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We consider the interacting Aubry-André model describing fermions on a one dimensional lattice
with an incommensurate potential and a short range many-body interaction. The single particle
spectrum has infinitely many gaps in the extended phase and at zero temperature is an insulator
for almost all the chemical potentials. The many body interaction has the effect that the gaps are
strongly decreased or increased depending on the attractive or repulsive nature of the interaction, but
even the smallest gaps remain open. The system is a band-insulator for generic chemical potentials
even in presence of interaction and a quantum phase transition is excluded at weak coupling.

I. INTRODUCTION

Recent cold atoms experiments, see e.g. [1],[2], [3]
have renewed the interest in the interacting Aubry-André
model, describing fermions on a one dimensional lattice
with a quasi-periodic potential λ cos 2πωx [4] and a short
range many body density-density interaction with cou-
pling U . The model was introduced for describing quasi-
crystals [5] and is a paradigmatic system for understand-
ing the interplay of disorder and interaction [6]. The
Aubry-André model belongs to a class of one dimen-
sional fermionic systems in which the interaction dras-
tically modifies the single body behavior and produces
dramatic effect. The one-dimensionality greatly simpli-
fies the analysis and offers a way to understand phenom-
ena which may have a counterpart in higher dimensions,
where are much more difficult to analyze. Even for such
one dimensional models most of the properties are usu-
ally derived with severe approximations and on the other
hand such models provide only a qualitative description
of real metals; therefore when comparing theoretical pre-
dictions with experiments it is often difficult to under-
stand if discrepancies are due to approximations in the
theoretical analysis or to the model itself. The realization
of optical lattices provides a reasonable clean realization
of such systems, to be compared directly with theoreti-
cal predictions. As optical lattice systems play the role
of ”quantum simulators” for such models, precise ana-
lytical predictions are necessary as benchmark for more
complex systems, whose properties are usually analyti-
cally unaccessible.

In the absence of many body interaction the proper-
ties of the Aubry-André model are quite well understood.
The single particle eigenstates show a transition, when
the strength of the potential is increased, between an ex-
tended and a localized phase [7], similarly to what hap-
pens with three dimensional random disorder. In both
regimes the spectrum is a Cantor set [8], a fact which
has deep consequences for transport. In particular, in
the extended phase there are infinitely many gaps in cor-
respondence of quasi-momenta 2nπω mod. 2π, forming a
dense set, and their size is decreasing exponentially with
n. Therefore for almost all choices of chemical potentials
the system is a band-insulator at zero temperature

Much less is known when a many body interaction is

present, in particular in the extended regime; the local-
ized interacting phase is somewhat more accessible nu-
merically [9]-[15] and analytically [16]. In the extended
regime any coupling U ̸= 0 is greater than most gaps and
can produce in principle their closure, causing a quantum
phase transition between a band insulator to a metallic
phase. There is indeed some evidence, based on second
order perturbative Renormalization Group (RG), that in
the case of a Fibonacci quasi-periodic potential the in-
teraction closes the smallest gaps, see [18],[19], causing
a quantum phase transition at U > 0. The method for
Fibonacci potential, based on second order truncation,
cannot be applied to the interacting André-Aubry model
as smallest gap are generated at very high orders; in that
case one needs non-perturbative methods and by them
the persistence of the largest gap was established [17].
Numerical simulations, performed both in the fermionic
[9], [10], [11],[12] and bosonic case[13],[14],[15], do not
provide much information on the extended regime.

The fate of small gaps and the existence of a quantum
phase transition at U ̸= 0 in the interacting Aubry-André
model are therefore open questions to which we provide
an answer in this paper, using analytical methods. We
show, if the interaction is sufficiently small, that the gaps
are strongly suppressed or enlarged by a power law driven
by critical exponents, depending on the attractive or re-
pulsive nature of the interaction, but they are nonvan-
ishing. Therefore, there is no quantum phase transition
at U ̸= 0 and the system remains a band-insulator at
zero temperature for almost all the chemical potentials.
In addition, we show that the exponents appearing in
the gaps depend on all the microscopic details but verify
exact scaling relations.

The main difficulty of the analysis is related to the
combined effect of Umklapp and the incommensurability
of potential, which has the effect that a large momen-
tum exchange can connect points arbitrarily close to the
Fermi points. This produces small divisors very similar
to the ones appearing in quasi-periodic solutions of nearly
integrable Hamiltonian systems, a fact making a pertur-
bative approach unreliable. In the RG language, small
divisors produce an infinite number of running coupling
constants and in order to control their flow one needs to
exploit number theoretical properties of irrationals, as is
done in the Kolmogorov-Arnold-Moser (KAM) theorem
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or in the Harper equation. Contrary to most application
of RG, a continuum approximation cannot be performed
as it misses the essential qualitative features of the prob-
lem, related to the incommensurability of the potential
with respect to the lattice; moreover gaps are generated
only at high orders so truncation of series is not possible.
Therefore, the analysis needs to be performed using exact
and non perturbative Renormalization Group methods.
The paper is organized in the following way. In §II

we define the model, and we present our main result; in
§III we set up our exact Renormalization Group anal-
ysis. According to dimensional considerations, there is
an infinite number of relevant or marginal interactions;
however, in §IV we will show that indeed a huge num-
ber of such terms is indeed irrelevant and only a finite
number of effective interactions is relevant or marginal.
In §V we define a multiscale integration in terms of run-
ning coupling constants and in §VI we study their flow.
Finally in §VII we prove the persistence of the gaps and
the validity of the scaling relations and in §VIII the main
conclusions are presented.

