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In the present paper we initiate the study of hp Virtual Elements. We focus on the
case with uniform polynomial degree across the mesh and derive theoretical convergence
estimates that are explicit both in the mesh size h and in the polynomial degree p in the
case of finite Sobolev regularity. Exponential convergence is proved in the case of analytic
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solutions. The theoretical convergence results are validated in numerical experiments.
Finally, an initial study on the possible choice of local basis functions is included.

Keywords: Virtual elements; polygonal methods; hp error bounds.

AMS Subject Classification: 65N12, 65N30

1. Introduction

The Virtual Element Method (VEM) is a very recent generalization of the Finite
Element Method, introduced in Ref. 8, that responds to the increasing interest in
using general polyhedral and polygonal meshes, also including non-convex elements
and hanging nodes. The main idea of VEM is to use richer local approximation
spaces that include (but are typically not restricted to) polynomial functions and,
most importantly, avoid the explicit integration of the associated shape functions.
Indeed, the operators and matrices appearing in the problem are evaluated by intro-
ducing an innovative construction that only requires an implicit knowledge of the
local shape functions. By following such developments, the VEM acquires very inter-
esting properties and advantages with respect to more standard Galerkin methods,
yet still keeping the same implementation complexity. For instance, in addition to
allowing for polygonal and polyhedral meshes, it can handle approximation spaces
of arbitrary Ck global regularity on unstructured meshes.

Although the Virtual Element Method has been applied to a large range of
problems (a non-exhaustive list being Refs. 3, 4, 8–10, 12, 13, 17, 18, 22, 23 and
26), all the present works on VEM are focused, both theoretically and numerically,
on the h-behaviour of the method. In other words, the convergence properties of the
schemes are investigated assuming that the polynomial degree p is fixed and only
the mesh is refined. On the other hand, looking at the Finite Element literature, a
very successful approach in applications is to allow for a variable value of p and to
focus not only in the accuracy that can be obtained by reducing the mesh size h,
but also by increasing p. As in the FEM literature, we here refer to such approach
as hp analysis; we mention for instance Refs. 6, 7, 19, 25 and 27 as very short list
of papers and books among the very large literature of hp FEM.

The aim of the present paper is to initiate the study of hp Virtual Element Meth-
ods. The first motivation of such study is to show that the powerful hp methodology
can be adopted also in the framework of Virtual Elements. The second, but not sec-
ondary, motivation is that we believe that combining the huge mesh flexibility of
VEM with the advantages of a full (possibly adaptive) hp method can yield a very
efficient and competitive methodology.

The present contribution focuses on the initial foundations of such ambitious
plan, mainly in terms of convergence estimates. We restrict our attention to a two-
dimensional scalar elliptic model problem (as in Ref. 8) and assume a polynomial
degree p that is the same on all elements of the (quasi-uniform) mesh. First of
all, we prove fundamental convergence results (and the associated interpolation
estimates) that is explicit in both h and p. As a second result, we show also that
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Virtual Elements can attain exponential convergence when the target solution is
analytic on a suitable (small) extension of the domain. We then explore numerically
the behaviour of Virtual Elements in terms of p, both in the case of solutions with
finite Sobolev regularity and for analytic solutions, and the stability bounds of the
virtual bilinear form, always in terms of p. In the Appendix, we start to explore
another interesting issue of hp elements, that is the choice of the basis and the
condition number of the associated stiffness matrix. Note that, since in this work
we focus on scalar problems in a planar two-dimensional domain, direct solvers can
generally be used and the condition number issue is not of primary importance.
Indeed, it is mainly the stability of the solver that determines the best attainable
accuracy, as we show in the numerical tests. Nevertheless, in order to answer to some
natural questions (such as: how do Legendre bases cope on general polygons?) we
decided to include an initial study related to the choice of the basis.

The paper is organized as follows. After presenting the continuous model prob-
lem, in Sec. 3 we make a brief review of the Virtual Element Method. Afterwards,
in Sec. 4 we present theoretical error estimates, whereas in Sec. 5 we show ana-
logous error estimates leading to exponential convergence of the p method if the
solution of the Poisson problem is analytic. Successively, in Sec. 6 we develop the
associated numerical tests validating the convergence results on the errors; we also
give numerical bounds dealing with the stabilization of the method. Finally, the
Appendix follows.

2. The Model Problem

Let Ω be a simply connected polygonal domain and let Γ be its boundary. Let H l(ω),
with l ∈ N0 and ω open measurable set, denote the usual Sobolev space with square
integrable weak derivatives of order l; let ‖ · ‖l,Ω and | · |l,Ω denote the associated
norm and seminorm, respectively (see Ref. 1). Let f ∈ L2(Ω). We consider the two-
dimensional Poisson problem with homogeneous Dirichlet boundary conditions:

−∆u = f in Ω, u = 0 on Γ. (2.1)

We set V := H1
0 (Ω) and we consider the weak formulation of problem (2.1):

find u ∈ V such that a(u, v) = (f, v)0,Ω, ∀ v ∈ V, (2.2)

where (·, ·)0,Ω is the L2-scalar product on Ω and a(·, ·) := (∇·,∇·)0,Ω.
It is well known that problem (2.2) is well-posed (see for instance Ref. 16)

since the bilinear form a is continuous and coercive (i.e. a(v, v) ≥ α‖v‖2
1,Ω, where

α > 0) thanks to the Poincaré inequality. Throughout this paper, C denotes a
positive constant whose dependence on certain parameters will be made explicit
where necessary.

3. Virtual Elements for the Poisson Problem

In the present section, we introduce a Virtual Element Method for the Poisson prob-
lem (2.2) based on polygonal meshes. Let {Th}h be a sequence of decompositions
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of Ω into non-overlapping polygonal elements K of diameter hK = diam(K) :=
sup{|x− y| : x,y ∈ K}. The characteristic mesh size is denoted by h := max{hK :
K ∈ Th}. Let Vh and Eh be the sets of all vertices and edges in the mesh Th respec-
tively. Moreover, we denote by Vb

h := Vh ∩ ∂Ω the set of all boundary vertices and
by EK

h the set of edges e of an element K ∈ Th.
Henceforth, we assume that there exist two positive real numbers γ and γ̃ such

that the sequence of decompositions satisfies the following:

(D0) the decomposition Th is made of a finite number of simple polygons of dia-
meter hK ,

(D1) for all K ∈ Th, K is star-shaped with respect to a ball of radius ≥hKγ,
(D2) for all K ∈ Th, the distance between any two vertices of K is ≥hK γ̃.

To every edge e ∈ Eh we associate a tangential vector τ e and a normal unit vector
ne obtained by a counter-clockwise rotation of τ e.

We split the bilinear form a as a sum of local contributions

a(u, v) :=
∑

K∈Th

aK(u, v), ∀u, v ∈ V,

with aK(u, v) := (∇u,∇v)0,K .
It was shown in Ref. 8 that it is possible to build:

• Vh(K), a finite-dimensional subspace of H1
0 (Ω)|K ;

• symmetric local bilinear forms aK
h : Vh(K) × Vh(K) → R;

• Vh a finite-dimensional subspace of H1
0 (Ω) such that Vh|K = Vh(K);

• a symmetric bilinear form ah : Vh × Vh → R, of the form ah(uh, vh) =∑
K∈Th

aK
h (uh, vh), ∀uh, vh ∈ Vh;

• an element fh ∈ V ′
h and a duality pairing 〈·; ·〉h;

in such a way that the resulting discrete problem

find uh ∈ Vh such that ah(uh, vh) = 〈fh; vh〉h, ∀ vh ∈ Vh (3.1)

has a unique solution uh ∈ Vh which is close to the solution u of the original problem
(2.2). More precisely, when u ∈ Hk(Ω) the error in the energy norm admits the
upper bound

if u ∈ Hk(Ω), k ≥ 1, |u − uh|1,Ω ≤ Chk−1|u|k,Ω, (3.2)

where the constant C = C(p) depends implicitly on the (fixed) polynomial degree
p but not on the characteristic mesh size h. We now briefly review the local Virtual
Spaces introduced in Ref. 8. Let K ∈ Th and let p ∈ N, p ≥ 1. Let Pp(e) and
Pp−2(K) be respectively the set of polynomials of degree p over the edge e and of
degree p − 2 over the polygon K, with the convention P−1(K) = {0}. With the
space of continuous piecewise polynomials over the boundary of each element K:

