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Abstract. The destriping technique is a viable tool for removing different kinds of systematic effects in CMB-related experi-
ments. It has already been proven to work for gain instabilities that produce the so-called 1/ f noise and periodic fluctuations
due to e.g. thermal instability. Both effects, when coupled to the observing strategy, result in stripes on the observed sky re-
gion. Here we present a maximum-likelihood approach to this type of technique and provide also a useful generalization. As a
working case we consider a data set similar to what the  satellite will produce in its Low Frequency Instrument (LFI).
We compare our method to those presented in the literature and find some improvement in performance. Our approach is also
more general and allows for different base functions to be used when fitting the systematic effect under consideration. We study
the effect of increasing the number of these base functions on the quality of signal cleaning and reconstruction. This study is
related to  LFI activities.
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1. Introduction

One of the major goals of cosmology is to determine the cos-
mological parameters which describe the structure and evolu-
tion of the Universe. In this respect CMB observations are a
powerful tool directly probing the early phases of the Universe.
Recent results from the WMAP satellite (Bennett et al. 2003)
show that high accuracy in such measurements can be achieved
with an optimal choice of observing site (the second Lagrange
point of the Sun-Earth system, L2, for good thermal and en-
vironmental stability), careful instrument design and control
of systematic effects. The last point is related to the observ-
ing strategy adopted, which should be as redundant as possible,
with different measurements of the same sky region with differ-
ent detectors and on different time scales in order to properly
control systematics.

Future space missions like 1 which are designed
to have a signal-to-noise ratio of the order of few tens (far
larger than WMAP), require control of systematic effects at
the µK level. In this respect several techniques have been de-
veloped to treat systematics, to detect and remove them in the
best possible way. Burigana et al. (1997), Delabrouille (1998)
and Maino et al. (1999, 2002) have considered, in the context
of the  mission, a simple destriping algorithm to re-
move systematics like the 1/ f α noise. Mennella et al. (2002)

1 http://astro.estec.esa.nl/SA-general/Projects/
Planck/

have instead considered destriping when dealing with periodic
fluctuations such as those induced by thermal instabilities.

Destriping methods work on time-ordered data (TOD) and
produce TOD cleaned of systematics. When TOD is cleaned it
is possible to co-add observations on the same region (pixel)
of the sky to obtain a sky map which gives a visual impres-
sion of the data. Although it is non-optimal, in the sense that
it would not necessarily produce the map with the minimum
possible variance as instead provided by the Generalized Least
Square solution of the map-making problem (see e.g., Natoli
et al. 2001), it provides a fast and accurate map-making algo-
rithm. In addition, the analysis of TOD cleaned of systematics
is useful for several applications relevant for the  data
analysis (e.g. in-flight main beam reconstruction (Burigana
et al. 2002) and calibration (Bersanelli et al. 1997; Piat et al.
2003; Cappellini et al. 2003), time series analysis) and for the
scientific exploitation of  data (e.g. source variability
studies (Terenzi et al. 2002).

In this paper we consider the destriping technique in the
light of maximum-likelihood analysis and present a general
formulation of the destriping technique. We restrict our anal-
ysis to 1/ f noise fluctuations. They produce noise which is
strongly correlated in time and, when coupled with the observ-
ing strategy, will lead to stripes in the final maps that would
alter the signal statistics. This is of extreme importance for the
CMB which is expected to be a Gaussian random field.
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The basic idea in destriping is to model the noise in the
TOD by a linear combination of simple arithmetic functions,
such as polynomials or Fourier components. The amplitudes
of these base functions are determined taking advantage of the
redundancy of the scanning strategy for which the same points
on the sky are monitored several times during the mission. In
its simplest form destriping involves fitting uniform baselines,
i.e. one baseline for each elementary scanning period. In order
to improve the accuracy of the method, we present here the
possibility of fitting several components (base functions).

The destriping method of Burigana et al. (1997) and Maino
et al. (1999, 2002) differs from the destriping method of
Delabrouille (1998) in the weights they assign to different map
pixels based on the number of measurements falling on that
pixel. Our maximum-likelihood analysis presented in this pa-
per leads to a weighting scheme that differs from both of these.
Therefore we compare results obtained from all these three
methods.

