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Motivation

Since the development of first computers, scientists have tried to exploit their
ability of performing very fast calculations, in order to simulate those systems
whose dynamics, nor even the equilibrium states, could not be resolved analyt-
ically [1]. The concurrent exponential growth of computational power through
the decades and the evolution of more and more efficient simulation methods
allowed people, over the years, to address problems of always increasing com-
plexity.
Biological molecules, like proteins, are a typical example of a complex system, as
they are usually constituted of dozens to hundreds of thousands atoms, which
interact in a non–trivial way by means of both long–range and short–range, at-
tractive and repulsive forces [2, 3]. As a consequence of such a variety of interac-
tions, from an energetic point of view proteins are a highly frustrated collection
of atoms, whose equilibrium and dynamical properties need to be studied using
those simulation techniques mentioned before [4, 5, 6, 7].
One of these techniques is classical Molecular Dynamics where, for each atom of
a system, the trajectory in space is computed as a function of the time, via the res-
olution of Newton’s equations of motion. Unless otherwise specified, Molecular
Dynamics will be the exploited technique throughout all the following chapters.

In the field of the physics of biomolecules, an open question concerns the
characterization of the conformational properties of the denatured state of pro-
teins, namely the collection of all the disordered phases populated by the polipep-
tides during their thermal motion inside the cell [8]. Indeed, the study of the de-
natured state is an extremely important task, as it is critical for determining the
folding kinetics of proteins and their thermodynamic stability [9], their ability to
cross lipid bilayers or their turnover in the cell, [10] or even their topology when
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xii Thesis overview

proteins are finally folded into the native state, after being synthetized by the
ribosomes inside the cell [11, 12, 13, 14, 15].
In laboratory, the characterization of the denatured state is far from being straight-
forward. Actually, under biological conditions – namely at T = 300 K, in water
– the denatured state is metastable, due to its exceedingly short half–life (which
typically ranges from milliseconds to some seconds for most proteins). This fea-
ture severely limits the feasibility of most used experimental techniques, such as
Nuclear Magnetic Resonance (NMR), X–Ray Crystallography, Fluorescence Res-
onance Energy Transfer (FRET) or Small–Angle X–Ray Scattering (SAXS), which
do not possess a sufficiently high time–resolution to ”take a photograph” of the
proteins when they still are in their denatured phase.
A typical approach is then to stabilize the denatured state, raising the temper-
ature, lowering the pH of the solution or adding to the solute some chemical
agents – such as urea or guanidine chloride – whose net effect is the conversion
of the denatured, metastable state into the equilibrium one via a partial or total
destruction of native contacts [13, 16].
Interestingly, despite their daily use in the laboratories all over the world, their
effect at a molecular level is not completely clear. For example, it is yet unclear
whether they interact directly with the atoms of the protein [17, 18, 19], or if the
denaturants affect the solvent, perturbing the hydrophobic effective force, which
plays an important role in the stabilization of the proteins [20, 21, 22, 23, 24, 25].
Moved by the motivation mentioned before, in the Chapter 1 of the present thesis
we address this open question by means of Molecular Dynamics simulations,
since the ability of the technique to characterize systems at atomic level is exactly
what is required to (or at least try to) give an overall picture of the molecular
mechanisms behind the chemically–induced denaturation of proteins.
In doing so, we had to foresee a twofold problem: the necessity of a thorough
exploration of the phase space and the need for a fast overcoming of energetic
barriers. Indeed, if equilibrium properties are investigated, the simulation needs
to be at convergence, namely it should be ”long enough” to allow the system
to sample a statistically–relevant portion of its phase space, in order to extract
reliable equilibrium information from the simulated trajectory. This is a dra-
matic requirement when it comes to the study of the denatured state, which has
an extremely high entropy. Moreover, when performing Molecular Dynamics
of biomolecules, a typical issue one has to face is the presence of an highly–
frustrated energy landscape, which shows local minima separated by high en-
ergy barriers at any scale. This feature has the effect of slowing–down the sam-
pling of the phase space, since the simulated system has a finite probability of
remaining stuck in a local energy minimum for a non–negligible amount of sim-
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ulation time. A plethora of enhanced–sampling methods has been developed
through the decades to overcome one of or both these two problems: Umbrella
Sampling [26], Simulated Annealing [27], Replica– or Bias–Exchange [28, 29],
Metadynamics [30] are a not–exhaustive list of techniques devoted to a faster
exploration of the phase space. Among these, Metadynamics seemed to be the
most suitable for our purposes and we chose to apply it on our simulations, in
combination with a Bias–Exchange approach.

A critical choice for the implementation of a Metadynamics simulation is the
selection of the Collective Variable against which the dynamics is to be biased,
namely that low–dimensional function – which we will generically refer to as Y
– of the high–dimensional microscopic coordinates r of the system: Y = Y (r).
Compared to the in vitro or the in vivo framework, it is not always straightfor-
ward how to make such a choice in in silico experiments. Indeed, in the de-
sign of experiments on proteins, the selection of Y is essentially determined by
the technique itself: the fluorescence intensity of tryptophanes in FRET, the nu-
clear chemical shifts in NMR spectra, the intensity of scattered X–rays in SAXS
or the ellipticity in Circular Dichroism (CD) are examples of low–dimensional
reductions ”naturally” performed in laboratories. On the other side, when one
performs a simulation, he or she can choose to compute and analyse – or even
bias, as in the case of Metadynamics or of other enhanced–sampling techniques
– practically any function of the microscopic coordinates r. In the study of the
equilibrium properties of a system, often the only feature required from a CV is
the ability to identify the relevant states of the system. For instance, in the case of
protein folding, a ”good” Collective Variable Y should assume different values
when the protein is in its native state, in the denatured state and, when relevant,
in intermediate states. Collective Variables like the fraction of native contacts q or
the root mean square deviation (RMSD) of the atomic positions with respect to
those of the native conformation are usually able to perform such a discrimina-
tion [31]. When one needs to describe the time–dependent, dynamical properties
of a system, on the other side, the choice is more troublesome [32, 33]. A common
assumption is that the Collective Variable Y follows an overdamped Langevin of
kind

dY

dt
= D(1)(Y ) +

√
2D(2)(Y ) · ηt (1)

where ηt is a stochastic, gaussian–distributed noise with moments ηt = 0 and
ηtηt′ = δ(t−t′) and whereD(1)(Y ) andD(2)(Y ) are called ”drift” and ”diffusion”
coefficients, respectively. The former, D(1)(Y ), can be related to the gradient of
the free energy F (Y ) plus a correction, depending onD(2)(Y ), which is needed to
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allow the probability p(Y ) to evolve in time towards the Boltzmann distribution
[34]. On the other side, D(2)(Y ) is a position–dependent coefficient which con-
trols the diffusion of Y within its low–dimensional space [35]. The knowledge
of the effective D(1)(Y ) and D(2)(Y ) of a Collective Variable Y would be then
very rich of information on the system and would provide a valuable tool for
analyses and predictions, for example to apply Arrhenius equation to estimate
reaction rates or to model the dynamics as transitions between discrete states.
Formally, an equation similar to Eq. (1) can always be written for any Collective
Variable, although a bad choice of Y results in functions D(1)(Y ) and D(2)(Y )

depending not only on Y , but on the whole history of the system [35]. In gen-
eral, the evaluation of D(1)(Y ) and D(2)(Y ) to discern whether Eq. (1) holds or
not for a chosen Collective Variable Y is not an easy task. Indeed, several works
tried to estimate D(1)(Y ) and D(2)(Y ) for generic time series characterized by
an uncontrollable sampling rate, by correction terms [36, 37], by iterative proce-
dures [38] or by evaluating the adjoint Fokker–Planck operator [39, 40]. How-
ever, these methods cannot be applied in the case of Molecular Dynamics simu-
lations, where the minimum time period can be small as an integration timestep,
which is smaller than any other process involved in the microscopic dynamics.
Assuming to know the Collective Variable Y , an efficient algorithm for the back–
calculation of drift and diffusion coefficients from Molecular Dynamics simu-
lations was developed using a Bayesian approach [41, 42] and then applied to
protein folding [43, 44]. Using a maximum–likelihood principle [45], the drift
and diffusion coefficients could be obtained as average of Molecular Dynamics
trajectories, and a criterion for the choice of the sampling rate of the trajectories
was introduced to minimize time correlations of noise.
In the Chapter 2 of the present thesis, we investigate the validity of the frame-
work defined by Eq. (1) and, in particular, whether it is possible to define the drift
and diffusion coefficients D(1) and D(2) as functions only of Y . In other words,
we studied the legitimacy of the hypothesis at the basis of refs. [41, 42, 43, 44, 45].
Since we are interested in facing the problem from a computational perspective,
we did not study directly the validity of true Langevin equation (1), but its finite–
differences counterpart, defined within the scheme of a standard integrator at
finite time step ∆t. In fact, it is the finite–difference dynamic equation what one
usually calculates in Molecular Dynamics simulations.



CHAPTER 1

Molecular dynamics simulations of peptides in water and
in a denaturant solution

1.1 Introduction

The study of the disordered phases of proteins and peptides is an important, al-
though complicated, task. The denatured state of structured proteins is critical
for determining their folding kinetics and thermodynamic stability, their ability
to cross lipid bilayers, and their turnover in the cell [10]. In the case of intrin-
sically disordered proteins, disordered states are directly involved in biological
function [46]. Fluorescence and Circular–Dichroism spectroscopy provide coarse
information about non-native states, whereas NMR techniques can refine it to the
amino-acid length-scale. However, for structured proteins the conformational
characterization of the denatured state requires its stabilizations, typically with
denaturants like urea or guanidine chloride [9] (GndCl). The natural question
one is pushed to ask is then what is the effect of these denaturants on the ther-
modynamic and structural properties of the polypeptidic chain. In particular,
one is usually interested in the properties of the (metastable) denatured state in
water, that is under chemical conditions that are more similar to the biological
ones. Thus, studying the effect of chemical denaturants can be relevant for in-
terpreting the results of experiments conducted in urea and GndCl, in order to
extrapolate information on the biological denatured state.
The mechanism that allows urea and GndCl to stabilize the denatured state of
proteins has been discussed for forty years. The particularly low viscosity of
urea solutions raised the suggestion that it affects the hydrogen bonding of the
water, decreasing the effective hydrophobic interaction which stabilizes proteins
[47]. Although this could be the case, calorimetric experiments suggest that the
main factor which destabilizes the native state of proteins ia a direct interaction
with the denaturant molecules [48]. Also molecular dynamics simulation point
towards a direct interaction of chemical denaturants with the protein backbone
[17, 22, 19]. Hydrogen-exchange experiments indicate that urea can interact with
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2 1.1 Introduction

the protein building hydrogen bonds mainly with its backbone, but no hydrogen
bonds are detected in the case of GndCl [18]. Thus, urea and GndCl seem to
act according to different mechanisms. This difference has consequences on the
kinetics of protein chains. The different viscosity and association propensity to
a poly-dipeptide was shown to be the cause of the different rate constants of the
end-to-end diffusion in urea and GndCl [21]. Unfolding simulations of protein
L in these two denaturants highlighted a different order in the disruption of its
secondary structure elements [49].
Different denaturants are then expected to have different effect in determining
the non-native states of proteins. This is apparent in the case of GB1, one of the
most widely characterized proteins with biochemical techniques. GB1 follows
a two state behavior in urea [50, 51] but it displays an intermediate in GndCl
[52, 53]. From the structural point of view, GB1 shows essentially no residual
secondary structure in 7.4M urea [50], while in GndCl its second hairpin has
some residual structure [52]. The scenario is still different if GB1 is denatured by
mutating an amino acid and lowering the pH, thus under conditions expectedly
closer to the biological (metastable) denatured state.
In order to investigate the molecular effect of the chemical denaturant on pro-
teins, we carried out molecular dynamics simulations of the helical segment and
of the second hairpin of GB1 in urea and GndCl at equilibrium, and we compared
them with simulations conducted in water.
The same fragments of GB1 were characterized experimentally by CD and NMR.
Fragment 41-56, corresponding to the second hairpin was shown to be struc-
tured in water [54]. Upon addition of 6M urea, it still retains 40% native pop-
ulation [55]. The fragment 21-40, corresponding to the central helix of the pro-
tein, is mainly unstructured in water, but its CD spectrum further shifts towards
random-coil values if 6M urea is added. Nuclear Overhauser Effect signals in-
dicate that in water its N-terminal region populates the beta region of dihedral
space, while the C-terminal is in the alpha region [55]. The residual helical pop-
ulation was estimated from its ellipticity is 9% [56].
A large number of simulations were described in the literature to investigate the
equilibrium properties of the fragment corresponding to the second hairpin of
GB1 in water [57, 58, 59, 60], to the extent that it has become the sand box to test
routinely new algorithms. According to all these calculation, this fragment dis-
plays a clean two-state behavior in water. The equilibrium sampling of the frag-
ment corresponding to the alpha-helix of GB1 in water highlights a more compli-
cated free-energy landscape [49], in which the metastable alpha-helix competes
not only with a random-coil state, but also with other types of helices and with a
hairpin state.
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The comparison of the free-energy landscapes of the hairpin fragment of GB1
in urea, GndCl and water was reported on the basis of Hamiltonian-exchange
simulations [61]. According to these calculations, urea disrupts completely the
native region and stabilizes a state that resembles a random coil, while guani-
dine chloride has a milder effect, maintaining the structure it has in simulations
in water. A random-coil behavior in urea was also found in parallel-tempering
metadynamics simulations [19]. In the present work, we simulated the fragment
corresponding to the helix of GB1 in water, urea and GndCl, comparing the as-
sociated free-energy landscapes, and we studied the interaction between the sol-
vent and the peptide. Moreover, we extended our previous calculations concern-
ing the fragment corresponding to the second hairpin fragment of GB1 [61] to
study also in this case the interactions between the peptide and the denaturant.
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1.2 Model & algorithms

The segment 22 − 38 of protein–G B1 domain (pdb code 1PGB) was modeled
with the Amber99 potential, as modified in ref. [62]. The parameters for urea
were those of Amber99, while those for GndCl were those developed in ref. [49].
The model for segment 41-56 is identical to that reported previously [61]. The
simulations were carried out with the bias-exchange metadynamics algorithm
[29], implemented in Plumed 2 [63] for Gromacs 5.0 [64]. A total of five different
environmental conditions was studied for the α–helix:

• pure water;

• water + urea (2M);

• water + urea (5M);

