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Abstract 14 

This review summarises the genetic methods used for chemotype determination of the 15 

main Fusarium type B-trichothecene producing species. Literature on Fusarium 16 

chemotype epidemiology over the last 15 years is reviewed in order to describe temporal 17 

and spatial chemotype distribution of these fungi worldwide. Genetic approaches used 18 

for chemotype determination are also reviewed and discussed, highlighting successes 19 

and potential pitfalls of the technique. Results from both genetic and chemical 20 

approaches are summarised to compare reliability, advantages and limitations of the two 21 

methods. Potential applications of genetic chemotyping to toxigenic Fusarium species 22 

are evaluated in the light of improving food safety of agricultural products. The use of 23 

chemotype determination in population studies, toxin prediction as well as for breeding 24 

purpose is described. 25 

 26 

Keywords: TRI genes, deoxynivalenol, nivalenol, acetylated deoxynivalenol, Fusarium 27 

culmorum, Fusarium graminearum species complex. 28 

 29 

Introduction 30 

 31 

Among the most studied and harmful toxins produced by Fusarium spp. are the 32 

sesquiterpene epoxides trichothecenes, secondary metabolites that inhibit eukaryotic 33 

protein synthesis and cause severe toxicosis in humans and other animals upon 34 
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ingestion of contaminated grain or their derivatives, affecting intestinal, immune 35 

endocrine and neurologic functions (Maresca et al., 2013). Trichothecenes are also 36 

highly phytotoxic and play a role in virulence on the host plants (Arunachalam and 37 

Doohan 2013; Desmond et al., 2008; Ilgen et al., 2009; Proctor et al 2009; Scherm et al., 38 

2011).  39 

Fusaria may produce different types of toxins depending on differences in the core 40 

trichothecene cluster (TRI cluster), which includes two regulatory genes (TRI6 and 41 

TRI10) and most of the biosynthetic enzymes required for the production of 42 

trichothecenes (Alexander et al., 2009, 2011; Kimura et al., 2003; Lee et al., 2001). 43 

Depending on the species and chemotype the number of functional core genes in the 44 

cluster varies. In F. graminearum, for example, the trichothecene gene cluster consists of 45 

10–12 contiguous genes as well as two other genes, Tri1 and Tri101, which are at 46 

separate loci outside the main cluster. Fusarium trichothecenes can be grouped in two 47 

classes based on the presence (B-trichothecenes) versus absence (A-trichothecenes) of 48 

a keto group at the C-8 position (Ueno et al., 1973). The difference is due to catalytic 49 

divergence of the cytochrome P-450 enzymes encoded by Tri1. While in F. graminearum 50 

Tri1p oxygenates both C-7 and C-8 (which results in a hydroxyl at C-7 and a carbonyl at 51 

C-8), in F. sporotrichioides, only C-8 is hydroxylated by Tri1p (Rep and Kistler, 2010). 52 

Among type B-trichothecenes, those having a significant impact on safety issues are: 53 

deoxynivalenol (DON), nivalenol (NIV), and their acetylated derivatives 3-54 

acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), and 4-55 

acetylnivalenol (4-ANIV, syn. fusarenone-X).  56 

Based on the type of trichothecene produced, different chemotypes have been described 57 

so far for Fusarium species: chemotype I, producing DON and/or its acetylated 58 

derivatives, and chemotype II, producing NIV and/or 4-ANIV (Sydenham et al., 1991). 59 

The DON chemotype can be further split into chemotype IA (producing 3-ADON) and IB 60 

(producing 15-ADON; Miller et al., 1991). The intact gene cluster in F. graminearum 61 

results in strain producing NIV where TRI13 cytochrome P450 monoxygenase and TRI7, 62 

the associated acetyltransferase, catalyze the C-4 hydroxylation and acetylation. In 63 

DON/ADON producers, TRI13 and TRI7 show insertions and deletions which determine 64 

the lack of functional enzymes able to hydroxylate in C-4 and transacetylate (Lee et al., 65 

2002). The acetylation position determining the 3-ADON or 15-ADON seems to be 66 

caused by differential activity of TRI8 which encodes for a C-3 esterase (Alexander et 67 

al., 2011).  68 
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Structural differences among toxin chemotypes may have relevant consequences on 69 

strain fitness, since the specific pattern of oxygenation and acetylation can modify the 70 

bioactivity and hence the (phyto)toxicity of these compounds (Alexander et al., 2009, 71 

2011; Brown et al., 2002, 2004; Ward et al., 2002; Lee et al., 2002). 72 

The discovery of a vast array of secondary metabolites produced by Fusarium species 73 

has fostered surveys of mycotoxin diversity in many different epidemiological and 74 

agricultural conditions. Surveys are routinely conducted in different geographic areas 75 

(Barros et al., 2012; Clear et al., 2000a, 2000b; Del Ponte et al., 2012; Desjardin et al., 76 

2000; Edwards, 2009; Giraud et al., 2010; Goertz et al., 2010; Kim et al., 1993; Ok et al., 77 

2011, 2014; Park et al., 2005; Seo et al., 1996; Tanaka et al., 1986; Vanheule et al., 78 

