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Abstract 14 

Plant pathogens face different environmental clues depending on the stage of the 15 

infection cycle they are in. Fusarium graminearum infects small grain cereals 16 

producing trichothecenes type B (TB) that act as virulence factor in the interaction 17 

with the plant and have important food safety implications. This study addresses at the 18 

proteomic level the effect of an environmental stimulus (such as the presence of a 19 

polyamine like agmatine) possibly encountered by the fungus when it is already 20 

within the plant. Because biological diversity affects the proteome significantly, a 21 

multistrain (n=3) comparative approach was used to identify consistent effects caused 22 

on the fungus by the nitrogen source (agmatine or glutamic acid). Proteomics analyses 23 

were performed by the use of 2D-DIGE. Results showed that agmatine augmented TB 24 

production but not equally in all strains. The polyamine reshaped drastically the 25 
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proteome of the fungus activating specific pathways linked to the translational control 26 

within the cell. Chromatin restructuring, ribosomal regulations, protein and mRNA 27 

processing enzymes were modulated by the agmatine stimulus as well asmetabolic, 28 

structural and virulence-related proteins, suggesting the need to reshape specifically 29 

the fungal cell for TB production, a key step for the pathogen spread within the spike.  30 
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 38 

Introduction 39 

Infection of cereals by Fusarium species can have an important impact on human and 40 

animal health due to contamination of crops by trichothecenes [1], sesquiterpenes 41 

compounds which have powerful protein synthesis inhibiting activity. Fusarium 42 

graminearum s.s. [2] is a worldwide spread species belonging to the Fusarium 43 

graminearum species complex (FGSC), and it represents the major cause of 44 

trichothecene B (TB) accumulation in wheat and other small grain cereals. It has been 45 

ranked as the 4
th

 most important fungal pathogen in plants [3].  46 

TB are synthetized by a gene cluster (tri) that, depending on its structure, can mainly 47 

lead to production of deoxynivalenol (DON) and 15-acetylated DON (15ADON) or 48 

DON and 3-acetylated DON (3ADON) or nivalenol (NIV) [4]. Within F. 49 

graminearum a genetic chemotype can be defined by the genetic diversity within the 50 



tri cluster [5]. As TBs differ for their toxicity, the major toxin produced by the fungus 51 

has important implications for food safety and it becomes therefore important to 52 

understand how fungal diversity affects the quality and the quantity of toxin 53 

accumulation in the plant. Because the toxin acts also as a virulence factor in wheat 54 

[6], understanding mechanisms of toxin regulation and pathogen adaptation to the 55 

environment that triggers toxin production is important for both food safety and plant 56 

protection purposes.  57 

Polyamines play a diverse set of roles in every living organisms including 58 

physiological responses to pathogens in plants [7]. In fungi they are involved in 59 

metabolic and regulatory functions [8] as well as stress coping functions [9]. 60 

Moreover they are known to induce DON production in F. graminearum [10]. 61 

Inhibitors of polyamine import and synthesis have been proposed for limiting DON 62 

production in F. graminearum [11]. 63 

A relatively large set of proteomic studies on Fusarium graminearum have been 64 

carried out [12] but all focused on single strain analysis or on comparing mutants 65 

obtained from the same isolate [13]. Because the effect of plant polyamines such as 66 

agmatine on the proteome of this fungus has never been investigated before, here we 67 

introduce a comparative experimental design that takes into account strain diversity, 68 

including genetic chemotype diversity, to: 1) differentiate the core of proteins that are 69 

induced by the selected in vitro conditions; and 2) describe the proteome profiles 70 

which fluctuate strain-dependently. 71 

Therefore this work shall contribute also to understand how fungal diversity plays a 72 

role in modulating toxin synthesis when triggered by a plant derived compound [14]. 73 

A whole-cell 2D-DIGE proteomic study on three strains of F. graminearum s.s. 74 

belonging to three different genetic chemotypes (15ADON, 3ADON, NIV) was 75 



performed. Production of toxin was induced by addition to the fungal culture medium 76 

of agmatine or glutamic acid as the sole nitrogen source. The comparison of the 77 

proteomes obtained in the two media lead to the identification of a set of shared 78 

regulatory processes triggered in the fungal cell by agmatine. 79 

 80 

Material and methods 81 

 82 

 83 

Growing conditions and phenotypic measures. 84 

Fungal material was grown in liquid cultures as described in [15]. In particular three 85 

F. graminearum strains with diverse geographic origin were selected (453 [16], 86 

NRLL28336 [17], Ph1 [18], table 1)   87 

The mycelium was incubated in Erlenmeyer flasks containing 100 mL of a medium 88 

having as the only nitrogen source glutamic acid or agmatine for 8 days (estimated to 89 

be a stage where toxin is already abundant and at the same time when fungal growth 90 

is still possible). The chemical composition of the media was the following: 30 g/L 91 

sucrose, 2.0 g/L glutamic acid (or 1.15 g/L agmatine) [19], 1 g/L KH2PO4, 0.5 g/L 92 

MgSO4 · 7 H2O, 0.5 KCl, 10 mg FeSO4 · 7 H2O in 200 mL of trace elements solution 93 