• water + GndCl (2M);

• water + GndCl (4M)

whereas the β–hairpin was instead simulated in three cases:

• pure water;

• water + urea (5M);

• water + GndCl (4M)

Initially, both the α–helix and the β–hairpin were unfolded at T = 800 K, in aque-
ous environment. The unfolded structures were then inserted in a dodecahedric

System Volume # mol. den. # mol. H2O # ions den. conc.
(α)–water 75 nm3 - 2380 1 Na+ -

(α)–urea (2M) 85 nm3 98 urea 2375 1 Na+ 1.92 M

(α)–urea (5M) 85 nm3 245 urea 1948 1 Na+ 4.78 M

(α)–gnd (2M) 85 nm3 98 Gnd+ 2228 1 Na+, 98 Cl− 1.92 M

(α)–gnd (4M) 85 nm3 196 Gnd+ 1875 1 Na+, 196 Cl− 3.83 M

(β)–water 88 nm3 - 2774 3 Na+ -
(β)–urea (5M) 88 nm3 265 urea 1946 3 Na+ 5 M

(β)–gnd (4M) 88 nm3 200 Gnd+ 1862 3 Na+, 200 Cl− 3.77 M

Table 1.1: Number of molecules for the simulations of the α–helix and the β–hairpin.

box and solvated at first with the appropriate number of molecules of denatu-
rant, then with Tip3p water molecules to fill the remaining empty volume. Ions
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Na+and Cl−were finally added to ensure charge neutrality; all the parameters
concerning the number of molecules are listed in Tab. 1.1. After a 5 ns equilibra-
tion run in NVT regime, simulations were carried out at T = 300 K, coupled with
a v-rescale thermostat (τ = 0.1 ps); electrostatic interaction was evaluated with
PME algorithm; an integration timestep ∆t = 2 fs was used, keeping the bond
lengths constant via LINCS algorithm. Each of the eight systems was structured
in a five-replicas, bias-exchange well-tempered metadynamics scheme; the Col-
lective Variables biased were the following

r.0) degree of helicity Rα , described in [65];

r.1) degree of β content Rβ , ibid.;

r.2) radius of gyration Rg ;

r.3) end–to–end distance dee ;

r.4) unbiased

Exchanges were attempted every 50 ps; the hills used had height=0.3 kJ mol−1

and width=0.2 c.v. units, deposited every 500 timesteps with a biasfactor=10.
Each replica was run for 2 µs. Subsequent analyses were performed using Gro-
macs and Plumed 2 tools, METAGUI [66], APBS [67] and in-house software; im-
ages and graphs were created with VMD [68], tachyon [69], gnuplot [70] and
xmgrace [71].
The CD spectrum is predicted as a linear combination of the standard spectra
[72], weighted by the probabilities of α, β and coil structures calculated with
STRIDE [73] on the unbiased replica. The chemical shift are calculated using
SPARTA [74] on the nine conformations displayed in Fig. 1.3 and weighted by
their Boltzmann factor evaluated in terms of Rα , Rβ and Rg .
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1.3 Results

1.3.1 The effect of urea and GndCl on the states of fragment 22-38

We carried out the five simulations of the fragment 22 − 38, corresponding to
the helix of GB1, in water, 2M urea, 5M urea, 2M GndCl and 4M GndCl until
the convergence of free energy profiles was reached. To check it, we adopted the
following criterion: if a free energy profile did not significantly change between
the windows t′ = 1.5 µs and t = 2 µs, at least in the low–energy regions of the
Collective Variable (which are supposedly those subject to bigger variations in
long runs, when further minima are discovered), then the profile was considered
at convergence. In Fig. 1.1 we reported the difference in free energy between
the profiles drawn at t and t′, as a function of the free energy itself. Indeed,
the low–energy regions are subject to a variation in free energy ∆F ≤ 1 kBT for
F < 5 kJ mol−1 and, anyhow, ∆F ≤ 2 kBT for F < 10 kJ mol−1, which we find
acceptable for the study of a state characterized by metastability. Two qualitative
examples of the variation of profiles are displayed in Fig. 1.2, where F (Rα) and
F (Rg) for the simulation in water are shown at times t′ and t.

The free energy profile of this fragment in water, as a function of the helicity Rα
and of the gyration radiusRg is displayed in the left panel of Fig. 1.3. Its features
are in agreement with those calculated previously in [49], namely a metastable
helical state which is ≈ 5 kBT above the random coil, and a variety of local min-
ima corresponding to different degree of formation of the helix. Interestingly, it
includes a partially-formed β–hairpin state, whose existence is highlighted by
the presence of a local minimum at Rβ ≈ 0.5 in the free energy profile as func-
tion of Rβ as showed in the Fig. 1.4. In the free-energy profile we identified nine
local minima separated by at least kT = 2.5 kJ mol−1 from the surrounding. The
minima are marked with crosses, and some of the associated conformations are
plotted in the figure. The peptide does not exhibit a clear two-state behavior, as
expected from the Zimm–Bragg theory [75]. Besides the fully formed helix (la-
belled as H1), there are other two states in the region Rα > 0.5 in which only the
C-terminus is helical. In the other half of the plot one can identify at least five
disordered states with varying gyration radius, and the β–hairpin.

In the right panels of Fig. 1.3 we show how the free energy landscape are changed
upon addition of 5M urea and 4M GndCl, respectively (landscapes in milder de-
naturing conditions are displayed in Fig. 1.5 . Urea has the strongest effect on
the helical state; the fully formed helix (H1) is lost, while the free energy of states
H2 and H3 is raised of 12 kBT and 5 kBT, respectively. Also the free energy of
coil states at intermediate values of Rα is raised of several kBT . The global min-
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imum is squeezed towards the value Rα → 0, and it is rather flat at values of
Rg between 0.6 and 1.4 nm. Also the hairpin state B1 essentially disappears, as
shown in Fig. 1.5 A. On the other side, guanidine chloride has a smaller effect
on the peptide. The free energy of the helical state H1 is raised by 5 kBT, and
the rest of the landscape at Rα > 0 is raised by few kBT , maintaining a pattern
of local minima similar to that in water. Also the β–hairpin state B1 is raised by
some kT but it is still detectable, as can be seen in Fig. 1.5 B.

1.3.2 Experimental observables associated with fragment 22-38

From the ensemble of conformations generated by the simulation one can calcu-
late some macroscopic observables and compare them with those measured in
experiments. Moreover, one can use these data to evaluate if their interpretation
according to the standard tools is compatible with the underlying conformational
properties of the peptide, which are known. In Fig. 1.6 A we reported the CD
spectrum of the peptide in the five simulated solutions. Similarly to the experi-
mental findings reported in [56], the curves recorded in water and at high urea
concentration (6M in the experiment, 5M in the simulations) are similar, the lat-
ter displaying an upward shift in the region around 220 nm. Overall, the curve in
water is very similar to that in 2M GndCl; that in 4M GndCl is similar to that in
2M urea, displaying a more pronounced minimum at 195 nm, and this minimum
decreases even more at 5M urea.
The secondary-structure profiles calculated from the same ensemble of confor-
mations used to predict the CD spectra are displayed in Fig. 1.8. Under all
conditions the helicity is concentrated in the C-terminal half of the peptide, in
agreement with the corresponding sequence-based propensities [56]. The overall
helicity of the peptide is comparable in water and in 2M GndCl, and decreases
moving to 2M urea, 4M GndCl and reached its minimum at 5M urea. On the
other hand, a residual β–hairpin is apparent in water, but diminishes in all the
other denaturants.
Analysis of CD spectra associated with residual secondary structure is always
cumbersome. The complexity of the conformational space of the peptide makes
its interpretation even worse. All the curves are dominated by the coil com-
ponent. The similarity between the curves in water and 2M urea and between
those in 2M urea and 4M GndCl actually derives from different combination of
α and β components. Indeed the de-convolution of the predicted CD spectra
with different standard tools gives different secondary–structure propensities,
as summarized in Tab. 1.2.
Also the secondary chemical shifts predicted from the simulation and displayed
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Figure 1.1: The convergence of simulations is showed by representing the difference
in free energy between the landscapes F (Rα) and F (Rg) (calculated at t = 2µs and
t′ = 1.5µs), as functions of F , for Rαon the top panel and for Rgon the bottom panel. In
both panels, the five simulations are displayed: water (black), urea 2M (solid blue), urea
5M (dashed blue), gnd 2M (solid red) and gnd 4M (dashed red).
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A

B

Figure 1.2: The monodimensional profiles of free energies F (Rα) (top panel) and F (Rg)

(bottom panel) are showed for the α–helix in water. In both panels, the profiles in red
are calculated at t = 1.5µs, whereas those in black at t = 2µs.
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Figure 1.3: The free energy of the helix in water, 5M urea and 4M GndCl, as a function
of the degree Rαof helix formation and of the gyration radius Rg . Different states iden-
tified for the peptide in water are marked with a cross in the plot; they are labelled with
H1, H2, H3 (different degree of formation of the helix), C1, C2, C3, C4, C5 (coils) and
B1 (hairpin), and their mean structure is shown. The crosses are reported also in the
free-energy plots of the urea and GndCl simulations, for comparison. The dashed lines
indicate isoenergetic curves at 2.5 kJ mol−1 above each minimum.
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Figure 1.4: The free energy of the helix in water, as a function of the degree of β content
Rβ and of the gyration radius Rg (top panel) and of the degree of α content Rα and Rβ
(bottom panel).
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Figure 1.5: The free energies of the helix in 2M urea (top panel) and 2M GndCl (bottom
panel) as functions of the degree of α content Rα and of the gyration radius Rg .
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K2D3 Contin simulation
α β α β α β

Water 5.7 9.6 11.1 4.1 14.1 0.6
GndCl 2M 8.1 8.7 15.4 3.8 17.1 2.5
GndCl 4M 3.5 9.4 4.1 1.8 0.8 0.4
Urea 2M 4.7 9.3 1.0 1.3 1.0 0.2
Urea 5M 4.7 9.6 0.1 0.0 0.3 0.0

Table 1.2: The percentage of α and β structure for the helix segment, as calculated by
K2D3 [76], Contin [77] and from our simulations.

in Figs. 1.6 B, 1.7 A and B display a complex behavior that makes their interpre-
tation uneasy. In pure water, the Cα chemical shifts are positive in the regions
23 − 26 and 32 − 34 and at residue 29, which usually indicates helical behav-
ior, while is null or negative in the central region. This interpretation does not
correspond to the actual population of secondary structures, displayed in Fig.
1.8 . In fact, the positive chemical shifts induced by the helical population, es-
pecially in the C-terminal region, is counterbalanced around residues 27 and 33

by the β–hairpin population, which contributes with negative chemical shifts.
A similar trend is followed by the Hα chemical shifts, although here signs are
reversed (for Hα it is negative chemical shifts to indicate helical behavior). The
dependence of the chemical shifts on the type and concentration of denaturant
is quite irregular, due to the erratic contribution of β content in compensating
that of the helical population, which vice versa is quite regular (see. Fig. 1.8 ).
The secondary chemical shifts associated with the Cβ are markedly positive, in-
dicating only β content, in contrast to what suggested by the signals from Cα

and Hα. This is probably due to a failure of random-coil referencing [74] for our
peptide. In fact, a downshift of ≈ 1 ppm of all Cβ chemical shifts would result
in data which are grossly consistent with Cα and Hα, although again not easy to
interpret from a structural point of view.

1.3.3 Two-state approximation and m-values

Chemical denaturation is often described assuming a two state model and a lin-
ear dependence of the free energy difference between the two states on the con-
centration of denaturant [78], according to

∆F ([D]) = ∆F −m [D] (1.1)

where ∆F is the free energy difference in water, [D] is the concentration of denat-
urant and m is the proportionality constant. Usually, ∆F and m are calculated
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by means of a fit of the native probability pN , obtained by fluorescence or CD, as
a function of [D], following

pN =
e
−∆F ([D])

kBT

1 + e
−∆F ([D])

kBT

(1.2)

However, in the present case we have only three points for each denaturant, and
thus the non-linear fit is unfeasible. Consequently, we defined the native state on
the basis of the free-energy profile of Fig. 1.3 as Rα> 0.5, including states H1, H2
and H3. The corresponding free energies differences ∆F ([D]) are displayed in
Fig. 1.9 A. The curves are rather linear, and thus are in agreement with Eq. (1.1
with m-values (3.0± 0.1) kJmol−1M−1 for GndCl and (2.9± 0.3) kJmol−1M−1

for urea (the uncertainty being the standard error of the linear regression). The
value in GndCl is essentially equal to that in urea, while usually the former is
larger for globular proteins [78]. However, one should notice that the two-state
picture gives only a partial picture of the effect of the denaturants. As shown in
Figs. 1.3 and 1.5 , urea has a stronger effect in destabilizing the fully formed he-
lix (state H1) than GndCl; vice versa, GndCl has a stronger effect in destabilizing
the partially formed helices H2 and H3. This rearrangement of the probability
distribution within the native state is lost in the two-state approximation. In the
case of urea, the linear change in free energy corresponds to a linear change in the
solvent accessible surface area (SASA), as displayed in Fig. 1.9 B. The free-energy
gain per area in urea is approximately 7 kJmol−1nm−2. This behavior is in agree-
ment with the classical model of protein denaturation [79]. The effect of GndCl
on the SASA is different, and the exposed area saturates at about 18 nm2, corre-
sponding to conformations more compact than those denatured by urea (see also
Fig. 1.3 ). A detailed comparison of the equilibrium SASA per residue under dif-
ferent conditions is displayed in Fig. 1.9 C. The SASA in urea are systematically
larger for each residue than in water. On the other hand, in GndCl the SASA is
more similar to that in water, except for GLU27, LYS28 and ASP36, which are
charged residues.