2014; Wagacha et al., 2010; Yoshizawa and Jin, 1995) to identify major toxigenic risks in 79 

affected grains. Indeed, trichothecenes are continuously found in cereals and derived 80 

food products around the world (Adejumo et al., 2007; Bosch et al., 1992; Gonzales et 81 

al., 2008; Nielsen et al., 2014; Poapolathep et al., 2008; Roscoe et al., 2008; Scudamore 82 

and Patel, 2009). DON and NIV now represent the two major concerns for safety of 83 

wheat and barley products, being the two most abundant toxins detected, as recently 84 

reported in a large survey on Canadian grains (Tittlemier et al., 2013). 85 

The purpose of this review is to summarise genetic methods used for chemotype 86 

determination of type B-trichothecene producing Fusarium spp. Papers published during 87 

the last 15 years and reporting on the chemotype identified for sets of isolates were 88 

selected, and information on the investigated area as well as on the species and crop 89 

have been retained to generate a virtual description of known chemotype distribution 90 

worldwide. Moreover, potential applications and limits of genetic chemotyping of 91 

Fusarium are discussed. 92 

We focus on the Fusarium graminearum species complex (FGSC, O’Donnell et al., 93 

2000) which presently includes at least 16 species (Aoki et al., 2012), F. culmorum and 94 

F. cerealis (Cooke) Sacc., since these species are considered among the most relevant 95 

pathogens on wheat and other cereals (Moss and Thrane, 2004, Osborne and Stein 96 

2007). Production of a type B tricothecene (nivalenol) has been reported also from F. 97 

poae (Peck) Wollenw. (Jestoi et al., 2008; Thrane et al., 2004; Vogelgsang et al., 2008b) 98 

and F. equiseti (Corda) Sacc. (Kosiack et al., 2005). However, since they rarely produce 99 

significant amounts of other trichothecene B toxins (Kristensen et al., 2005), genetic 100 

chemotype determination does not offer additional valuable information and it is 101 

therefore not treated in detail here. 102 
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 103 

Part I. 104 

Why determine the chemotype of an isolate? 105 

Determining the chemotype of an isolate is carried out for two main reasons:1) to obtain 106 

epidemiological information on the population colonising a crop in a given area, using 107 

chemotype as a proxy in the field; 108 

2) to inform on the toxigenic risk that the presence of a certain chemotype may 109 

determine on the food or feed that is produced, with the long term perspective of 110 

developing preventive models to decrease the toxigenic risk. 111 

Ward et al. (2002) demonstrated that polymorphism within TRI genes is trans-specific 112 

and appears to have been maintained by balancing selection acting on chemotype 113 

differences. Different trichothecene-type isolates do not just have different trichothecene 114 

profiles but can in some instances be regarded as different genetic populations (Mishra 115 

et al., 2009), even if they co-occur within the same area and some gene flow may take 116 

place between them as shown using VNTR and RFLP markers (Gale et al., 2007; 117 

Karugia et al., 2009b; Ward et al., 2008). Gene flow between different populations, yet 118 

within a species, seems comparatively limited even if they co-exist, although the factors 119 

that inhibit gene flow between populations in the same area are unknown so far (Karugia 120 

et al., 2009b). This original observation leads to the idea that monitoring chemotype 121 

diversity can be informative for characterising a field population. Indeed, the evolutionary 122 

dynamics of the core trichothecene cluster were demonstrated to be essentially 123 

uncoupled from the rest of the genome (Ward et al., 2008, Proctor et al., 2009). 124 

However, as long as recombination frequency is low, chemotype could be considered as 125 

a marker for a genomic background specific to populations or individuals that are 126 

distinguished by a variety of phenotypic traits beyond chemotype. Because 127 

trichothecene production is associated with the spread of the disease after initial 128 

infection in wheat (Mesterházy, 2002), and trichothecene production is a factor affecting 129 

not only FHB but also seed diseases (Wang et al., 2006), finding a population with 130 

higher toxin production may suggest a stronger impact of the disease. For example, F. 131 

graminearum populations with 3-ADON chemotype seem to have a higher average 132 

toxigenic capacity in wheat and barley (as well as growth rate) in North America 133 

compared to NIV and 15-ADON populations (Foroud et al., 2012; Gilbert et al., 2010; 134 

von der Ohe, 2010; Ward et al., 2008). Conversely, 3-ADON populations do not differ for 135 

pathogenicity and sexual reproduction in different Fusarium species from different 136 
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locations (Alvarez et al., 2010; Gilbert et al., 2010; Purahong et al., 2014; Schmale et al., 137 

2011; Spolti et al., 2014b; von der Ohe, 2010). On another set of isolates, differences in 138 

the aggressiveness among chemotypes were reported by Malihipour et al. (2012), who 139 

suggested a gradient of aggressiveness from NIV to 15-ADON to 3-ADON chemotypes. 140 

Analysing populations carrying the NIV chemotype compared to local DON populations, 141 

lower virulence for the NIV populations were observed in F. asiaticum from China (Puri et 142 

al., 2012; Shen et al., 2012; Zhang et al., 2012), in F. graminearum (Foroud et al., 2012; 143 