The paper is organized as follows. In Sect. 2 we present
the maximum-likelihood approach to the destriping technique,
in Sect. 3 we apply it in the case of uniform baselines, and in
Sect. 4 we generalize the discussion to arbitrary base functions.
We present our conclusions in Sect. 5.

2. Destriping – maximum likelihood approach

2.1. Maximum likelihood analysis

In the following we present a maximum-likelihood based ap-
proach to the destriping problem. We assume that data pro-
duced by a generic detector at a given time t could be writ-
ten as:

yt = Ptpmp + nt,corr + nt (1)

where mp is the sky signal, assumed to be pixelized, Ptp is the
pointing matrix, p is the pixel index, nt,corr is the correlated
noise component while nt is the white noise component. The
variance of the white noise component is represented by a di-
agonal matrix Cn in the time domain. Equation (1) could be
written in vector form as:

y = Pm+ ncorr + n. (2)

We model the correlated noise component of the TOD as fol-
lows. The TOD is divided in to elementary scanning periods,
which we shall here call “rings” (as appropriate for the 
scanning strategy). For each ring j we define a constant off-
set a j, so that

yt = Ptpmp + Ft ja j + nt. (3)

Here Ft j equals unity if point t lies on ring j. We write this in
matrix form as

y = Pm+ Fa + n. (4)

We treat both the map and the correlated noise component as
deterministic. With these assumptions, we obtain the likelihood
function

χ2 = (y − Fa − Pm)T C−1
n (y − Fa − Pm). (5)

If Nt is the length (the number of samples) of the TOD stream,
Npix is the number of pixels in the map, and Na is the number of
unknown amplitudes, then the sizes of the matrices are: [F] =
(Nt,Na), [P] = (Nt,Npix), [Cn] = (Nt,Nt).

We now want to find the maximum likelihood solution
for a. We need to minimize the function in Eq. (5) with re-
spect to both of the unknown variables m and a. First we find
the minimum with respect to m,

∇mχ
2 = −2PT C−1

n (y − Fa − Pm) = 0. (6)

From this we can solve the map m,

m = (PT C−1
n P)−1 PT C−1

n (y − Fa). (7)

Substituting Eqs. (7) back into (5) we obtain

χ2 = (y − Fa)T ZT C−1
n Z(y − Fa), (8)

where

Z = I − P(PT C−1
n P)−1 PT C−1

n . (9)

Here I denotes the unit matrix.
The next step would be to minimize χ2 with respect to a,

∇aχ
2 = −2FT C−1

n Z(y − Fa) = 0. (10)

The minimum is given by

FT C−1
n ZFa = FT C−1

n Zy. (11)

Here we have used the property ZT C−1
n Z = C−1

n Z.
We assume from now on Cn = diag(σ2). With this simpli-

fication, the minimum of Eq. (8) is given by

FT ZFa = FT Zy. (12)

where

Z = I − P(PT P)−1 PT . (13)

The effect of Z acting on a TOD is to subtract from each sample
the average of all samples hitting the same pixel. The solution
to Eq. (12) is not unique. We may add an arbitrary constant to a
without changing the value of χ2. This is equivalent to varying
the monopole component of the CMB map, and is irrelevant
for anisotropy measurements. To remove this ambiguity we re-
quire that the sum of baselines is zero, aT 1 = 0. Here 1 is a
vector with all elements equal to 1. This is equivalent to adding
term 11T a to the left-hand side of Eq. (12).

The solution is now given by

a = [FT ZF + 11T ]−1FT Zy. (14)

Matrix FT ZF + 11T , unlike FT ZF, is non-singular, provided
that there are enough intersection points between the rings.
11T denotes a matrix with all elements equal to one. When the
amplitude vector a has been determined, the CMB map can be
computed according to Eq. (7). These equations are the main
theoretical result of this paper.
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2.2. Pointing and beam shape

The matrix P spreads the map m into TOD. In principle, the
beam shape and profile can be incorporated in P. The ele-
ments of P then determine the weights that different pixels
contribute to a given measurement. In this way beams with ar-
bitrary shapes and profiles can be treated. In this case the ma-
trix PT P is non-diagonal. Due to its large size, in  type
of missions its inversion would present a major computational
burden.