1.3.4 Distribution of the solvent around fragment 22-38

The distribution of solvent around the peptide was investigated inspecting the
radial distribution functions (rdf) of water and of denaturant molecules as a func-
tion of their minimum distance from each amino acid of the peptide. Two typical
behaviors were found and illustrated in Fig. 1.10, where the rdf associated with
ALA26 and GLU27 are displayed (those associated with the other amino acids
are displayed in App. A). The shape of the rdf with water molecules is approxi-
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mately the same for all residues (see Figs. 1.10 A and C). In presence of urea, the
distribution of water molecules in the first shell around the residue (labeled as
region S1 in Fig. 1.10 E) is much depleted. Vice versa, in presence of GndCl the
density of water in region S1 is weakly affected, and sometimes is even increased
in 4M GndCl. In the second shell of water molecules (labeled as region S2 in Fig.
1.10 E), the density is decreased in presence of urea and is unaffected in presence
of GndCl at any concentration. The rdf of denaturant molecules, either urea or
GndCl, is more residue-dependent. For most residues the rdf of denaturant is
that displayed in Fig. 1.10 B. The density of urea is largely enriched in region S1

with respect to water and there is a marked peak in region S2 whose height is
comparable with the density of water, but anyhow higher than the bulk density
of urea. The rdf of Gnd displays peaks both in regions S1 and S2, in both cases
lower than the corresponding density of water. Two residues display a different
rdf for Gnd (see Fig. 1.10 D), displaying a much higher peak in region S1 and
essentially no peak in S2. They are GLU27 and ASP36 which, not unexpectedly,
are the two displaying a negative charge. The picture that emerges is that urea
binds directly to the peptide, displacing water molecules, but GndCl does not.
Thus, to investigate more the effect of GndCl on the stability of the peptide we
focused on its electrostatic, long-range properties.
The fully formed helix has a dipole moment µ = 158 D, shown in Fig. 1.11 A,
which decreases to ≈ 90 D as the helix is disrupted into a coil displayed in Fig.
1.11 B. The dipole induces a separation of Gnd+ and Cl−ions which, in turn, pro-
duces an electric potential on the helix (see color distribution in Fig. 1.11 A). The
separation of charges, besides being favorable from the point of view of the bal-
ance between Coulomb interaction and demixing entropy, gains Lennard-Jones
energy between Gnd ions (see Fig. 1.12), presumably associated with hydrogen
bonding between Gnd groups [80]. The result is a minimum in the free energy of
the system when the dipole associated with the helix assumes minimum modu-
lus (cfr. Fig. 1.11 B with Fig. 1.3 and Discussion section below).

1.3.5 Comparison with the denaturation of hairpin fragment

The free energy profiles of the second hairpin of GB1 (fragment 41 − 56) in wa-
ter, 4M GndCl and 5.5M urea were studied in a previous work [61] and are re-
ported here in Figs. 1.13 and 1.14 . The result was that the peptide is stable
in water at T = 300 K, displaying a partially-native intermediate shown as an
inset in Fig. 1.13 . Urea disrupts completely the native region and stabilizes a
state which resembles a random coil, while guanidine chloride has a milder ef-
fect, also maintaining the intermediate state (see Fig. 1.14 ). Here we analyze
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curve refers to the crystallographic structure.



20 1.3 Results

rd
f

rd
f SS 12

r

(a) (b)

(c) (d)

(e)

0.25 0.5 0.75 1
r [nm]

0

0.25

0.5

0.75

1

0.25 0.5 0.75 1 1.25
r [nm]

0.25 0.5 0.75 1
r [nm]

0

0.25

0.5

0.75

1

0.25 0.5 0.75 1 1.25
r [nm]

0.
6 

nm

1.
1 

nm 0

Figure 1.10: The radial distribution function of water (a,c) and of denaturant (b,d) arount
A26 (a,b) and E27 (c,d). Black curves indicate the data in water, blue curves in urea (2M
for the solid one, 5M for the dashed one), red curves in GndCl (2M and 4M for the solid
and the dashed, respectively). A snapshot (e) of the helix in Gnd solution, where the first
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the properties of the solvent around the molecule to investigate the molecular
mechanism of denaturation. In Fig. 1.15 A–D we display the rdf of water and
denaturant around GLU42 and THR49 (the others are in Appendix A ). Differ-
ently from the helix, water molecules in the simulation of the hairpin in GndCl
experiences a modification both in the first and in the second shell, most no-
tably around GLU42, ALA48, THR49, LYS50, THR55. The accumulation of Gnd
is observed here not only around negatively-charged residues, but also around
polar residues as ASN35 and ASN37. Also the native hairpin displays an electric
dipole, but its modulus is 100 D, smaller than that of the helix, and consequently
the charge separation in solution is also more limited, as showed in Fig. 1.15 E.

1.3.6 Experimental observables concerning the hairpin fragment

The relatively simpler structure of the free-energy profile of the hairpin fragment
with respect to the helical fragment makes the interpretation of associated exper-
imental observables potentially simpler. Fig. 1.16 A displays the CD spectrum
and the secondary chemical shifts predicted by the simulations for the hairpin in
water and in denaturants. The CD spectrum reports a clean β structure in water,
which becomes more coil-like in GndCl and urea.
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The secondary chemical shifts (see Figs. 1.16 B and 1.17 A and B) in water are
consistent with a β–hairpin, with negative values for Cα and positive values for
Cβ and Hα towards the termini. Under denaturing conditions, the picture be-
comes more involved. For example, in 5M urea the peptide is essentially coil,
but the secondary chemical shifts of all atoms (blue striped bars in Figs. 1.16 B
and 1.17 ) display an irregular behavior.
The m-value resulting from the simulation of the hairpin fragment is 4.0 kJmol−1M−1

for urea and 1.88 kJmol−1M−1 for GndCl. Although we have only two points and
we cannot calculate the uncertainty of the m-values associated with the fig, if we
assume an error comparable with that of the helix we can conclude that, in this
case, the m-value is larger for urea. This behavior is in contrast with what ob-
served for the helix and, in general, for globular proteins [78]. However, one
should consider two facts. The first evidence is that, as in the case of the helix,
the thermodynamics of the hairpin does not show only two states, while the def-
inition of m-value is based on a two-state approximation. The second one is that
the general trend reported in the literature reflects the behavior of stable pro-
teins, while we are studying small peptides. Our results suggest that helices and
hairpins display different weights in the destabilization free energies of globular
proteins, in urea and in GndCl.
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1.4 Discussion

The helix and the second hairpin of GB1 are among the most studied small pep-
tides in the literature, both from an experimental and a computational point of
view. As in the case of larger proteins, a standard experimental tool to probe the
thermodynamic and conformational properties of these peptides is to denature
them with urea or GndCl. However, the result of these experiments can be diffi-
cult to interpret, or even tricky. Simulations performed with advanced sampling
techniques can be useful to interpret the raw experimental data and to monitor
quantities that are difficult to access in experiments. In the specific case of the
two fragments of GB1, the data on hairpin at T = 300 K are rather simple to
interpret. Its conformational space in water displays three well-defined states
corresponding to the fully formed, to the half formed hairpin, and to a random
coil. The effect of chemical denaturants is to decrease the population of the native
state, without changing the structure of the conformational space. At T = 300 K

the population of helical states is negligibly low. Consequently, experimental ob-
servables like CD spectra and secondary chemical shifts just report the fraction
of β–content of the peptide. Their main limitation is that they cannot distinguish
between the fully formed hairpin populated with probability one half and the
half-formed hairpin populated with probability one.

The situation for the helix is more complex. Several states, involving different
degrees of structures α and β, compete with each other. The experimental data
are the sum of the contributions of all these states. This is particularly problem-
atic in the case of secondary chemical shifts, in which α and β give contribu-
tions with opposite sign, reporting a random-coil behavior when α and β states
have comparable probabilities. The effect of urea appears rather simple from the
simulations. It fills the first shell of solvent around the peptides in a residue-
independent way, thus breaking the hydrogen bonds, which are the main in-
teractions that stabilize either the helix or the hairpin. This is the reason why
urea is so effective in stabilizing the denatured state of short peptides, contain-
ing only secondary structure, as compared with GndCl. In fact, in the case of full
proteins, also stabilized by tertiary interactions, the denaturant power of urea is
usually comparatively smaller [78]. This picture is in agreement with the results
of hydrogen-exchange NMR experiments, which show that urea, but not GndCl,
can form hydrogen bonds with peptides [18].

In fact, the denaturing mechanism of GndCl seems more complex. To some ex-
tent, Gnd accumulates in the neighborhood of the peptides, at various distances
from its surface and differently for each type of aminoacid. As expected, the ef-
fect is very large for acid residues and negligible for basic residues. As a rule, it
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does not seem to deplete the concentration of water in the first shell or to modify
its radial distribution function appreciably.
Another effect of GndCl is to generate an electric field that interacts with the
electric dipole of the peptide. This effect is very clear for the helix, which dis-
plays a large dipole moment due to the spatial alignment of the aminoacid, and
is smaller for the hairpin, in which the (smaller) dipole moment is due to the
specific sequence of acid and basic residues. The modulus of the electric dipole
depends on the degree of formation of the secondary structure. In presence of
GndCl, each of the effective charges that define the dipole is screened by ions of
opposite charge. Thus, the two of them undergo a screened attractive Coulomb
interaction that tends to decrease their (effective) distance and then to decrease
the modulus of the dipole moment. The equilibrium state corresponds then to a
small dipole, and thus to a denatured peptide.



CHAPTER 2

Dimensional reduction of Collective Variables

2.1 Introduction

Biomolecular models are usually very high–dimensional systems: proteins in
solutions, as described in classical Molecular Dynamics simulations, are charac-
terized by the three–dimensional positions and velocities of all the atoms they
are constituted of. Consequently, they define a phase space whose number of
dimensions is of order O(105 − 106). Studying the result of a Molecular Dynam-
ics simulation in such a high–dimensional space is outrageously difficult, and
consequently one usually follows the behavior of low–dimensional (often one–
dimensional), Collective Variables Y (r) which are function of the high–dimensional
coordinates r of the system [35].
Also in dealing with experiments, one has usually the opportunity to monitor
only low–dimensional Collective Variables. For example, the fluorescence in-
tensity of tryptophanes, the nuclear chemical shifts in NMR spectra, the inten-
sity of scattered X–rays in SAXS or the ellipticity in CD depend on the high–
dimensional coordinates r of a system but can provide only a low–dimensional
view of its conformational properties. While in the design of experiments the
choice of the Collective Variables to monitor is determined by the technique it-
self, in simulations one can choose to compute and analyze essentially any func-
tion of the microscopic coordinates. The problem is how to make such a choice.
In the study of equilibrium properties of a system, the only feature that the Col-
lective Variable must have is to be able to distinguish the relevant phases of the
system, that is to be a good ”order parameter”. In the case of protein folding, for
example, it should assume different values in the native state, in the denatured
state and, when relevant, in intermediate states. The root mean square deviation
of the atomic positions (RMSD) with respect to those of the native conformation,
or the fraction q of native contacts usually can do that [31], although the latter is
known as a ”bad” Collective Variable when it comes to apply a bias on it [44].

31
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The choice is less straightforward for the description of the time–dependent, dy-
namical properties of the system [32, 33]. For most purposes, it is useful that the
Collective Variable Y obeys a Langevin equation of kind

dY

dt
= D(1)(Y ) +

√
2D(2)(Y ) · η(t) (2.1)

Here, η(t) is a stochastic variable with gaussian distribution whose moments are
η(t) = 0 and η(t)η(t′) = δ(t − t′), while the bar indicates the average over the
realizations of the stochastic variable. From a mathematical point of view, Eq.
(2.1) is not completely defined, since a rule is needed for the timing of evaluation
of
√

2D(2)(Y )(t) [81], namely for the interpretation of how to compute the term

I(t, dt) =

∫ t+dt

t

√
2D(2)(Y (τ)) · η(τ)dτ (2.2)

in the integral form of Eq. (2.1). If both
√

2D(2)(Y (t)) and η(t) were continuous
functions of t, then one would apply the first integral mean value theorem and
Eq. (2.2) would become

I(t, dt) =
√

2D(2)(Y (t∗)) ·
∫ t+dt

t
η(τ)dτ (2.3)

where t∗ is a specific point in the time interval [t, t+ dt], albeit a priori unknown.
Unfortunately, η(t) is far from being continuous, since it usually consists in a
series of δ–function spikes of random sign [34] which yields the application of the
mean value theorem unfeasible. The interpretation of I(t, dt) is then performed
by evaluating the term

√
2D(2)(Y ) in a constrainted linear combination of the

values of Y at times t and t+ dt

I(t, dt) =
√

2 [αY (t) + (1− α)Y (t+ dt)] ·
∫ t+dt

t
η(τ)dτ (2.4)

where α is a real number in the interval [0, 1].
The two most common conventions for α are the Stratonovich interpretation
(α = 1/2) and the Itô interpretation (α = 0), the former being a more appro-
priate representation in frameworks where the white noise is an approximation
of a fluctuating noise with finite, short memory, whereas the latter is a natural
starting point for numerical schemes [82]. Whatever the choice is made, D(2)(Y )

is in both cases a position–dependent coefficient which controls the diffusion of
Y within its low–dimensional space, while D(1)(Y ) can be related to the equilib-
rium free energy F (Y ) through

D(1)(Y ) = − 1

γ(Y )

∂F (Y )

∂Y
+

1

2
(1− α)

∂D(2)(Y )

∂Y
(2.5)
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where the second term is necessary in order for the system to evolve towards
the Boltzmann distribution. D(1)(Y ) then can be regarded as an effective force
acting on the Collective Variable, consisting in the classical, energetic term plus
a diffusion–dependent correction.
Hence, both the coefficients are very rich of information on the system. If Eq.
(2.1) holds, one can use Arrhenius equation to estimate reaction rates, can model
the dynamics of the system as transitions between discrete states, and can use
all the armoury of tools developed in the realm of Langevin equations [81, 35].
Besides the advantages in analysing and plotting a posteriori the relevant infor-
mation, Collective Variables satisfying Eq. (2.1) can be used on–the–fly to bias
the dynamics of the system and thus speed-up equilibrium sampling, like in
the case of Umbrella Sampling, Metadynamics and Steered Molecular Dynamics
[83, 84, 85], or even to obtain efficiently dynamical properties [32, 86].
An equation formally similar to Eq. (2.1) can always be written for any CV. How-
ever, a bad choice of the CV results in functions D(1) and D(2) which depend not
only on Y , but on the whole history of the system; in other words, in this case Y
undergoes a non–Markovian process [35]. This happens when Y does not really
determine the properties of the relevant phase space where the dynamics of the
system is likely to occur, but, on the contrary, to a given value of Y can corre-
spond different, well–separated regions of the relevant microscopic phase space,
in which the effective force D(1) and the effective diffusion coefficient D(2) are
very different. In this case, having discarded the microscopic coordinates, only
time can distinguish between the different phase–space regions at identical Y ,
resulting in a non–Markovian dynamics.
A necessary and sufficient condition for Eq. (2.1) to hold is that Y describes
the slowest kinetic modes of the system [35]. This implies that the system can
visit very quickly all the phase–space accessible regions for any fixed value of
Y , thus equilibrating the coordinates perpendicular to it. In this context, fixed
means that the relative change in value of Y is negligible with respect to that of
the perpendicular coordinates. As a consequence, D(1) and D(2) are determined
by the average contribution of all the phase–space regions displaying the same
value Y , the time dependence is averaged out and only the dependence on Y

remains. However, this is not a property which can be easily verified for any
given function of the microscopic coordinates r of the system.
The study of the dynamics of a system by Eq. (2.1) requires the evaluation of
D(1) and D(2) from a set of microscopic trajectories. Given a set of stochastic
trajectories {r(t)}, generated with some Molecular Dynamics algorithm from a
point r(0) of conformational space, the effective force and diffusion coefficient
defined by Eq. (2.1) in that point can be obtained by definition as the first two
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Kramers–Moyal coefficients [81]. Defining Yt ≡ Y (r(t)), then