Bp(∂K) := {vh ∈ C0(∂K)|vh|e ∈ Pp(e), ∀ e ∈ EK
h }, (3.3)
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we define the local Virtual Element spaces

Vh(K) := {vh ∈ H1(K) |∆vh ∈ Pp−2(K), vh|∂K ∈ Bp(∂K)}. (3.4)

Observe that Pp(K) ⊆ Vh(K) for any K ∈ Th. For any fixed function v ∈ Vh(K)
we identify the following set of local degrees of freedom:

• the values of v at vertices of K;
• the values of v at (p− 1) internal nodes of each edge e ∈ EK

h (for instance at the
internal Gauß–Lobatto nodes, as done in Refs. 8 and 10);

• the internal moments 1
|K|
∫

K
qαvhdx, where {qα : 0 ≤ |α| ≤ p(p − 1)/2} is a

basis for Pp−2(K). For instance, Beirão da Veiga et al.8, 10 employed a basis of
shifted and scaled monomials: let xK and hK be the barycenter and the diameter
of K respectively, then qα(x) := (x−xK

hK
)α for any α = (α1, α2) ∈ N2

0 such that
|α| := α1 + α2 ≤ p − 2.

The global Virtual Space is obtained by the continuous matching of the local spaces
over the element boundaries

Vh := {vh ∈ C0(Ω) : vh|K ∈ Vh(K), vh|∂Ω = 0} ⊂ H1
0 (Ω)

with the natural definition of the global degrees of freedom from the local ones. It
was shown in Ref. 8 that, given K ∈ Th, the bilinear forms aK

h must satisfy the two
following assumptions:

(A1) p-consistency: ∀K ∈ Th it holds that

aK(q, vh) = aK
h (q, vh), ∀ vh ∈ Vh(K), ∀ q ∈ Pp(K); (3.5)

(A2) stability: ∀K ∈ Th there exist two constants 0 < α∗ < α∗ < ∞ such that

α∗a
K(vh, vh) ≤ aK

h (vh, vh) ≤ α∗aK(vh, vh), ∀ vh ∈ Vh(K). (3.6)

In the following study we will assume that the constants α∗, α
∗ are independent of

h, p, see also Remark 4.5. Let ϕ be a sufficiently regular function, e.g. ϕ ∈ H1(K).
We introduce the local averaging operator:

ϕ :=


1

|∂K|

∫
∂K

ϕ(x)dx if p = 1,

1
|K|

∫
K

ϕ(x)dx if p > 1.

(3.7)

Having this, we introduce the projection operator Π∇
p : Vh(K) → Pp(K) as

follows: for any vh ∈ Vh(K) its projection Π∇
p vh ∈ Pp(K) is the unique polynomial

satisfying,

aK(Π∇
p vh − vh, q) = 0 ∀ q ∈ Pp(K),

Π∇
p vh − vh = 0 where the averaging operator is defined in (3.7).

(3.8)
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Then, a candidate bilinear form ah satisfying (A1) and (A2) can be sought in the
form:

aK
h (uh, vh) = aK(Π∇

p uh, Π∇
p vh) + SK(uh − Π∇

p uh, vh − Π∇
p vh), ∀uh, vh ∈ Vh(K),

where SK is a positive definite bilinear form satisfying

c0a
K(vh, vh) ≤ SK(vh, vh) ≤ c1a

K(vh, vh),

∀ vh ∈ Vh(K), such that Π∇
p vh = 0, (3.9)

for some positive constants c0 and c1 independent on h, p and K.
A possible choice for SK can be found in (6.1). The global discrete bilinear form

reads

ah(uh, vh) :=
∑

K∈Th

aK
h (uh, vh), ∀uh, vh ∈ Vh.

Finally, we recall from Ref. 8 a possible choice for the loading term. Let P 0,K
p−2 and

P 0,K
0 be the L2-projector on polynomials of degree p − 2 and 0 respectively over

the polygon K and let the averaging operator be defined in (3.7). Then, we may
define

〈fh, vh〉h :=



∑
K∈Th

∫
K

[
P 0,K

p−2f
]
vhdx, ∀ vh ∈ Vh if p ≥ 2,

∑
K∈Th

∫
K

[
P 0,K

0 f
]
vhdx, ∀ vh ∈ Vh if p = 1.

(3.10)

Under the above choices for Vh, ah and fh, the paper by Beirão da Veiga et al.8

guarantees well-posedness and h-convergence (3.2).

Remark 3.1. As shown in Ref. 8, the projection operator Π∇
p in (3.8) is com-

putable using the degree of freedom values, without the need of any further infor-
mation on the virtual shape functions. We finally note that the definition in (3.7)
is not the only possible one; other (computable) choices could be used instead.

4. Approximation Results

In this section, we give a convergence result for the error of the Virtual Element
Method measured in the energy norm in terms of both h and p.

4.1. Auxiliary approximation results

Let u and uh be the solutions of (2.2) and (3.1) respectively, and denote by
Sp,−1

h (Th) the space of the piecewise discontinuous polynomials of degree p over
the decomposition Th. Given u ∈ H1(K), ∀K ∈ Th, we define the broken H1-
seminorm as

|u|h,1,Ω =
∑

K∈Th

(|u|21,K)
1
2 . (4.1)
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Let Fh be the smallest constant satisfying

(f, vh)0,Ω − 〈fh, vh〉h ≤ Fh|vh|1,Ω, ∀ vh ∈ Vh. (4.2)

Then the following best approximation estimate holds (see Theorem 3.1 in Ref. 8):

|u − uh|1,Ω ≤ C

(
inf

uπ∈Sp,−1
h (Th)

|u − uπ|1,h,Ω + inf
uI∈Vh

|u − uI |1,Ω + Fh

)
, (4.3)

where C is a constant depending only on α∗ and α∗ from assumption (A2). In
what follows, we shall derive estimates for the three terms in (4.3) that are explicit
in both h and p.

4.1.1. Polynomial approximation term

We start by bounding the term |u−uπ|h,1,Ω. In order to derive the bound, we need
to prove a generalized-polygonal version of a classic result, namely Lemma 4.1 in
Ref. 6. In this lemma, the existence of a sequence of polynomials which approximate
Hk functions over the triangular and square reference elements was shown. We
extend this result for generic polygons having the unit diameter. Thus, we are
ready to show the following lemma.

Lemma 4.1. Let K̂ ⊆ R2 be a polygon with diam(K̂) = 1. Moreover, assume that
K̂ is star-shaped with respect to a ball of radius ≥γ and the distance between any two
vertices of K̂ is ≥γ̃, γ and γ̃ being the constants introduced in assumptions (D1)
and (D2) of Sec. 3. Then, there exists a family of projection operators {Π̂ bK,p},
p = 1, 2, . . . with Π̂ bK,p : Hk+1(K̂) → Pp(K̂) such that, for any 0 ≤ � ≤ k + 1,

û ∈ Hk+1(K̂), k ∈ N, it holds

‖û − Π̂ bK,pû‖�, bK ≤ Cp−(k+1−�)‖û‖k+1, bK (4.4)

with C a constant independent on u and p.

Proof. We assume without loss of generality that xbKbKbK
, the barycenter of K̂, coin-

cides with the origin 0. For a given r > 0, we define

R(r) := {(x, y) ∈ R2 | |x| < r, |y| < r}. (4.5)

Thanks to the fact that diam(K̂) = 1 and x bK = 0, we have R(1) ⊃ K̂.

