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Abstract 10 

Dipeptidyl peptidase IV (DPP IV) is a new molecular target correlated with the development of 11 

type 2 diabetes. Literatures describes the identification of some inhibitory peptides from the 12 

hydrolysis of different food proteins. This paper reports a study on six peptides from soybean and 13 

lupin proteins, i.e Soy 1 (IAVPTGVA), Soy 2 (YVVNPDNDEN), Soy 3 (YVVNPDNNEN), Lup 1 14 

(LTFPGSAED), Lup 2 (LILPKHSDAD), and Lup 3 (GQEQSHQDEGVIVR), which were 15 

screened for their capacity to inhibit this enzyme, using an in vitro bioassay against human 16 

recombinant DPP IV. Two peptides Soy 1 and Lup 1 resulted to be efficient inhibitors of DPP IV 17 

activity, with IC50 values equal to 106 and 228 µM, respectively. A molecular docking analysis 18 

predicted the key molecular interactions, stabilizing the active peptides within DPP IV enzyme. Soy 19 

and lupin proteins are sources of DPP IV inhibitory peptides potentially useful for the prevention of 20 

type 2 diabetes. 21 

  22 

KEYWORDS: bioactive peptide, dipeptidyl peptidase IV inhibitor, lupin, soy, type 2 diabetes 23 
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INTRODUCTION 24 

Plant proteins are useful in the prevention of cardiovascular disease and diabetes.1 In particular, 25 

some studies provide evidence that soy protein and/or peptides exert a hypoglycemic activity either 26 

in animals2, 3  or in type-2 diabetic patients.4, 5  Moreover, some peptides from soy protein improve 27 

glucose uptake in HepG2 cells6 and peptide mixtures obtained by pepsin-pancreatin hydrolysis of 28 

soy protein improve glucose uptake in muscle L6 cells.7 In the meanwhile, other investigations 29 

support the hypoglycemic activity of lupin protein.8, 9 In particular, it has been demonstrated that γ-30 

conglutin, a sulfur-rich lupin protein, decreases blood glucose concentration in rats10 and has a 31 

relevant post-prandial hypoglycemic effect in humans.10 All these pieces of evidence suggest that 32 

the soy and lupin protein consumption may be beneficial for the prevention of type 2 diabetes.  33 

Dipeptidyl peptidase IV (DPP IV) is a new molecular target correlated with the development of 34 

diabetes.11 DPP IV is a serine exopeptidase that cleaves Xaa-proline or Xaa-alanine dipeptides from 35 

the N-terminus of polypeptides. Among all DPP IV substrates, the most widely investigated are 36 

glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), two 37 

incretins playing an essential role in maintaining glucose homeostasis.12,13 Together, they stimulate 38 

the insulin biosynthesis at pancreatic level and are responsible for up to 70% of insulin secretion 39 

following a meal.14, 15 Since after secretion, GLP-1 and GIP are rapidly degraded by DPP IV,16 the 40 

inhibition of DPP IV improves the glucose tolerance in diabetic patients by enhancing the 41 

insulinotropic effects of GLP-117 and lowers blood glucose via stimulation of insulin and inhibition 42 

of glucagon. For this reason DPP IV inhibitors have emerged as a new class of oral antidiabetic 43 

agents,18 with an excellent therapeutic potential in the management of type 2 diabetes.11, 19 The 44 

synthetic DPP-IV inhibitors sitagliptin and vildagliptin are currently the most widely investigated 45 

new drugs for the treatment of type-2 diabetes.20  46 

Interestingly, many food proteins appear to be useful sources of DPP IV inhibitory peptides, which 47 

may be released from their sequences by enzymatic hydrolysis. For example, DPP IV inhibitory 48 

Page 2 of 20

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



3 

 

peptides have been isolated and characterized from the proteins of cow milk,21 goat milk,22 silver 49 

carp,23 tuna,24 salmon,25 rice,26 black bean,27 and amaranth.28  50 

Owing to our interest for the role of plant proteins and peptides in the prevention of 51 

hypercholesterolemia and hyperglycemia, in the last few years, we have collected some bioactive 52 

peptides from soy (Soy 1-3) and lupin proteins (Lup 1-3) and investigated their biological activities 53 