II. THE MODEL AND MAIN RESULTS

The Hamiltonian of the fermionic interacting Aubry-
André model, is

H =
∑
x

1

2
(a†x+1ax + a†xax+1)− µ

∑
x

a†xax (1)

+λ
∑
x

cos(2πωx)a†xax + U
∑
x,y

v(x− y)a†xaxa
†
yay

with x = 0,±1,±2, ..., > 0 and a†x, ax fermionic creation
or annihilation operators. and v(x − y) is a non local
interaction. The irrational frequency ω is assumed Dio-
phantine

||2nπω|| ≥ C|n|−τ , n ̸= 0 (2)

||.|| being the norm on the one dimensional 2π torus.
This is the standard condition usually assumed for the
non interacting case U = 0 [7] and it is physically not
restrictive as Diophantine numbers have full measure.
Periodic boundary conditions are imposed consider-

ing a sequence of periodic potentials of period L such
that quasi-periodicity is recovered in the thermodynamic
limit. In order to do that we start from the continued
fraction representation of a number ω

ω = a0 +
1

a1 +
1

a2+
1

a3+...

(3)

As an example, the golden ratio ω =
√
5+1
2 has repre-

sentation 1; 1, ..1, .. and it verifies the Diophantine con-

dition (2) with τ = 1 and C0 = 3+
√
5

2 . We approxi-
mate ω by a sequence of rational numbers (convergents)
p1
q1

= a0 + 1
a1
, p2
q2

= a0 + 1
a1+

1
a2

and so on. For the

golden ratio, the sequence is given by the ratio of Fi-
bonacci numbers {1, 2,1 ,

3
2 ,

8
5 ,

13
8 , .,

pi
qi
, ...}. Properties of

the convergents imply that if ω verifies the Diophantine
condition then |π(npiqi − k)| ≥ C

2|n|τ if q1 ≤ n ≤ qi
2 and

any k. Therefore we can impose periodic boundary con-
ditions by considering a sequence of frequencies ωi =

pi
qi

and Li = qi.
We are interested in the thermodynamical correlations

at zero temperature, like the 2-point function with imag-
inary time < axa

†
y >, ax = eHx0axe

−Hx0 , x = (x0, x)

and <>= Tre−βHT .
Tre−βH and T is the time order product.

Another important quantity is the density-density cor-
relation < ρx; ρy >T , with ρx = a†xax and T denotes
truncation. In the non interacting U = λ = 0 limit
< axa

†
y > |U=u=0 = g(x,y) with

g(x,y) =

∫
dk

eik(x−y)

−ik0 + cos k − µ
(4)

We call pF the Fermi momentum defined as µ = cos pF ;
the denominator of (4) is vanishing in correspondence of
the two Fermi momenta ±pF .

Our main result can be summarized by the following
theorem.

Theorem Assume λ,U small,
∑
x |x||v(x)| < ∞, ω

Diophantine (2) and choose the interacting Fermi mo-
mentum equal to pF = nπω with n integer. The 2-point
function and the density correlations decay exponentially
with rate

∆n,U ∼ [λ2n(an + F )]Xn (5)

with F = O(|U | + |λ|), an non vanishing and Xn =
Xn(U) is a critical exponent such that Xn(0) = 1. More-
over if Kn and ηz are the critical exponents appearing
respectively in the 2-point function and in the oscillating

part of the density correlation then ηz =
2−Kn−K−1

n

2 and

Xn = 1
2−Kn

.