Let r0 > 1. Then, it obviously holds K̂ ⊂ R(r0). We note that ∂K̂ is Lipschitz;
consequently, using Ref. 28, there exists E : Hk+1(K̂) → Hk+1(R(2r0)) extension
operator such that Eû = 0 on R(2r0)\R(3

2r0) and ‖Eû‖k+1,R(2r0) ≤ C‖û‖k+1, bK . A
careful inspection of Theorem 5 in Chap. VI of Ref. 28 shows that the constant C

depends only on k and on the “worst angle” value

θ bK = min
θ∈AcK

min{θ, 2π − θ},
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where A bK denotes the set of the (amplitude of) internal angles of K̂. In particular,
the constant C may explode when θ bK → 0. It is possible to check that, under the
regularity hypotheses on K, the angle parameter θ bK is bounded from below by a
constant depending only on γ, γ̃. Thus the constant C can be bounded in terms of
k and γ, γ̃. Therefore, it holds ‖Eû‖k+1,R(2r0) ≤ C(k, γ, γ̃)‖û‖k+1, bK . The remaining
part of the proof, that is based on the approximation of the extended function Eû,
follows exactly the same steps as in Lemma 4.1 of Ref. 6 and is therefore not shown.

Using this result, we are able to give a generalized-polygonal version of
Lemma 4.5 of Ref. 6, which will play the role of local hp estimate result on
|u − uπ|1,K , where K is a polygon of the decomposition Th.

Lemma 4.2. Let K ∈ Th satisfying assumptions (D1) and (D2) and u ∈
Hk+1(K). Then there exists a sequence of projection operators {Πh

K,p}, p = 1, 2, . . . ,

with Πh
K,p : Hk+1(K) → Pp(K) such that for any 0 ≤ � ≤ k + 1, k ∈ N:

|u − Πh
K,pu|�,K ≤ C

hµ+1−�
K

pk+1−�
‖u‖k+1,K , (4.6)

where µ = min(p, k) and C is independent on u, h and p.

Proof. We consider the mapping F (x) = 1
hK

(x − xK). Let K̂ = F (K), where hK

denotes the barycenter of K. Obviously diam(K̂) = 1 and the barycenter of K̂ is
in the origin, xbKbKbK

= 0. Let Π̂ bK,pû be the sequence of approximating polynomials of
degree p, introduced in Lemma 4.1. We let Πh

K,pu be the push forward of the above
sequence with respect to the transformation F , i.e. Πh

K,pu = (Π̂ bK,p(û)) ◦ F , where

ϕ̂ = ϕ ◦ F−1 for a sufficiently regular function ϕ. Then, it is possible to check, by
a simple change of variables argument, that

|u − Πh
K,pu|�,K ≤ Ch1−�

K |û − Π̂ bK,pû|�, bK ,

where C is a constant independent on K (hence on K̂), h, u and p; besides, C is
independent also on �, γ and γ̃, thanks to the fact that F is the composition of a
translation with a dilatation.

We apply Lemma 4.1 and we obtain, by adding and subtracting any q̂ ∈ Pp(K̂),

|u − Πh
K,pu|�,K ≤ Ch1−�

K ‖(û − q̂) − Π̂ bK,p(û − q̂)‖�, bK

≤ C
h1−�

K

pk+1−�
‖û − q̂‖k+1, bK , ∀ q̂ ∈ Pp(K̂), (4.7)

where C in the right-hand side of (4.7) is a constant depending on k. Using the
classical Scott–Dupont theory (see e.g. Ref. 16 or Ref. 21) and a scaling argument,
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bound (4.7) yields

|u − Πh
K,pu|�,K ≤ C

h1−�
K

pk+1−�

 k+1∑
i=µ+1

|û|2
i, bK


1
2

≤ C
hµ+1−�

K

pk+1−�
‖u‖k+1,K , µ = min(p, k), (4.8)

where C is independent on u, p and h.

Remark 4.1. We note that if k ≤ p then the classical Bramble–Hilbert lemma
allows to take the seminorm in the right-hand side of (4.6), yielding

|u − Πh
K,pu|�,K ≤ C

hk+1−�
K

pk+1−�
|u|k+1,K ,

where C is a constant independent on h, p and u.

We are now able to give a global estimate on |u − uπ|h,1,Ω in (4.3), where
uπ ∈ Sp,−1

h (Th), Sp,−1
h (Th) being defined at the beginning of Sec. 4.1. In fact, by

choosing uπ|K = Πh
K,pu for all K ∈ Th and recalling the shape regularity properties

(D1)–(D2), we obtain:

|u − uπ|h,1,Ω ≤ C1
hµ

pk
‖u‖k+1,Ω, µ = min(p, k),

|u − uπ|h,1,Ω ≤ C2
hk

pk
|u|k+1,Ω, for p ≥ k,

(4.9)

where C1 and C2 are two constants independent on u, p and h.

4.1.2. Virtual interpolation term

We turn now to the term |u − uI |1,Ω in (4.3). Preliminarily, we observe that (D1)
and (D2), defined in Sec. 3, imply that there exists T̃h, an auxiliary conformal
triangular mesh that refines Th, obtained by connecting, for all K ∈ Th, the NK

vertices to the center of the ball that realizes assumption (D1) for K. Moreover, it
is possible to check that each triangle T ∈ T̃h is uniformly shape regular.

Let S̃p,0
h (T̃h) be the set of continuous piecewise polynomials of degree p over the

auxiliary triangular decomposition introduced above. It is well known (see Theo-
rem 4.6 in Ref. 6) that there exists ϕh

p ∈ S̃p,0
h (T̃h) such that for any u ∈ Hk+1(Ω),

k ∈ R:

‖u − ϕh
p‖1,Ω ≤ C1

hµ

pk
‖u‖k+1,Ω, k >

1
2
,

|u − ϕh
p |1,Ω ≤ C2

hk

pk
|u|k+1,Ω, k >

1
2
, p ≥ k,

(4.10)

where C1 and C2 are two constants independent on u, p and h and where µ =
min(p, k).
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Now, we use ϕh
p in (4.10) to construct an approximant uI ∈ Vh of u. For this

purpose, we modify a particular technique introduced in Ref. 26.

Lemma 4.3. Under (D1) and (D2), for all u ∈ Hk+1(Ω), k ∈ N, there exists
uI ∈ Vh such that

|u − uI |1,Ω ≤ C
hµ

pk
‖u‖k+1,Ω, µ = min(p, k), (4.11)

where C is independent on h, p and u.

Proof. Let uπ be the function defined in (4.9). Let ϕh
p be the function described

in (4.10). For each K ∈ Th, we define uI |K the solution of the following problem:{
−∆uI = −∆uπ in K,

uI = ϕh
p on ∂K.

(4.12)

It is possible to check that uI |K ∈ Vh|K . Moreover, since uI ∈ H1(Ω), it holds that
uI ∈ Vh.

Using (4.12), we can write{
−∆(uI − uπ) = 0 in K,

uI − uπ = ϕh
p − uπ on ∂K.

Therefore, since (uI − uπ) is harmonic it holds

|uI − uπ|1,K = inf{|z|1,K, z ∈ H1(K) | z = ϕh
p − uπ on ∂K}

≤ |ϕh
p − uπ|1,K . (4.13)

Finally by (4.13) we obtain

|u − uI |1,K ≤ |u − uπ|1,K + |uπ − uI |1,K ≤ |u − uπ|1,K + |uπ − ϕh
p |1,K

≤ 2|u − uπ|1,K + |u − ϕh
p |1,K . (4.14)

The proof is completed by summing on all the elements in (4.14) and using (4.9),
(4.10).

Remark 4.2. We point out that if k ≤ p and under the hypothesis of Lemma 4.3,
the following holds:

|u − uI |1,Ω ≤ C
hk

pk
|u|k+1,Ω,

where C is a constant independent on h, p and u.