D(1)(Y0) = lim
∆t→0

1

∆t
(Y∆t − Y0)

D(2)(Y0) =
1

2
lim

∆t→0

1

∆t
(Y∆t − Y0)2. (2.6)

Physically, the limit ∆t → 0 means that D(1) and D(2) should be a property of
Y only, independent on where the trajectories go to afterwards. In the case of
MD simulations of biopolymers, the use of Eqs. (2.6) presents a serious problem,
namely that any integrator that can be used to generate {r(t)} has a finite time
step, and thus the limit ∆t→ 0 cannot be evaluated.
Several works tried to estimate the drift and diffusion coefficients of Eqs. (2.6) in
the limit of small ∆t, by correction terms [36, 37], by iterative procedures [38], or
by evaluating the adjoint Fokker–Planck operator [39, 40]. However one should
stress that these works face the problem of evaluating D(1) and D(2) for generic
time series of observables characterized by a low, uncontrollable, sampling rate.
In the case of MD simulations, the minimum time period can be as small as an
integration time step, which is smaller than any process involved in the micro-
scopic dynamics. Assuming to know the reaction coordinate Y , an efficient way
of extracting drift and diffusion coefficient from MD simulations was developed
on the basis of a Bayesian approach [41, 42] and then applied to protein fold-
ing [43, 44]. The main result of these works is that the diffusion coefficient for
variables that scale as the Euclidean distances between Cartesian coordinates
depends strongly on Y , while the diffusion coefficient for variables that have
a filtered dependence on such distances, like contact functions, depend weakly
on Y . Using a maximum–likelihood principle [45], the drift and diffusion coef-
ficients could be obtained as average of molecular dynamics trajectories, and a
criterion for the choice of the sampling rate of the trajectories was introduced to
minimize time correlations of noise.
An issue associated with the approach developed in ref. [41] is the following: the
drift and diffusion coefficientsD(1) andD(2) are a priori supposed to be functions
only of the low–dimensional coordinate Y , and all the information regarding the
microscopic conformation r is lost in the process of the evaluation of D(1)(Y )

and D(2)(Y ). In mathematical terms, the underlying hypothesis is that if two
conformations r0 and r1 have the same value of Y , then also their coefficients
must be equal.

if ∃r0, r1 : Y (r0) = Y (r1) = Y −→ D(1−2)(Y (r0)) = D(1−2)(Y (r1)) = D(1−2)(Y )

(2.7)
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Our goal here is rather different from those discussed above. Our primary task
is to investigate the validity of the framework defined by Eq. (2.1) through the
condition 2.7, and in particular whether it is possible to define the drift and dif-
fusion coefficients D(1) and D(2) as a function only of the Collective Variable Y .
In other words, we studied the validity of the hypothesis at the basis of refs.
[41, 42, 43, 44, 45].
Another important difference is that, since we are interested in facing the prob-
lem from a computational perspective, we did not study directly the validity
of true Langevin equation (2.1), but its finite–differences counterpart, defined
within the scheme of a standard integrator at finite time step ∆t. In fact, it is the
finite–difference dynamic equation what one usually calculate in Molecular Dy-
namics simulations. The use of a finite–difference scheme allows us to override
the issue of a choice between Itô, Stratonovich or other interpretation rules, al-
though the former is the natural limit of our implementation for ∆t→ 0, namely
for the reversion from finite–differences to a stochastic differential equation.
In the next Sections we present an algorithm to obtain efficiently the drift and
diffusion coefficient of the finite–time–step Langevin equation. Then we show to
which extentD(1) andD(2) are function of Y only, and not depend on the detailed
microscopy coordinates. We first applied this analysis to some test models and
then to some popular CVs within simple alpha–helix and beta–hairpin models.
Finally, we studied to which extent the calculated coefficients are in agreement
with the equilibrium free energy of the system, and the dynamics in the reduced
space is in agreement with the projection of the associated microscopic dynamics.
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2.2 Drift and diffusion coefficients in finite–difference overdamped
Langevin equation

2.2.1 Finite–difference equation in Euler–Maruyama approximation

We start by considering a set of M trajectories {r(t)} in the microscopic confor-
mational space, which are the output of M Molecular Dynamics simulations of
(unspecified) biomolecules. We also suppose that these trajectories are solution
of a Langevin equation – be it complete or overdamped – which has been virtu-
ally integrated by a proper integrator making use of a microscopic time step ∆tmic,
starting from the initial condition r(0) at fixed temperature T . For a correct in-
tegration of the equation of motion, ∆tmic needs to be shorter than the fastest
physical process which can occur in the simulation. In practice, for the descrip-
tion of molecular processes a common choice consists in ∆tmic ∼ O(10−15 s), as
it allows the characterization of atomic bonds vibrations.
We further consider a Collective Variable Y , function of the microscopic coordi-
nates Y = Y (r), which we use to describe some relevant property of the system
simulated. Here we have represented Y as a scalar function, though there is
no prescription for its number of dimensions: the choice is dictated by common
sense, as it is easier to visualize information on a monodimensional function, for
instance in form of a time series. We want to investigate whether the projection
of the microscopic dynamics on Y can be described as the output of the reso-
lution of an overdamped Langevin equation, integrated by means of a virtual
Euler–Maruyama integrator:

Yt+∆t = Yt +D(1)(Yt)∆t+
√

2D(2)(Yt)∆t · ηt (2.8)

where the dependence on the time (Y (t)) has been denoted with a subscript for
ease of reading. Here, ηt is a white noise, namely an adimensional, Gaussian–
distributed stochastic variable with zero average and ηtηt+n∆t = δn,0, the delta
being the Kronecker symbol. Within this finite–difference scheme, the drift and
diffusion coefficients D(1) and D(2) can be interpreted as

D(1)(Y ) = −1

γ

∂F (Y )

∂Y
+

1

2

∂D(2)(Y )

∂Y
(2.9)

D(2)(Y ) = D(Y ) (2.10)

where the second term on Eq. (2.9) can be usually neglected, at least in our
framework when proper order of magnitudes are inserted (more details can be
found in App. B ). F (Y ) is the free energy associated to the Collective Variable
Y, the first term of the definition of D(1)(Y ) being the effective force acting in Y
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modulated by the inverse of the friction coefficient γ. On the other side, D(Y )

is simply the diffusion coefficient on Y , where the superscript has been dropped
to highlight the fact that the left side of Eq. (2.10) comes from the application of
Eq. (2.6), whereas D(Y ) is a physical property of the system under investigation.
The purpose of this Section is to understand whether there exist two functions
D(1)(Y ) and D(2)(Y ), along with an effective timestep ∆t, for which the time
evolution of Y – simulated with an Euler–Maruyama algorithm – displays the
same moments Y k(t), for any k, equal to Y k

t at any time t, where Y k
t are calcu-

lated from the trajectories generated by Eq. (2.8). More specifically, one would
like that the difference between the true moments and those calculated by Eq.
(2.8) goes to zero as M →∞.

In general, the timestep ∆t of the effective equation (2.8) and the timestep ∆tmic
of the underlying, full–dimensional simulation do not correspond, as ∆t can be
larger than ∆tmic. Consequently, the original dynamics could result as coarse–
grained in time, when projected onto the effective dynamics. A relevant ques-
tion would be then what is the most suitable timestep ∆t for which the Eq.
(2.8) best reproduces the microscopic dynamics, as it is not granted that the best
choice is the smallest possible value, that is ∆t = ∆tmic. For instance, a large
value of ∆t would have as nice effect that all the problems associated with the
Markov–Einstein time scale would be avoided [40]. Moreover, since the non–
Markovianity of the projected dynamics is a typical problem associated with di-
mensional reduction, the use of a large timestep ∆t increases the probability of
ending up into a Markovian process. If a set of D(1)(Y ), D(2)(Y ) and ∆t exists
such that the associated Eq. (2.8) is able to reproduce the dynamics of the sys-
tem projected on Y (that is, its moments), then this dynamics is Markovian by
definition.

In a purely theoretical scheme, where instead of Eq. (2.8) one deals with the true
Langevin equation, the drift and the diffusion coefficients at a specific point Y0

could be obtained by means of their mathematical definitions, as the first two
coefficients of the Kramers–Moyal expansion of the distribution of Y [81].

D(n)(Y ) = lim
τ→0

[Y (t+ τ)− Y (t)]n

n!τ
(2.11)

and setting t = 0. It is worth to mention that all the higher Kramers–Moyal coef-
ficients (n ≥ 3) of the expansion should be identically zero, due to Pawula’s the-
orem for the specific form of the Langevin equation we are using and its Euler–
Maruyama counterpart [81]. In principle, the same procedure can be performed
in a finite–differences framework: from Eq. (2.8), applying the Def. (2.11) one
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obtains

D(1)(Y0) =
Y∆t − Y0

∆t
−
√

2D(2)

∆t
η0

D(2)(Y0) =
[Y∆t − Y0]2

2∆t
+

1

2

[
D(1)(Y0)

]2
∆t−D(1)

(
Y∆t − Y0

)
=

=
[Y∆t − Y0]2

2∆t
+

1

2

[
D(1)(Y0)

]2
∆t−D(1)(Y0)

(
D(1)(Y0)∆t+

√
2D(2)(Y0)∆t · η0

)
=

=
[Y∆t − Y0]2

2∆t
− 1

2

[
D(1)(Y0)

]2
∆t−D(1)(Y0)

√
2D(2)(Y0)∆t · η0. (2.12)

In theory, the last terms of both quantities tend to zero, because η0 does as M →
∞. Operatively, one prepares M systems which start from points r of the con-
formational space all displaying Y (r) = Y0. For every trajectory, the system is
allowed to evolve for a time ∆t, then the displacement Y (∆t)−Y0 and its square
are computed from the first and the last frame. Finally, their averages are substi-
tuted in Eqs (2.12) and eventually are corrected with the deterministic term (see
D(2)(Y0)) considering the stochastic corrections (which one cannot compute, not
knowing the values η0) hopefully negligible, due to the nature of η. It is worth-
while to notice that, at variance with the expressions resulting from the standard
Kramers–Moyal expansion (2.11), in Eqs (2.12) one does not have to compute a
short–time limit, but the time increment ∆t is the same which defines the dy-
namic equation (2.8).

2.2.2 Calculation of the drift coefficient in a test model

Unfortunately, to directly apply Eqs. (2.12) does not seem to be fruitful, because
for finite values of M the average η0 introduces a non–negligible error. In fact,
we tested the procedure above presented in a very simple test model, which
consisted in a particle moving in a one–dimensional, harmonic potential

U(Y ) =
k

2
(Y − YC)2 (2.13)

with the diffusion coefficient being constant over the space, as in the Einstein’s
formula: D(2)(Y ) = kBTγ ≡ D, where kBT is the thermal energy. It is worth to
notice that, in this case, the Collective Variable Ycorresponds to the microscopic
coordinate r indicating the position of the particle. For this reason, the entropy
associated to the Collective Variable is zero and its free energy is equal to the
potential energy 2.13 which, following Eq. (2.9), leads to the drift coefficient

D(1)(Y ) = −k
γ

(Y − YC) (2.14)
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We chose this example as it is probably the simplest system displaying non–zero
drift nor diffusion coefficients. Moreover, it could be easily considered as the
first–order approximation of any interaction – both attractive or repulsive – that
can be found in biological systems, accordingly with the sign of k. We simulated
this test model using the characteristic units of biomolecules: the length scale is
expressed in nanometers, the energy scale is comparable to the thermal energy
at room temperature (kBT ∼ 2.5 kJ mol−1), which corresponds to forces of the
order of tens of picoNewton. The numerical values used in the simulations were
then chosen as typical orders of magnitude for biomolecules. In Fig. 2.1 the

γ
10× 10−11 kg s−1

(= 6× 103 kDa ns−1)

k −1 pN nm−1

YC 1 nm

Y0 1.1 nm

kBT 2.5 kJ mol−1

D(1)(Y ) −0.1 nm ns−1

D(2)(Y ) 0.4 nm2 ns−1

Table 2.1: List of parameters for the simulations of the harmonic–potential model.

value of D(1)(Y ) is shown, where Y = 1.1 nm. It was calculated through the
application of the first of Eqs. (2.12) to different numbers M of trajectories, of
length 0.1 ns, which were generated by an Euler–Maruyama integrator using the
numerical values of Tab. 2.1 with ∆tmic = 10× 10−4 ns. For each n-th step, we
considered ∆t = n∆tmic and evaluated the average (Y∆t − Y0)/∆t over all the
M trajectories. For small values of ∆t, comparable to ∆tmic, the resulting curves
are too noisy and do not allow a solid determination of D(1). The reason lies
in the evaluation of the stochastic number η, which tends to zero as ∼ 1/M1/2.
Inverting the first of Eqs. (2.12), one then finds that the condition for the noise to
be negligible is

M � 2D(2)

[D(1)]2∆t
, (2.15)

which is stronger the smaller is ∆t. As a consequence, the use of ∆t ≈ ∆tmic
is prevented. Indeed, the intrinsic time scale of a harmonic oscillator is τint =

γ/k = Y0/D
(1), and thus ∆tmic needs to be chosen several orders of magnitude

smaller than this time scale: for instance, h · τint, with h ∼ 10−4. In such a
scenario, the condition 2.15 on the noise becomes M � 2D(2)/hD(1)Y0. Since in
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typical systems the diffusion coefficient is comparable to the product of the drift
times the value of Y , that is D(2) ∼ D(1)Y0, the final condition for the noise to be
negligible is M � 104.
One could wonder whether the use of a larger ∆t would reduce the stochas-
tic noise, since doing so is equivalent to performing averages of an increased
number of displacements. Indeed, a large time interval ∆t can be considered as
composed of m sub–intervals ∆t′: the quantity (Y∆t − Y0)/∆t can be thus seen
as an average over both the M trajectories and the m displacements in each tra-
jectory, for a total of M ·m terms. Unfortunately, the drawback relies in the fact
that, in each trajectory, only the displacement in the first sub–interval starts ex-
actly at Y0, whereas the others are simply an approximation Yn∆t′ ∼ Y0, which
of course becomes worse as m increases. Thus, for larger ∆t, D(1) would be not
a property of the specific point Y0, but it would turn into the average of the drift
coefficients over a number of points in the neighborhood of Y0, number which
can be higher as a greater value of ∆t is chosen. As shown in Fig. 2.1, at large
values of ∆t the calculated drift coefficient, despite being less noisy than in the
limit→ 0, departs from its true value −0.1 nm ns−1. Practically speaking, the use
of a larger ∆t translates in trading a stochastic error for a systematic error and,
as a consequence, the direct use of Eq. (2.12) is impractical.