Miedaner et al., 2008), as well as in F. culmorum in rye (Miedaner and Reinbrecht, 144 

2001). On the contrary, NIV population did not differ in pathogenicity to its DON 145 

population counterpart when two different pathogenicity scorings were used (Purahong 146 

et al., 2014). Discrepancies between results on aggressiveness among chemotypes can 147 

be attributed to the use of chemotype as a proxy of a population. Depending on the gene 148 

flow and variability of a certain population in a sampled area, pathogenicity characters 149 

may or may not be associated with chemotype data. Aggressiveness is a factor being 150 

influenced not only by the characters of the pathogen, but also by its interaction with the 151 

host and the environment. Indeed, when large set of resistant cultivars were assayed, 152 

the underlying genetic resistance seemed cross-applicable between chemotypes (Clear 153 

et al., 2013; Foroud et al., 2012; Horevaij et al., 2011; Perkowski et al., 1997). 154 

In order to understand which factors do favour persistence and spread of a chemotype, 155 

the hypothesis was formulated that some fitness characters associated with a 156 

chemotype can favour its establishment in a given area, as observed in Canada and 157 

USA (Puri and Zhong, 2010; Ward et al., 2008), as well as in China for barley (Yang et 158 

al., 2008; Zhang et al., 2010a, 2010b) and wheat (Zhang et al., 2012). Indeed, regional 159 

difference in chemotype distribution may be influenced by environmental and cultural 160 

practices since chemotype variation may confer an adaptive potential to these 161 

pathogens and it is likely driven by natural selection: recent migration and introgression 162 

were suggested to be the way for new chemotypes with adequate fitness to become 163 

established into the resident populations (Desjardins et al., 2008; Gale et al., 2011; 164 

Zhang et al., 2012).   165 

Of course chemotype diversity cannot per se explain all differences that are observed 166 

between groups of isolates with different phenotypic characters.. Comparison between 167 

population studies and chemotype description is needed (Wang et al., 2011) to clarify the 168 

level of variability of a chemotype within a group.  169 
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Working on a F. culmorum population from an international collection, Miedaner et al. 170 

(2013) showed that isolates with 3-ADON and NIV chemotype have a similar genetic 171 

background confirming that gene flow occurs also in F. culmorum. One hypothesis on the 172 

stability of F. graminearum 15-ADON chemotype status in New York state is that the 173 

original character favouring the spread of the 3-ADON chemotype in North America 174 

(Ward et al., 2008) has been transferred to the 15-ADON population, therefore enabling 175 

a balance between the two populations (Spolti et al., 2014b). Mechanistic studies are 176 

now starting to explore changes by taking into account genetic variability represented by 177 

chemotypes at the proteome and transcriptome level (Krishna et al., 2012; Pasquali et 178 

al., 2013b) as well as in gene knock-outs (Abou Ammar et al., 2013; Pasquali et al., 179 

2013a). Similarly, the activity of toxin inhibiting compounds has been tested taking into 180 

account the different chemotypes (Boutigny et al., 2009, 2010; Kulik et al., 2014). These 181 

comparative studies may facilitate the understanding of evolutionary forces acting on the 182 

selection of the characters and at the same time may shed light on the mechanisms 183 

favouring a certain chemotype in a field, consequently affecting the amount and quality 184 

of toxins found in grains. 185 

Among the factors that may have an effect on chemotype selection, fungicides have 186 

been suggested by Gale et al. (2007) and their effect was investigated in different 187 

papers. With respect to azoles, strobilurins and isopyrazam there seems not to be an 188 

effect of chemotype on resistance (Amarasinghe et al., 2013; Beyer et al., 2014; Dubos 189 

et al., 2011, 2013; Kulik et al., 2012; Spolti et al., 2014a). On the contrary, carbendazim 190 

(MBC) resistance, coupled to higher toxin production (Zhang et al., 2009), seems to be 191 

associated with the 3-ADON chemotype in Asia in F. graminearum and F. asiaticum 192 

where MBC sensitivity differed between NIV and DON chemotypes (Zhang et al., 193 

2013a), but this difference was not evident in other studies (Qiu et al., 2014; Wang et al., 194 

2010). Moreover, the 3-ADON chemotype revealed significant advantages over F. 195 

asiaticum producing NIV, including higher resistance to benzimidazoles (Zhang et al., 196 

2012). 197 

On a small set of isolates, chemotypes differed for fitness characters such as a higher 198 

resistance to thermal shock by the 3-ADON chemotype in F. graminearum (Vujanovic et 199 

al., 2012), or a higher adaptation to oxidative stress by the NIV chemotype (Ponts et al., 200 

2007, 2009). Whether these characters are truly associated with chemotype has to be 201 

further investigated on a larger set of isolates. 202 
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Environmental factors may influence chemotype success.  It has been proposed that 203 

chemotype specialisation may be driven by a certain host (Yli-Mattila et al., 2013). NIV-204 

producing isolates were found to be more aggressive towards maize compared to DON-205 

producers (Carter et al., 2002) and were associated, in F. asiaticum, preferentially to 206 

maize in China (Ndoye et al., 2012). Being NIV a pathogenicity factor in maize (Maier et 207 

al., 2006), findings that associate an increase in NIV population in areas where 208 

preceding crops was maize (Audenaert et al., 2009; Pasquali et al., 2010, Sampietro et 209 

al., 2011) are not surprising, despite this association is not consistent in all sampling 210 

worldwide. NIV chemotype has been also associated with rice cultivation (Davari et al., 211 