A simpler approach is to consider each sample in the TOD
to represent the temperature of the pixel at the center of the
beam. Then P takes a particularly simple form, consisting of
ones and zeros for a full-power measurement like .
Each row contains one non-zero element identifying the pixel
on which the corresponding measurement falls. Matrix PT P
becomes diagonal, the diagonal elements giving the number of
hits on each pixel. We follow this approach from here on.

2.3. Comparison with earlier work

Equation(8) can be put into form

χ2
n =
∑

p

∑
ik, jl(ai − a j − yik + y jl)2dp

ikdp
jl

2σ2
∑

ik dp
ik

(15)

where index p labels pixels, i, j scanning rings, and k, l sam-
ples on a given ring. A combined index ik or jl identifies a
measurement. We define the symbol dp

ik so that dp
ik = 1 if mea-

surement ik falls into pixel p, otherwise dp
ik = 0. Due to the fac-

tors dp
ik and dp

jl in the numerator of Eq. (15) only those pixels p
contribute to the pixel sum which lie on two or more scanning
rings, and the sum

∑
ik, jl is equal to 2 times the sum over all

pairs of measurements falling on pixel p.
Equation (15) can be compared to Eqs. (2) of Maino et al.

(1999) or to (10) of Burigana et al. (1997). The formulae differ
in that in Eq. (15) χ2

n has in the denominator the term np =∑
ik dp

ik, which gives the total number of hits in pixel p.
Delabrouille (1998) gives the general form

S =
∑

p∈sky

∑

pairs

w(p, ik, jl)(yik − y jl − ai + a j)
2 (16)

for the function S to be minimized. Here the second sum refers
to all pairs (ik, jl) that can be formed of the measurements
falling onto pixel p, and w is a weight function to be chosen.
Based on the fact that pixel p contributes np(np − 1)/2 pairs,
Delabrouille suggests choosing w ∝ 1/(np − 1). The result of
Maino et al. (1999) corresponds to w = const. and our new
result, Eq. (15), to w = 1/np.

2.4. Circular scanning

In the nominal scanning strategy of  the spin axis fol-
lows the ecliptic plane. The spin axis is kept anti-solar by re-
pointing it by 2.5′ every hour. The spacecraft rotates around
the spin axis at a rate of 1 rpm. During one hour  scans
the same circle on the sky 60 times. As the sky signal is al-
most time-independent, the data can be coadded to reduce the

length of the data stream by a factor of 60. We call this set of
60 circles, and the corresponding segment of the coadded TOD
a “ring”. The crossing points of the rings are important calibra-
tion points, which allow for the removal of the correlated noise
component from the TOD.

The opening angle of the scanning circle varies between
80−90 degrees, depending on the location of the detector on
the focal plane. The sampling frequency for the 100 GHz LFI
receiver is 108.3 Hz. The instrument then collects 6498 temper-
ature values, or “samples”, at each rotation of the spacecraft,
corresponding roughly to a 3′ shift between successive sam-
ples. A total of 8766 rings builds up one year of observations.

In reality, the angular velocity of the rotation does not stay
exactly constant, especially immediately after repointing, and
the samples from different circles of the same ring are shifted
in position. This will probably require discarding the first few
circles of each ring, and resampling or phase binning the rest
before performing the coaddition. During the ring the spin axis
of the satellite will follow a nutation ellipse with maximum
amplitude of 1.5′ at the end of the nutation damping phase
(van Leeuwen et al. 2002). This may degrade slightly the per-
formance of destriping. We ignore these complications in this
paper.

The destriping technique applies particularly well to a
-like measurement pattern resulting from the coadding
of scanning circles into rings which breaks the stationarity of
the data. The 1/ f α noise component in the coadded TOD is
well presented by a piecewise defined function, where each
piece consists of a linear combination of a few base functions.

3. Uniform baselines

3.1. Simulation results

We have carried out simulations of the Planck LFI 100 GHz
detector. The underlying CMB map was created by the
Synfast code of the HEALPix package2, starting from
the CMB anisotropy angular power spectrum computed with
the CMBFAST code3 (see Seljak & Zaldarriaga 1996, and
references therein) using the cosmological parameters Ωtot =

1.00, ΩΛ = 0.7, Ωbh2 = 0.02, h = 0.7, n = 1.00, and
τ = 0.0. We created the input map with HEALPix resolution
Nside = 1024 and with a symmetric Gaussian beam with a full
width at half maximum (FWHM) of 10′. We then formed the
signal TOD by picking temperatures from this map. All our
output maps have the resolution parameter Nside = 512, corre-
sponding to an angular resolution 7′.