The rate of the exponential decay of the correlations is
an estimate of the gap size; for large n the gaps can be
much smaller than the many body coupling U but nev-
ertheless they are all non vanishing, so that the system
remains a band-insulator and no quantum phase transi-
tion is present; there is no transition to a metallic phase
with weak interactions, contrary to what happens with
other kind of quasi-random disorder like Fibonacci quasi-
periodic potential. This is true provided that the quasi-
random disorder is weak and the many body interaction
is weak and decay for large distances at least as |x−y|−3.
The interaction strongly modifies the ratio of the inter-
acting and bare gaps; asKn < 1 for repulsive andKn > 1
for attractive interactions, the relative size is strongly
enlarged or decreased depending on the sign of U . The
critical exponents are non trivial functions of U verifying
exact scaling relations.
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The spinning version of the Aubry-André model (1)
with a local on site interaction has been experimentally
realized in [1], considering two incommensurate optical
lattices and tuning the interaction via a magnetic Fesh-
bach resonance. Longer ranged interactions with a power
law decay with the distance, as the one in (1), are more
difficult to realize but can be generated by trapping parti-
cles with strong dipolar momentum, i.e. magnetic atoms
and polar molecules. In such systems the interaction de-
cays for large distances as r−3 and the strength and sign
of dipolar interactions can be tuned [22], [23]. An exam-
ple is in [24], where is described an optical lattice device
composed by an array of one dimensional tubes loaded
with dipolar fermionic molecules, with dipole moments
polarized by an external field in an arbitrary direction
and no tunneling between tubes. Varying the polar and
azimuthal angle of the external field with respect to the
plane, one can obtain in particular that the inter-tube in-
teraction vanishes while the intra-tube can be attractive
or repulsive. With another trapping potential incom-
mensurate with the optical lattice one has a realization
of the model (1). We predict that if the quasi random
random disorder is realized by an Aubry-André poten-
tial, and if both the amplitude of the potential and of
the interaction are weak with respect to the hopping, the
interaction does not alter the insulating behavior due to
the Cantor set of gaps which is present in the non in-
teracting case; however the width of the gaps is strongly
modified, see (38), depending on the attractive or repul-
sive nature of the interaction, whose sign can be tuned
varying the angle of the external field. On the other
hand, according to [18], [19], a transition to a metallic
phase should be present with quasi-random superposing
lattices realizing a Fibonacci potential; therefore, chang-
ing the quasi-random disorder would produce a transition
from an insulating to a metallic behavior which should be
experimentally visible, for instance using the technique
in [1] monitoring the time evolution of local observables
following a quench of system parameters. Finally, in-
creasing the width of the potential a transition to a lo-
calized phase, persisting even in presence of interaction,
is expected [16].

III. RENORMALIZATION GROUP ANALYSIS

The correlations can be obtained by the derivatives
of the generating function, expressed by the following
Grassmann integral

eW (ϕ,J) =

∫
P (dψ)eV(ψ)+B(ϕ,J) (6)

where ψ±
x are Grassmann variables, P (dψ) is the Grass-

mann gaussian integration with propagator (4), with

µ = cosnFπω, V is the effective interaction

V = −U
∫
dxdyv(x− y)ψ+

x ψ
−
x ψ

+
y ψ

−
y + (7)

λ

∫
dx cos(2πωx)ψ+

x ψ
−
x + ν

∫
dxψ+

x ψ
−
x

with
∫
dx =

∑
x

∫ β/2
−β/2 dx0, and B is the source term

B(ϕ, J) =

∫
dx[ϕ+xψ

−
x + ϕ−x ψ

+
x + Jxψ

+
x ψ

−
x ] (8)

The 2-point function is given by ∂2W
∂ϕ−

x ∂ϕ
+
y
|0 and the

density-density correlation is given by ∂2W
∂Jx∂Jy

|0. Note

that in the grand-canonical ensamble the chemical po-
tential corresponding to a given density (or Fermi mo-
mentum) is a function of U ; in order to take this fact into
account we choose the chemical potential as cosπnFω+ν
and ν will be properly chosen so that the Fermi momen-
tum is nFπω.

In order to explain the peculiarities of a quasi-periodic
potential, we can consider a class of Feynman graphs,
like the chain graphs, as in Fig. 1; their values is given
by

∫
dkϕkϕk+

∑
i≤n εi2πω

H(k) with, if εi = ±1

H(k) = λn
n∏
j=1

ĝ(k0, k +
∑
i≤j

εi2πω) (9)

In the periodic case (ω rational) then H(pF ) = O(λnCn)
if

∑
i≤k εi2πω ̸= 0,−2pF ; that is the contributions in-

volving the exchange of large momenta are small. On the
contrary if ω is irrational one gets that even the exchange
of large momenta imply dangerous contributions, as , by
using (2), H(pF ) = O(λnCnn!τ ). This non summable
behavior (usually called small divisors problem) makes a
perturbative approach unreliable.

λ λ λ λ

FIG. 1: A chain graph

We evaluate the correlations by an exact Renormal-
ization Group. We introduce a smooth cut-off func-
tion χρ(k), k = (k0, k),which is non vanishing for√
k20 + ((k − ρpF )mod.2π)2) ≤ γ, where ρ = ±1 and γ > 1

is a suitable constant; therefore we can write the propa-
gator as

ĝ(k) = ĝ(u.v.)(k) +
∑
ρ=±

ĝρ(k) (10)
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where ĝρ(k) =
χρ(k)

−ik0+cos k−cos pF
, and correspondingly

ψk = ψ
(u.v.)
k +

∑
ρ=±1 ψk′,ρ with k = k′ + ρpF , k′ =

(k0, k
′). This simply says that we can write the fermionic

field as sum of two independent fields living close to one
of the Fermi points, up to a regular field. We can further
decompose