2013; Gale et al., 2011, Lee et al., 2009; Umpierrez et al., 2013). Similarly Nielsen et al. 212 

(2012) reported a higher detection of 3-ADON chemotype in oats compared to barley 213 

and wheat in northern European conditions. Other reasons for chemotype spread has 214 

been postulated by Lee et al. (2012), suggesting that the persistence of the NIV 215 

chemotype in F. asiaticum (lineage 6) of FGSC is due to its role as a fitness factor 216 

towards other microbial communities. By comparing different species within the FGSC in 217 

wheat, Goswami and Kistler (2005) found that NIV was accumulated less abundantly by 218 

similarly aggressive isolates, hence speculating on its major toxicity accounting for 219 

similar pathogenicity results. It is nonetheless evident that aggressiveness is not due to 220 

toxin type and production as showed on F. culmorum in barley and rye by Miedaner et al. 221 

(2004). Gilbert et al. (2011) reported that under controlled conditions, 3-ADON isolates of 222 

F. graminearum colonise more abundantly the plants when co-inoculated with 15-ADON 223 

at 28°C but not at 20°C. This finding was not confirmed in nursery conditions (Clear et 224 

al., 2013) and on a different set of isolates (Spolti et al., 2014b). By examining weather 225 

variables over the 5-year period on a set of field studies, Gilbert et al. (2014) found no 226 

correlation between recovery of a chemotype and temperature or precipitation. It seems 227 

therefore difficult to find a clear effect of climatic conditions on chemotype selection. 228 

Within a food safety perspective, understanding the toxigenic potential of the isolates 229 

collected from a given area (field, region, county, state, and beyond) may help in guiding 230 

risk assessment on toxin contamination at the field/regional scale. Two examples that 231 

have been proposed to demonstrate the utility of monitoring chemotype are:  232 

1. the appearance of a chemotype able to produce a toxin with higher toxigenicity in a 233 

certain environment [e.g., the toxicity of nivalenol compared to deoxynivalenol 234 

(Minervini et al., 2004) as well as reports of a NIV-producing population in 235 

Luxembourg (Pasquali et al., 2009), US (Gale et al., 2011), Uruguay (Umpierrez-236 
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Failache et al., 2013; F. asiaticum), Brazil (Del Ponte et al., 2012) and China (Lee et 237 

al., 2001; Zhang et al., 2012; F. asiaticum) suggesting the need to monitor for the 238 

increased risk of NIV contamination in the grains].  239 

2. the presence of a population of the pathogen that is able to produce on average a 240 

higher amount of toxin on a certain crop [e.g., the case of the 3-ADON population in 241 

US and Canada (Foroud et al., 2012; Gilbert et al., 2010; von der Ohe, 2010; Ward 242 

et al., 2008)]. 243 

It is therefore evident that a continuous monitoring of the chemotype situation may well 244 

inform on the risk and the type of population that are present over a certain environment. 245 

For this reason, a large set of methods were developed and surveys around the world 246 

were carried out. This set of data is considered in the second part of the review. 247 

 248 

Part II (methods and surveys) 249 

Molecular genetics methods 250 

 251 

Detecting the presence of a certain chemotype requires a chemical method, based on 252 

the identification of the product in the substrate or directly in the grain. In some instances 253 

chemical analysis can be substituted with antibody-based detection methods, despite 254 

reliability of different kits is not fully confirmed and acetylated forms are often cause of 255 

cross reactivity phenomena (Tangni et al., 2010). Another complementary method is 256 

based on the determination of the genetic structure of the isolate(s) using PCR-derived 257 

methods applied to the pure culture or, more recently, also to the whole grain. Chemical 258 

analytical methods as well as rapid alternative methods have been revised extensively 259 

elsewhere (Cigić and Prosen, 2009; Josephs et al., 2004; Koch, 2004; Köppen et al., 260 

2010; Krska et al., 2001; Maragos and Busman, 2010; Ran et al., 2013) hence they will 261 

not be discussed here. 262 

The history of chemotype diversity studies shows that while earlier works were focused 263 

on the strain production biochemistry, the appearance of seminal papers on the genetic 264 

determinants of the toxin [the genes involved in trichothecene production, mainly studied 265 

in F. sporotrichioides (Desjardins, 2009)] allowed researcher to postulate and finally to 266 

develop tools to differentiate chemotypes based on gene diversity. This information 267 

coupled with PCR flexibility and accessibility (Nicholson et al., 2003) led to a significant 268 

shift towards the use of genetic chemotyping methods. 269 
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The most widely used approach so far aims at detecting strains isolated from plant 270 

tissue. It consists in the isolation of single spore colonies from infected spikes and the 271 

determination of the chemotype on the isolated strains. Historically this approach led to 272 

the identification of trichothecene type B isolates from different crops by measuring the 273 