(Table 1). Soy 1 (IAVPTGVA) corresponds to position 142-149 of glycinin (UniProtK P04776.2) 54 

and modulates cholesterol and glucose biosyntheses in HepG2 cells.6, 29, 30 Soy 2 (YVVNPDNDEN) 55 

corresponds to position 232-241 of the α subunit of β-conglycinin (UNIProtKB P13916), whereas 56 

Soy 3 (YVVNPDNNEN) corresponds to positions 310-319 of the α' subunit of β-conglycinin 57 

(UNIProtKB P11827). Both are able to inhibit the activity of 3-hydroxymethylglutarylCoA 58 

reductase (HMGCoAR) and to modulate cholesterol biosynthesis in HepG2 cells.31 Interestingly, an 59 

investigation in Caco2 cells has shown that they are potentially absorbed at intestine level.32 Lup 1 60 

(LTFPGSAED), Lup 2 (LILPKHSDAD), and Lup 3 (GQEQSHQDEGVIVR) correspond to 61 

positions 484-492, 235-244, and 362-375, respectively, of β-conglutin (UniProtKB Q53HY0.2), a 62 

7S storage protein. We have recently demonstrated that they are transferred from the apical to the 63 

basolateral chamber of a monolayer of Caco2 cells grown in a bicameral system and that the 64 

basolateral solution where they were detected inhibits the activity of HMGCoAR.33  65 

BIOPEP (www.uwm.edu.pI/biochemia)34 is an open access database enabling to hypothesize the 66 

potential biological activities of peptides based on the presence of some specific amino acid 67 

sequences. A screening of the structures of these soy or lupin peptides with BIOPEP suggested that 68 

their structures were compatible with a potential function as DPP IV inhibitors. It was thus decided 69 

to evaluate their potential inhibitory activity using a commercial in vitro bioassay against human 70 

recombinant DPP IV. Subsequently, the interaction of two active peptides and an inactive one with 71 

the enzyme was investigated, by employing an in silico molecular model and scoring approach in 72 

order to perform a docking simulation study. The present work describes the results of these 73 

investigations. 74 
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MATERIAL & METHODS 76 

Materials. Tris-HCl, ethylenediamine tetra-acetic acid (EDTA), and NaCl were from Sigma-77 

Aldrich (St. Louis, MO, USA). The DPP IV enzyme and the substrate solution [5 mM H-Gly-Pro 78 

conjugated to aminomethylcoumarin (H-Gly-Pro-AMC)] were provided by Cayman Chemicals 79 

(Michigan, USA). The peptides Soy 1-3 and Lup 1-3 (Table 1) were synthesized by the company 80 

PRIMM (Milan, Italy) with >95% purity assessed by HPLC. 81 

 82 

DPP IV activity assay. The DPP IV enzyme and the substrate solution (5 mM H-Gly-Pro-AMC) 83 

were provided by Cayman Chemicals (Michigan, USA). The experiments were carried out in 84 

triplicate in a half volume 96 well solid plate (white). Each reaction (50 µL) was prepared adding 85 

the reagents in the following order in a microcentrifuge tube: 1 X assay buffer [20 mM Tris-HCl, 86 

pH 8.0, containing 100 mM NaCl, and 1 mM EDTA] (30 µL), 100 µM of each soy and lupin 87 

peptide [Soy 1-3 or Lup 1-3] or vehicle (10 µL) and finally the DPP IV enzyme (10 µL). 88 

Subsequently, the samples were mixed and 50 µL of each reaction were transferred in each well of 89 

the plate. Each reaction was started by adding 50 µL of substrate solution to each well and 90 

incubated at 37 °C for 30 minutes. Fluorescence signals were measured using the Synergy H1 91 

fluorescent plate reader from Biotek (excitation and emission wavelengths 360 and 465 nm, 92 

respectively). In order to build the dose-inhibition curves of the active peptides Soy 1 and Lup 1, 93 

concentrations in the range 10-1000 µM were tested using the same procedure described above. 94 