(per 100 mL: 5 g KCl, 5 g ZnSO4 · 7 H2O, 0.25 g CuSO4 · 5 H2O, 50 mg MnSO4 · 94 

H2O, 50 mg H3BO3, 50 mg NaMoO4 · 2 H2O). Cultures were incubated in the dark, 95 

150 rpm shaking at 22 °C for 8 days. The experiment was carried out with 4 96 

independent biological replicates for each condition/strain. 97 

For toxin analysis, the medium was filtered through a 0.2 µm GHP membrane filter 98 

(PAL, MI USA) and diluted in methanol (medium/methanol, 9/1, V/V) in order to be 99 

in the appropriate solvent ratio for chromatographic analysis. Toxin separation and 100 



detection were achieved by LC coupled to tandem mass spectrometry (LC-MS/MS, 101 

Dionex Ultimate 3000; Applied Biosystems API 3200) in multiple reaction 102 

monitoring (MRM) in negative mode for DON, NIV and acetylated forms of toxins. 103 

For separation, an Alltima HP RP-C18 column (Grace Davison, IL) was used 104 

(150x2.1 mm; 3 µm) with a mobile phase consisting of methanol and water with 2.5 105 

mM of ammonium acetate in a linear gradient. All mycotoxins were quantified by 106 

external calibration based on pure standards (Biopure, Tulln, Austria). The 107 

differentiation of 3ADON and 15ADON was obtained by calculating the ratio of two 108 

different selected fragment ions (397->337 and 397-> 307). 109 

Ef-1alpha sequence of strain 453 was obtained following the protocol and the 110 

procedure described in [20]. 111 

The pH value was checked daily in the flasks using colorimetric strips. 112 

Carrying out an independent experiment with 5 biological replicates per each 113 

strain/condition, a protocol for quantifying agmatine and glutamic acid in the medium 114 

at 8 days was developed. The medium was filtered through a 0.2 µm GHP membrane 115 

filter (PAL, MI, USA) and diluted 20 times in ultrapure water. Ten µL were then 116 

evaporated to dryness under a N2 flow at room temperature. The sample was re-117 

suspended in 100µL of BSTFA + TCMS, 99:1 / acetonitrile (50/50, v/v). The 118 

derivatization was done during 1 hour at 60°C. 119 

For separation and detection of analytes an Agilent 7890B gas chromatograph 120 

coupled to a 5977A MSD detector (Agilent, Waldbronn, Germany) was used. 121 

Instruments were controlled by the Mass Hunter software. A volume of 1µL of 122 

derivatized sample was injected at 250°C in splitless mode. An HP 5MS column (30m 123 

x 0.25mm, 0.25µm; Agilent) was operated at a constant helium flow of 1.2mL/min. 124 

The initial oven temperature was set at 60°C.  The oven was heated at 280°C 125 



(10°C/min) and then at 325°C (40°C/min). This temperature was kept for 5 min. The 126 

MSD interface was kept at 280°C. The source was kept at 230°C and the quadrupole 127 

at 150°C. The detector was used in SIM mode. Effects of medium or strain was 128 

measured by Kruskal-Wallis one-way ANOVA on Ranks with Dunn’s method as 129 

implemented in SigmaPlot (v 12.5). The same filtrates were also used to obtain 130 

UV/Vis spectra using a Nanodrop 1000 (Thermo Scientific, USA) spectrophotometer. 131 

  132 

Proteomic analysis 133 

Full protein extraction was carried out as described in [21].  Briefly, mycelia were 134 

ground with liquid nitrogen and extracted with ice-cold acetone containing 20% w/v 135 

trichloroacetic acid (TCA) and 1% w/v dithiothreitol. Proteins were let to precipitate 136 

overnight at -20 °C and then washed three times with ice-cold acetone. 137 

Resolubilization of the precipitated proteins was carried out in lysis buffer (7 M urea, 138 

2 M thiourea, 4% w/v CHAPS, 30 mM Tris, pH 8.5) containing protease inhibitor mix 139 

(Roche) for 1 hour in a rotary shaker at room temperature. The protein extracts were 140 

quantified using the Bradford method. 30 (thirty) µg of proteins for each sample (or 141 

internal standard) were labelled with 240 pmol of fluorochromes (CyDyes
TM

, GE 142 

Healthcare) following the manufacturer’s instructions.  143 

Due to the presence of diverse pigmentation levels in the different strains, for the 144 

following labelling step, the samples were divided in 3 groups, each one representing 145 

one strain (4 biological replicates for each growing condition for each group giving a 146 

total of 8 samples for each group and 24 samples for the whole experiment). One 147 

internal standard was produced for each group. The four biological replicates were 148 

labelled using the dye swap technique: 2 replicates of the same growing condition 149 

were labelled with the Cy3 label and the other 2 replicates were labelled with the Cy5 150 



label. The four gels belonging to the experimental groups 453 were obtained and 151 

reported before in the proteomic map previously published [21]. A total of 12 gels 152 

were compared, each gel containing two biological replicates of the strains used and 153 

the respective internal standard, resulting in total protein load per gel of 90 µg. IPG 154 

buffer (Bio-Rad) and DeStreak reagent (GE Healthcare) were added to the mixed 155 

samples and internal standard prior the loading on the strip. Strips were passively 156 

rehydrated and proteins were loaded on 24 cm NL pH 3–10 IPG-strips (Bio-Rad) and 157 

isoelectric focusing (at 22 C° till approximately 100000 Vh) was carried out with 158 