4.1.3. Loading approximation term

It remains to estimate the term Fh in (4.3). We have the following result.
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Lemma 4.4. Under assumptions (D1) and (D2), let f ∈ H
ek+1(K) be the loading

term for all K ∈ Th, k̃ ∈ N. Then it holds

Fh ≤ C
heµ

pek+2

( ∑
K∈Th

‖f‖2
ek+1,K

) 1
2

, µ̃ = min(p, k̃ + 2), (4.15)

where C is a constant independent on h, p and u.

Proof. Since the case p = 1 has been already analyzed in Ref. 8, we only consider
the case p ≥ 2. Let vh ∈ Vh. Let P 0,K

p−2 be the L2-projector on polynomials of degree
p − 2 over the polygon K, for all K ∈ Th. We get by (3.10):

(f, vh)0,Ω − 〈fh, vh〉h =
∑

K∈Th

(f − P 0,K
p−2f, vh)0,K

=
∑

K∈Th

(f − P 0,K
p−2f, vh − P 0,K

p−2vh)0,K

≤
∑

K∈Th

‖f − P 0,K
p−2f‖0,K‖vh − P 0,K

p−2vh‖0,K

≤
∑

K∈Th

‖f − fπ
p−2|K‖0,K‖vh − vπ

p−2|K‖0,K ,

where fπ
p−2|K and vπ

p−2|K are the piecewise polynomial functions of degree p−2 that
realize the bound (4.8) with � = 0 on each K ∈ Th. An adaptation of Lemma 4.1
(and so also of Lemma 4.1 in Ref. 6 or Lemma 3.1 in Ref. 7) implies that, given
p̃ = max(1, p − 2),

(f, vh)0,Ω − 〈fh, vh〉 ≤ C
∑

K∈Th

h
min((p−2)+1,ek+1)
K

p̃ek+1
‖f‖ek+1,K

hK

p̃
|vh|1,K

≤ C
hmin(p,ek+2)

p̃ek+2

( ∑
K∈Th

‖f‖2
ek+1,K

) 1
2

|vh|1,K .

The final result follows by the definition of Fh in (4.2) and substituting p̃ with p,
up to a change of the constant C.

By observing that, if the solution u of (2.2) is in Hk+1(Ω) then f ∈ Hk−1(Ω),
Lemma 4.4 immediately gives also the following corollary.

Corollary 4.1. Under assumptions (D1) and (D2), let the solution u of (2.2) be
in Hk+1(Ω), k ∈ N. Then it holds

Fh ≤ C(k, γ, γ̃)
hµ

pk
‖u‖k+1,Ω, µ = min(p, k), (4.16)

where C is a constant independent on h, p and u.
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Finally, we note that an analogous observation as in Remark 4.1 and Remark 4.2
holds also for Corollary 4.1, yielding

Fh ≤ C(k, γ, γ̃)
hk

pk
|u|k+1,Ω, 1 ≤ k + 1 ≤ p + 1, (4.17)

where C is a constant independent on h, p and u.

Remark 4.3. We stress the fact that using the same enhancing strategy introduced
in Ref. 3 it is possible to obtain a more accurate load approximation. Nevertheless,
the global order of convergence of the method does not change due to the presence
of the other terms in the error estimates.

4.2. hp estimate in the energy norm

Finally, we are able to show the following convergence result.

Theorem 4.1. Let k ∈ N, k > 1
2 and let the mesh assumptions (D1) and (D2)

hold. Let u and uh be respectively the solution of problems (2.2) and (3.1), with
u ∈ Hk+1(Ω). Then, the following hp estimates hold :

|u − uh|1,Ω ≤ C1
hµ

pk
‖u‖k+1,Ω, µ = min(p, k), (4.18)

|u − uh|1,Ω ≤ C2
hk

pk
|u|k+1,Ω, if k ≤ p, (4.19)

where C1 and C2 are two constants independent on h, p and u.

Proof. It suffices to combine (4.3), (4.2), (4.9), (4.11) and (4.16).

Remark 4.4. Let the domain Ω be convex. Following the argument shown in
Ref. 9 (and, if p = 1, 2 suitably changing the definition of the discrete loading term
(3.10)) and applying approximation results similar to those shown above, one can
also easily derive L2-estimates of the form:

‖u − uh‖0,Ω ≤ C(k, γ, γ̃)
hµ+1

pk+1
‖u‖k+1,Ω, µ = min(p, k), (4.20)

where C is a constant independent on h, p and u, with the usual modification for
the case k ≤ p and where C is a constant independent on h and p.

Remark 4.5. In the present analysis we made the assumption that the constants
α∗, α

∗ of the stability condition (3.6) are independent of h, p. For the independence
in h, that is easy to achieve under the current mesh assumptions, see Ref. 8. For the
independence in p, see Remark 6.1 in the numerical tests section. As a final note, we
observe that it is immediate to check that the dependence of the constants C1, C2

in Theorem 4.1 is linear in the ratio α∗/α∗; the same holds for the convergence
results of the next section.
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5. Exponential Convergence for Analytic Solutions

In this section, we derive an exponential convergence result for analytic solutions,
under a further regularity assumption on the decomposition. We recall that we are
given a polygonal decomposition Th and a triangular auxiliary subdecomposition

T̃h (described in Sec. 4.1.2). Given K polygon in Th, we define Q = Q(K) as any

of the smallest square containing K; besides, given K̃ triangle in T̃h, we define

Q̃ = Q̃(K̃) the parallelogram given by Q̃ = K̃ ∪ K̃∗, where K̃∗ is the reflection of

K̃ with respect to a midpoint of anyone of its edges. We point up that there are
three possible Q̃(K̃); we fix arbitrarily one of them. Next, we define:

Ωext = Ωext(h) := Ω ∪
( ⋃

K∈Th

Q(K)

)
∪

 ⋃
eK∈eTh

Q̃(K̃)

. (5.1)

We observe that dist(x, Ω) ≤ d(h), ∀x ∈ Ωext, d(·) being a non-decreasing
function in h. Therefore, ∀h ≤ h one has d(h) ≤ d(h) and thus Ωext is a uniformly
bounded domain in terms of h, if h is bounded. We demand for the following
regularity assumption on the mesh:

(D3) there exists N ∈ N independent on h such that there are at most N overlap-
ping squares in the collection {Q(K)} and N parallelograms in the collection
{Q̃(K̃)}, i.e. for all Q(K) in {Q(K)} and for all Q̃(K̃) in {Q̃(K̃)}, given
IK′ := {Q(K) |Q(K)∩ Q(K ′) �= ∅} and Ĩ eK′ := {Q̃(K̃) | Q̃(K̃) ∩ Q̃(K̃ ′) �= ∅},
it holds that card(IK′), card(Ĩ eK′) ≤ N , ∀K ∈ Th and ∀ K̃ ∈ T̃h.

We note that, given u ∈ Hk+1(Ωext), k ∈ N, under assumption (D3), the following
expressions hold:∑

K∈Th

‖u‖2
k+1,Q(K) ≤ N‖u‖2

k+1,Ωext
,

∑
eK∈eTh

‖u‖2
k+1, eQ( eK)

≤ N‖u‖k+1,Ωext ,

with Ωext defined in (5.1). In order to obtain exponential convergence estimates
for analytic functions, we must show bounds analogous to (4.18) and (4.19) by
making explicit the dependence of the constants C1 and C2 on k, i.e. on the Sobolev
regularity of the solution u. For this reason, we split this section in two parts. In
Sec. 5.1, we derive estimates of types (4.18) and (4.19) with the dependence on k

explicated; in Sec. 5.2, we derive an exponential convergence estimate.
We stress that in the following we will assume that u, the solution of (2.2), is

in fact the restriction of a regular function on the set Ωext, Ωext being defined in
(5.1); with an abuse of notation we will call again u such a regular function.