toxin produced by each isolate in vitro (Faifer et al., 1990; Gang et al., 1998; Mirocha et 274 

al., 1989). More recently, by genetic chemotyping, often combined to chemical 275 

confirmation, it has been feasible to obtain information on the distribution of a certain 276 

chemotype within a country (Zhang et al., 2012), a field (Suga et al., 2008) or on seed 277 

samples (Wang et al., 2012). 278 

 279 

The first PCR method developed for discriminating between the DON and the NIV 280 

chemotypes (with no distinction between 3- and 15-ADON) was developed by analysing 281 

the polymorphism of TRI genes, particularly the TRI7 gene, which has insertions in the 282 

non-coding region in DON producers but not in NIV producers. Therefore, a simple 283 

sequence length assay allows to distinguish between NIV and DON chemotypes (Lee et 284 

al., 2001). 285 

In 2002, the respective function of TRI7 and TRI13 was demonstrated to be linked to 286 

chemotype diversity (Lee et al., 2002), suggesting that both genes could be used for 287 

genetic chemotype distinction. Based on this finding and on additional sequencing work, 288 

Chandler et al. (2003) developed a set of primers to amplify TRI7 and TRI13 genes and 289 

successfully identified DON and NIV chemotypes in F. graminearum, F. culmorum, and F. 290 

cerealis by a double assay. Similarly, Waalwijk et al. (2002) developed a TRI13 primer 291 

pair to differentiate between DON and NIV chemotype according to difference in length 292 

of the amplified product. 293 

A further optimization of the method developed by Chandler et al. (2003) was proposed 294 

by Quarta et al. (2005, 2006). A multiplex PCR assay, based on primer pairs derived 295 

from the TRI3, TRI5, and TRI7 genes allowed to identify 3-ADON, 15-ADON and NIV 296 

among F. graminearum, F. culmorum, and F. cerealis. The assay was also validated on 297 

plant material (Quarta et al., 2006). 298 

After confirming that the TRI set of genes coevolved independently in the three 299 

chemotypes, Ward et al. (2002), based on the finding that reciprocally monophyletic 300 

groups (corresponding to each of the B trichothecene chemotypes) were strongly 301 

supported (bootstrap scores _93%) in TRI3, TRI11, and TRI12 gene trees, developed a 302 

method based on the polymorphism of two of these genes. TRI3 and TRI12 are at the 303 
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edges of the cluster and are well conserved within the chemotypes. The method proved 304 

to be effective on F. culmorum, F cerealis as well as on members of the FGSC (Starkey 305 

et al., 2007). The analysis of polymorphisms in two genes of the cluster improved the 306 

robustness of the assay. 307 

The primers were further optimised for use in a Luminex® assay (Ward et al., 2008). The 308 

multiple gene analysis successfully detected discrepancies among TRI3 and TRI12 309 

polymorphism in strains obtained from South Africa suggesting the presence of hybrid 310 

species (Boutigny et al., 2011). Similarly, new species were detected in Asia and Africa 311 

by combining the observation of TRI cluster recombination (O’Donnell et al., 2008; Yli-312 

Mattila et al., 2009) with aspecific signals from species specific identification probes from 313 

the Luminex assay.The primer couple developed by Li et al. (2005) can discriminate 314 

DON and NIV (3-ADON and 15-ADON cannot be distinguished by this assay). The 315 

assay is based on the polymorphism found in the intergenic region between TRI5 and 316 

TRI6, generating products of two sizes according to the chemotype. It can be coupled 317 

with other primers able to amplify a single chemotype as those used in Jennings et al. 318 

(2004a, b), that were derived from Chandler et al. (2003) allowing discrimination of the 319 

three chemotypes. 320 

Another method based on different sizes of insertions in the TRI13 gene was developed 321 

by Wang et al. (2008). The advantage of this method consists in the use of a single 322 

primer pair, being the detection of the three chemotypes linked to the presence of an 323 

insertion that is variable according to the chemotype. The method was shown to 324 

distinguish Chinese isolates of F. graminearum and F. culmorum strains. 325 

An alternative method based on TRI3/TRI6 polymorphism was developed by Suzuki et 326 

al. (2010) and aimed to differentiate simultaneously F. asiaticum and F. graminearum as 327 

well as their chemotypes. This approach proved successful for Japanese (Suzuki et al., 328 

2010) and Chinese (Puri et al., 2012) isolates in a multiplexing approach.  329 

More recently, also polymorphism in the TRI11 gene were used for chemotyping, as 330 

reported by Zhang et al. (2010a) on F. graminearum isolates obtained from barley, and 331 

subsequently used by Talas et al. (2011, 2012a). Similarly, Wang et al. (2012) presented 332 

another multiplex assay based on the same gene. 333 

A very promising approach is to develop qPCR multiplex detection and quantification of 334 

the chemotypes. This would in principle allow to directly screen grains for the abundance 335 

of each chemotype without further isolation of contaminating strains. A qPCR primer and 336 