IPG-phor system 3 (GE Healthcare). Strips were then kept in equilibration solution 159 

with 1% w/v DTT for 15 min and then 2.5% w/v iodoacetamide for 15 min. The 160 

second dimension was carried out with 12.5% polyacrylamide pre-cast gels 161 

(Gelcompany) following manufacturer’s instructions. Images were acquired using a 162 

Typhoon9400 (GE Healthcare) and analyzed by DeCyder v.7.0 software (GE 163 

Healthcare). After confirming lack of preferential labelling, exclusion filters and 164 

manual detection of spots were applied to each gel in order to obtain the most 165 

representative gel image. Gels were exported to the biological variation analysis 166 

(BVA) module. Twenty spots were manually landmarked to allow the software to 167 

perform inter-gel matching. Extensive manual spot matching was then done to ensure 168 

correct matching of spots [22]. The EDA module allowed linking, standardizing and 169 

comparing the different groups for the subsequent statistical analysis. 170 

Spots considered to be consistent and reproducible (at least present in 75% of 171 

biological replicates and with 1-way ANOVA p-value <= 0.05) were subjected to 172 

statistical analysis. Within the same F. graminearum strain, mycelia grown in the 173 

presence of agmatine were pairwise compared to those grown in the presence of 174 

glutamic acid: spots resulting in a difference of at least ±30% and with a p-value (T-175 



Test) <= 0.05 were considered as spots of interest and selected for subsequent picking 176 

and protein identification. In order to compare the effects of the strain and medium 177 

and their interaction, 2-way ANOVA multivariate analysis was performed. Moreover 178 

also spots resulting in a p-value <= 0.05 in at least one among 2-way ANOVA 179 

Fusarium strain,  2-way ANOVA medium or 2-way ANOVA interaction were added 180 

to the list of the spots of interest and selected for the subsequent picking and protein 181 

identification. 182 

Spots were picked from the gel mainly from the 453 map [21] and few random 183 

verifications were carried out on the two master gels of the other experimental groups. 184 

All picked spots were then digested by trypsin for 6 h at 37 °C using an Ettan Dalt 185 

Spot Handling Workstation (GE Healthcare) before acquisition of peptide mass 186 

spectra with a 4800 MALDI-TOF-TOF analyzer (ABSciex).  187 

One MS spectrum accumulating 1500 laser shots in total was acquired and the highest 188 

8 precursors, having a signal-to-noise ratio of more than 30, were automatically 189 

selected for subsequent MS/MS analysis. 190 

The MIPS Fusarium graminearum database v 3.2 was used for Mascot analysis using 191 

a combined approach of protein mass fingerprint and MS/MS. Complete NCBI 192 

proteins database check was also performed on all unknown proteins. All searches 193 

were carried out using a mass window of 150 ppm for protein mass fingerprint and 194 

0.75 Da for the MS/MS analysis of selected precursors. Up to two trypsin missed 195 

cleavages were allowed. The search parameters allowed for carbamidomethylation of 196 

cysteine (fixed modification), oxidation of methionine as well as oxidation of 197 

tryptophan, tryptophan to kynurenine and double oxidation of tryptophan to N-198 

formylkynurenine (as variable modifications). Only identifications with a Mascot p-199 

value <=0.05 were considered, manually checked and validated. Significance 200 



threshold for the combined MOWSE score was ≥ 54, while for fragmented peptides 201 

the significance threshold was ≥ 30. The overall list of selected protein species 202 

identified which respected the above cited criteria of significance can be found in 203 

[23]. Here with the purpose of comparing the two media effects, a sublist based on T-204 

test< 0.05 (glutamic acid vs agmatine medium)  and abundance ratio > ±1.3 205 

comparing the two media was generated. Further analysis of the protein lists 206 

according to the biological processes (FunCat and GO) was carried out using MIPS 207 

FunCat as implemented on the FungiFun webpage [24]. Significant 208 

overrepresentation of categories was calculated using the Bejamini-Hochberg 209 

procedure for correcting p-values. Protein species associated to the same gene name 210 

were considered only for specific discussions within the manuscript. When no 211 

specifications on the behaviour of different protein species associated to the same 212 

FGSG number are given it has to be assumed that only a single protein species was 213 

identified or that all isoforms behave identically. 214 

Analysis of protein relationships and involvement in known biological processes was 215 

done using String v.10 [25]. 216 

Unless otherwise specified, all chemical and reagents were purchased from Sigma-217 