2.2.3 The diffusion coefficient

If the drift coefficient cannot be easily recovered with the first of Eqs. (2.12), the
situation is rather different for the diffusion coefficient. Indeed, the expression
for D(2) includes three terms: the one in the middle is a deterministic correc-
tion depending on the square of D(1) which, as previously discussed, cannot be
estimated. However, it could be neglected provided that

[D(1)]2 � 2D(2)

∆t
. (2.16)

Inserting in 2.16 the values listed above and using ∆t = 10× 10−4 ns, the con-
dition reads |D(1)| � 90 nm ns−1, corresponding to forces approximately of the
order of 10× 103 pN, which are huge on a biological scale. Thus, the determin-
istic correction can be neglected in most cases we are interested in. The other
source of error for the evaluation of D(2) is the random noise, which appears ex-
plicitly as the stochastic correction, third term of Eqs. (2.12). However, it goes to
zero as ∆tM−1/2 and consequently it is negligible for large M even at finite ∆t.
We have tested the calculation of D(2) from Eq. (2.12), assuming η = 0, in two
test cases: that of the harmonic spring, already considered above, and a more
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complicated one which shall be discussed later. In the case of the harmonic po-
tential, from simulations of length 0.2 ns and using the same parameters of Tab.
2.1, we calculated the quantity [Y∆t − Y0]2/(2∆t) and the results are displayed in
the upper panels of Fig. 2.2 . In Fig. 2.2 A is shown D(2), as a function of ∆t,
which is linear at 0.4 nm2 ns−1 with an error smaller than 1% as expected from
Eq. (2.12), provided that D(1) is not too large as suggested by Eq. (2.16). In fact,
we display in Fig. 2.2 B the accuracy in the back–calculation of D(2) with the
procedure described above. Indeed, results are good if the value of D(1) is less
than∼ 10 nm ns−1, while the prediction becomes unreliable for larger drifts. Sub-
stantially, the condition in Eq. (2.16) provides a rule to estimate a priori whether
the correction of the drift on the diffusion coefficient is important rather than
not. Mathematically, it is a threshold curve which we displayed with an orange,
dashed line in the same Fig. 2.2 B and which fits perfectly the separation line
between the regions where the error is lower than 30− 40% and those where the
error is higher. The maximum value of D(1) that allows the calculation of D(2) is
for ∆t = ∆tmic, and in this example assumes the value D(1) ≈ 20 nm ns−1. This
drift corresponds to a force γD(1) ∼ 200 pN, which is large with respect to the
typical orders of magnitude of biomolecules. Consequently, we conclude that
the use of ∆t = ∆tmic seems to be the best choice for the recovery of D(2), which
is interesting because for D(1) the same choice entails very noisy results. We re-
peated the above procedure, starting from different initial points Y0s and using
∆t = ∆tmic (10× 10−4 ns) to back–calculate the values of D(2)(Y ) along the Col-
lective Variable Y. The results are shown as solid circles in Fig. 2.2 C, superposed
to the curve which defines D(2)

true = 0.4 nm2 ns−1. Once again, results are good
only up to the value of Y0 where D(1)(Y0)true ∼ 10 nm ns−1 (cfr. the purple curve
in the same Fig.).
We carried out a second, more challenging one–dimensional test in order to bet-
ter understand whether the ease of recovery of the diffusion coefficient was due
to the simple mathematical form of D(1)(Y ) and D(2)(Y ) chosen for the previous
model. The new test system was bistable, as can be seen in the purple curve in
Fig. 2.2 F and had a sinusoidal diffusion coefficient, showed in the green curve
in the same figure; the functional forms of the potential energy, of D(1)(Y ) and
of D(2)(Y ) were

U(Y ) =
1

4
aY 4 − 1

3
a(M +m1 +m2)Y 3+ (2.17)

+
1

2
a(Mm1 +Mm2 +m1m2)Y 2 + (c− aMm1m2)Y + cost

D(1)(Y ) =aY 3 − a(M +m1 +m2)Y 2 + a(Mm1 +Mm2 +m1m2)Y + c− aMm1m2

D(2)(Y ) =Asin(BY ) + C
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where the dependence on all the coefficients has been kept visible in order to
highlight the meaning of each of them: m1 and m2 are the positions, in nanome-
ters, of the two minima; M is the position of the barrier; a and c are two co-
efficients whose value has been found imposing the positions M , m1 and m2

and the heights of the barriers H1 = U(M) − U(m1) and H2 = U(M) − U(m2)

(see Tab. 2.2 ). These shapes do not have direct relevance to describe any spe-
cific biological system, but they were chosen only because of their high com-
plexity, following the idea that if the algorithm works for this case, it will work
also for simpler, biologically–inspired force fields and diffusion coefficients. A

a 15 873 kJ nm−4

c 6.6666 kJ nm−1

m1 0.85 nm

m2 1.15 nm

M 1 nm

H1 3 kj mol−1

H2 1 kj mol−1

A 2 nm2 ns−1

B 5 nm−1

C 1.6 nm2 ns−1

kBT 2.5 kJ mol−1

Table 2.2: List of parameters for the simulations of the bistable–potential model.

time step ∆tmic = 10× 10−6 ns was used to generate the trajectories of length
2× 10−3 ns, for a collection of starting points Y0s in the position range 0 nm to
5 nm. The results are similar to the case of the harmonic spring, that is one
can back–calculate the diffusion coefficient D(2) with a good accuracy (see Figs.
2.2 D, E and F), provided that the true drift coefficient is small enough that the
system can diffuse within the time ∆t. As a final note, we stress that here, in
order to integrate the equation of motion and not to allow the simulation to ex-
plode, we needed to use a ∆tmic which is 2 orders of magnitude smaller than
that used in the harmonic–potential system. This requirement, which a pri-
ori can be considered inconvenient as usually the bigger ∆tmic the better, has
led to an improved recovery of D(2)(Y ) with respect to the previous case be-
cause of the deterministic correction in 2.12 proportional to ∆t. Indeed, for
∆t ∼ ∆tmic, the accuracy of the reconstruction is much higher than before (cfr.
2.2 E and B for comparison); also in the profiles in Figs 2.2 F and C one can notice
that the black points start to depart from their true, expected values in differ-
ent regimes: when D(1)(Y ) & 10 nm ns−1 in the harmonic–potential system and
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Figure 2.1: The value of D(1) as a function of ∆t for the harmonic potential, calculated
with Eq. (2.12) making use of different numbers M of trajectories. The green curve cor-
responds to M = 104, the blue curve to M = 105. The true value of D(1) is −0.1 nm ns−1.

when D(1)(Y ) & 100 nm ns−1 in the bistable system.

2.2.4 Higher Kramers–Moyal coefficients

From the Langevin–like equation (2.8) one can also find the higher moments, like

(Y∆t − Y0)3 − (D(1)∆t)3 − 6D(1)D(2)∆t2 = z · η + w · η3, (2.18)

where z =
√

18[D(1)]4D(2)∆t5 and w =
√

[2D(2)∆t]3. In the limit of small ∆t,
the left–hand side of this equation corresponds to the third Kramers–Moyal co-
efficient multiplied by ∆t, so by extension we will label it as D(3)∆t. In fact,
combining Eq. (2.18) with the properties of η it follows that D(3) should van-
ish as z/M1/2 for Eq (2.8) to hold. If this is the case, all higher moments should
vanish by Pawula’s theorem [81]. The validity of Eq. (2.18) is difficult to estab-
lish numerically, because of the problems already discussed in estimating D(1).
Consequently, we only checked the condition

(Y∆t − Y0)3 �
√

[D(2)∆t]3 (= w) (2.19)

which means that the skewness of the displacements is negligible with respect
to the diffusion in each run for small ∆t. With the typical values of the diffusion
coefficients we chose, w ∼ 10−7 nm3. This condition is satisfied both in the case
of the particle in the harmonic well and of the bistable system, except for extreme
choices of the drift coefficient (cfr. Fig. 2.3 ).
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Figure 2.2: For the harmonic spring, (A) the back–calculated D(2) as a function of ∆t

in the cases D
(1)
true = 1 nm ns−1 (purple line), D(1)

true = 10 nm ns−1 (green line) and
D

(1)
true = 10× 102 nm ns−1 (blue line). (B) The percentage error in the back–calculation

with respect to the true value; the orange,dashed curve indicates the threshold given by
Eq. (2.16). (C) The values of D(1)

true (purple curve) and D
(2)
true (green curve) as a function

of the elongation of the spring; the solid circles indicate the back–calculated profile of
D(1) using ∆t = ∆tmic. (D), (E) and (F) are the same as (A), (B) and (C), respectively, for
the system displaying a two–state thermodynamics and a sinusoidal diffusion coefficient
(see panel F).
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Figure 2.3: The value of the third moment of the displacement, calculated for the har-
monic spring (above) and for the two–state system with sinusoidal diffusion coefficient
(below).
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2.3 Another strategy to calculate Drift and Diffusion coefficients

2.3.1 Drift and diffusion coefficients from an iterative approach

The strategy derived in the previous section did not provide a reliable way to
recover both the drift and the diffusion coefficients at the same time. Instead of
trying to evaluate more efficiently all the deterministic or stochastic corrections
to the definitions of D(1) and D(2), we searched for an alternative way to cal-
culate them. We then performed the following approximations: locally around
each starting point Y0 in the conformational space, the effective force acting on it
is considered as depending linearly on Y , at least at the first order, while the dif-
fusion coefficient is considered constant. Indeed, we expect that the underlying
properties of the phase space do not really change much in the surroundings of
each point Y0, that is along the interval (Y0 − ε, Y0 + ε). A constant diffusion co-
efficient reflects the hypothesis that the friction coefficient γ does not vary along
the interval, namely that the average collisions occurring at the point Y0 − ε are
the same occurring at the point Y0 + ε, which sounds reasonable provided that
ε is small enough and that Y is a smooth function of the cartesian coordinates r.
On the other side, regarding the drift coefficient, if we considered it constant the
system would not migrate from the starting point Y0, at least not in a statistically
relevant way (there would be only free diffusion around that point). Then, a de-
pendence on Y is needed to make the system evolve in time not only undergoing
the effect of the diffusion, but with a real, effective force acting on it. The sim-
plest, linear dependence on Y is what we chose as first approximation; this also
corresponds to approximate the local, energetic landscape to a parabola, since
the constant diffusion coefficient gives no contribution in the Eq. 2.9. Writing the
force locally as f(Y ) = k(Y − YC), the drift coefficient becomes

D(1)(Y ) = ρ(Y − YC), (2.20)

where ρ = k/γ. Defining B = 1+ρ∆t, the Euler–Maruyama version of Langevin
equation can thus be iterated to give

Y∆t = BY0 − (B − 1)YC + (2D(2)∆t)1/2η0; (2.21)

Y2∆t = BY∆t − (B − 1)YC + (2D(2)∆t)1/2η∆t =

= B2Y0 − (B − 1)(B + 1)YC + (2D(2)∆t)1/2(Bη0 + η∆t);

Y3∆t = B3Y0 − (B − 1)(B2 +B + 1)YC+ (2.22)

+ (2D(2)∆t)1/2(B2η0 +Bη∆t + η2∆t);

... (2.23)
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which can be generalized to n steps by performing the geometric sum as

Yn∆t − Y0 = (Bn − 1)(Y0 − YC)+

+ (2D(2)∆t)1/2
n−1∑
i

Biη(n−i−1)∆t. (2.24)

The drift coefficient at point Y0, or better the two parameters ρ and YC which
define it, can be found from the average displacement of Y , that is

Yn∆t − Y0

n∆t
=

(1 + ρ∆t)n − 1

n∆t
(Y0 − YC)+

+

(
2D(2)

∆t

)1/2
1− (ρ∆t)n

1− ρ∆t

1

n

n−1∑
i=0

ηi. (2.25)

The last term, containing the average η, is expected to be negligible for essentially
two reasons: initially, because its standard deviation goes to zero as (M ×n)−1/2,
in contrast with Eq. (2.12) where n was absent due to the different approach.
Moreover, even if ∆t is small, the prefactor [D(2)/∆t]1/2 is much smaller than in
Eq. (2.12). For instance, let’s consider D(2) ∼ D(1)Y0 and ∆t ∼ 10−4Y0/D

(1): the
noise term results only of the order of 102 · (M × n)−1/2. Since both M and n can
be tuned at will, by using more simulations or by making them last longer, one
has the freedom to minimize the stochastic contribution up to the degree he or
she wishes. We stress that, incidentally, the neglection of η allows Eq. (2.25) to
converge, in the limit n∆t → 0, to ρ(Y0 − YC), which is exactly what expected
in a standard Langevin differential equation framework but whose validity was
not granted in a finite–differences scheme.
Thus, neglecting η in Eq. (2.25) and defining τ = n∆t one can write

K(τ) ≡ Yτ − Y0 = [(1 + ρ∆t)τ/∆t − 1](Y0 − YC). (2.26)

In this expression, in contrast with the previous approach we have a function of
elapsed time τ at the left–hand side, whereas before we simply had a (unknown)
number which was the result of the evaluation of a limit on the right–hand side,
where conversely now there is an expression depending parametrically on ρ,
YC and ∆t. Similarly to the calculation of the drift coefficient in Eq. (2.25) it is
possible to use the iterative procedure described above to obtain the diffusion
coefficient. In fact from Eq. (2.24) one can obtain

(Yτ − Y0)2 =
[
(1 + ρ∆t)τ/∆t − 1

]2
(Y0 − Yc)2 − 2D(2) 1− (1 + ρ∆t)2τ/∆t

ρ(2 + ρ∆t)
, (2.27)
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which can be combined with Eq. (2.26) to give

J(τ) ≡ [Yτ − Y0]2 −
(
Yτ − Y0

)2
= 2D(2) (1 + ρ∆t)2τ/∆t − 1

ρ(2 + ρ∆t)
, (2.28)

which depends parametrically on D(2), ∆t and ρ. More details on the derivation
of Eqs. (2.26) and (2.28) can be found in App. C .