TaqMan® probe set, based on TRI12 polymorphism, was developed by Kulik (2011) to 337 
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allow chemotype quantification in planta. A SYBR® green method based on the same 338 

gene was used by Nielsen et al. (2012) to quantify chemotypes within a set of grains 339 

from Denmark, suggesting also potentialities for studying the evolution of isolate 340 

distribution in grain samples collected from historical seed collections. Both methods 341 

have been used on isolates sharing similar geographic origin, but potentially they can be 342 

used to quantify chemotypes in the field anywhere. 343 

Table S1 summarises the methods for chemotype determination and lists primer set 344 

used. 345 

 346 

Critical points in genetic chemotyping assays 347 

It is important to underline that without a proper chemical identification of the different 348 

trichothecene B types, the genetic methods cannot be considered per se sufficient to 349 

determine precisely the ability to produce the toxin by any isolate. Indeed, a number of 350 

reports have integrated both chemical and genetic determination of the chemotype to 351 

overcome this issue. 352 

As many researchers pointed out, the production of a toxin does not always correspond 353 

to a certain genetic chemotype (Tan et al., 2012). Sometimes various amounts of 354 

different toxins (such as NIV and DON) can be produced by the same isolate (Gilbert et 355 

al., 2001; Mugrabi de Kuppler et al., 2011). Moreover, several studies reported the co-356 

production of acetylated forms by single strains, although in different relative amount 357 

(Alvarez et al., 2009; Christ et al., 2011; Kawakami et al., 2014; Korn et al., 2011; 358 

Mugrabi de Kuppler et al., 2011; Sugiura et al., 1990; Spolti et al., 2014b; Szécsi et al. 359 

2005; Talas et al., 2012b; Ward et al. 2002; Yli-Mattila et al., 2009).  360 

Llorens et al. (2006) reported also co-production by modifying temperature and growth 361 

conditions, confirming the role of temperature in influencing toxin production (Walker et 362 

al., 2001). Indeed, cultural and laboratory parameters may play a role in the quality of 363 

toxin produced (Llorens et al., 2004). At the same time also the crop influences the toxin 364 

found as in the case of potato, which transforms DON into NIV, probably by enzymatic 365 

activity (Delgado et al., 2011). 366 

Nonetheless, chemical methods may have limitations related to the number of 367 

processable samples and the identification of optimal conditions for toxin production. If 368 

the methods are applied on single strains and not directly on the grains, similar problems 369 

as those described for genetic chemotype may occur, since toxin production in vitro is 370 

extremely variable and may not represent the real toxigenic potential of a given strain 371 
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(Malbrán et al., 2013; Mirocha et al, 1989; Müller and Schwadorf, 1993). Only field 372 

inoculation in planta can show the real toxigenic capacity of each strain (Gang et al., 373 

1998). In fact, it has been reported that toxin production is strain-dependent as well as 374 

substrate-dependent in many Fusarium species (Vogelgsang et al., 2008a). Toxin 375 

production is often variable among isolates (Spolti et al., 2014b) and some strains do not 376 

produce any toxin under laboratory conditions (Tan et al., 2012). Therefore, research on 377 

the effects of substrates on the induction/repression of toxin (Gardiner et al., 2009a; Jiao 378 

et al., 2008; Kawakami et al., 2014; Pinson-Gadais et al., 2008; Ponts et al., 2006; 379 

Sakamoto et al., 2013; Suzuki et al., 2013; Tsuyuki et al., 2011) as well as on chemical 380 

and physical parameters (Gardiner et al., 2009b; Hope et al., 2005; Marin et al., 2010; 381 

Ryu and Bullerman, 1999; Schmidt-Heydt et al., 2011) are active areas of research. 382 

 By considering the history of application of the different genetic chemotyping methods, it 383 

is evident that while on average all methods did work quite efficiently, inevitably some 384 

failures or contradicting results were obtained by using different methods. For example, 385 

the methods developed by Lee et al. (2001) and Chandler et al. (2003), when used by 386 

Desjardins et al. (2008) showed a different level of reliability in assigning the chemotype 387 

to maize isolates from Nepal. Despite both primer sets were designed on the sequence 388 

of the TRI13 gene (a pseudogene in DON  producers) Lee’s primers that are located 389 

closer to the insertion/deletion sites of degeneration failed to amplify due to the lower 390 

degree of stability of the region, thus generating potential false negatives. 391 

Similarly, the TRI13 length polymorphism method developed by Wang et al. (2008) 392 

provided inconsistent results in identifying the three chemotypes. The method was 393 

effective when applied to Chinese isolates (Wang et al., 2008) but failed to identify 15-394 

ADON isolates of F. graminearum sensu stricto (s.s.) outside Asia (Pasquali et al., 2011) 395 

and were probably effective only on F. asiaticum (Amarasinghe et al., 2011), due to a 396 

difference in the size of insertion in the TRI13 gene. 397 

The method by Quarta et al. (2006) showed contrasting results with some Argentinian 398 

isolates giving DON/NIV chemotypes while producing only DON by chemical analysis 399 

(Reynoso et al., 2011) as well as with two isolates from barley and wheat from Italy  400 