ĝρ(k) =
0∑

h=−∞

ĝ(h)ρ (k) (11)

with ĝ
(h)
ρ (k) similar to ĝρ(k) with χ replaced by fh

with, where fh(k) is non vanishing in a region γh−1 ≤√
k20 + v2F k

′2 ≤ γh+1, with vF = sin pF . After the inte-

gration of ψ(u.v.), ψ(0), .., ψ(h+1) the generating function
has the form

eW (ϕ,J) =

∫
P (dψ(≤h))eV

(h)(ψ)+B(h)(ψ,ϕ,J) (12)

where P (dψ(≤h)) has propagator g
(≤h)
ρ =

∑h
k=−∞ g

(k)
ρ

and V(h)(ψ) =∑
m,n,ρ

∫
dk′

1...dk
′
mW

(h)
m,n(k

′)ψ
ε1(≤h)
ρ1,k′

1
...ψ

εm(≤h)
ρm,k′

m
δn,m(k′)

(13)
where δn,m(k′) is Lβ times a periodic Kronecker delta
non vanishing for

m∑
i=1

εiρik
′
i = −

m∑
i=1

εiρipF + 2nπω + 2lπ (14)

with n = 0,±1, ... and l = 0,±1, .. The kernels W
(h)
m,n are

sum of Feynman diagrams obtained connecting vertices
λ, U or ν with propagators g(k) with k > h ; B(h) is given
by a similar expression with the only difference that some
of the external lines are associated to ϕ or J external
fields. In each of the Feynman diagrams contributing

to W
(h)
m,n there are a set of vertices λeiσiπωx, σi = ±

and n =
∑
i σi. The relation (14) is the momentum

conservation; when the r.h.s. is vanishing the momentum
measured from the Fermi points is also conserved. The
single scale propagator has the following form

g(h)ρ (k′) = g
(h)
rel,ρ(k

′) + r(h)(k′) (15)

where g
(h)
rel,ρ(k

′) = fh(k
′)

−ik0+ρvF k′ is the dominant part of the

propagator and r(h)(k′); therefore in the above RG pro-
cedure naturally emerges a description in terms of mass-

less relativistic chiral fermions with propagator g
(h)
rel,ρ(k

′).

Note also that in the effective potential V(h) appear terms
with any n,m, and only a few of them were originally
present in the initial potential V.
According to power counting arguments, the quartic

terms are marginal and the quadratic terms are relevant;
all other terms are irrelevant. There are then apparently

infinitelymany dimensionally relevant or marginal terms,
depending on the value of n in (13). A natural distinction
is if the r.h.s. of (14) is vanishing or not. The first case
corresponds to processes exactly connecting the Fermi
points; this happens in the following cases, if m = 2, 4:
a)m = 4, n = 0 and

∑
i ρiεi = 0 (effective interaction

of the form ψ+
+ψ

−
+ψ

+
−ψ

−
−); b)m = 4, |n| = 2nF and

|
∑
i εiρi| = 4 (effective interaction ψ+

+ψ
−
−ψ

+
+ψ

−
− whose

local part is vanishing, so is indeed irrelevant);c) m = 2,
|n| = 0, ρ1 = ρ2 (chemical potential ψ+

ρ ψ
−
ρ ); d) m = 2,

|n| = nF , ρ1 = −ρ2 (gap ψ+
ρ ψ

−
−ρ).

The other case is when the r.h.s. of (14) in non van-
ishing and here comes the main difference between the
periodic and quasi-periodic case. In the periodic case
when ω is rational the r.h.s. of (14) is large (if non van-
ishing); as the fields ψ(≤h) carry a momentum k′ with
size smaller that γh, the condition (14) cannot be satis-
fied and such terms are vanishing for large |h|; therefore
the terms with m = 2, 4 such that r.h.s. of (14) is non
vanishing are indeed trivially irrelevant in the periodic
case. In the quasi-periodic case instead the r.h.s of (14)
can be arbitrarily small due to Umklapp (the momentum
is defined modulo 2π for the presence of the lattice) , so
that terms with large n in (14) persist at any Renormal-
ization Group iteration. It is remarkable that dangerous
processes in the infrared behavior are generated by the
exchange of large momenta, which is a sort of ultraviolet-
infrared mixing problem. We will see in next section that
the relevance or irrelevance of such terms depends in a
subtle way from number theoretical properties of the fre-
quency ω and the velocity of decay of the Fourier trans-
form of the quasi-periodic potential.

IV. IRRELEVANCE OF THE NON RESONANT
TERMS

According to the above analysis, it is natural to distin-
guish in the effective potential (13) two kind of terms; in
the resonant terms there is conservation of the momen-
tum measured from the Fermi points, that is the r.h.s.
of (14) is vanishing

∑
i ρipF + 2nπω + 2lπ = 0; when

the above condition is violated the terms are non reso-
nant. We show now that if ω is irrational the non reso-
nant terms are irrelevant, even if dimensionally relevant
or marginal. Roughly speaking the reason is that, by the
Diophantine condition (2), the r.h.s. of (14) is very small
only if n is very large; this can produce a gain factor, pro-
vided that the decay of the harmonics of the potential is
fast enough.