Aldrich (Schnelldorf, DE). 218 

 219 

Results and discussion 220 

Phenotypic observations 221 

The three strains were selected to account for morphological and genetic diversity 222 

within F. graminearum s.s. They had diverse genetic and chemical chemotypes, as 223 

well as diverse features on PDA plates (Table 1, Fig. 1). Growth of the three fungal 224 

species occurred similarly in the two nitrogen sources, despite the coloration of the 225 



mycelium differed among agmatine grown and glutamic acid grown cultures 226 

confirming historical and recent reports showing the effect of nitrogen source on 227 

pigmentation [26,27]. The colour is the result of the combination of different ratio of 228 

compounds such aurofusarin, rubrofusarin, nor-rubrofusarin [28] and activation of 229 

some but not all the genes in the pathway [29]. Type of pigments produced and their 230 

intensity changed between strains and media (Fig.1). Small variations on colour 231 

intensity were also visible among biological replicates but the effect was minor when 232 

compared to the effect of the media or the strain (Fig.1). While 453 and Ph1 showed 233 

an increased yellowing/browning pigmentation in glutamic acid with more pale-234 

orange/whitish mycelium in agmatine medium, NRRL28336 showed on average pale 235 

mycelium in both media again with slight increase in the orange component in the 236 

agmatine medium. Our results are consistent with other morphological reports 237 

showing the effect of agmatine on mycelia colour [11]. The effect is not exclusively 238 

linked to pH as the two media were both acidic, agmatine being the most acidic one at 239 

8 days (due to the effect of fungal acidification of the media which dropped the pH 240 

from 4 to 2) compared to glutamic acid that increased the pH from 2 to 4 in 8 days. 241 

We also tested if pigments could be detected in the medium by UV/Vis 242 

spectrophotometric comparison of the curves but no significantly different profiles 243 

(UV/Vis) linked to a strain or a compound could be detected. (data not shown) 244 

suggesting that changes induced by the nitrogen source acts on pigments that are 245 

mainly in the mycelium compartments or that the simple spectrophotometric analysis 246 

is not sufficiently sensitive. 247 

No difference among strains was observed in the pH of the media suggesting that the 248 

mechanism of acidification is not influenced by strain diversity while on the contrary 249 

the toxin production was strain dependent. Indeed trichothecene type B production 250 



differed significantly among strains and between the two media with the exception of 251 

strain 453 which did not drastically shift its production of nivalenol and acetylated 252 

form, maintaining in both cases a relatively low level of production (Fig. 2). This 253 

confirms results obtained earlier in our laboratory that shows that some strains do not 254 

respond to the agmatine stimulus for what concerns TB production [19]. On the 255 

contrary Ph1 strain showed a 4-fold increase in toxin production while NRRL28336 a 256 

1.5 fold increase confirming responses described in [10] which were verified on a 257 

DON producing isolate. By measuring the two nitrogen sources in the media at 8 days 258 

we could show that biological variability is the major cause of variability in the use of 259 

nitrogen source, therefore no significant differences in the amount of nitrogen 260 

consumption were observed among the strains and comparing the two media. This 261 

suggests that the effects observed at the proteomic level cannot be simply explained 262 

by a diversity in nitrogen concentration and availability (supplementary figure 1) . 263 

  264 

Proteomic profiles 265 

Three hundred eighty one identified unique protein species with ANOVA or 2-way 266 

ANOVA p-value <= 0.05 were selected, corresponding to 189 FGSG numbers [23]. 267 

By PCA analysis the medium effect was evident.  PC1 accounting for 52.8% was 268 

mainly linked to the effect of the medium. PC2 and PC3 accounted for 14.3% and 11 269 

% of the variance respectively, but could not be linked to any observable features. 270 

90% cumulative variance was reached after 9 components (Fig. 3A). Treatments 271 

could be separated on the PCA plot despite it is obvious that in some cases biological 272 

variation in replicates included more variance than strain diversity.  273 

By analysing the protein profile in the agmatine-containing medium, all the three 274 

strains could be discriminated. Agmatine modifies the proteome of 453 (the NIV 275 



strain) towards NRRL28336 (the 3ADON strain) separating the latest from Ph1 (Fig. 276 

3B). Whether this data is linked to the toxin production level, Ph1 strain being by far 277 

the first (and most induced) TB producer of the lot, can be hypothesized. This would 278 

indicate that the proteomic profile reflects at least partially the ability and the cellular 279 

reshaping needed to produce such a high amount of toxins. Agmatine contributes to 280 

increase uniformity of the proteomic profiles among biological replicates as it can be 281 

observed from the Euclidean distance tree. This finding suggests that a medium 282 

containing agmatine would increase the possibility to identify diversity among strains 283 

at the proteomic level diminishing intra-replicates variability (Fig. 3B).  284 

Differentially regulated protein species (differing for at least 30% abundance) were 285 

analysed by 2-way ANOVA: 320 protein species corresponding to 165 genes varied 286 

due to the effect of the medium . These numbers included also isoforms that account 287 

for half of the diversity observed.  288 

Strain-dependent protein species shifts were 107, corresponding to 65 genes while 289 

259 protein species (corresponding to 133 genes) fluctuated significantly due to the 290 

interaction of strain and medium [23]. 291 

Strain diversity influenced the shift in abundance of protein species as suggested by 292 

the number of significantly-regulated shared and unique spots identified for each 293 

strain (Fig. 4). 294 

 In order to have reliable data on the core of the effects of the medium (agmatine vs 295 

glutamic acid) on the fungal proteome we decided to focus only on concordant pattern 296 

of abundance shared by all the strains.. 297 

 298 

Comparing protein profiles to identify key mechanisms shared by strains. 299 



By selecting specifically only those spots that are consistently more abundant or less 300 

abundant in all the three strains due to the medium effect, it is possible to identify 301 

shared mechanisms which are common to the 3 strains when they are cultured in the 302 

two different media.  Therefore considering all the 3 strains as replicates of the same 303 

experiment (12 replicates treated in agmatine and 12 treated in glutamic acid) a total 304 

of 115 protein species were more abundant in agmatine (T- test<= 0.05 and 305 

abundance ratio =>1.3) and 133 in glutamic acid which corresponded respectively to 306 