(Quarta et al., 2006), and with some Polish strains (Stephien et al., 2008). 401 

So far, the method developed by Ward et al. (2002) and further improved and 402 

implemented in a Luminex® system (Ward et al., 2008) proved very reliable in 403 

discriminating polymorphisms linked to chemotype and it is probably the most used 404 

worldwide on international collections of B-clade isolates. Alexander et al. (2011) 405 
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reported a misamplification for three F. meridionale isolates, suggesting that methods 406 

targeting the functional domain generating the toxin may further improve the precision of 407 

a PCR test linking effectively a certain mutation / polymorphism in a gene with its 408 

function within the process of toxin biosynthesis. The recent identification of the TRI8 409 

catalytic region as determinant of the 3-ADON generation (Alexander et al., 2011) may 410 

be promising, since a genetic method based on functional domains would further 411 

increase the reliability of the analysis. For a PCR assay to have broad utility, it must be 412 

able to detect not only an allele that results in an inactivated protein, but all the alleles 413 

resulting in an inactivated protein - an incredibly difficult task indeed (Reynoso et al., 414 

2011). Despite that, knowledge on the linkage relationships and evolutionary dynamics 415 

involving selection on sets of genes at either end of the core trichothecence cluster 416 

allows to confidently use the most used method so far which includes TRI3-TRI12 417 

polymorphism and well as those based on TRI3 and TRI7 polymorphisms.It is evident 418 

that a continuous monitoring using complementary methods is still needed (Nicholson et 419 

al., 2004; Desjardin et al., 2008), therefore PCR validation of the method should rely on 420 

chemical measures of toxin produced by each tested isolate. 421 

 422 

Surveys 423 

Chemotype studies worldwide have increased 20 times over the last 10 years. At 424 

present, data on chemotype distribution of FGSC are available from all continents (see 425 

Table 1 for details), being F. graminearum s.s. the most studied species. Given the lower 426 

general importance of F. culmorum as primary cause of FHB, less work has been 427 

devoted to chemotype determination in this species. However, since it was shown that 428 

toxin translocation may occur from roots (Covarelli et al., 2012; Winter et al., 2013) 429 

further attention on this species should be expected where environmental conditions 430 

favour foot and root (crown) rot disease (Scherm et al., 2013). Chemotype determination 431 

and population studies can therefore help in managing also crown rot diseases and their 432 

associated toxins (Rebib et al., 2014).  433 

Historically, since the pioneering studies by Mirocha et al. (1989) and by Miller et al. 434 

(1991), it became apparent that a regional relationship could be sometimes postulated 435 

between the geographic origin and the production of of NIV or 15-ADON or 3-ADON as 436 

the major isomer (Bottalico and Perrone, 2002). This phenomenon can be due to 437 

different species colonising the region as not all species are able to produce all 438 

chemotypes (see Aoki et al., 2012 for a review in FGSG). For this reason a shift in 439 
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species could also be associated to a shift in toxin type (Astolfi et al., 2011; Audenaert et 440 

al., 2009; Beyer et al., 2014; Bottalico and Perrone, 2002; Malihipour et al., 2012; 441 

Pasquali et al., 2010; Yang et al., 2008; Yli-Mattila, 2010). 442 

From an analysis of the chemotyping studies carried out since 2000, it is evident that the 443 

majority of reports were carried out on wheat while investigation on other cereals are 444 

more limited, although scattered information is available also for crops that are not 445 

notoriously target of trichothecene B contamination, such as asparagus, banana, etc..  446 

Information from all continents are available but not all reports include complete 447 

information on the isolates analysed nor precise characterisation of the species that 448 

sometimes is based only on morphological observations or on the use of putatively 449 

species-specific primers, hence making it impossible to further using the dataset for 450 

comparison. It is desirable that a more coordinated effort, leading to common protocols 451 

for sampling, chemotype determining and data reporting in a more accessible way could 452 

facilitate the effort of understanding which factor do favour establishment and 453 

persistence of a certain chemotype. 454 

The usefulness of genetic chemotyping studies was proven by the identification of novel 455 

groups and species. For instance, the NIV population reported in Louisiana by Gale et al. 456 

(2011) was then identified as a new species using multiple genotyping techniques 457 

(Sarver et al., 2011). Similarly, studies pinpointing inconsistencies among results of 458 

chemotyping on two TRI genes coupled with species-specific detection probes led to the  459 

identification of a new species in Ethiopia (O'Donnell et al., 2008). 460 

Shift in species population has been reported in many surveys (Fredlund et al., 2013; 461 

Nielsen et al., 2011; Xu et al., 2005), but chemotype shift in certain areas is somewhat a 462 

novel report that would probably become more popular in the future (Beyer et al., 2014; 463 

Guo et al., 2008; Nielsen et al., 2012; Waalwijk et al., 2002; Ward et al., 2008). Analysing 464 

historical samples, Nielsen et al. (2012) showed that the presence of a certain 465 

chemotype is associated to historical periods. It is advisable that the availability of faster 466 

and more effective tools for chemotype determination would facilitate the identification of 467 

factors driving such shift. 468 

For practical purposes, studying chemotype diversity for breeding against FHB 469 

susceptibility has been acknowledged (Gilbert et al., 2010; Gosman et al., 2010; He et 470 

al., 2013; Spolti et al., 2012; van der Ohe et al., 2010). In particular, testing local genetic 471 

diversity including toxin abilities in breeding programmes is considered essential to 472 

develop locally adapted varieties (Horevaj et al., 2011). Indeed, differences in the 473 
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characteristics of the pathogen (species/isolate) used in breeding programs (Warzecha 474 

et al., 2010) may affect reaction of host genotypes, leading to erroneous results, and 475 

therefore explaining different reactions to FHB in different geographical zones 476 