The scanning pattern corresponds to the nominal 
scanning strategy of the 100 GHz LFI detector number 104. The
angle between the satellite spin axis and the optical axis of the
telescope is 85◦. The beam center is pointing towards (θ, φ) =
(3.◦737, 126.◦228). Here θ is the angle from the optical axis and φ
is an angle counted clockwise from the axis pointing from the

2 http://www.eso.org/science/healpix
3 http://physics.nyu.edu/matiasz/CMBFAST/cmbfast.html
4 Simulation Software is part of the Level S of the
 DPCs and is available for  collaboration at
http://planck.mpa-garching.mpg.de
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Fig. 1. A 5 h segment of the noise TOD after coadding (grey) and the
baselines (black) fitted to it. For this figure the 5-h average is sub-
tracted also, to center the figure at 0 µK. The baselines were obtained
using the weight function w = 1/np. The difference between baselines
obtained with different methods would be too small to show up clearly
in this figure.

center of the focal plane towards the satellite spin axis. We as-
sumed no spin axis precession. Our simulated data set consists
of 5040 scanning rings, corresponding to 7 months of measure-
ment time. The TOD stream contains 6498 samples on each
ring, corresponding to a sampling frequency of fs = 108.3 Hz.
The sky coverage is 98.5%.

In our simulations we have assumed a symmetric Gaussian
beam, and convolved the input map with the beam.

The rings cross at points which are mostly concentrated
near the ecliptic poles. We count as crossing points all points
where two measurements on different rings fall on the same
pixel. Since our pixel resolution (7′) exceeds the repointing an-
gle of the spin axis (2.5′), the crossing points include cases
where two nearby rings pass parallel through the same pixel,
without actually crossing each other.

We used the Stochastic Differential Equation (SDE) tech-
nique to create the instrument noise stream, which we added to
the signal TOD5. We generated noise with the power spectrum

P( f ) =

(
1 +

fk
f

)
σ2

fs
, ( f > fmin) (17)

with parameters σ = 4800 µK (CMB temperature scale), fk =
0.1 Hz, and fmin = 10−6 Hz. The parameter fk is called the
knee frequency. The noise level 4800 µK corresponds to the
estimated white noise level of one 100 GHz LFI detector.

Figure 1 shows a five-hour section of a coadded noise TOD
and the baselines fitted to it. Figure 2 shows the baseline distri-
bution from a set of 10 simulated 7-month noise TODs.

There was no foreground included in the simulations pre-
sented in this paper, but we have also verified our destriping

5 SDE is one of the two methods in the Planck Level S pipeline for
producing simulated instrument noise. The method was implemented
by B. Wandelt and K. Górski and modified by E. Keihänen.
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Fig. 2. The histogram (in bins of 50 µK) of the baselines from a set
of 10 simulated 7-month noise TODs. The three curves correspond to
two different weight functions (see Sect. 3.2) used to determine the
baselines: w = 1/np (thick black) and w = 1 (thin black), and to the
reference baselines, i.e., noise averages over the one hour ring (grey).

codes on simulated data sets with foreground. We found that
the foreground has an insignificant impact on the baselines de-
termined by the destriping, in agreement with the discussion
in Maino et al. (2002). The quality of destriping is also al-
most independent of the impact of another class of instrumen-
tal systematic effects, main beam distortions and straylight, as
the temperature differences at crossing pixels are dominated
by the noise and only minimally affected by the spurious sig-
nals (≈µK) introduced by optical distortions (see e.g., Burigana
et al. 2001).