80 and 55 FGSG numbers (supplementary table 1A). Protein isoforms were detected 307 

for 24 FGSG numbers when the strains were grown in glutamic acid and for 18 FGSG 308 

numbers when grown in agmatine (supplementary table 1B). Eight FGSG numbers 309 

coded for more than one isoform showing opposite behaviour for at least one of the 310 

isoforms between the two media (supplementary table 1C). FunCat analysis showed 311 

that three categories were overrepresented in agmatine more abundant proteins 312 

(adjusted p<0.05) (16.01, protein binding; 12.04, translation; 01.05.02.04, sugar, 313 

glucoside, polyol and carboxylate anabolism), while 17 functional categories were 314 

found to be significantly overrepresented in the set of proteins obtained from the 315 

strains grown in glutamic acid medium (including 01.01.03.02.01, biosynthesis of 316 

glutamate; 01.05.02.07, sugar, glucoside, polyol and carboxylate catabolism; 317 

01.05.02.04, sugar, glucoside, polyol and carboxylate anabolism; 2.1, tricarboxylic-318 

acid pathway (citrate cycle, Krebs cycle, TCA cycle); 2.01, glycolysis and 319 

gluconeogenesis; 02.13.03, aerobic respiration, 16.21.08, Fe/S binding; 2.11, electron 320 

transport and membrane-associated energy conservation; 01.01.06.05.02, degradation 321 

of methionine; 01.05.06.07 C-2 compound and organic acid catabolism) 322 

(supplementary table 2). 323 



If a very stringent approach of strain comparison is selected (by considering only 324 

those proteins that shared significant values of abundance in all the three strains) a 325 

total of 34 protein species (20 genes) were more abundant in glutamic acid (ratio 326 

>±1.3) and 36 protein species (27 genes) more abundant in agmatine medium (Fig. 4 327 

and supplementary table 3). 328 

We opted for a combined approach that guaranteed robustness of the data (having 12 329 

biological replicates) and biological significance of the data trying to avoid too many 330 

false negatives. Explicitly, when significant differences were identified considering 331 

the 12 replicates for each medium we included in our analysis only those results that 332 

showed identical trend for the 3 strains even if significance for each strain considered 333 

independently was not achieved. Results are therefore discussed taking into account 334 

only those proteins that are also listed in the supplementary table 1A. For the full set 335 

of data which included also strain significant effects of the medium we refer to the 336 

complete dataset [23]. 337 

 338 

Regulatory changes induced by agmatine 339 

Strikingly, more than half of the protein species which augmented in the agmatine 340 

medium belonged to protein binding and translation categories suggesting a strong 341 

regulatory shift that reshaped drastically the cell. Whether this reshaping process 342 

mimics at least partially the in planta fungal specialization required to produce DON 343 

and derivatives to spread in the spike [30] is our hypothesis, despite we are aware that 344 

the resulting proteome is due to the direct effect of nitrogen source and to the 345 

processing of the medium by the fungus. 346 

The nature of the medium influences how light stimulates or decreases the growth rate 347 

in fungi [31]. Here there is evidence to suggest that the type of nitrogen source 348 



induced a differential regulation of circadian cycle controlled proteins despite no 349 

difference in light condition was applied to the cultures. Indeed nine out of ten 350 

isoforms of a proteins similar to ccg7 glyceraldehyde-3-phosphate dehydrogenase 351 

(FGSG_16627), a clock controlled gene in Neurospora [32]  as well as BLi3 352 

homologous FGSG_17247 protein, which is activated by light but possibly co-353 

regulated by other mechanisms [33], had increased abundance in the agmatine 354 

medium. At the same time different molecular species, all identified as glutamine 355 

synthetase (FGSG_10264), a light responsive protein, were all less abundant in the 356 

agmatine medium. Overall this differential abundance of light controlled proteins 357 

confirms in F. graminearum the known overlapping regulation of inducible light 358 

genes by nitrogen sources [34] and suggests further levels of regulation occurring on 359 

light controlled proteins that are independent on nitrogen availability (supplementary 360 

figure 1).  361 

Recently, ribosomal regulation of stress related genes has been postulated by Barna 362 

[35]. The process is putatively regulated by RPL40 that, in yeast, specifically controls 363 

translation of 7% of total mRNA including specifically stress-response mRNAs [36]. 364 

As agmatine increased the abundance of FGSG_01956 protein (homologue of RPL40) 365 

it is tempting to speculate that also in F. graminearum specific ribosomal mechanisms 366 

of regulation are occurring. Together with FGSG_01956 also FGSG_02523 367 

(interacting protein with role in microtubule stabilization) and FGSG_07292 368 

(probable 40S protein S12), involved in translation and constituent of the ribosomes, 369 

increased their abundance in agmatine supplemented medium, suggesting their 370 

common participation in the ribosomal activity induced by agmatine. Similarly other 371 

ribosome associated proteins involved in transcription activation such as RAP1 372 