5.1. hp estimate using an overlapping square method

In this section, we use an overlapping square technique which allows us, under
assumption (D3), to explicit the dependence on the Sobolev regularity in the esti-
mate proven in Lemma 4.1 (consequently also on Lemmas 4.2 and 4.4) and on
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Lemma 4.3. Finally, we restate Theorem 4.1 on a proper extended domain, under
assumption (D3). We note that the polynomial approximation which allows to have
an estimate in p will be different from that discussed in Sec. 4; such a polynomial,
introduced by Babuška and Suri in Refs. 6 and 7, is a Fourier-type approximation.
We decide to use here a different choice, by choosing an approximant of Legendre
type whose properties are studied for instance in Ref. 27. The reason for this change
is discussed in Remark 5.1.

5.1.1. A first local estimate

Here, we give an explicit representation of the constant C in (4.4) in terms of k,
k being the Sobolev regularity of the target function. We start by showing the
counterpart of Lemma 4.1. As a minor note, we point out that the estimate of
Lemma 5.1 does not require explicitly a shape regularity condition on the polygons,
differently from Lemma 4.1.

Lemma 5.1. Let Q̂ be the square [−1, 1]2. Let K̂ ⊆ Q̂ be a polygon with barycenter
x bK = 0. Moreover, assume that p ≥ 2k, with k ∈ N. Then, there exists a family
of projection operators {Π̂ bQ,p}, p = 1, 2, . . . with Π̂ bQ,p : H2(Q̂) → Pp(Q̂) such that,

for any û ∈ Hk+1(Q̂), it holds

|û − Π̂ bQ,pû|1, bK ≤ C2kekp−k|û|k+1, bQ, (5.2)

with C a constant independent on u, k and p.

Proof. Let Q̂ = [−1, 1]2. Let {Vi}4
i=1 be the set of vertices of Q̂. Let û ∈ Hk+1(Q̂).

Let Qp(Θ) be the set of polynomials of maximum degree p in each variable over a
domain Θ ∈ R2. As a consequence of Lemma 4.67 in Ref. 27, it is possible to show
the existence of ϕ̂p ∈ Qp(Q̂) such that:

ϕ̂p(Vi) = û(Vi), ∀ i = 1, . . . , 4 (5.3)

and

|û − ϕ̂p|21, bQ
≤ 2

{
(p − k)!
(p + k)!

+
1

p(p + 1)
· (p − k + 1)!
(p + k − 1)!

}
|û|2

k+1, bQ
. (5.4)

Since p ≥ k, it is possible to show that (5.4) leads to the following simpler bound:

|û − ϕ̂p|1, bQ ≤ Cekp−k|û|k+1, bQ, with C =
√

e. (5.5)

In order to show this, we perform the computations only on the first term in
the right-hand side of (5.4) since the treatment of the other one is analogous. Using
Stirling formula:

(p − k)!
(p + k)!

=
(p − k)(p−k) · e−(p−k) ·

√
2π(p − k) · eθp−k

(p + k)(p+k) · e−(p+k) ·
√

2π(p + k) · eθp+k

,
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with
1

12n + 1
≤ θn ≤ 1

12n
, ∀n ∈ N.

Then:

(p − k)!
(p + k)!

≤ p−2k · e2k · eθp−k ≤ Ce2kp−2k, with C = e. (5.6)

At this point, we observe that Qp(Q̂) ⊆ P2p(Q̂). This fact and (5.5) immediately
imply that there exists ϕ̂p ∈ Pp(Q̂) which interpolates û at the vertices of Q̂ as in
(5.3) and which satisfies

|û − ϕ̂p|1, bQ ≤ C2kekp−k|û|k+1, bQ,

provided that p ≥ 2k. We note that, owing to the fact that K̂ ⊆ Q̂, it holds

|û − ϕ̂p|1, bK ≤ |û − ϕ̂p|1, bQ ≤ C2kekp−k|û|k+1, bQ.

In order to conclude, it suffices to define Π̂ bQ,pû := ϕ̂p.

The counterpart of Lemma 4.2 follows.

Lemma 5.2. Let K ∈ Th. Let Q = Q(K) be the smallest square containing K and
let u ∈ Hk+1(Q). Let p ≥ 2k. Then, there exists a sequence of projection operators
Πh

Q,p, p = 1, 2, . . . with Πh
Q,p : H2(Q) → Pp(Q) such that for any k ∈ N:

|u − Πh
Q,pu|1,K ≤ CMk hµ

K

pk
‖u‖k+1,Q, µ = min(p, k),

where C and M are two constants independent on k, h, p and u.

Proof. It suffices to apply Lemma 5.1 and a classical scaling argument. The map-
ping F between Q and Q̂ is the composition of a rotation, a translation and a
dilatation in R2. The polygon K̂ ∈ Q̂ and the operator Πh

Q,pu will be simply given
by K̂ = F (K) and Πh

Q,pu = (Πh
Q,p(u ◦ F−1)) ◦ F respectively.

As done in Sec. 4.1.1, we define uπ ∈ Sp,−1
h (Th), Sp,−1

h (Th) being introduced at
the beginning of Sec. 4.1, as

uπ|K = (Πh
Q,pu)|K , with Q = Q(K), ∀K ∈ Th.

Owing to assumption (D3) and Lemma 5.2, we are able to give the following global
estimate:

|u − uπ|h,1,Ω ≤ CAk hµ

pk
‖u‖k+1,Ωext , µ = min(p, k), (5.7)

where Ωext is defined in (5.1) and C and A are two constants independent on h, p,
k, γ, γ̃ and u (A is independent also on N).
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5.1.2. A second local estimate

In the present section, we give an explicit representation of the constant C in (4.11)
in terms of k. We point out that here the shape regularity assumption is needed;
in fact, the usual scaling arguments used herein are based on affine mappings of
shape regular triangles into the master triangle.

Lemma 5.3. Let u be the solution of (2.2) with u ∈ Hk+1(Ωext), Ωext being defined
in (5.1). Under assumptions (D1), (D2) and (D3), provided that p ≥ 2k, there
exists uI ∈ Vh such that

|u − uI |1,Ω ≤ C · Bk hk

pk
|u|k+1,Ωext , (5.8)

where C and B are two constants independent on k, p, h and u (B is independent
also on N).

Proof. The proof of this lemma is a combination of the arguments used in
Lemma 5.1 and the construction of Lemma 4.3. Therefore, we only give the sketch
of the proof. We start by considering a triangle K̃ in the subtriangular decomposi-

tion T̃h, we map it into the master triangle T̂ (i.e. the triangle obtained halving the
square [−1, 1]2 through its diagonal), we use a Legendre-type approximant in order
to derive an estimate in p as in Lemma 5.1, we go back to the triangle K̃. Let Q̃ be

the parallelogram Q̃ = Q̃(K̃) (see assumption (D3)) and let {Ṽi}3
i=1 be the set of

the vertices of K̃. Therefore, it is possible to show the existence of a ϕh
p ∈ Pp(K̃)

such that ϕh
p (Ṽi) = u(Ṽi), ∀ i = 1, 2, 3 and such that

|u − ϕh
p |1, eK ≤ CB̃k hk

pk
|u|k+1, eQ, (5.9)

where C and B̃ are two constants independent on p, h, k and u (B̃ is also inde-
pendent on N , γ and γ̃). We point out that this estimate holds for all the triangles
in the triangular subdecomposition T̃h. We denote, with a little abuse of notation,
by ϕh

p : Ω → R the global piecewise polynomial function whose restriction on each
triangle K̃ satisfies (5.9).

So far, we have obtained discontinuous piecewise polynomials. We set:

E = E(K̃) :=

 ⋃
{ eeK∈eTh | eK∩ eeK=e}

Q̃( ˜̃K)

 ∪ Q̃(K̃), e ∈ E eK ,

where we recall that E eK is the set of the edges of K̃ and Q̃( ˜̃K) is defined in assump-
tion (D3). We need to modify ϕh

p in order to get a continuous piecewise polynomial
over T̃h without changing the approximation property (5.9). This can be done fol-
lowing the same approach as in Theorem 4.6 and Lemma 4.7 of Ref. 6, i.e. by
correcting ϕh

p with suitable polynomial extensions of its edge jumps. It is possible
to check that such step does not introduce constants depending on k.
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With another little abuse of notation, we have obtained a ϕh
p ∈ H1

0 (Ω) piecewise
continuous polynomial of degree p over the subtriangular decomposition T̃h, such
that an analogous of (5.9) holds for all K̃ ∈ T̃h:

|u − ϕh
p |1, eK ≤ c(γ, γ̃) ˜̃Bk hk

pk
|u|k+1,E .