2.3.2 Determination of the parameters

The idea is thus to fit the numerical values of K(τ) and J(τ), which can be ex-
tracted from the Molecular Dynamics simulations previously generated, with the
expressions of Eqs. (2.26) and (2.28) in order to obtain the four parameters ρ, YC
(which completely define D(1)), D(2) and, in principle, also ∆t. However, this
quantity ∆t sets the time scale of the time–dependent parameters. In fact, Eqs.
(2.26) and (2.28) are invariant under the transformations ρ → ρ∆t, τ → τ/∆t

and D(2) → D(2)∆t. As a consequence, the choice of ∆t results in not being too
critical, provided that it is small enough to allow a high–resolution determina-
tion of J(τ) and K(τ). Indeed, in Fig. (2.4) the accuracy in the reconstruction of
D(1) and D(2) depends very poorly on ∆t. Empirically, we find that the choice
∆t = 10∆tmic provides a good balance between the resolution of K(τ) and J(τ)

and the feasibility of the fit.
Since the shape of J(τ) is usually curved, as can be seen in Figs. 2.5 A and
2.6 A, we expect J(τ) to be completely specified by – at least – three different
parameters. Because the theoretical expression for J(τ), Eq. (2.28), depends on
exactly three parameters, we then expect to be able to fit all of them without
running into overfitting. In particular, we expect to obtain ρ and D(2) from it. On
the other hand, since Eq. (2.26) can be written as logK = log(Y0 − YC) + log(...),
we can then fit YC from the small–τ region of logK(τ), which is generally rather
flat (see dashed curves in Figs. 2.5 A and 2.6 A).

2.3.3 Results for the test models

In Fig. 2.5 we have reported the back–calculationf of both the drift coefficient
D(1) and the diffusion coefficientD(2), for the test case of a one–dimensional par-
ticle in a harmonic potential. We stress that, in spite of the simplicity, D(1) could
not be recovered directly by the definition (see Fig. 2.1), whereas D(2) was sub-
ject to a bias whose strength was a priori completely unknown (see green curves
and solid circles in Fig. 2.2 C and F). In Fig. 2.5 B it is shown the percentage stan-
dard error in the determination of D(1); the error is lower than 10% in all cases
and decreases for larger values ofD(1), where the drift dominates over diffusion.
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Figure 2.4: The quality of the reconstruction of D(1) (purple triangles) and D(2) (green
triangles) poorly depends on ∆t, provided that the two functions J(τ) and K(τ) have
sufficient time resolution to be fitted.

Fig. 2.5 C shows the percentage standard error in the back–calculation of D(2):
the error is less than 1%. Good results were obtained calculating D(2) by its def-
inition (see Fig. 2.2 ) at small values of D(1)

true; the present method extends those
results to any biologically–relevant value of D(1)

true. The overall reconstruction of
the profile of D(2) and D(2) is displayed in Fig. 2.5 D.
Similar results were obtained for the more challenging system displaying a two–
state thermodynamics and a sinusoidal diffusion coefficient (see lower panels of
Fig. 2.2). In Fig. 2.6 we report the fits (panel A), the percentage standard error on
D(1) (panel B) and D(2) (panel C), and the reconstruction of the profile of the two
coefficients (panel D). Overall, D(1) can now be calculated with good accuracy,
and D(2) with a better accuracy than using Eq. (2.12).
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Figure 2.5: (A) The values J (solid black curves) and |D(1)| (dashed black curves) as a
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Figure 2.6: The same as Fig. 2.5 for a system displaying a two–state thermodynamics
and a sinusoidal diffusion coefficient (cf. lower panels of Fig. 2.2).
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2.4 Evaluation of the properties of Collective Variables

2.4.1 Application of the algorithm on the Collective Variables dRMSD and q

Finally, the goal of the present section is an inspection on the properties of some
Collective Variables commonly used to describe the dynamics of protein models.
More specifically, we want to understand whether the dynamics of the system,
projected from the high–dimensional phase space to the low–dimensional one,
can be described by Eq. (2.8). A necessary requirement is that the Collective
Variable needs to identify uniquely D(1) and D(2), which cannot depend on the
microscopic coordinates (as stated in Eq. (2.7), which we report here for ease of
reading)

if ∃r0, r1 : Y (r0) = Y (r1) = Y −→ D(1−2)(Y (r0)) = D(1−2)(Y (r1)) = D(1−2)(Y )

(2.29)
Moreover, the Kramers–Moyal coefficients of the Collective Variable need to be
zero for n ≥ 3.
Operatively, to challenge a specific Collective Variable Y , we start by generating a
set of microscopic conformations Z ≡ {r}. We then choose a value of Y we want
to investigate, that is Y0, and keep from the set Z only that set of conformations
S ≡ {r′} (S j Z) satisfying Y (r′) = Y0, or at least which are in the interval
[Y0 − ε, Y0 + ε] (we shall discuss more on ε later). From each conformation r′ in S,
we extract D(1)(Y0), D(2)(Y0) and also D(3)(Y0). The collection of all the resulting
D(1)(Y0), D(2)(Y0) and D(3)(Y0) will provide their distribution, associated with
that set S. If Y is a ”good” reaction coordinate, namely if the condition 2.7 is met,
such distributions should strongly peaked, identifying a single value for D(1),
D(2) and should be identically zero for D(3). Therefore, the standard deviations
σ1 and σ2 of the distributions of D(1) and D(2), respectively, and the root mean
square difference σ3 from zero of D(3) can be regarded as measures of the quality
of the Collective Variable as reaction coordinate. An ideal reaction coordinate
should display σ1 = σ2 = σ3 = 0.
It is reasonable to assume that the quality of Collective Variables could be de-
pendent on the kind of tridimensional structure possessed by the system under
analysis. Consequently, we analyze separately the two basic structural units of
proteins, that is α–helices and β–hairpins. In particular, we choose as study sys-
tem the second hairpin of protein–G B1 domain and its helix, which were ex-
tracted from the Protein Data Bank reference structure 1PGB [87]. In addition,
we use a structure–based, implicit–solvent potential [88] in order to make cal-
culations particularly fast as we shall have to perform dozens of thousands of
short simulations. The functional form of the potential is a sum of atom–atom
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interaction terms, all shaped in a Lennard–Jones fashion, where at the native dis-
tance of each pair of atoms the energy has its minimum −1 (in arbitrary energy
units). We generated all the trajectories using Gromacs 5.1 ([64]), at a low tem-
perature T = 0.92 (in energy units) at which the native conformations are stable;
the post–processing of data has been performed with Plumed 2.3 ([63]).
We chose to focus our efforts on two Collective Variables, which are popular in
the research field of protein folding and in general of the computational, struc-
tural biology. The first one is the distance–RMSD (dRMSD) of a generic confor-
mation rt to the native conformation rN

dRMSD(rt, rN ) =

 1

N(N − 1)

∑
ij,i6=j

(
|rti − rtj | − |rNi − rNj |

)21/2

(2.30)

which is a sort of metric in the cartesian space, used to discriminate between con-
formations globally similar to the reference structure (where dRMSD is lower,
ideally zero in the reference structure itself) to those radically different (where
dRMSD is higher). In Eq. (2.30), the sum is carried out on all the pairs of atoms
{i, j} belonging to the structure rt (or rN , as of course they must be compatible);
N is the total number of atoms. The second Collective Variable is the fraction of
native contacts q, defined as follows

q =
1

W

W∑
ij∈C

s(dij) with s(d) =

1 if d ≤ d0

1− tanh
(
d−d0
r0

)
otherwise

(2.31)

where C is the set of all the pairs of (non–hydrogen) atoms displaying a distance
dij < 5 Å in the native conformation, provided that the distance in the sequence
between the respective aminoacids was |ai − aj | ≥ 4, in order to identify only
the relevant, non–trivial native contacts. The sum is then performed on all the
W pairs of atoms i and j belonging to this set C. All the parameters used in the

d0 5 Å
r0 1 Å
Wα 149

Wβ 244

Table 2.3: List of parameters for the definition of the fraction of native contacts q.

definition of the function s(dij) are listed in Tab. 2.3 , along with the total number
of native contacts found for the α–helix and the β–hairpin.
To calculate D(1) and D(2), at first we generated a long trajectory, at T = 0.92 for
both the α–helix and the β–hairpin, consisting in 2 · 104 frames each. We then
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labelled each frame with its own value of dRMSD and of q. Eventually, from all
the frames we extracted five subsets of 500 conformations each, whose dRMSD

lied in the ranges

- [0.20, 0.21] nm

- [0.25, 0.26] nm

- [0.30, 0.31] nm

- [0.35, 0.36] nm

- [0.40, 0.41] nm

and other five subsets with q in the ranges

- [0.10, 0.13]

- [0.30, 0.33]

- [0.50, 0.53]

- [0.70, 0.73]

- [0.90, 0.93]

The width of intervals, 0.01 nm for dRMSD and 0.03 for q, was chosen in the
following way: we needed it to be small enough to let conformations to be rather
similar, if belonging to the same interval, but large enough to have a statisti-
cally sound number of different frames, in order to build an histogram with the
resulting data. Every frame was the starting conformation Y0 for M = 300 in-
dependent simulations, in which the corresponding Collective Variable Y was
monitored. From a single set of M simulations, the functions K(τ) and J(τ)

could be drawn and fitted and the values of D(1) and D(2) were calculated, ac-
cording to Eqs. (2.20), (2.26) and (2.28).
The resulting distributions of coefficients D(1) and D(2), calculated for the α–
helix and the β–hairpin and then normalized over the 500 frames, are displayed
in Figs. 2.7 and 2.8, respectively. The associated means and standard deviations
are displayed in Figs. 2.9 A–D and 2.10 A–D, respectively. In the following lines
we will refer essentially to latters, for ease of reading data. By looking to the case
of the dRMSD, it seems that both the α–helix and the β–hairpin possess distri-
butions of D(1) which are significantly wide, standard deviations being several
times the value of the mean as can be seen in Figs. 2.9 A and 2.10 A. Whereas
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the mean is negative for all the values of the dRMSD, the monotonicity is differ-
ent in the two systems, being decreasing for the α–helix and approximately flat
in the case of the β–hairpin. The absence of a changement in the sign of D(1) is
expected, as it suggests that all the chosen values Y0s are at the same side (on the
right in this case, because of the negative value of D(1)) of an energy minimum,
which can be common for all Y0s or not. Indeed, the real, global minimum of
both the α–helix and the β–hairpin lies roughly at dRMSD ≈ 0.1 nm. For what
concerns the diffusion coefficient instead, D(2) is better defined by the dRMSD

than D(1), as standard deviations are now only of the order of circa the half of
the mean. Its value is lowest at low dRMSD, where the conformational space is
narrower, and is always increasing in the case of the α–helix, while it slightly de-
creases at large dRMSD in the case of the β–hairpin (see Figs. 2.9 C and 2.10 C)
Interestingly, standard deviations of both D(1) and D(2) seem to be rather inde-
pendent on the value of dRMSD.
On the other side, the fraction of native contacts q shows a drift coefficient D(1)

whose standard deviation is of the order of the mean, in great contrast with the
previous finding regarding the dRMSD. It is positive, except for at q ≈ 0.9,
indicating that the equilibrium state has possibly 0.7 < q < 0.9 for both the
α–helix and the β–hairpin (see Figs. 2.9 B and 2.10 B). As in the case of the
dRMSD, the diffusion coefficient of the α–helix decreases monotonically to the
native state, as shown in Fig. 2.9 D, while it has a bell–shaped behavior for the
β–hairpin, as can be seen in Fig. 2.10 D. Overall, the standard deviation of D(2),
relative to its mean, is comparable with that previously estimated of the dRMSD

but, in contrast with this, it shows a weak decrease when Y moves towards the
native state. Finally, we stress that, following the criterion derived in Eq. (2.19),
we find that the value ofD(3) can be considered negligible, as shown in Figs. 2.11
and 2.12 .

2.4.2 Effective force and dynamics in reduced dimension

As previously reported in Eqs. (2.9) and (2.10), if a Collective Variable Y evolves
in time according to the Eq. (2.1), then the effective force exerted on the system
is composed by two terms: the one opposite to the gradient of the free energy F ,
calculated as a function of the Y , and the one proportional to the gradient of the
diffusion coefficient, provided that D(1) effectively depends on Y [81].
Even though the approximation we performed considered D(2) as constant, pro-
viding then a theoretical zero contribution to the calculation of the drift D(1), in
principle there is no reason to maintain the same approximation when it comes
to analyze the results and looking at them from a global point of view. More
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specifically, in the approximation we considered as locally constant the value of
D(2)(Y0) in the surroundings of each conformation r whose value is Y0. When
we project the data orthogonally with respect to the Collective Variable Y , that is
when we create the graphs such as those in Figs. 2.9 A–D and 2.10 A–D, all the
information about the specific values Y0s is collected at the same time, for each
Y0. This means that every point Y0 on Figs. 2.9 A–D and 2.10 A–D gathers data
generated with different values of D(2) and, for this reason, a priori one cannot
consider D(2) as to be really constant over the space.