 95 

Statistically Analysis. Statistical analyses were carried out by One-way ANOVA using Graphpad 96 

Prism 6 (Graphpad, La Jolla, CA, USA) followed by Dunnett’s test. Values were expressed as 97 

means ± SEM; P-values < 0.05 were considered to be significant.  98 

 99 
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Computational methods. By applying a computational strategy already adopted in a previous 100 

study,35 two active and one inactive peptides (i.e., Soy 1, Lup 1, and Lup 2) were built in canonical 101 

α-helix by using the Peptide Builder function of the VEGA suite of programs36 and then their 102 

conformational profiles were explored by a MonteCarlo procedure, which produced 10,000 103 

conformers by randomly rotating the backbone torsions only. The obtained geometries were then 104 

clustered according to their similarity to discard redundant ones; here, two conformations were 105 

considered as non-redundant when they differed by more than 60 degrees in at least one backbone 106 

torsion angle. For each cluster, the lowest energy structure was collected and memorized.  107 

Among the resolved human DPP IV structures, the study involved the complex between the enzyme 108 

and the long-acting inhibitor Omarigliptin (PDB Id: 4PNZ) chosen due to its very high resolution 37. 109 

After deleting water molecules, ions and crystallization additives, the selected dimer bound to 110 

Omarigliptin was completed by adding the hydrogen atoms and then optimized by keeping fixed the 111 

backbone atoms to preserve the resolved folding. The inhibitor was finally deleted and the obtained 112 

protein structure underwent the following docking simulations.  113 

Docking simulations were carried out by using PLANTS and involved the 20 lowest energy 114 

conformations as derived by the previous MonteCarlo analysis in order to minimize the biasing 115 

effects of the starting conformation on the obtained results38. In detail, the search was focused on a 116 

12.0 Å radius sphere around the bound Omarigliptin thus including the entire binding cavity. 117 

PLANTS was used with default settings and without geometric constraints, speed 1 was used and 5 118 

poses were generated for each conformer and scored by using the PLP function. The obtained poses 119 

were evaluated by considering both the docking scores and the conformational energies of the 120 

docked conformers. The best generated poses was then minimized keeping fixed all atoms inside a 121 

12.0 Å radius sphere around the bound peptide. 122 

 123 

  124 
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RESULTS  125 

Soy and Lupin peptides are able to inhibit DPP IV activity. Figure 1 shows the results of the 126 

experiments aimed to evaluate the inhibitory activity of soybean and lupin peptides against 127 

recombinant DPP IV using H-Gly-Pro-AMC as substrate. The enzymatic reaction was monitored 128 

measuring the fluorescence signals, emitted at 465 nm, due to the free AMC group release after the 129 

cleavage of the peptide H-Gly-Pro by DPP IV. Each peptide was screened at the final concentration 130 

of 100 µM, in parallel with the positive control, sitagliptin (0.1 µM). Two peptides, one from soy 131 

protein and another from lupin protein, were able to inhibit the DPP IV activity: Soy 1 reduced the 132 

DPP IV activity by 46% and Lup 1 by 35%. On the contrary, Soy 2, Soy 3, Lup 2, and Lup 3 133 

weare inactive, whereas the positive control sitagliptin inhibited the DPP IV activity by 88% at 0.1 134 

µM (Figure 1). Subsequently, specific dose-response curves were built for Soy 1 and Lup 1 135 

(Figure 2).  Soy 1 displayed the highest inhibitory activity with an estimated IC50 value of 106 µM, 136 

whereas Lup 1 was less efficient, since its IC50  was 228 µM.  137 

 138 

Molecular modeling investigation. Figure 3 shows the putative complex between Soy 1 and DPP 139 

IV revealing the key ionic interactions, which involve both peptide charged termini and seem to 140 

play a largely predominant role. In detail, the amino terminus is engaged in a double salt bridge 141 

involving Glu205 and Glu206, while the carboxyl terminus stabilizes an ion-pair with Arg358. 142 

Apart from Thr5, which reinforces the contacts elicited by the ammonium head by approaching 143 