Using assumption (D3) and the arguments described in Lemma 4.3, one can con-
clude the proof.

The counterpart of Lemma 4.4 follows easily from Lemma 4.4 and Lemma 5.2.
In particular the following lemma holds.

Lemma 5.4. Under assumptions (D1), (D2) and (D3), let Ωext be defined in
(5.1), let the loading term f ∈ H

ek+1(Ωext). Then it holds

Fh ≤ CDk heµ

pek+2
‖f‖ek+1,Ωext

, µ̃ = min(p, k̃ + 2), (5.10)

where C and D are two constants independent on k, h, p and u (D is also indepen-
dent on N).

5.1.3. A global estimate result

Combining bounds (5.7), (5.8), (5.10) and (4.3) yields the following result.

Theorem 5.1. Let k ∈ N, k > 1
2 . Let the mesh assumptions (D1), (D2) and

(D3) hold. Let u and uh be respectively the solution of problems (2.2) and (3.1). Let
Ωext be defined as in (5.1). Let u ∈ Hk+1(Ωext). Let γ, γ̃ and N be the constants
introduced in assumptions (D1), (D2) and (D3). Assume also p ≥ 2k. Then,

the following hp estimate holds :

|u − uh|1,Ω ≤ CÃk hk

pk
|u|k+1,Ωext , (5.11)

where C and Ã are two constants independent on h, p, k and u (Ã is also indepen-
dent on N).

As done in Remark 4.4, we point out that if the domain Ω is convex it is possible
to derive easily, owing to the approximation properties of Legendre polynomials,
L2-estimates of the form:

‖u − uh‖0,Ω ≤ CÃk hk+1

pk+1
|u|k+1,Ωext , (5.12)

where C and Ã are two constants independent on h, p, k and u (Ã is also indepen-
dent on N).

Remark 5.1. We point out that in order to obtain the hp estimates of Theorem 4.1
and of Theorem 5.1, we used two different approximant polynomials. Throughout
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Sec. 4, we decided to follow the Babuška–Suri construction (see Refs. 6 and 7)
which is based on a Fourier series expansion on a proper domain. Nevertheless this
construction obliges, also in the case of the overlapping square technique introduced
at the beginning of Sec. 5, to use some extension operator (for instance the one
described in Ref. 28 for Lipschitz domains). Thus, to give an explicit representation
of the dependence of the involved constant on the Sobolev regularity k is not a
trivial work. On the other hand, throughout Sec. 5, we made use of Legendre-type
approximant (as done for instance in Ref. 27). In this case, owing to Legendre
polynomials properties, we are able to obtain exponential estimates (see Sec. 5.2),
since the dependence in the constant with respect to the Sobolev regularity k can
be derived. We stress that the Legendre approach could be used also in Sec. 4; the
choice of Fourier-type approximation, which we recall is not applicable in Sec. 5,
is essentially a matter of taste and has the merit of avoiding to use bi-polynomial
functions; furthermore, the latter approach is much easier than the former and this
is why we show the details of both.

5.2. Exponential convergence

We have the following exponential convergence result for analytic solutions u over
the extended domain Ωext (see (5.1)).

Theorem 5.2. Let the mesh assumptions (D1), (D2) and (D3) hold. Let u and
uh be respectively the solution of problems (2.2) and (3.1), with u ∈ A(Ωext), A(Ωext)
being the set of analytic function over the closure of Ωext defined in (5.1). Then,

the following exponential convergence estimate holds:

‖u − uh‖1,Ω ≤ Ce−bp, (5.13)

for some positive constants C and b independent on p.

Proof. We recall (see for instance Ref. 15) that an analytic function in the closure
of a domain Θ ∈ R2 is characterized by the following bound:

‖Dαu‖∞,Θ ≤ CA|α|α!, α = (α1, α2) ∈ N0
2, (5.14)

where α! = α1!α2! and where C and A are constants independent on the multi-index
α; nevertheless, C and A depend on u and on Θ. Recalling (5.11), we have

|u − uh|1,Ω ≤ C(γ, γ̃, N)Ã(γ, γ̃)k hk

pk
|u|k+1,Ωext ,

if p ≥ 2k. Using standard results from space interpolation theory,14,29 from the
above bound one can easily derive

|u − uh|1,Ω ≤ C(γ, γ̃, N)Ã(γ, γ̃)s hs

ps
|u|s+1,Ωext (5.15)
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for all s ∈ R with 2 ≤ 2s ≤ p. The combination of (5.15) and (5.14) yields

|u − uh|1,Ω ≤ C

(
Ã

h

p

)s

As+1(s + 1)!.

By means of Stirling formula, we obtain:

|u − uh|1,Ω ≤ C

(
hAÃ

p

)s (
s + 1

e

)s+1√
2π(s + 1)

1
2 ,

easily yielding

|u − uh|1,Ω ≤ C

(
hAÃ

ep
s

)s

s
3
2 .

By denoting δ = hA eA
e we can write:

|u − uh|1,Ω ≤ C

(
s

p
δ

)s

s
3
2 .

Since this last inequality holds true for all s such that 2 ≤ 2s ≤ p, we may choose
s = p

2(δ+1) . Hence:

|u − uh|1,Ω ≤ C

(
δ

2(δ + 1)

) p
2(δ+1)

p
3
2 = Ce−bpp

3
2 , with b =

log( δ
2(δ+1) )

2(δ + 1)
. (5.16)

The multiplier p
3
2 can be absorbed by e−bp by making b a little bit smaller and

increasing C; therefore, (5.16) immediately yields

|u − uh|1,Ω ≤ Ce−bp, (5.17)

for some constants C and b independent on p. The result follows by the Poincaré
inequality.

6. Numerical Results

In this section, we present numerical results experimentally validating the error
estimates (4.18), (4.19), (4.20) and (5.17). We consider four types of meshes (see
Fig. 1) on the domain Ω = [0, 1]2, namely an unstructured triangular mesh, a regular
square mesh, a regular hexagonal mesh and a Voronoi–Lloyd mesh (see Ref. 20).
The basis {qα} of the space Pp−2(K) introduced in Sec. 3, ∀K ∈ Th, is taken to be
the same as that introduced for instance in Ref. 8 or Ref. 10. Different choices are
investigated in the Appendix. Moreover, we fix a possible choice for the stabilizing
term SK introduced in (3.9) (see for instance Ref. 8) as:

SK(uh, vh) =
dim(Vh(K))∑

r=1

χr(uh)χr(vh), ∀uh, vh ∈ Vh(K), K ∈ Th, (6.1)

where χr, ∀ r = 1, . . . , dim(Vh(K)) is the operator which associates to each function
in the local space Vh(K) its rth local degree of freedom.
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Fig. 1. From left to right: unstructured triangular mesh, regular square mesh, regular hexagonal
mesh, Voronoi–Lloyd mesh.

Remark 6.1. The stabilizing bilinear form (6.1) does not guarantee, in principle,
that the stability property (3.9) is uniform in p. A theoretical analysis of the depen-
dence in p of the constants appearing in (3.9), possibly for different choices of the
stabilizing term, is a more specific topic that is beyond the scope of the present
(general) work and will be investigated in future communications. Nevertheless, in
Sec. 6.4, we show numerically the dependence on p of the stability bounds in (3.9)
for the stabilizing term (6.1) for different sample polygons.