In order to put on a quantitative basis the above idea it
is convenient, given a Feynman graph, to consider a max-
imally connected subset of lines corresponding to propa-
gators with scale h ≥ hv with at least a scale hv, and we
call it cluster v, see Fig.2; the nev lines external to the clus-
ter v have scale smaller then hv. Given a non maximal
cluster v with scale hv, there is surely a cluster v′ with
scale hv′ < hv containing it. The clusters are therefore
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subgraphs in which the propagators carries a momentum
scale larger than the external lines, that is the momen-
tum measured from the Fermi points in the internal lines
is larger than in the external; they are a standard tool in
renormalization theory to avoid the so called overlapping
divergences. We call m̄v is the number of λ, ν vertices
internal to the cluster v and not of any smaller one; in
the cluster v there are k2,v vertices λeiσiπωx, σi = ±
such that Nv =

∑
i σi, so that |Nv| ≤ k2,v. To each

Feynman graph is associated a hierarchy of clusters; in-
side each cluster v there are Sv maximal clusters, that is
clusters contained only in the cluster v and not in any
smaller one, or trivial clusters given by a single vertex.
Each of such inner clusters are connected by a tree of
propagators with scale hv; by integrating the propaga-
tors in the tree and bounding the others, and using that

,
∫
dx|g(h)ρ (x)| ≤ Cγ−h and that |g(h)ρ (x)| ≤ Cγh we

get that each graph of order k contributing to W
(h)
m,n is

bounded by the sum over the scales of

CkUk1λk2γ(2−m/2)h
∏
v

γ(hv−hv′ )Dv

∏
v

γ−hvm̄v (16)

where k is the perturbative order, k = k1 + k2 and
Dv = 2 − nev/2, if nev is the number of external lines
of cluster (subgraph) v. By summing over the scales
hv of the subgraphs one can read the scaling dimension;
therefore the estimate (16) (a versions of Weinberg theo-
rem for this model) says that no infrared divergence are
present in the thermodynamic limit provided that there
are no inner subgraphs v with four or two external lines
and there are only quartic interactions. Indeed when the
number of external lines of the clusters is greater then
4 then Dv ≤ −1 so that we can sum over hv, that is∑
hv≥hv′ γ

−(hv−hv′ ) ≤ C. On the contrary if Dv = 0

for some v one gets a factor |h| corresponding to a loga-
rithmic divergence and if Dv = −1 a factor γ−h summing
over the scales; in this way one recovers the expected fact
that the quartic terms are marginal and the quadratic are
relevant.
We have however to take into account that ω is irra-

tional and verifies the Diophantine condition. Indeed if
v is a non resonant cluster with m external lines and ver-
ifying

∑m
i=1 εiρipF + 2Nvπω + 2lπ ̸= 0 then, by using

(2)

mγhv′ ≥ ||
m∑
i=1

ρik
′
i|| ≥

||
m∑
i=1

ρinFπω + 2Nvπω|| ≥ C0(|nF |+ |Nv|)−τ (17)

which implies that

|Nv| ≥ Cγ
−h

v′
τ (18)

On the other hand Nv =
∑
i σi and |Nv| ≤ k2,v so that

in a non resonant cluster there are necessarily a large

FIG. 2: A graphs and the corresponding clusters

number of λ vertices k2,v ≥ C̃γ−hv′/τ , and the associated
factor λk2,v is therefore very small. By (18) we get, for

c < 1 and γ
1
τ /2 = γη > 1

c−k2 ≤
∏
v

c−k2,v2
h
v′−1

≤
∏
v

c−C2hvγ−hv/τ

≤
∏
v

γ4hvS
NR
v

where SNRv are the non resonant clusters contained
in v. This extra factor (bounded by an harmless
constant) makes the non resonant clusters irrelevant,
even when they have 2 or 4 external fields; indeed∑
hv≥hv′ γ

(hv−hv′ )Dvγ2hv′ ≤
∑
hv≥hv′ γ

−(hv−hv′ ) ≤ C.

Note also that in the resonant clusters v containing a
non resonant cluster there is an extra γhv .

A similar argument could be repeated even if all the
harmonics are present in the quasi periodic potential,

that is by choosing ϕx =
∑
n ϕ̂ne

2inπωx, provided that

ϕ̂n decays exponentially fast |ϕ̂n| ≤ e−ξ|n|, see [17]. If the
decay is too slow the above argument does not provide
any gain for the non resonant terms. This is the case of
Fibonacci potential considered in [18],[19], in which the
Fourier coefficients decay only as O(n−1).