However, in the following we shall recover the effective force using Eq. (2.9)
by neglecting the second term, that proportional to ∂D(2)(Y )/∂Y , for mainly
two reasons. The first is due to the low order of magnitude of the gradient. In-
deed, in all the panels 2.9 C and D, 2.10 C and D, the value of D(2) changes on
a scale which is ≈ 10−1 times that of D(1). Let’s take as reference example Fig.
2.10 D, which refers to the Collective Variable q: from the points 0.10 and 0.30 the
value ofD(2)(Y ) increases from≈ 3.5× 10−3 ns−1 to≈ 7× 10−3 ns−1, resulting in
∆D(2)(Y ) ≈ 3.5× 10−3 ns−1. At the same time, ∆q = 0.2. As a consequence, the
value of the correction 1/2 ∂D(2)(Y )/∂Y , evaluated roughly as ∆D(2)(Y )/ (2∆q),
is 8.75× 10−3 ns−1 for the point Y0 = 0.10 on the q axis. Simultaneously, the value
of D(1) calculated with the algorithm is of the order ≈ 10−1 ns−1 for the same
point Y0 = 0.10 (see Fig. 2.10 B). Basically, the correction accounts only for less
than 10% of the total value of the drift D(1); consequently, it seems reasonable to
neglect it (in App. B a similar argument was used to show that the time evo-
lution of p(Y ) at a first approximation converges to the Boltzmann distribution).
The second reason is more practical: the resolution of D(2) on the Y –axis is very
poor in each of the Collective Variables under investigation, because we chose
only five values of the Collective Variable to which apply the machinery, mainly
to reduce the computational effort. Despite we do not expect D(2) to undergo
huge variations in the points between those sampled by us, that is probably D(2)

is smooth in each of the four intervals here defined, it seems a very crude approx-
imation to evaluate the derivative on a so coarse–grained scale such that chosen
in our analysis.

Therefore, in this context the drift D(1) exerted on the system at each point Y0, is
only proportional to the opposite of the gradient of the free energy F , calculated
as a function of Y . In the formalism of Eq. (2.1), this term should be equivalent
to an effective force f = γD(1), where γ is the effective friction coefficient on the
Collective Variable Y0. We can further suppose that γ follows Einstein’s relation
γ = T/D(2), which was derived in the scenery of cartesian coordinates for what
we should consider the Collective Variable ”position”, but which we extend also
to this framework. A relevant question is then to which extent the effective force
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calculated with the algorithm is equal to the opposite gradient of the free energy
F for the two variables under examination.

We then calculated the equilibrium free energies F (dRMSD) and F (q), for both
the α–helix and the β–hairpin, by means of two replica–exchange simulations
[28], using the same force–field adopted for the calculations of D(1) and D(2)

[88]. They are displayed in the bottom panels of Figs. 2.9 and 2.10, for the α–
helix and the β–hairpin, respectively. In Fig. 2.13 we compared the effective
mean force γD(1) = TD(1)/D(2) with the derivative −∂F (Y )∂Y obtained from
the numerical differentiation of the values displayed in Figs. 2.9 E and F, 2.10 E
and F. In spite of the large standard deviation which affects the distributions
of D(1) and D(2), as can be seen in Figs. 2.9 and 2.10, the two quantities are
comparable, relative errors being in the worst case of the order of 50% of the force
(in the case of the β–hairpin, see Fig. 2.13 C). The dRMSD performs globally
worse than q, especially in the case of the β–hairpin. Moreover, in three cases the
two quantities are fairly correlated. Indeed, the Pearson’s correlation coefficients
are r > 0.89 for theα–helix and for q in the case of the β–hairpin, whereas only for
the dRMSD of this last case the correlation seems poor. One should stress that
the correlation coefficients were calculated without considering the horizontal
error bars, which can (actually, were) derived from the width of distributions
in Figs. 2.7 and 2.8 , as they are so large that the whole computation of the
correlation would have been pointless. Moreover, it is worth to point out that
the two quantities compared in Fig. 2.13 have a completely different origin.
In fact, while the effective force TD(1)/D(2) is calculated point–wise from very
short, dynamical simulations, the free energy F and its gradient were obtained
from an equilibrium sampling. This feature is interesting as the agreement occurs
in spite of the large width of the distributions of D(1) and D(2) mentioned above.

If the thermodynamic properties seem to be recovered by the machinery devel-
oped in previous Sections, we performed a further test for the drift and the dif-
fusion coefficients on the recovery of the dynamics. To do so, we compared the
dynamics simulated by Eq. (2.1) with the projection of the microscopic dynamics
on the Collective Variable. Operatively, once we calculated D(1)(Y ) and D(2)(Y )

for the profile of an entire Collective Variable Y (only five points, actually), we
could write an effective integrator where the functionsD(1)(Y ) andD(2)(Y ) were
coded in order to provide the same results found from the algorithm. The com-
parison has been carried out for the case of the variable q in the β–hairpin, as it
was the variable with the best outcome in the determination of the effective en-
ergy (see Fig. 2.13 D). We display the average and the standard deviation of q as
a function of the time in Fig. 2.14 . In green, data are taken from full–atom simu-
lations, the same used to calculate D(1) and D(2); in red are shown data from the
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Figure 2.7: The distributions of drift (A–C) and diffusion (B–D) coefficients for the Col-
lective Variables dRMSD (upper panels) and q (lower panels), calculated in different
intervals of the Collective Variable for the case of the α–helix.

resolution of the monodimensional Langevin equation with the D(1) and D(2)

extracted from the green series. In the latter case, the average is performed over
100 simulations starting from the same unfolded conformation. As can be seen
in Fig. 2.14 A, the overall folding time seems comparable in the two kind of
simulations, being it of the order of few ps for both the cases, but the detailed
dynamics is different. Indeed, the microscopic dynamics shows a slightly faster
initial folding, followed by a further event at ≈ 18 ps, which is not reported in
the effective Langevin dynamics. However, the most important difference lies
in the run–to–run variability, which is completely different in the two cases (see
Fig. 2.14 B), as fluctuations of the value of q over time are many orders of magni-
tude smaller in the microscopic dynamics. The dynamical properties thus seem
much more sensitive to the imperfections in the Collective Variable than to the
equilibrium properties.
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Figure 2.8: The distributions of drift (A–C) and diffusion (B–D) coefficients for the Col-
lective Variables dRMSD (upper panels) and q (lower panels), calculated in different
intervals of the Collective Variablefor the case of the β–hairpin.
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A B

C D

E F

Figure 2.9: The average and the standard deviation, plotted as error bar, of the drift
(A–B) and diffusion coefficient (C–D) for the α–helix, calculated in different intervals of
dRMSD (left panels) and q (right panels). Below, the free energies in the same region
of interest for both dRMSD (E) and q (F), at the simulation temperature T = 0.92 (in
energy units).
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A B

C D

E F

Figure 2.10: The average and the standard deviation, plotted as error bar, of the drift
(A–B) and diffusion coefficient (C–D) for the β–hairpin, calculated in different intervals
of dRMSD (left panels) and q (right panels). Below, the free energies in the same region
of interest for both dRMSD (E) and q (F), at the simulation temperature T = 0.92 (in
energy units).
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Figure 2.11: The ratio betweenD(3)∆t and |D(2)∆t|3/2, calculated for the Collective Vari-
able dRMSD (above) and q (below), for the α–helix.
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Figure 2.12: The ratio betweenD(3)∆t and |D(2)∆t|3/2, calculated for the Collective Vari-
able dRMSD (above) and q (below), for the β–hairpin.
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A B

C D

Figure 2.13: A comparison between effective force TD(1)/D(2) obtained from the drift
and diffusion coefficients and that obtained differentiating the equilibrium free energy
(cf. Figs. 2.9 and 2.10) in the case of the α–helix using the dRMSD (A) and q (B); in the
case of the β–hairpin using the dRMSD (C) and q (D).
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A

B

Figure 2.14: The average fraction of native contacts q̄ (A) and its variance (B), as func-
tions of the simulation time. Data in green are taken from full–atom simulations of the
β − hairpin, while data in red are generated via the resolution of a monodimensional
langevin equation. The relaxing times τ of q̄ are τβ = 3.6 ps for the full–atomistic simu-
lations and τ1d = 4.8 ps for the monodimensional trajectories.
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2.5 Discussion

The results obtained in two one–dimensional test systems indicate that it is pos-
sible to back–calculate the diffusion coefficient with great precision (i.e., with an
error lower than 1%) by direct application of its finite–difference definition (i.e.,
in Eq. (2.12)) if the drift coefficient is moderately small, that is if the drift does
not induce a deterministic displacement within the time ∆t used in Eq. (2.12).
On the other hand, the calculation of the drift coefficient directly by definition
would require an enormous (� 105) number of replicated simulations for each
point of conformational space to obtain a stable result, and it is thus impractical.
The strategy we developed based on an iterative solution of the finite–differences
equations of motion allow one to back–calculate the drift coefficient with an er-
ror lower than 10% in the test cases, and to back–calculate correctly the diffusion
coefficient also if the system undergoes strong drifts, up to those caused by nN

forces, much stronger than typical biological forces.
In simulations carried out with simple models of α–helix and β–hairpin, the dis-
tribution of drift coefficients for different point of conformational space associ-
ated with the same value of the fraction of native contacts q has a spread which
is of the order of half its average. This suggests that the Collective Variable q
defines a drift coefficient, although with a non–negligible error bar. The same is
not true for the dRMSD. In this case the drift coefficient is defined only in terms
of its order of magnitude, the width of its distribution for fixed value of dRMSD

ranging from three to ten times the mean.
Anyway, for both variables the mean drift matches that obtained as derivative
of the free energy F , calculated independently from a conformational sampling
at equilibrium. This suggests that it is possible to build a one–dimensional ap-
proximated model of these peptides, in which the equilibrium and the dynamical
properties are consistent with each other. Moreover, one could also exploit these
results to calculate the equilibrium free energy of a system from short dynamical
simulations. The diffusion coefficient is defined better than the drift for both the
dRMSD and the q, the width of the associated distribution being in both cases
at worst half of the mean, and usually lower. This fact gives a sound basis to
the calculations reported in refs. [41, 42, 43, 44] for the diffusion coefficient, and
make it possible to exploit strategies in which the diffusion coefficient is artifi-
cially biased to enhance conformational sampling.
The large widths of the distributions of D(1) and D(2) are not really unexpected,
since to a given value of q or dRMSD correspond conformations which can be
conformationally very different, and thus can display different energetic proper-
ties. Interestingly this is true for native–like conformations as well (q = 0.90 or
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dRMSD = 0.20 nm), which are supposedly more homogeneous from the con-
formational point of view. Most likely, the steep dependence of the potential
function which is used in the present force field (i.e., containing terms like 1/r6

or 1/r12) and which reflect the true interaction between the atoms of the system,
plays an important role in defining the width of the observed distributions.
Although the agreement between the calculated mean drift coefficient and the
equilibrium free energy of the peptides is reasonably good, the detailed dynam-
ics is quite different in the dimensional–reduced model, especially in terms of
run–to–run fluctuations of the Collective Variable. This suggests that the dy-
namical properties are more sensitive to approximations than the equilibrium
properties. This asymmetry was already observed for their respective depen-
dence on the force field [89].





Conclusions

The computational study of the denatured state of proteins can be an extremely
challenging task, as it usually requires a thorough exploration of a huge phase
space, whose dimension can rise up to 106 degrees of freedom for a biomolecule.
However, it is necessary to provide an overview of the molecular mechanism
through which common chaotropic agents, such as urea or guanidine chloride,
act on the tridimensional structure of a protein and disrupt it, stabilizing the
denatured phase and allowing it to be studied with standard experimental tech-
niques. This topic has been addressed in the present thesis from a twofold per-
spective: one more practical, involving a set of simulations of polypeptides in
solution, the other one more theoretical, concerning some properties of the Col-
lective Variables used to describe the denatured state.
In the first part, we investigated the conformational properties of two peptides,
the α–helix (residues 22− 38) and the second β–hairpin (residues 41− 56) of the
protein G B1 domain, under the effect of distinct chemical environments: in wa-
ter, in 2M or 5M urea and in 2M or 4M GndCl. The denaturation mechanism act-
ing on the α–helix and the β–hairpin seems to be different, as the conformational
properties of the two peptides in water are contrasting. Indeed, at physiological
conditions the β–hairpin can be described as a three-state system, formed by the
fully–formed native state, an half–formed intermediate state and a random coil,
whereas the α–helix populates a plethora of states whose content in secondary
structure can be rather heterogeneous. The addition of denaturants in solution
reflects this dissimilarity, since the β–hairpin decreases the population of the na-
tive and the intermediate states, but overall the conformational space does not
change its structure and back–calculated experimental values – CD spectra and
chemical shifts – report only β content both in urea and in GndCl. On the other
side, the mixed α and β content for the α–helix in denaturant solution results in
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CD spectra and chemical shifts resembling those typical of a random coil. More-
over, the denaturing mechanisms of urea and GndCl appear to be very different
from each other, the former competing with the molecules of water in forming
hydrogen bonds with essentially all the residues, the latter favouring the inter-
actions with the negative–charged amino acids, aside from generating an electric
dipole whose effect is generally detrimental for secondary structures, especially
the α–helices.
In the second part, we examined some mathematical properties of two Collec-
tive Variables (the fraction of native contacts q and the distance root mean square
deviation dRMSD from a reference structure), which are dimensional reduc-
tions commonly used to describe, among others, the denatured phase and its
transition towards the native state. Indeed, a dimensional–reduction approach
is extremely useful to analyze complex, biomolecular data and occasionally to
bias Molecular Dynamics simulations in order to decrease their computational
cost. However, the dynamics of a system in a reduced dimensional space can
be as complicated as that in the original, full–dimensional one if the reduced co-
ordinate Y is not chosen properly. Usually, a requirement is for the Collective
Variable Y to describe the slowest motion of the system; this property makes Y
to be controlled by an overdamped Langevin equation, where the dependence of
the drift and the diffusion coefficients on the microscopic conformations is com-
pletely lost. Yet it is difficult to check directly this condition in a system as com-
plex as a biopolymer. Here, we employed a different approach and developed an
algorithm to calculate the drift and diffusion coefficients in the neighborhood of a
microscopic point of the full–dimensional conformational space. This method is
based on a finite–differences version of the Langevin equation and on an iterative
evolution of the dynamics of the Collective Variable Y , under the approximation
of locally linear force and locally constant diffusion coefficient. Such an approach
allowed us to calculate the drift and diffusion coefficients for an ensemble of
such points, corresponding to the same value of the reduced coordinate Y . We
showed that the coefficients calculated for the length–invariant Collective Vari-
ables (such as a sum of contact functions like q) display a weaker dependence
on the microscopic point than Euclidean distances (such as the dRMSD), but by
any means this feature is a priori negligible. Nonetheless, the average drift and
diffusion coefficients are compatible with the equilibrium properties of the sys-
tem, whereas the dynamical properties are more sensitive to the lack of ideality
of the Collective Variable.
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APPENDIX A

Aminoacid–specific radial distribution functions

A.1 α–helix

We report in Tab. A.1 the list of amino acids, along with the properties of their
side chains concerning the electrostatic and the hydrophobicity. In the Figs. A.1 ,
A.2 , A.3 , A.4 and A.5 are shown the radial distribution functions for each amino
acid with respect to each component of the solvent, except for the N-terminal
ASP22 and the C-terminal GLY38, which are neglected since their increased de-
grees of freedom give rise to extremely noisy curves.