In order to estimate the error introduced by the MATLAB algebraic sparse
solver, we have solved a problem whose exact solution is the polynomial u(x, y) =
x2+y2. Since the VEM passes the patch test, in this case, for k ≥ 2, the approximate
solution uh coincides with u and the error that we measure is only due to the
algebraic solver (it should be zero in exact arithmetic). Hence, together with the
standard error in the H1-norm and in the L2-norm with respect to the solutions
(6.2) and (6.3), in our convergence figures we also plot this algebraic error. When
the error curve comes close to the algebraic error curve, the convergence error and
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the error introduced by the MATLAB algebraic solver are of the same order and
the expected theoretical behaviour does not hold anymore.

6.1. Convergence in p for an analytic function

We consider problem (2.2) with loading term f(x, y) = 2π2 sin(πx) sin(πy). The
exact solution is given by:

u(x, y) = sin(πx) sin(πy). (6.2)

In this test, the mesh is kept fixed (see Fig. 1) and the polynomial degree is raised.
In Figs. 2 and 3 we report the errors among the discrete and exact solutions.
Since we are dealing with a virtual element solution uh (that is unknown inside
elements) we cannot directly compute the error ‖u − uh‖s, Ω, s = 0, 1. Therefore,
as is standard in VEM, we plot instead ‖u−Π∇

p uh‖0,Ω and |u−Π∇
p uh|h,1,Ω, that are

good representatives of the above errors (see (3.8) for the definition of the operator
Π∇

p and (4.1) for the definition of the H1 broken Sobolev seminorm).
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Fig. 2. u(x, y) = sin(πx) sin(πy); unstructured triangle mesh (left); regular square mesh (right).
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Fig. 3. u(x, y) = sin(πx) sin(πy); regular hexagonal mesh (left); 4: Voronoi–Lloyd mesh (right).
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In accordance with Theorem 5.2, the exponential convergence is evident from the
decreasing slope in the error graphs. Moreover, from Figs. 2 and 3 we can observe
that the lower line is a good marker for the indication of the machine algebra error.

6.2. Convergence in p for a function with finite Sobolev regularity

Secondly, we present a similar behaviour test for the case of a problem with solution

u(r, θ) = r2.5 sin(2.5θ), (6.3)

where (r, θ) are the polar coordinates with respect to the origin. Since the function
is harmonic, the loading term f = 0 and the Dirichlet boundary conditions are set
in accordance with u|∂Ω. We note that u ∈ H3.5−ε(Ω), ∀ ε > 0. In Figs. 4 and 5,
the segmented line represents a line of slope 5 = 2 · 2.5. Owing to Theorem 4.1, we
should have an estimate in p of the type p−a, a = 2.5. Anyhow, for this type of
corner singularity, one could extend the technical result of Refs. 6 and 7 obtaining
error estimate in p of the type p−2a also in our VEM framework. Thus, we expect
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Fig. 4. u = r2.5 sin(2.5θ); unstructured triangle mesh (left); 2: regular square mesh (right).
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Fig. 5. u = r2.5 sin(2.5θ); regular hexagonal mesh (left); 4: Voronoi–Lloyd mesh (right).
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a slope for the H1 error of the type p−5, which is represented with the dashed line
in Figs. 4 and 5. Figures 4 and 5 are in agreement with such observation.

6.3. Convergence in h

In this subsection, we show the convergence rate when the polynomial degree is
kept fixed and the mesh size goes to zero. We consider a sequence of hexagonal and
Voronoi–Lloyd meshes and we study the same harmonic test case as in Sec. 6.1.
In particular, we examine the case p = 3 and p = 5. We observe that the slope of
the errors are in accordance with Theorem 4.1 and with estimate (4.20). The same
considerations about Fig. 6 are still valid for Fig. 7. We only point out that the
strange L2-error behaviour for the final step is due to the machine precision error.

6.4. Numerical tests for the stability bounds

As already observed in Remark 6.1, the stabilizing bilinear form (6.1) does not
guarantee, in principle, that the stability property (3.9) is uniform in p. Indeed,

100 101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2

1/diam

er
ro

rs

3

4

Π∇ H1 error
Π∇ L2 error

100.3 100.5 100.7 100.9

10−4

10−3

1/diam

er
ro

rs

3

4

Π∇ H1 error
Π∇ L2 error

Fig. 6. Regular hexagonal mesh (left); Voronoi–Lloyd mesh (right); p = 3.
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Fig. 7. Regular hexagonal mesh (left); Voronoi–Lloyd mesh (right); p = 5.
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while it is quite easy to show that these two constants are independent on h (at
least under our current geometric assumptions on the elements), the behaviour in
p needs a different approach. A theoretical analysis of the dependence in p of the
constants appearing in (3.9) (or equivalently (3.6)), possibly for different choices
of the stabilizing term, will be the topic of future communications. Nevertheless,
in the present section we show numerically the dependence on p of the stability
bounds in (3.6) for the stabilizing term (6.1) for different sample polygons.

Given K ∈ Th, we want to investigate the behaviour in p of the constants α∗, α
∗

in the stability bound (3.6):

α∗|vh|1,K ≤ aK
h (vh, vh) ≤ α∗|vh|1,K . (6.4)

We note that finding α∗ and α∗ in (6.4) is equivalent to find the minimum and the
maximum eigenvalue, say λmin and λmax, of the generalized eigenvalue problem:

AK
h v = λAKv, (6.5)

where AK
h , AK ∈ Rdim(Vh(K))×dim(Vh(K)) and

(AK
h )i,j = aK

h (ϕi, ϕj); (AK)i,j = aK(ϕi, ϕj),

{ϕi}dim(Vh(K))
i=1 being the usual canonical virtual basis. Since both matrices (that

are symmetric and positive semi-definite) have a kernel given by the vectors rep-
resenting constant functions, without loss of generality we restrict the analysis to
the zero-average functions in Vh(K). Since matrix AK is not computable exactly,
we approximate its entries by solving numerically the associated diffusion problem,
using a very fine triangular mesh on the polygon and hp FEM.

We stress that we are in particular interested in the behaviour in terms of p of:

α∗

α∗
, i.e.

λmax

λmin
, (6.6)

since such quantity is the one that could affect the convergence results discussed
in Secs. 4 and 5, see Theorem 3.1 of Ref. 8. In Table 1 we present tests on three
regular sample polygons: a triangle, a square and a hexagon.

Table 1. Minimum and maximum eigenvalues of the generalized eigenvalue problem (6.5)
on: tr =a triangle; sq= a square; he= a hexagon.

p tr. λmin tr. λmax sq. λmin sq. λmax he. λmin he. λmax

2 1.0000e+00 1.0825e+00 1.0000e+00 1.1225e+00 4.6394e−01 1.2079e+00
3 6.1649e−01 1.0000e+00 3.7333e−01 1.1978e+00 4.4218e−01 1.2234e+00
4 2.7391e−01 1.0000e+00 3.0515e−01 1.0365e+00 4.5071e−01 1.3473e+00
5 6.1234e−02 1.0000e+00 3.0203e−01 1.2361e+00 4.2189e−01 1.3208e+00
6 4.4998e−02 1.0000e+00 2.0408e−01 1.0580e+00 4.2771e−01 1.2256e+00
7 2.3220e−02 1.0000e+00 2.0026e−01 1.1509e+00 4.0537e−01 1.2696e+00
8 7.9998e−03 1.0000e+00 1.3968e−01 1.0433e+00 4.0755e−01 1.2439e+00
9 5.2406e−03 1.0000e+00 1.3176e−01 1.1310e+00 4.0183e−01 1.2364e+00

10 2.6406e−03 1.0000e+00 8.9375e−02 1.0390e+00 3.8648e−01 1.2514e+00

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
16

.2
6:

15
67

-1
59

8.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
M

IL
A

N
 o

n 
03

/3
0/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



May 30, 2016 11:42 WSPC/103-M3AS 1650038

Basic principles of hp virtual elements 1591

First of all, we note that λ = 1 is always an eigenvalue since, due to the con-
sistency condition (A1), for all vectors v associated to polynomial functions the
two operators above give the same result. Therefore λmax is always bigger or equal
than one and λmin always smaller or equal than one. We moreover observe that the
maximum eigenvalue is almost constant in all the three cases. On the other hand,
the minimum eigenvalue behaves differently, and depends on the polygon. In the
case of the hexagon, it is still almost constant. For the square, we notice a very
slow decay. Finally, for the triangle we have instead a considerable decay in terms
of p. Nonetheless, looking at the numerical experiments discussed in Sec. 6.2, we do
not notice an equivalent loss in terms of p-convergence rates. A possible heuristic
reason (among others) is the following. At the theoretical level, the bounds in (6.4)
are not applied to the complete local space Vh(K) but only (see Theorem 3.1 of
Ref. 8) to polynomials and to uh−uI , uh being the solution of the discrete problem
(3.1) and uI being the virtual interpolation term; therefore, looking at the “worst
rate” (6.6) on the whole space Vh(K) could be pessimistic in many situations.