V. RENORMALIZED EXPANSION

In the previous section we have identified the danger-
ous terms producing infrared divergences in thermody-
namic limit; such divergences has to be removed in or-
der to get physical informations from the expansions.
We have to set-up a different integration procedure in
which the resonant terms which are dimensionally rele-
vant or marginal are renormalized; in this way one pro-
duces an expansion in terms of running coupling con-
stants in which no infrared divergences are present. Of
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particular importance are the quadratic resonant terms
with ρ1 = −ρ2, corresponding to the generation of a gap.
Note that only when nF = 1 the initial interaction V
contains such terms, but if nF > 1 they are generated by
higher order terms in the RG iterations. It is convenient
then to add to the effective action a term of the form

σ
∑
ρ

∫
dk′σψ+

k′,ρψ
−
k′,−ρ − α

∑
ρ

∫
dk′ψ+

k′,ρψ
−
k′,−ρ (19)

and include the first term in the free integration so that
the propagator becomes massive; α is chosen so that the
flow of the resonant quadratic terms is bounded. At the
end we impose the condition α(λ,U, σ) = σ determining
σ(λ,U), so proving the generation of the gap in the origi-
nal problem. In the case nF = 1 this is of course not nec-
essary and we consider the nF > 1 case for definiteness.
We describe the integration procedure iteratively. As-
sume that we have integrated ψ(0), ψ(−1), ..., ψ(h+1) ob-
taining

eW(0,0) =

∫
PZh,σh

(dψ(≤h))eV
(h)(

√
Zhψ

≤h) (20)

where

g
(≤h)
ρ,ρ′ (x− y) =

1

Zh

∫
dke−ik(x−y)χh(k)× (21)(

−ik0 + vF sin k′ + c(k′) σh
σh −ik0 − vF sin k′ + c(k′)

)−1

ρ,ρ′

and V(h) is a sum of monomials with kernels W
(h)
n

which are expressed as sum of renormalized Feynman
diagrams associated to the running coupling constants
Uk, δk, νk, αk, k > h or to the non resonant terms λ
present in V; they depend also from σk, Zk through the
propagators. The single scale propagator is equal to (15)
up to terms with the same scaling properties and an
extra σhγ

−h in the non diagonal component. We have
to extract from the effective potential V(h) the non ir-
relevant part which is called LV(h); that is we write
V(h) = LV(h) + RV(h) with R = 1 − L. L acts non
trivially only on the resonant terms. In particular R
renormalize the non irrelevant subgraphs eliminating the
infrared divergences. The presence of a mass has the ef-
fect that we integrate up a mass scale h∗ defined by the
condition γh

∗
= σh∗ ; we will see that σh ∼ σ0γ

ηµh with
ηµ = O(U). The scales ≤ h∗ can be integrated in a single
step.
The bilinear terms have scaling dimension 1 and we

have to define an R operation such that their dimension
becomes negative. When m = 2, ρ1 = ρ2 we define

LW (h)
ρ,ρ (k

′) =W (h)
ρ,ρ (0) + k′∂W (h)

ρ,ρ (0) (22)

and k′2∂2W
(h)
ρ,ρ (0) has an extra γ2(hv′−hv) which is suf-

ficient to make the sum over hv convergent. The term

W
(h)
ρ,ρ (0) contribute to the running coupling constant νh,

the term ∂0W
(h)
ρ,ρ (0) to the wave function renormaliza-

tion Zh and ∂1W
(h)
ρ,ρ (0)−∂0W (h)

ρ,ρ (0) to the Fermi velocity
renormalization.

Regarding the bilinear terms with ρ1 = −ρ2 we write

LW (h)
ρ,−ρ(k

′) = W
(h)
ρ,−ρ(0) and W

(h)
ρ,−ρ(k

′) −W
(h)
ρ,−ρ(0) has,

in addition to a factor γhv′−hv , an extra
σhv

γhv
≤ σhv

σh∗
σh∗
γhv

≤
γ

1
2 (hv′−hv), or an extra αh ∼ σ0 ≤ γ

h∗
2 ≤ γ

1
2 (hv′−hv) or

2nF λ vertex. We write W
(h)
ρ,−ρ = W

(h)
a,ρ,−ρ + W

(h)
b,ρ,−ρ,

where in W
(h)
a,ρ,−ρ there are no graphs obtained by con-

traction of a λ term in RV0 (hence there is necessarily at

least a σk or a αk) and W
(h)
b is the rest and by definition

LW (h)
a,ρ,−ρ(k) contribute to σh while LW (h)

b,ρ,−ρ(k) to αh.