22 ASP ch. negative
23 ALA hydrophobic
24 ALA hydrophobic
25 THR polar
26 ALA hydrophobic
27 GLU ch. negative
28 LYS ch. positive
29 VAL hydrophobic
30 PHE hydrophobic
31 LYS ch. positive
32 GLN polar
33 TYR hydrophobic
34 ALA hydrophobic
35 ASN polar
36 ASP ch. negative
37 ASN polar
38 GLY -

Table A.1: The whole list of amino acids and their electrostatic or hydrophobic properties
are reported for the α–helix system.
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Figure A.1: Radial distribution functions for the amino acids listed in the title of each
panel. On the left panels, the rdf is computed between the amino acid and the center of
mass of the molecules of water, whereas on the right panels it is computed between the
amino acid and the molecules of denaturant. Data refer to the simulation in water (black
lines), 2M GndCl (solid red), 4M GndCl (dashed red), 2M urea (solid blue) and 5M urea
(dashed blue).
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Figure A.2: See caption of Fig. A.1 .
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Figure A.3: See caption of Fig. A.1 .
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Figure A.4: See caption of Fig. A.1 .
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Figure A.5: See caption of Fig. A.1 .
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A.2 β–hairpin

As in Tab. A.1 , in Tab. A.2 we report the list of amino acids and their proper-
ties, whereas in the Figs. A.6 , A.7 , A.8 , A.9 and A.10 are shown their radial
distribution functions, except for those of the terminal amino acids.

41 GLY -
42 GLU ch. negative
43 TRP hydrophobic
44 THR polar
45 TYR hydrophobic
46 ASP ch. negative
47 ASP ch. negative
48 ALA hydrophobic
49 THR polar
50 LYS ch. positive
51 THR polar
52 PHE hydrophobic
53 THR polar
54 VAL hydrophobic
55 THR polar
56 GLU ch. negative

Table A.2: The whole list of amino acids and their electrostatic or hydrophobic properties
are reported for the β–hairpin system.
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Figure A.6: Radial distribution functions for the amino acids listed in the title of each
panel. On the left panels, the rdf is computed between the amino acid and the center of
mass of the molecules of water, whereas on the right panels it is computed between the
amino acid and the molecules of denaturant. Data refer to the simulation in water (black
lines), 4M GndCl (dashed red) and 5M urea (dashed blue).
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Figure A.7: See caption of Fig. A.6 .
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Figure A.8: See caption of Fig. A.6 .
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Figure A.9: See caption of Fig. A.6 .
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Figure A.10: See caption of Fig. A.6 .



APPENDIX B

On the convergence of p(Y ) to Boltzmann

We show here that p(Y ) converges in a first approximation to Boltzmann, when
proper orders of magnitude for D(1) and D(2) are inserted in calculations. The
integrator used has the form

Y (t+ ∆t) = Y (t) +D(1)(Y (t))∆t+
√

2D(2)(Y (t))∆t · ηt (B.1)

Inverting the integrator and introducing the notation Yt ≡ Y (t), we have an
expression for ηt

ηt =
Yt+∆t − Yt −D(1)(Yt)∆t√

2D(2)(Yt)∆t
(B.2)

We call ∆Y ≡ Yt+∆t−Yt . Since the transition probabilityWYt→Yt+∆t
(namely, the

probability of performing a step ∆Y ) is the same of extracting the right ηt, then
p(∆Y ) ≡WYt→Yt+∆t

= p(ηt), where the latter is gaussian–distributed:

exp

(
− η2

t

2

)
= exp

[
− 1

4D(2)(Yt)∆t

(
∆Y −D(1)(Yt))∆t

)2]
(B.3)

On the other side, the transition probability WYt+∆t→Yt reads

exp

(
−
η2
t+∆t

2

)
= exp

[
− 1

4D(2)(Yt+∆t)∆t

(
−∆Y −D(1)(Yt+∆t)

)2]
(B.4)

The ratio WYt→Yt+∆t
/WYt+∆t→Yt is then

WYt→Yt+∆t

WYt+∆t→Yt
=

exp

[
− 1

4D(2)(Yt)∆t

(
∆Y −D(1)(Yt)∆t

)2]
exp

[
− 1

4D(2)(Yt+∆t)∆t

(
−∆Y −D(1)(Yt+∆t)∆t

)2] =

=

exp

[
− 1

2αt

(
∆2(Y )− 2βt∆Y + β2

t

)]
exp

[
− 1

2αt+∆t

(
∆2(Y ) + 2βt+∆t∆Y + β2

t+∆t

)] (B.5)
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where αi = 2D(2)(Yi)∆t and βi = D(1)(Yi)∆t. We rewrite Eq. (B.5) to highlight
the differences between similar terms

WYt→Yt+∆t

WYt+∆t→Yt
= exp

[
− 1

2
∆2Y

(
1

αt
− 1

αt+∆t

)
− β2

t

2αt
+

β2
t+∆t

2αt+∆t
+
βt∆Y

αt
+
βt+∆t∆Y

αt+∆t

]
(B.6)

Eq. (B.6) is a product of three terms

(A) =exp

[
− ∆2Y

2

(
1

αt
− 1

αt+∆t

)]
(B) =exp

[
1

2

(
β2
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αt+∆t
− β2

t

αt

)]
(C) =exp

[
βt∆Y

αt
+
βt+∆t∆Y

αt+∆t

]
Re-inserting the values of βi and αi and making the assumptions that D(1)(Yi) ≡
fi/γi and D(2)(Yi) ≡ kBT/γi, where fi is a force at time i while γi is the friction
coefficient at Yi, it turns out that (C) is the classical Boltzmann term.
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=exp
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(B.7)

where we have used the definition of work

L =

∫ Yt+∆t

Yt

f(s)ds = −∆U

=f

∫ Yt+∆t

Yt

ds =

=
ft + ft+∆t

2
∆Y

On the other side, (B) is negligible being the argument of the exponent propor-
tional to ∆t

exp
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(B.8)
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whereas (A) is

exp

[
− ∆2Y

2

(
1

αt
− 1

αt+∆t

)]
=exp

[
− ∆2Y

4∆t

(
D(2)(Yt+∆t)−D(2)(Yt)

D(2)(Yt) ·D(2)(Yt+∆t)

)]
≈exp

[
− ∆2Y

4∆t
· ∆D(2)(Yt)[
D(2)(Yt)

]2] (B.9)

where we approximated D(2)(Yt+∆t) ≈ D(2)(Yt) at the zeroth order. The order

of magnitude of the exponent in Eq. (B.9) is O
(

∆D(2)(Y )

D(2)(Y )

)
≈ O(10−1) (see for

instance Figs 2.10 ). On the other side, the typical exponent in Eq. (B.7) is of the
order of the unitO(1). Hence (A), at least in this specific context, can be considered
a small correction to the Boltzmann term (C), and the system has the correct
long–term thermal evolution.





APPENDIX C

Details on the derivation of J(τ) and K(τ)

C.1 An expression for Y (t+N∆t)

We start by considering the integrator in the form

Y (t+ ∆t) = Y (t) +
∆t

γ
f(Y (t)) +

√
2kBT∆t

γ
· ηt (C.1)

where
〈ηt〉 = 0 ; 〈ηtηt′〉 = δt,t′ (C.2)

and where the ratio kBT
γ is interpreted as the diffusion coefficient D for the vari-

able Y ; since γ is constant here, also it is D.

• kB is the Boltzmann constant;

• T is the temperature;

• Y has the dimensions [m], for instance;

• γ has the dimensions [u s−1]

• ∆t has the dimensions [s];

• f has the the dimensions [kJ mol−1 m−1]

The integrator C.1 is dimensionally coherent:[
s kJ mol−1 m−1

u s−1

]
=

[
s2 kg m2 s−2 mol−1 m−1

u

]
= [m] (C.3)

√[
kJ mol−1 s

u s−1

]
=

√[
kg mol−1 m2 s−2 s2

u

]
= [m] (C.4)
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We further suppose that the force f is linear with respect to the Collective Vari-
able Y :

f(Y (t)) = k(Y (t)− YC) (C.5)

where k has the dimensions
[
kJ mol−1 m−2

]
and where YC is the position of the

basin of attraction by which the force is generated. Then, Eq. (C.1) becomes

Y (t+ ∆t) =Y (t) +
k∆t

γ
Y (t)− k∆t

γ
YC +

√
2kBT∆t

γ
· ηt

=

(
1 +

k∆t

γ

)
Y (t)− k∆t

γ
YC +

√
2D∆t · ηt

= (1 + ρ∆t)Y (t)− ρ∆tYC +
√

2D∆t · ηt
=BY (t)− (B − 1)YC + αηt (C.6)

where we inserted the definition of D, along with ρ ≡ k
γ , B ≡ (1 + ρ∆t) and

α ≡
√

2D∆t. Eq. (C.6) is only the first iteration of the algorithm. We can apply
the same machinery to Y (t+ ∆t) to find Y (t+ 2∆t)

Y (t+ 2∆t) =BY (t+ ∆t)− (B − 1)YC + αηt+∆t

=B [BY (t)− (B − 1)YC + αηt]− (B − 1)YC + αηt+∆t

=B2Y (t)− (B − 1)(B + 1)YC + α (Bηt + ηt+∆t) (C.7)

Y (t+ 3∆t) =BY (t+ 2∆t)− (B − 1)YC + αηt+2∆t

=B
[
B2Y (t)− (B + 1)(B − 1)YC + α (Bηt + ηt+∆t)

]
− (B − 1)YC + αηt+2∆t

=B3Y (t)− (B − 1)(B2 +B + 1)YC + α
(
B2ηt +Bηt+∆t + ηt+2∆t

)
(C.8)

and so on; the generic expression reads

Y (t+N∆t) = BNY (t)− (B − 1)YC

N−1∑
i=0

Bi + α

N−1∑
i=0

Biηt+(N−i−1)∆t (C.9)

Using the property
n∑
i=0

xi =
1− xn+1

1− x
→

n−1∑
i=0

xi =
1− xn

1− x
(C.10)

in Eq. (C.9), we find the final expression for Y (t+ ∆t)

Y (t+N∆t) =BNY (t)− (B − 1)YC
1−BN

1−B
+ α

N−1∑
i=0

Biηt+(N−i−1)∆t

=BN (Y (t)− YC) + YC + α
N−1∑
i=0

Biηt+(N−i−1)∆t (C.11)
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C.2 Average displacement 〈Y (t+N∆t)− Y (t)〉 and fluctuations

We shall now compute the average values of the following expressions

〈Y (t+N∆t)− Y (t)〉 ; 〈[Y (t+N∆t)− Y (t)]2〉

The first one reads

〈Y (t+N∆t)− Y (t)〉 =〈

[
BN (Y (t)− YC) + YC − Y (t) + α

N−1∑
i=0

Biηt+(N−i−1)∆t

]
〉

=〈(BN − 1)(Y (t)− YC)〉+ 〈α
N−1∑
i=0

Biηt+(N−i−1)∆t〉

=(BN − 1)(Y (t)− YC) + α
N−1∑
i=0

Bi〈ηt+(N−i−1)∆t〉

=(BN − 1)(Y (t)− YC) + α〈η〉
N−1∑
i=0

Bi

=(BN − 1)(Y (t)− YC)

=
(
(1 + ρ∆t)N − 1

)
(Y (t)− YC)

=
(

(1 + ρ∆t)τ/∆t − 1
)

(Y (t)− YC) (C.12)

where τ ≡ N∆t and where 〈ηt+(N−i−1)∆t〉 exits the sum, since the i in the sub-
script is only a label with no effect on the values η can assume at each time. We
call K(τ) the average displacement occurring after a time interval τ

K(τ) ≡〈Y (t+ τ)− Y (t)〉

=
(

(1 + ρ∆t)τ/∆t − 1
)

(Y (t)− YC) (C.13)
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which is precisely Eq. (2.26) for a generic starting point Y (t). On the other side,
the second expression reads

〈[Y (t+N∆t)− Y (t)]2〉 =〈

[
(BN − 1)(Y (t)− YC) + α

N−1∑
i=0

Biηt+(N−i−1)∆t

]2

〉

=〈(BN − 1)2(Y (t)− YC)2〉+ 〈

[
α
N−1∑
i=0

Biηt+(N−i−1)∆t

]2

〉

=K2(τ) + α2〈
N−1∑
i=0

N−1∑
j=0

BiBjηt+(N−i−1)∆t ηt+(N−j−1)∆t〉

=K2(τ) + α2
N−1∑
i=0

N−1∑
j=0

BiBjδi,j

=K2(τ) + α2
N−1∑
i=0

B2i

=K2(τ) + α2 1−B2N

1−B2

=K2(τ) + 2D∆t
1− (1 + ρ∆t)2τ/∆t

1− (1 + ρ∆t)2

=K2(τ) + 2D
(1 + ρ∆t)2τ/∆t − 1

ρ(2 + ρ∆t)
(C.14)

Then, we define the quantity J(τ) as

J(τ) ≡〈[Y (t+ τ)− Y (t)]2〉 − [〈Y (t+ τ)− Y (t)〉]2

=2D
(1 + ρ∆t)2τ/∆t − 1

ρ(2 + ρ∆t)
(C.15)

which is exactly Eq. (2.28); the dependence on the starting point Y (t) is lost as
J(τ) represents the fluctuations of the displacement Y (t + τ) − Y (t), a quan-
tity which cannot depend on the initial condition if the diffusion coefficient D is
constant.
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Il secondo ringraziamento è senza dubbio per Carlo Camilloni, il quale in più
di un’occasione è stato da me definito Deus ex Machina per la naturalezza con cui
riesce a trovare il modo giusto per affrontare i problemi e che ha generosamente
speso molte ore del suo tempo con me, in utili consigli su come affrontare il mio
lavoro in maniera efficace ed in stimolanti discussioni, di carattere scientifico ma
spesso anche personale.

Durante i miei anni trascorsi in università, ho avuto modo di conoscere decine
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e che ben presto diventerà mia moglie. Mio fratello Gianluca, il quale mi ritiene
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