(Malihipour et al., 2012). 477 

Whether chemotype diversity needs to be assessed constantly is a matter of debate. 478 

Studying the prevalence of 15-ADON and 3-ADON chemotype on barley, Clear et al. 479 

(2013) found no strong effect on the chemotype prevalence as being determined by 480 

resistance factors from the plant, suggesting on the contrary a potential role of micro-481 

environmental factors. While it is evident that highly resistant cultivars do not recognise 482 

chemotype diversity as the pathogenic process is hindered (Foround et al., 2012), 483 

breeding activities that will likely explore the susceptibility to toxin accumulation need to 484 

consider also chemotype diversity as well as species interaction (Xu et al., 2007). Given 485 

the challenge to toxin contamination posed by new evolving populations of F. 486 

graminearum (Foroud et al., 2012), breeding programs should include a panel of isolates 487 

and chemotypes to better cover natural variability of populations causing FHB. 488 

 489 

Future challenges 490 

By acknowledging the potential informativeness of chemotype diversity, the table 491 

presented here should be considered with caution as it includes experiments carried out 492 

with different rigour, different methods and using different techniques. It would be 493 

therefore extremely valuable to generate a technically homogeneus and accessible map 494 

of chemotypes where homogeneous data and methods could allow a true comparison of 495 

the situation during years and among countries. 496 

A small step towards improving research on chemotype diversity would be to include 497 

these data in any fungal collection. Instruction on how the sampling was performed as 498 

well as detailed information on cultural practices and location is indeed essential in order 499 

to address questions such as which conditions are more favourable to a given 500 

chemotype. Indeed, understanding which factor do play a role in chemotype prevalence 501 

may help limiting the toxigenic risk associated to the spread of a certain chemotype. 502 

Further research on the tools for chemotype determination is needed. The different 503 

methods developed so far provide information that are at least partially discordant and 504 

may fail to predict real toxin production by the strains. At the same time chemical 505 

conditions simulating the behaviour of a strain in the field are not defined yet and do not 506 

allow any preventive approach. Considering the need for preventive tools to limit 507 
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mycotoxin contamination in food and feed, it appears essential developing molecular 508 

tools that are able to predict toxin contamination at an early stage of infection in the field 509 

based on the chemotype spread over a certain area. At the same time, it would be 510 

important to identify conditions regulating toxin production in the field, by taking into 511 

account the environment/plant/pathogen interactions. 512 

Paramount in a food safety perspective is the role that the host plant can play in 513 

transforming a toxin, hence determining a different level of toxin contamination. The 514 

ability of potato to transform DON into NIV (Delgado et al., 2010) due to enzymatic 515 

activity requires further attention. Similarly, the general issue of masked mycotoxins 516 

(Berthiller et al., 2013), which can be partially prevented by monitoring the producing 517 

microrganism and not the product itself or all its closely related metabolites in any 518 

sample, requires further understanding at both the toxicological and epidemiological 519 

viewpoints. 520 

A larger coverage of crops and environments where Fusarium species may produce type 521 

B-trichothecenes is also needed in order to better monitor all potential toxigenic risks in 522 

food and feed. It has been emphasised that understanding host-specific differences in 523 

pathogen composition is crucial in the development of pathogen and mycotoxin control 524 

strategies, and could lead to novel approaches to achieve improved resistance in 525 

commercial cultivars (Boutigny et al., 2011). 526 

Exploitation of molecular approaches to chemotype quantification such as those based 527 

on qPCR in grains may help guiding epidemiological studies and may lead to a better 528 

understanding of correlations between fungal populations and toxin production (Yli 529 

Mattila et al., 2008, 2009b). There is a need for rapid and cheap tools able to predict 530 

effectively toxin productivity in the field. Bakan et al. (2002) attempted to build a marker 531 

for isolates based on strain toxin productivity, linking polymorphism of a regulatory region 532 

to toxin production but no further validation of the method was carried out. As toxin 533 

production is subject to a series of regulation layers (Audenaert et al., 2013; Gardiner et 534 

al., 2009a, 2009b; Hope et al., 2005;  Mereji et al., 2010;  Reverberi et al., 2010; Seong 535 

et al., 2009) actual diagnostic methods based exclusively on DNA polymorphism can 536 

probably be used as a simple warning method for toxin risk. Despite mapping a 537 

population by genetic chemotyping would evidently be only an approximation of the field 538 

situation, it can result anyway in an effective monitoring of potential food threats. 539 

Finally, the discovery of novel metabolites belonging to type B-trichothecene (Fruhmann 540 

et al., 2014) is also suggesting that genetic chemotyping determination requires 541 
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continuous monitoring of the markers used that need to be coupled with genetic 542 

research on diversity in order to develop novel and more precise markers for toxin 543 

prevention. 544 
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