Finally for the kernels with m = 4 and
∑
i ρiεi = 0

LWh
4 (k) = Wh

4 (0) which is included in the renormaliza-
tion of λh. In conclusion with the above decomposition
of the effective potential and after a redefinition of the
effective wave function renormalization and gap , (20) is
equal to∫

PZh−1,σh−1
(dψ≤h)e−L̄Vh(

√
Zh−1ψ

≤h)−R(
√
Zh−1ψ

≤h)

(23)
with

L̄Vh = γhνhF
h
ν + γhαhF

h
α + δhF

h
δ + UhFU (24)

where

FU =

∫ 4∏
i=1

dk′
iψ

+
k′
1,+
ψ−
k′
2,+
ψ+
k′
3,−

ψ−
k′
4,−

δ(
∑
i

σik
′
i) (25)

Fhν =
∑
ρ

∫
dk′ψ+

k′,ρψ
−
k′,ρ Fhα =

∑
ρ

∫
dk′ψ+

k′,ρψ
−
k′,−ρ

Fhδ =
∑
ρ

∫
dk′ρvF sin k′ψ+

k′,ρψ
−
k′,ρ (26)

The terms
∫
dk′ψ+

k′,ρψ
+
k′,−ρ and

∫
dk′(−ik0 +

vF ρ sin k
′)ψ+

k′,ρψ
+
k′,ρ have been included in the free

integration to produce the renormalization of σh and
Zh. In conclusion we write PZh−1,σh−1

(dψ≤h−1) =

PZh−1,σh−1
(dψ≤h−1)PZh−1,σh−1

(dψ(h)) and we can in-

tegrate the field ψ(h) obtaining an expression similar
to (20) from which the procedure can be iterated. A
similar analysis can be repeated in presence of the
source term

∫
dk′

1dk
′
2W2,1(k

′
1,k

′
2)Jψ

+
ρ1,k′

1
ψ+
ρ1,k′

2
; in that

case LW (h)
2,1 (k

′
1,k

′
2) = W

(h)
2,1 (0, 0), which is included in

the non oscillating or oscillating renormalization of the

density Z
(1)
h or Z+

h depending if ρ1 = ρ2 or ρ1 = −ρ2.
The outcome of the above procedure is that the corre-

lations can be expressed by renormalized diagrams func-
tions of the running coupling constants and such that the
renormalization R acts on the resonant clusters eliminat-
ing the infrared divergences; the sum over the scales can
be done and one gets a finite result provided that the
running coupling constants remain inside the convergence
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radius; in order to verify this we have to study the flow of
the running coupling constants. Note that the renormal-
ization produces extra derivatives in momentum space,
corresponding to coordinates to extra factors (x − y) in
the contribution to the kernel with four external field or
(x − y)2 in the contributions with two lines; note that
in the second case one can always find a path of propa-
gators connecting the external lines, avoiding the inter-
action line; therefore the condition

∑
x |x||v(x)| < ∞ is

sufficient or having convergence.

VI. THE FLOW OF THE RUNNING COUPLING
CONSTANTS

The expansion described in the previous section is con-
vergent provided that the effective couplings are small.
The flow of the relevant couplings αh, νh is controlled by
choosing properly α, ν and one gets

αh ∼ λ2nF γh νh ∼ (λ+ |U |)γh (27)

and that Uh, δh remain close to their initial value U0, δ0.
To prove (27) we note that the flow equation for νh is

νh−1 = γ−h(ν0 +
h∑
k=0

γkβ(k)
ν ) (28)

and by choosing ν0 so that ν0 +
∑0
k=h∗ γkβ

(k)
ν = 0 one

gets

νh−1 = −γ−h
h∑

k=h∗

γkβ(k)
ν (29)

By construction to β
(k)
ν contribute: a)terms depending

only from the running coupling constants U, δ; in this

case the contributions containing only propagators g
(k)
L

give a vanishing contributions, in the others there is an
extra γh; b)terms containing at least αh, νh which are
∼ γh. Using (29) we get the second of (27). Similarly we
write

αh−1 = γ−h(α0 +
h∑
k=0

γkβ(k)
α ) (30)

By choosing (α0 −
∑
k γ

kβ
(k)
α ) = 0 we get

αh−1 = −γ−h
h∑

k=h∗

γkβ(k)
α (31)

By construction β
(k)
α = O(γh) as they are obtained at

least contracting a λ-term fromRV0 (and the contraction
happens at some finite scale by the compact support of
propagators) so that αh ∼ λ2nF γh. The lowest order
contribution to

∫
dkWh(k′)ψ−

k′,+ψ
−
k′,− is obtained by the

chain graph with 2nF λ vertices and propagators carrying

momentum k′ + (nF − 1)πω, ...., k′ − (nF + 1)πω, and
the corresponding contribution to α0, obtained setting
k′ = 0, is anF

λ2nF with, nF > 1

anF
=

2nF−1∏
k=1

1

cos(πω(nF − k))− cosnFπω
(32)

which is non vanishing. Regarding the higher order terms
the are at least O(λ2nF+1) or O(Uλ2nF ); by imposing
σ0 = α0 we get

σ0 = λ2nF (anF + λF1(λ) + UF2(U, λ)) (33)

with F1, F2 bounded; therefore the term anF
dominates

if U, λ are small enough. Regarding the flow for Uh, δh
again we decompose the beta function in a part depend-

ing only from Uh, δh and propagators g
(k)
L , see (15), and

a rest which is ∼ γk (as there is a r(h) (15) or a αh, νh,
or irrelevant terms). This second part is summable while
the first coincides with the Luttinger model one and is
asymptotically vanishing [21] so that