(FGSG_10905), co-expressed and interacting in yeast with FGSG_01008 (EFb1), 373 

were more abundant when the strains were grown in the agmatine medium. 374 

The increased abundance of two ubiquitin proteins (FGSG_01956 and FGSG_02029) 375 

in the agmatine medium indicates a more consistent ubiquitin mediated protein 376 

turnover. Other evidence for the protein turnover occurring in the agmatine medium is 377 

the increased abundance of three isoforms of a cell signalling homologue of 378 

cyclophillin B (FGSG_00777) known to accelerate protein folding [37] as well as the 379 

increased amount of a proteasome constituent protein corresponding to gene 380 

FGSG_01200. Also increased abundance of FGSG_07938 (related to RPN2 protein) a 381 

proteasome regulatory protein suggests that agmatine medium induced protein 382 

reshaping via proteasome processing. 383 

Chromatin regulation seems to be implicated in the agmatine effect on the cells. 384 

Indeed agmatine medium increased the abundance of FGSG_16147 protein, 385 

homologue of TAF14, involved in negative regulation of chromatine silencing [38]. 386 

Indeed the role of histone deacetylation in the regulation induced by agmatine is 387 

supported by the increased abundance of the NAD-dependent histone deacetylase 388 

(FGSG_13552). 389 

Another transcriptional regulator with increased abundance in the agmatine medium 390 

in different isoforms was FGSG_03028, the homologue of UMrrm75 of Ustilago 391 

maidis [39] whose increased amount at the mRNA level in filamentous growth and 392 

low pH suggests a direct link with the in vitro conditions (confirmed by the lower pH 393 

measured in the agmatine medium compared to the glutamic acid medium after 8 394 

days).  395 

 396 



Also mRNA turnover is probably actively regulated by agmatine, increasing the 397 

abundance of some specific RNA binding and processing proteins. Protein coded by 398 

FSGS_09864 gene (mRNA splicing factor) as well as 3 isoforms of the FGSG_11064 399 

(glycin rich RNA binding protein implicated in positive regulation of translation and  400 

reported to be upregulated at the gene transcriptional level in both Fusarium Head 401 

blight (FHB) and crown rot (CR) [40]) as well as a probable LSM2 - Sm-like (Lsm) 402 

protein (FGSG_00360) involved in  pre-mRNA splicing and a probable BRT1 protein 403 

(FGSG_00609) involved in regulation of translational reinitiation [41] were all more 404 

abundant in the agmatine medium suggesting the activation of RNA processing. 405 

Agmatine seems also to induce RNase T1 (FGSG_11190) that can be secreted [42] as 406 

well as act an internal RNA processing protein. RNA turnover seems therefore 407 

significantly affected by agmatine. 408 

 409 

 410 

Metabolic and structural changes induced by agmatine 411 

As identified by the FunCat analysis, agmatine partially decreased the activity of 412 

primary metabolism including Krebs cycle and TCA as well as respiration. This 413 

changes found some confirmation in the available metabolomic and transcriptomic 414 

study using agmatine [43] despite cultural conditions and sampling were different.  415 

For example the decreased mRNA expression of pyruvate kinase observed by [43] 416 

(associated to high level of pyruvic acid in the non-agmatine treated medium) well 417 

correlates with our proteomic data, which showed a significant decreased abundance 418 

of four different protein species of pyruvate kinase (FGSG_07528) in the agmatine 419 

medium, associated to downregulation of the glycolytic cycle as measured by the 420 

metabolomic study done by Suzuki et al. [43].  421 



At the same time, probably to generate precursors for DON synthesis, fatty acid and 422 

steroid synthesis such as acetoacetyl-coA thiolase (FGSG_09321)  in 3 isoforms as 423 

well as members of the farnesyl pyrophosphate pathway such as FGSG_09722 424 

(probable isopentenyl-diphosphate delta-isomerase), precursor for DON synthesis, 425 

were more abundant in the agmatine medium. Different isoforms of malate 426 

dehydrogenases (FGSG_02461 and FGSG_02504), possibly involved in the 427 

production of NADPH needed for oxidative stress balancing within the cell, were 428 

more abundant in agmatine. The abundance of malate dehydrogenase is also in 429 

accordance with the findings of Suzuki et al. [43] that, after supplementation of 430 

agmatine to the medium, found high level of oxalate that are possibly due to 431 

decreased abundance of oxalate decarboxylase observed at  the protein level in the 432 

agmatine medium (FGSG_06612). Moreover agmatine seems to control glutamate 433 

dehydrogenase (FGSG_07174) diminishing its abundance as was already noted in 434 

other eukaryotes [44]. 435 

Oxidative stress response related proteins differed significantly in the glutamic acid 436 

and agmatine medium: SOD (Mn type) (FGSG_04454) was less abundant in the 437 

agmatine medium. Catalases isoforms shifted strain-specifically without any 438 

consistently significant effect due to the medium, while glutathione metabolism was 439 

triggered by agmatine as suggested by the higher abundance of FGSG_13072 440 

(glioxylase 2) involved in the detoxification of methylglioxal and other reactive 441 

aldehydes as well as glutaredoxin (FGSG_01317) and URE2 (FGSG_02000) which 442 

acts as glutathione peroxidases [45].   443 

Inventories of secondary metabolites clusters have been generated in F. graminearum 444 