Glu205, the remaining part of the peptide appears to be marginally involved in the complex 144 

stabilization. In fact, the central residues might even play a negative role, since peptide apolar 145 

residues are seen to contact protein polar residues as in the case of Pro4, which unfittingly 146 

approaches Glu206 and Ser209. Moreover, Soy 1 does not contains any aromatic side-chains and 147 

thus cannot elicit π−π stacking interactions with the numerous aromatic residues lining the enzyme 148 

cavity.  149 
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This pattern of key interactions can easily rationalize the different inhibitory activity observed for 150 

the other simulated peptides. In detail, the marked difference in the inhibition activity between Lup 151 

2 and Lup 1 seems to be mostly ascribable to the interfering effect of the central Lys5 residue in 152 

Lup 2, which stabilizes the ionic contacts normally involving the amino terminus, which is 153 

therefore constrained to detrimentally approach Arg125. In detail, the carboxyl terminus of both 154 

Lup 2 and Lup 1 peptides interacts with Arg358 and Arg356 and is engaged in an extended ionic 155 

network also involving the side-chain of the C-terminal residue (Asp10 in Lup 2 and Asp9 in Lup 156 

1) and Arg429. As mentioned above, the greatest differences concern the contacts stabilized by the 157 

amino terminus, since it elicits the already described ion-pairs with Glu205 and Glu206 in the 158 

active peptide Lup 1, whereas in the inactive Lup 2 peptide it is replaced by Lys5 and is confined 159 

to a lateral pose where it approaches Arg125, while contacting Glu205. In the putative complexes 160 

of both Lup 2 and Lup 1, the central residues seems to play non-negligible roles. In detail, the 161 

negatively charged residue in the C-terminal segment of both peptides (Asp8 of Lup 2 and Glu8 of 162 

Lup 1) are involved in the above described ionic network stabilized around the carboxyl terminus. 163 

More importantly, Lup 1 includes an aromatic residue (Phe3), which is engaged in a rich set of π−π 164 

stacking involving Tyr547, Trp629, and His740. 165 

Taken together, the docking results allow some general considerations. Ionic interactions stabilized 166 

by charged termini play a clearly crucial role even though their contribution is easily saturating and 167 

the stabilizing effect of the additional ionized side chains appears to be almost negligible, if not 168 

even negative (as seen for Lys5 in Lup 2). This effect can be explained by considering the 169 

closeness between the cluster of protein negatively charged residues (i.e. Glu205 and Glu206) and 170 

that of positively charged residues (i.e. Arg358 and Arg356) and more generally the richness of 171 

ionized residues lining the enzyme cavity. In this way, the additional ionized side chains tend to 172 

interfere with the crucial contacts elicited by charged termini rather than playing a concrete 173 

stabilizing role.  174 
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Clearly, such an interfering effect is an indirect consequence of the molecular size of the simulated 175 

peptides, which are excessively bulky when considering that the enzyme cavity is arranged to 176 

accommodate dipeptide substrates. The unsuitable length can thus explain the inactivity of the other 177 

(non-simulated) longer peptides (i.e. Soy 2, Soy 3, and Lup 3) and can surely contribute to the 178 

inactivity of Lup 2. Finally, the non-ionized central residues of the simulated peptides appears to 179 

play very negligible roles and probably only Phe3 of Lup 1, which is engaged in a rich set of π−π  180 

stacking interactions, should have a concrete stabilizing function thus differentiating Lup 1 from 181 

the other considered ligands. 182 

 183 

DISCUSSION  184 

Although the health benefits of soy and lupin protein consumption are well known, particularly in 185 

the area of cholesterol reduction, hypertension, and hyperglycaemia prevention, this is the first 186 

study providing evidence that some peptides from soy and lupin protein, i.e. Soy 1 and Lup 1, are 187 

able to inhibit the DPP IV activity. Our experimentation suggests a new mechanism of action 188 

through which soy and lupin protein may mediate some health benefits in the area of hyperglycemia 189 

prevention.  190 

Some years ago, a patent39 has reported the structures of 21 peptides capable of inhibiting DPP IV 191 

activity. They have a hydrophobic character, a length varying from 2 to 8 amino acid residues, and 192 

contain a Pro residue within their sequences, which is located at the first, second, third, or fourth N-193 

terminal position. Besides, the Pro residue is flanked by Leu, Val, Phe, Ala, and Gly. Indeed, our 194 

data are consistent with this patent. In fact, as the fourth N-terminal residue, the active peptides Soy 195 