Uh →h→−∞ U−∞(U) = U +O(U2) (34)

and similarly δh →→−∞ δ−∞(U). The beta function for
σh can be divided in a part containing only σk, Uk, δk and
a rest which is ∼ γh (as there is a r(h) (15) or a νh, αh,
or irrelevant terms), so that

σh−1

σh
= 1− 1

2πvF
Uh + β̂hσ (35)

with β̂hσ = O(U2
h) +O((λ+ U)γh) Therefore

σh ∼ σ0γ
ηµh ηµ = −U−∞

2πvF
+ ... (36)

where the exponent ηµ takes contribution only from gL
depends only from U−∞, δ−∞, that is is an universal ex-
pression as function of U−∞, δ−∞. Similarly the wave
function and density renormalizations behaves as

Zh ∼ γηzh Z
(1)
h ∼ γηzh Z

(+)
h ∼ γη+h (37)

where ηz, η+ takes no contribution contribution only from
gL and U−∞, δ−∞; again the contribution with α > k, νk
or from r(h) (15) are O(γh).

VII. GAP RENORMALIZATION AND
SCALING RELATIONS

The Renormalization Group is iterated up to a scale
h∗ such that σh∗ ∼ γh

∗
; as σh = σ0γ

ηµh then γh
∗
=

(σ0)
1

1−ηµ . All the scales < h∗ can be integrated in a single
step, as the scaling properties of the propagator g<h

∗
(x)

are the same as g(k)(x) for k ≥ h∗. As a consequence,
the 2-point propagator decays faster that any power with

rate γh
∗
= (σ0)

1
1−ηµ ; this provides an estimate of the gap

∆n,U ∼ (∆n,0 + Fn,U )
Xn (38)
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with Xn = 1
1−ηµ , ∆n,U is the gap in the non interacting

case and Fn,u,U is of order Uλ2nF . In conclusion when
pF = nπω the 2-point function decays for large distances
as

| < ψ−
x ψ

+
y > | ≤ 1

|x− y|1+ηz
CN

(∆n,U |x− y|)N
(39)

for any integer N . Similarly the density-density correla-
tions can be written as

< ρxρy >= G1(x,y) + sin pF (x− y)G2(x,y) +G3(x,y)
(40)

where

|G2(x,y)| ≤
1

|x− y|2Kn

1

(∆n,U |x− y|)N
(41)

with 2Kn = 2(1 + η+ − ηz); G1 and G3 verify similar
bounds with Kn replaced by 1 and 3/2 respectively. By
construction ηµ = η+ − ηz and using that Xn = 1

1−ηµ we

get finally

Xn =
1

2−Kn
(42)

and ηz =
2−Kn−K−1

n

2 follows from the fact that ηz,Kn

are λ-independent functions of U−∞, δ−∞ [21].

VIII. CONCLUSIONS

We have considered the Aubry-André model for spin-
less fermions with a non local many body interaction.
In the non interacting case there is an insulating be-
havior at zero temperature; with certain quasi-random
disorders is believed that the interaction can generate a
metallic behavior, but our analysis excludes this in the
case of Aubry-André disorder; insulating behavior per-
sists even in presence of interaction. We have shown
that, even if most of the infinitely many gaps in the sin-
gle particle spectrum are infinitesimal, the interaction do

not close any of them and there is no quantum phase
transition from an insulating to a metallic phase; the in-
teraction however has the effect of strongly decreasing
or increasing the gap amplitude depending on its attrac-
tive or repulsive nature. Such behavior follows crucially
from the irrelevance of all the processes involving an high
momentum exchange, which is consequence of number
theoretical properties of the frequency appearing in the
Aubry-André potential. There is only a small number of
running coupling constants, describing marginal or rel-
evant terms, and their flow implies that the gaps are
renormalized through critical exponents but cannot be
closed. This result is consistent with numerical simula-
tions on the interacting Aubry-André model, in which
results are in agreement with a flow equation , see eq 3
of [13] , which essentially coincides with (35) truncated
at second order; in particular the beta function for the
effective many body interaction is essentially vanishing
and the quasi-random disorder produces only a single
running coupling constant. In the case of other quasi-
periodic potentials a rather different behavior has been
proposed [18],[19]: namely a quantum phase transition
to a metal is expected for any repulsive U , as a conse-
quence of the relevance of all the process involving large
momentum exchange. This indicates that the interplay
of interaction with quasi-random disorder depends criti-
cally on the decay properties of the Fourier transform of
the noise.

The system (1) can experimentally realized in cold
atoms experiments by trapping particles with strong
dipolar momentum [22], [23], [24], and the amplitude and
the form of quasi-random disorder together with the sign
of the interaction can be tuned. In such systems a dif-
ferent behavior is therefore predicted depending on the
nature of the quasi-random noise; the system is insulat-
ing for Aubry-André disorder (and the gaps are increased
or decreased depending on the sign of the interaction)
while a metallic behavior is expected with disorder with
a slow decaying Fourier transform. At strong disorder, a
localized behavior is instead expected.
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