[46,47]. By measuring the toxin we could only indirectly monitor the tri cluster 445 

because no differentially abundant proteins of the cluster could be detected in our 446 



experiment. This was probably due to the sensitivity of our proteomic technique. A 447 

general regulator of secondary metabolite activation is glutamine synthetase 448 

(FGSG_10264) which can control secondary metabolites production in the closely 449 

related species F. fujikuroi [48]. Here different molecular species, all identified as 450 

glutamine synthetase (multiple isoforms), showed all increased abundance in the 451 

glutamic acid medium suggesting an occurring modulation  of the secondary 452 

metabolite production [48] in agreement with the increased abundance of some 453 

proteins belonging to secondary metabolite clusters. Indeed two key enzymes in the 454 

aurofusarin cluster were significantly more abundant in the glutamic acid medium. 455 

These results are consistent with the different degrees of pigmentation observed in our 456 

experiment and previously reported colouration of mutants 457 

(http://www.rasmusfrandsen.dk/fusarium_mutants.htm). Interestingly FGSG_02325, 458 

also belonging to the aurofusarin cluster, was more abundant upon agmatine 459 

exposure. This suggests that the cluster is not uniformly regulated at the protein level 460 

while those three genes were uniformly regulated by high nitrogen at the 461 

transcriptional level [49]. Homologues of FGSG_02325 have been found in different 462 

scaffolds in other fungal species [47], having diverse evolutionary, and possibly 463 

regulatory, origins. Further studies are therefore welcome to further elucidate the 464 

complex post transcriptional level of regulation of the aurofusarin cluster that can be 465 

indeed modulated by the availbale nitrogen source [50].  466 

A member of the butenolide cluster FGSG_08077 [51] was less abundant in agmatine 467 

and was shown to be regulated by tri6 in F. sporothrichiodes and under opposite 468 

regulation with DON in the wild type and the mgvkinase1 knockout mutant [52]. 469 

Assuming that the increased DON production is the result of increased activity of 470 

proteins involved in its synthesis, we can confirm that in our study we observed that 471 

http://www.rasmusfrandsen.dk/fusarium_mutants.htm


agmatine is modulating differentially secondary metabolite clusters favouring DON 472 

and for example repressing butenolide.  473 

This specific modulation can be linked to specific need of the pathogen to adapt its 474 

development during different ecological stages. Interestingly rubrofusarin has 475 

previously been described to have antifungal properties [53] that can be important 476 

during growth as saprophyte or before head colonization but not essential when, after 477 

infection, the pathogen needs to invade the plant tissue, requiring a timely and 478 

significant amount of DON production. Similarly butenolide was suggested to play an 479 

ecological role to protect the source of food of the infecting fungus against bacteria 480 

and other organisms [51].  481 

Ectophosphatases (like FGSG_07678) do show a wide array of glycosylation and 482 

other modifications and are thought to be involved in host-microorganism interaction 483 

and establishment of the infection [56]. Interestingly all the protein species identified 484 

as FSGS_07678 were less abundant in the agmatine medium (Fig. 5A). Similarly, 485 

secreted and structural fungispumin like FGSG_08122, similar to phiA protein from 486 

Aspergillus [57], potentially playing a role in coping with the host environment was 487 

less abundant in the agmatine medium. Interestingly this 2 FGSG numbers showed 488 

opposite behaviour at the mRNA level being upregulated in the agmatine medium (at 489 

4 days) [58]. A RNA binding protein (FGSG_08421) member of a putative network 490 

of likely-virulence factors [59] involved in RNA stability was also less abundant in 491 

the agmatine medium as well as two isoforms of CAP20 gene homologue 492 

(FGSG_05177) which is a pathogenicity gene in Colletothricum [60] and was found 493 

more abundantly on a proteomic study carried out on plant derived material [61]. A 494 

pathogenicity as well as stress related gene (FGSG_08737), Hex 1, a precursor of 495 

woronin body [62] showed extensive PTM regulation comparing the two media. 496 



Further studies on the functional protein modifications occurring on the main 497 

constituent of the woronin body may help elucidating the effect of post transcriptional 498 

modifications determined by agmatine on proteins with double role in the cell. (Fig. 499 

5B). 500 

Structural as well as secondary metabolites modulation caused by agmatine would 501 

favour the hypothesis that agmatine determines a restructuring of the cell towards a 502 

specialized configuration [63] which includes cell wall reshaping, diminishing 503 

activities that are specific for initial step of infection or for environmental competition 504 

which are not essential for the interaction with the host at a stage where the “toxin 505 

weapon” need to be released to further invade the host.  The identification of bulbous 506 

structures [63] that were also observed in different abundance in all the three isolates 507 

grown in agmatine in our study (supplementary figure 2) is probably the in vitro 508 

phenotypic manifestation of this process. Whether agmatine (or polyamines) is the 509 

triggering factor for structural changes necessary for the in planta interaction [64] 510 

remains to be investigated. The concentrations used in these study are within the 511 

range of reported agmatine concentration that can be found in wheat apical parts 512 

