a more comprehensive study of the Mll2-devoid MEFs 

cell cycle, before and along transdifferentiation, is needed, the proliferative advantage of 

Mll2-/- MEFs could explain the higher number of Mll2-/- iNs generated with respect to the 

number of plated cells. Proliferation is not required for neuronal transdifferentiation107, but 
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it would lead to start from a higher number of cells from which, consequently, more iNs 

would be obtained. Moreover, if the slower transdifferentiating MEFs, still PSA-NCAM-, 

at the beginning would continue to cycle, this would result in a lower percentage of PSA-

NCAM+ cells, that indeed we observed. Hence this model would better reconcile most of 

the observations done on cells immediately plated after 4-OHT. Despite the fact that 

MLL2, as MLL1, interacts with E2Fs proteins61, which in turn regulate cell cycle, in Mll2-/- 

ESCs there are no evidences that connect Mll2 deletion to an alteration either of the cell 

cycle or of the proliferation rate84. However this study was conducted in different cell type 

with respect to the one I used84, where the MLL2 function could be different. 

 

The role of MLL2 during transdifferentiation can thus be distinguished from the impact of 

its absence on cell cycle/cell mortality, plating MEFs one week after 4-OHT treatment. 

Therefore RNA-seq and ChIP-seq studies were performed only according to this 

experimental setting. What can be deduced from both the transdifferentiation kinetics and 

the transcriptomic/epigenomic studies is that the deletion of Mll2 impinges on 

transdifferentiation efficiency, but, more importantly, that Mll2-/- iNs fail to mature. This is 

partially in accordance with the results obtained with retinoic acid-mediated neuronal 

differentiation of ESCs, in which the deletion of Mll2 led to lower expression of 

“maturation genes” with respect to the controls, but mature neurons were anyway present 

in culture84. Moreover I showed that the absence of MLL2 severely affected neurite 

extension, independently from how many days after 4-OHT MEFs were plated, contrary to 

the conditional deletion of Mll2 in excitatory neurons in vivo, where a defect in 

neuronal/brain morphology was not observed125. 

Recently the network of genes involved in the MEF-to-iNs transdifferentiation has been 

described and further subdivided in three subnetworks: the MEF subnetwork, the initiation 

subnetwork and the maturation subnetwork, on the basis of the phase of the process that 

the specific group of genes regulates108. A conspicuous part of the maturation subnetwork 
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genes was indeed down-regulated in Mll2-/- iNs, such as also the genes previously shown 

by the same group to be up-regulated to allow transdifferentiation106. The only exception 

came from Zfp238, one of the main effector of Ascl1106. Zfp238, during the first 

transdifferentiation phases, was up-regulated also in Mll2-/- transdifferentiating MEFs, even 

if at a much lower extent, but it failed to be down-regulated at 13 days (assessed both 

through RT-qPCR and through RNA-seq). However it did not come out among the genes 

that lost the H3K4me3 at the end of the process. One possible hypothesis that will be tested 

in the next future through ChIP-seq, is that Zfp238 fails to be H3K27 trimethylated in the 

absence of MLL2. 

Among the differentially expressed genes, but also the differentially H3K4 trimethylated 

ones, a relevant fraction was connected to neurite elongation and synapse formation further 

corroborating the observed phenotype at the molecular level.  

 

When we analysed MENIN binding and the H3K4me3 mark distribution we observed that 

in Mll2-/- MEFs, 839 genes lost MENIN binding, pointing to the absence of a complete 

compensation of MLL1. The lack of a compensation by MLL1 is further suggested by the 

absence of an up-regulation of its mRNA in Mll2-/- iNs.  

On the other side 213 genes acquired de novo MENIN binding, suggesting either a 

mislocalization of the MLL1 and MLL2 COMPASS-like complex or a possible adaptive 

response of the cells to the absence of MLL2. From gene ontology analysis the genes, 

which lost MENIN binding, were related to basic cell functions and metabolism, while the 

genes that acquired MENIN binding were related to non neuronal cell identities, 

suggesting that the second hypothesis is the most plausible one.  

For what concerns the H3K4 trimethylation, 545 genes lost the mark, while 82 genes 

acquired it, further demonstrating that MLL2 targets specific loci during 

transdifferentiation, whose vulnerability to the loss of MLL2 is not compensated by 
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MLL1. Also in this case, the differentially expressed genes among them were related to 

neuronal maturation and synaptic transmission. 

Finally, among the differentially H3K4 trimethylated and MENIN bound genes, Zfp277 

was identified188. This zinc finger protein has been associated with BMI1, a component of 

PRC1 complex and, in our datasets, both Bmi1 and Cbx7 were differentially expressed 

between Mll2-/- and control iNs. Moreover the differentially expressed genes were enriched 

for PRC2 targets in mESCs. Therefore also the Polycomb axis could be the cause of the 

altered gene expression profile we observed in Mll2-/- iNs and, hence, of their maturation 

defects. Trithorax and Polycomb are two families of proteins with opposite and balanced 

functions. Indeed MLL2 prevents H3K27me3 deposition at specific targets63,64. Therefore 

it is plausible that, in the absence of MLL2 and without the compensation of MLL1, 

Polycomb would prevail, at least at some targets. 

I thus propose a model where the role of MLL2 during transdifferentiation is the H3K4 

trimethylation and induction of “neuronal maturation genes”. Hence, in its absence, 

transdifferentiation can start, even if less efficiently, but the generated iNs remain 

immature (Figure 50). In particular, to confirm this hypothesis, I will perform 

electrophysiological studies on Mll2-/- and control iNs.  

On the other side MLL1 cannot compensate for MLL2 absence, as it is the case, instead, 

during retinoic acid ESCs neuronal differentiation76. Hence, again, at least for what 

concerns MLL1-MLL2-H3K4me3 deposition, the differentiation following the 

Waddington descent and the crossing of the epigenetic hill are not comparable, probably 

both because the starting cells possess very different epigenomes and the two systems 

entail different “routes” to reach the neuronal identity. 
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Figure 50: Schematic model of transdifferentiation in the absence of MLL2 

Upon BAM factors transduction (1) MEFs start to transdifferentiate (2), probably through the 

recruitment of a still undefined epigenetic remodeller. However, the absence of MLL2, already 

affects the efficiency of this step. In iNs generated (3) MLL2 cannot trimethylates fundamental 

neuronal maturation genes (4). Therefore only iNs with short neurites are detected at 13 days (5).  

 

H3K4me3 has been linked to alternative splicing142-145, therefore we studied also if in 

absence of MLL2 this process is affected. Indeed we described few genes, but all subjected 

to a specific differential exon usage never described in literature. Moreover all genes were 

strictly linked to neuronal function and maturation. Strikingly the loss of both Mll1 and 

Mll2 severely affected iNs generation and morphology and led to an extremely high cell 

death (Figure 49d). In particular, despite the fact that the cell death rate was the same 

between Mll1-/- and Mll1-/- Mll2-/- transdifferentiating MEFs, the efficiency was lower in the 

double knock-out. This further demonstrates that it is indeed MLL2 the main Trithorax like 

COMPASS complex component responsible of H3K4me3 remodelling during 

transdifferentiation, while the absence of Mll1 only affects cell viability. 
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