Appendix

In this Appendix, we study the behaviour of the condition number of the global
stiffness matrix of problem (3.1) and we explore some alternatives in the choice of
the local VEM basis. We note that, as it happens in Finite Elements (see Refs. 2 and
5), the main responsible for the growth of the condition number (when p increases)
are the internal “bubble” basis functions. In Appendix A.1, we numerically inves-
tigate the behaviour of the condition number by changing the polynomial basis
{qα} of Pp−2(K) (for all K ∈ Th), introduced in Sec. 3 for the definition of the
local internal degrees of freedom. In Appendix A.2, we discuss an orthogonalization
technique that strongly reduces the condition number, but is unstable with respect
to machine precision.

A.1. Three explicit bases

In this subsection, we consider three explicit bases:

• {q1
α}, the same basis introduced for instance in Refs. 8 and 10, that is to say:

q1
α =

(
x − xK

hK

)α

, ∀α ∈ N2
0, |α| ≤ p − 2, (A.1)

where xK and hK are respectively the barycenter and the diameter of the poly-
gon K.

• {q2
α}, which is defined by

q2
α =

q1
α

‖q1
α‖0,K

, ∀α ∈ N2
0, |α| ≤ p − 2. (A.2)

• {q3
α}, which is a Legendre-type basis. In order to define it, we recall that NK is

the number of vertices of K and {Vi}NK

i=1 is the set of vertices of K; moreover,
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we set

x̃K = (x̃K , ỹK) =
(

xV,min + xV,min

2
;
yV,min + yV,min

2

)
,

hx
K = |xV,min − xV,min|, hy

K = |yV,min − yV,min|,

where xV,min = maxNK

i=1 xi, xV,min = minNK

i=1 xi, yV,min = maxNK

i=1 yi, yV,min =
minNK

i=1 yi. Besides, let Ls(·) be the Legendre polynomial of degree s on the seg-
ment [−1, 1] (see e.g. Ref. 24 for the properties of Legendre polynomials). Then,
we are able to define the basis:

q3
α = Lα1

(
2
x − x̃K

hx
K

)
Lα2

(
2
y − ỹK

hy
K

)
, ∀α ∈ N2

0, |α| ≤ p − 2. (A.3)

We observe that the third choice should be, at least at a first glance, better
than the other two, thanks to orthogonality properties of Legendre polynomials.
We will see that instead this is not the case in general. Indeed, the orthogonality
properties of the Legendre basis are quickly lost when the considered domain is not
rectangular. In our tests, we consider the same meshes already used in Sec. 6; see
Fig. 1. In Figs. A.1 and A.2, we compare the behaviour of the condition number,
given by the MATLAB command cond, for the three choices of the bases mentioned
above and the four meshes. We stress the fact that the Legendre-type basis performs
better in the case of the square mesh; this is believable thanks to the orthogonality
properties of the Legendre polynomials. On the contrary, one can see that more
general meshes, such as the hexagonal, unstructured triangular and Voronoi–Lloyd
ones, the best result is obtained with the L2-scaled basis. Finally, we present in
Figs. A.3–A.6 some “comparison tests” in which we report the error |u−Π∇

p uh|1,Ω

(see (3.8)), by using the four different meshes in Fig. 1 and the three different
bases. We consider the same two test cases of Sec. 6. From Figs. A.3 and A.4, one
can see that the Legendre-type basis is a good choice for the square case, while on
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Fig. A.1. Unstructured triangle mesh (left); regular square mesh (right).
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Fig. A.2. Regular hexagonal mesh (left); Voronoi–Lloyd mesh (right).
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Fig. A.3. u(x, y) = sin(πx) sin(πy); unstructured triangle mesh (left); regular square mesh
(right).
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Fig. A.4. u(x, y) = sin(πx) sin(πy); regular hexagonal mesh (left); Voronoi–Lloyd mesh (right).

triangles it is very unstable; besides, for general meshes, it seems that the slope of
the error with the other two bases is almost the same and performs better than
the Legendre-type basis. The same considerations for Figs. A.3 and A.4 hold for
Figs. A.5 and A.6.
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Fig. A.5. u(r, θ) = r2.5 sin(2.5θ); unstructured triangle mesh (left); regular square mesh (right).
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Fig. A.6. u(r, θ) = r2.5 sin(2.5θ); regular hexagonal mesh (left); Voronoi–Lloyd mesh (right).

We point out that in our numerical tests we have used a direct solver in order to
work out the global system arising from the discrete problem (3.1). A consequence
of this fact is that the condition number of the global matrix does not affect the
resolution of the linear system as it would do if we used an iterative solver. This
explains why the behaviour of the errors with the choice of the classical basis {q1

α}
and the scaled basis {q2

α} is almost the same, notwithstanding the large difference
in the condition number of the global matrix as shown in Fig. A.1 and in Fig. A.2.

A.2. A “virtual” Gram–Schmidt process

From the previous subsection, it is clear that by suitably changing the basis of the
space one obtains better condition numbers for the global stiffness matrix. Despite
this, from Figs. A.1 and A.2 we note that the condition numbers are still large
and, although in our codes we use a direct solver, it would be preferable to reduce
such numbers. Therefore, in this subsection we consider an extension of the Gram–
Schmidt technique that considerably reduces the condition number of the global
stiffness matrix, but at the price of an unstable propagation of the machine error
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precision (as better discussed later). The idea behind this procedure consists in
orthonormalizing the internal virtual basis functions with respect to the discrete
bilinear form ah, the additional difficulty being that such shape functions are not
known explicitly. Nevertheless, in order to derive an orthonormalized basis, we can
use the fact that the discrete scalar product between two discrete virtual functions
is computable (following for instance Ref. 10). The detailed description of such a
process can be found in Ref. 11.

We present now some numerical experiments about the behaviour of the con-
dition number. We consider the four different meshes in Fig. 1 and we compare
the condition number of the L2-scaled basis introduced in Sec. A.1 and the new
Gram–Schmidt basis (see Ref. 11). We remind that, from the previous numerical
experiments, the L2-scaled basis seems to be the most well-conditioned among the
choices of Appendix A.1. From the results in Figs. A.7 and A.8, it follows that the
Gram–Schmidt basis performs much better, at least for what concerns the condition
number.
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Fig. A.7. Unstructured triangle mesh (left); regular square mesh (right).
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Fig. A.8. Regular hexagonal mesh (left); Voronoi–Lloyd mesh (right).
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Fig. A.9. Unstructured triangle mesh (left); regular square mesh (right).
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Fig. A.10. Regular hexagonal mesh (left); Voronoi–Lloyd mesh (right).

In Figs. A.9 and A.10, we compare the behaviour of the error |u − Π∇
p uh|1,Ω

using the two bases above on the usual test case u(x, y) = sin(πx) sin(πy). We
observe that, although the method described in this subsection improves the con-
dition number of the global stiffness matrix, it is numerically unstable. Therefore,
in practice, the proposed Gram–Schmidt method may be preferable to the simple
basis choice in (A.2) only for mid-low values of p.
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6. I. Babuška and M. Suri, The hp version of the finite element method with quasiuniform
meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987) 199–238.
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