[65,66] supporting the physiological value of the study.  513 

 514 

 515 

 516 

 517 

Conclusion 518 

Strain diversity using proteomics has been seldomly explored [67,68]. Here we 519 

proposed to strengthen proteomic data by using multiple strains to study the effect of 520 

the nitrogen source on the proteome of the fungus. We successfully identified shared 521 



mechanisms of regulation induced by agmatine (Fig. 6) in all the strains which differ 522 

for geographic origin, genetic chemotype, morphology and date of isolation. Our 523 

work allowed to identify novel candidates for functional analysis that would put in 524 

relation the regulatory phenomena induced by agmatine with the ability of the fungus 525 

to adapt to the stage of toxin production in planta. With our study we showed the 526 

usefulness of exploring strain proteomic diversity within the species not only to 527 

characterize the level of diversity among strains with different phenotypic 528 

manifestations [69] but also to facilitate the process of inferring general biological 529 

mechanisms by identifying shared biological processes among the strains. 530 

Our study suggests also that strain variability can be the cause of some discordant 531 

results among laboratories using different strains, as 8% of the protein species showed 532 

opposite abundance ratio in the 2 media  among strains [23]. As the cost of omics 533 

experiments is dropping, experimental designs should possibly include strain diversity 534 

1) as a procedure to validate proteomic findings and; 2) as an exploratory tool to 535 

understand the level of diversity within a species. 536 

We are aware that by sampling a single time-point at a late cultural stage we cannot 537 

exclusively attribute the effects observed on the proteome to the agmatine 538 

supplementation. The proteome profile is the result of the nitrogen supplementation 539 

and the transformations of the metabolites that are changing the medium for the 8 540 

days of culture. Nonetheless it is evident that the quality of nitrogen source (and not 541 

the amount), being the only factor changing in our experiment, is the original cause of 542 

the shifts. The lack of notable agreement with a microarray data performed at 4 days 543 

growth stage [58], (supplementary table 4) confirms previous findings in 544 

filamentous fungi that suggested that at least 60% of differences in the protein profiles 545 

are not linked to mRNA abundance [70]. 546 



The drastic change of the proteomic fungal profile as well as the phenotype suggests 547 

that agmatine is affecting deeply cellular processes in the fungal cell. It is tempting to 548 

hypothesise an ecological role of agmatine (a polyamine) that potentially determines 549 

the specialization of structures necessary for massive toxin production that ultimately 550 

lead to complete reshaping of the fungal cell. Gardiner et al [14] showed that there is 551 

no direct correlation between the amount of polyamines in wheat cultivars and the 552 

toxin accumulation, but was unable to measure agmatine in the plant. Indeed toxin 553 

accumulation in planta depends on multiple factors including how the plant responds 554 

to infection and copes with toxin. The fact that, at least in vitro, the fungus changes 555 

drastically its status, indicates that targeting agmatine sensors can be a way to tackle a 556 

crucial step in the infection process of the fungus [11]. 557 
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 770 

Figure legends 771 

 772 

Fig 1. Pigmentation of the mycelium differs among strains and media. 773 

Mycelium phenotype when grown on PDA for 7 days or before protein extraction 774 

after growth for 8 days in liquid medium (see MM) containing as sole nitrogen source 775 

glutamic acid or agmatine. 776 

 777 

Fig. 2. Agmatine boosts TBs production in a strain specific manner. 778 

Overall trichothecene type B production (expressed in nanograms per mL of liquid 779 

medium) by the three strains measured at the end of the 8
th

 incubation day when 780 

grown on medium containing agmatine or glutamic acid as unique nitrogen source. 781 

The values are the result of 4 biological measures. SD is indicated. Significant 782 

differences within the same isolate are indicated with asterisc (p<0.01). 783 

 784 



Fig. 3. Agmatine medium better separates the strains reducing biological variation 785 

among replicates.  786 

(A).PCA performed on all the 381 proteins with single identification and ANOVA <= 787 

0.05.  PC1 (related to medium effect) accounts for 52.8% while PC2 for 14.3%; (B) 788 

Hierarchical clustering using on both dimensions Euclidean distance and complete 789 

linkage performed on all the 381 proteins with single identification (ANOVA <= 790 

0.05).  791 

 792 

Fig. 4. Each strain has a unique proteomic profile.  793 

Modified Venn diagram showing the number of shared and unique protein species 794 

that are respectively most abundant in agmatine or in glutamic acid medium for each 795 

of the three strains used.  796 

 797 

Fig. 5. Localization of protein species on the gel. 798 

A. Phosphatase FGSG_07678 protein species identified in this experiment. 799 

Numbers refer to the ID number on the 453 proteomic map. 800 

B.  Multiple isoforms of FGSG_08737, a precursor of woronin bodies implicated 801 

in different mechanisms within the cell. Numbers refer to the ID number on 802 

the 453 proteomic map. 803 

 804 

Fig. 6. The effects of agmatine on the fungal cell. 805 

Hypothetical model of the mechanisms of regulation induced by the agmatine 806 

medium. The comparison is done versus glutamic acid medium which is a standard 807 

nitrogen source used to induce toxins in vitro. In red the increased abundance and in 808 



blue the decreased abundance caused by agmatine of proteins identified in this work 809 

and associated to cell functions and activities. 810 