Figure 3 shows the input C� spectrum and the spectrum de-
rived from the simulated TOD after destriping. We used the
Anafast code of the HEALPix package to compute the C� spec-
trum of the destriped map. We subtracted from the derived
spectrum an estimate of the noise level Cnoise = 0.197 µK2

(estimated as the average of C� over � = 980, . . . , 1000) and
corrected the spectrum for the beam shape convolution and
pixel convolution. The angular spectrum shown is thus C̃� =
(C�−Cnoise)/(B2

�h
2
� ), where B� = exp(−σ2

b�(�+1)/2), with σb =

10′/
√

8 ln(2), is the beam convolution function corresponding
to the assumed beam width of 10′ (FWHM), and h� is the pixel
convolution function (provided by the HEALPix package).

Figure 4 shows the same for a noise level reduced by the
factor

√
24, corresponding to the combination of 24 detectors.

Here the subtracted noise level was Cnoise = 0.197 µK2/24 =
0.0082 µK2.

Note that Figs. 3 and 4 are for illustration only, as this paper
does not address the full CMB C� estimation problem, and thus
we have just used the above crude estimate for Cnoise.

3.2. Comparison of different weighting schemes:
Maps and angular power spectra

We have written a destriping code which allows us to compare
the different weight functions discussed in Sect. 2.3. We use
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Fig. 3. The input C� spectrum and the spectrum computed from the
CMB map. The latter has been corrected for beam and pixel convo-
lution, and for white noise level. Destriping was done fitting uniform
baselines only.
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Fig. 4. Same as Fig. 3, but for noise level lowered by factor 1/
√

24.
This simulates the effect of combining 24 detectors.

the Cholesky decomposition technique to solve the set of linear
equations.

We have chosen the root-mean-square (rms) value of the
residual noise map (see below) pixels as a figure of merit that
we use to compare different destriping methods. This map rms
is related to the C� spectrum through the relation

rms2 =
∑

�

2� + 1
4π fsky

C�. (18)

The map rms squared is thus a weighted sum of the angular
spectrum, with high weight on high multipoles. The sky cov-
erage fsky = 0.985 enters here because we have computed
our rms values over the visited pixels only. When comput-
ing C� spectra, we have set T = 0 in the remaining pixels.

We compute the residual noise map by taking the difference
between the destriped map and the noise-free reference map

Table 1. Average (avg) rms and std of rms of the residual noise map for
different weight functions. The average and std are taken over 10 noise
realizations. The corresponding C� spectra are shown in Fig. 5. The
last line gives the reference rms, which would be reached if one could
determine the baselines exactly. The differences between the rms are
significant only if they are larger than the std. We show extra digits
for the rms in Tables 1 and 2 to show the systematic (but insignificant)
difference (see text) between the w = 1/(np − 1) and w = 1/np cases.

Weight Avg rms/µK Std of rms/µK

w = 1 225.1619 0.072

w = 1/(np − 1) 224.4332 0.073

w = 1/np 224.4443 0.073

Ref. 224.1170 0.075

and subtracting the monopole component. Note that because of
the incomplete sky coverage, removing the monopole affects
the C� spectrum at all � (not only � = 0). The reference map
is computed by coadding the pure signal TOD into a map of
resolution Nside = 512. The expected contribution from white
noise to the residual map rms is 220.95 µK.

While the rms of the residual noise map is a natural mea-
sure of the CMB map quality, the main scientific interest is per-
haps not in the CMB map itself, but rather in its angular power
spectrum C�. It is therefore of interest to see the impact of the
destriping methods on the different parts of the C� spectrum.
The map rms is dominated by the high � part, and does not
reveal the difference in performance of the various methods in
the low � part. Thus we have computed the angular power spec-
tra C� of the residual noise maps.

Because of the random nature of the noise, the result of a
comparison between methods may vary from one noise real-
ization to another. We therefore performed destriping 10 times,
with different realizations of instrument noise. The underlying
CMB map was kept the same. We then used the average of
the 10 residual map rms values and the residual noise map C�
spectra to compare the methods. We also calculated the stan-
dard deviation (std) of the 10 map rms and C� values, to see
whether the differences between the methods were statistically
significant. Thus this average rms approximates the expectation
value for the rms with an accuracy of std/

√
10. However, the

std itself tells us how much we can expect the residual map rms
for a single realization to deviate from this average value.