1 and Lup 1 comprise a Pro, which is flanked by a Val residue in Soy 1 and by a Phe residue in 196 

Lup 1. Moreover, the peptides are mostly composed of hydrophobic amino acid residues, such as 197 

Ala, Gly, Ile, Leu, and Pro.  The inactive peptides, i.e. Soy 2, Soy 3, Lup 2 and Lup 3, are probably 198 

too long, since they contain 10-14 amino acid residues. In addition, some of them do not respect the 199 
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structural indicated features: Soy 2 and Soy 3 comprise a Pro residue unfavorably located as fifth N-200 

terminal residue and not flanked by any hydrophobic amino acid residue, whereas Lup 3 does not 201 

contain any Pro residue.    202 

Finally, it is useful to compare the DPP IV inhibitory activities of our peptides with those of 203 

peptides from other foods, such silver carp protein,23  Atlantic salmon skin gelatin,25 and goat milk 204 

protein.22 Four peptides (AGPPGPSG, APGPAGP, LPIIDI, and ALAPSTM) have been identified 205 

from the hydrolysis of silver carp protein;23 out of them LPIIDI and APGPAGP showed the highest 206 

DPP IV inhibitory activity, with IC50 values equal to 105.4 and 229.1 µM, respectively,23 which are 207 

similar to those of Soy 1 and Lup 1. On the contrary, the peptides GPAG and GPGA from Atlantic 208 

salmon skin gelatin25 and AWPQYL and INNQFLPYPY from goat milk22 appeared to be more 209 

active, showing the following IC50 inhibitory values: GPAG IC50 = 49.6 µM,  GPGA IC50 = 41.9 210 

µM,  AWPQYL IC50 = 40.1 µM and INNQFLPYPY IC50 = 40.1 µM.   211 

When discussing the relevance of the activity of any food component, a general issue is the 212 

bioavailability. In this case, the situation appears to be particularly favorable for Lup 1, since a very 213 

recent paper has already demonstrated that this peptide is able to across a monolayer of 214 

differentiated human enterocytes (CaCo-2 cells),33 an in vitro model of gastrointestinal absorption. 215 

Work is in progress in our lab to assess the bioavailability of Soy 1.   216 

 217 
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CAPTIONS OF FIGURES 344 

Figure 1. DPP IV inhibitory activities of Soy 1-3 and Lup 1-3. Each peptide was tested at a final 345 

concentration of 100 µM, in parallel with the positive control, sitagliptin, at a final concentration of 346 

0.1 µM. Bars represent the averages ± SEM of 3 independent experiments in triplicate. ns: not 347 

significant and *** P < 0.0001 versus the enzyme activity. 348 

Figure 2. Dose-response curves of the inhibitory action of Soy 1 and Lup 1 peptides on DPP 349 

IV.  The estimated IC50 values are equal to 106 µM and 228 µM, respectively. The data points 350 

represent averages ± SEM of three independent experiments in triplicate.  351 

Figure 3. Key ionic interactions stabilizing the putative complex between Soy 1 (shown by a 352 

blue tube) and DPP IV. The displayed protein residues are also involved in key interactions with 353 

Omarigliptin as seen in the utilized resolved DPP IV structure. 354 

  355 
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Table 1. Soy and lupin peptides. 356 

 357 

 358 

 359 

  360 

Plant Parent protein Enzyme of 

digestion 

Sequence Entry 

Soybean glycinin pepsin IAVPTGVA Soy 1 

β-conglycinin pepsin/pancreatin YVVNPDNDEN Soy 2 

β-conglycinin pepsin/pancreatin YVVNPDNNEN Soy 3 

Lupin seed β-Conglutin pepsin LTFPGSAED Lup 1 

β -Conglutin  pepsin LILPKHSDAD Lup 2 

β -Conglutin trypsin GQEQSHQDEGVIVR Lup 3 
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