Table 1 presents a comparison between different weight
functions discussed in Sect. 2.3. The corresponding C� spec-
tra are shown in Fig. 5. Since from our simulations we have the
noise streams available separately, we also computed reference
baselines as the average of the noise stream over each ring.
This reference baseline can be thought of as the “true” baseline
of the noise. For comparison, we then subtracted the reference
baselines from the TOD and computed the rms of the resulting
map. This represents an ideal situation, where we could deter-
mine the baselines exactly. The reference rms is given on the
last line of Table 1. Actual residual noise rms values are always
larger.
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Fig. 5. The C� spectrum of the residual noise map, for different choices
of the weight function w. The spectra are averages over 10 realizations
of noise. Only uniform baselines are fitted. The lower solid line cor-
responds to the choice w = 1/np for the weight function in Eq. (16)
and the dashed line to w = const. The difference between weight func-
tions w = 1/np and w = 1/(np − 1) is too small to show on this plot.
The difference between them is plotted in Fig. 6 (lower panel). The
upper solid (gray) line shows the spectrum of a naive coadded map
(no destriping). The dash-dotted (gray) line shows the ideal reference
spectrum, computed by removing the reference baselines. The corre-
sponding map rms values are shown in Table 1. The dotted line shows
the theoretical white noise level 0.192 µK2.

Weight functions w = 1/np and w = 1/(np − 1) in Eq. (16)
give similar results, due to the fact that for most pixels np 	 1.
Weight w = 1/np suggested by our maximum likelihood anal-
ysis is clearly superior to w = 1. However, the weight w =
1/(np − 1) gives an even smaller rms, although the differ-
ence is very small. The difference of the rms between w = 1
and w = 1/np is significant because the difference is about
10 times larger than the respective std of the rms. Although
the difference between w = 1/np and w = 1/(np − 1) is much
less than the std between different noise realizations, it was in
the same direction in each realization. Note that we were able
to measure this small difference only because we used the same
set of random seeds for all weighting schemes.

Since the difference between the weight functionsw = 1/np

and w = 1/(np−1) is so small that it does not show up in Fig. 5,
we show just the differences in Fig. 6.

It is well known that maximum-likelihood analysis should
provide the minimum-variance solution. Therefore it may
at first seem surprising that the maximum-likelihood based
weight function did not give the best results. However, the
maximum-likelihood solution is the optimal one only if the
model used corresponds to reality. Here we have modelled
the 1/ f noise component in the TOD by a uniform baseline,
which is a simplified model. Further, we have assumed that the
baselines are independent from ring to ring. The reason for the
maximum-likelihood solution not giving the best result is that
the noise model used in the analysis does not exactly corre-
spond to the actual noise properties.
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Fig. 6. Differences between the C� spectra shown in Fig. 5; a) the dif-
ference C�(w = const) − C�(w = 1/np); b) the difference C�(w =
1/(np − 1)) − C�(w = 1/np). Note the much expanded vertical scale
in Fig. 6b.

Table 2. Average rms and std of rms of the residual noise map, for
a simplified noise model. The noise consists of uniform baselines +
white noise.

Weight Avg rms/µK Std of rms/µK

w = 1 221.4816 0.069

w = 1/(np − 1) 221.1041 0.072

w = 1/np 221.1039 0.072

Ref. 220.9593 0.073

To verify this, we re-generated our input noise in a way
that better corresponds to the model assumed in the analysis.
We generated the 1/ f noise in the usual way, but then, for each
ring, we took the average over the ring, and replaced the origi-
nal 1/ f contribution to the ring with this average value, on top
of which we added white noise. This way we obtained noise
which still has a realistic correlation between scanning rings,
but consists of baselines + white noise only. The results are
shown in Table 2. Now the maximum-likelihood based weight
function gives the smallest variance map.

Thus it seems that the slightly better performance of the
Delabrouille weighting scheme (w = 1/(np − 1)) is related to
the effect of that part of the correlated noise which deviates
from uniform baselines.

The scatter in the individual residual noise map Cl values
from one noise realization to another was larger than the dif-
ference between the methods. (See Fig. 7 for the C� spec-
tra from the first three noise realizations, using our weighting
scheme, w = 1/np.) The difference between w = 1 and w =
1/np becomes however statistically significant when the C� are
binned into larger bins.
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Fig. 7. Three examples of individual C� spectra, from different noise
realizations, after destriping. Only uniform baselines are fitted. The
average of 10 such spectra is shown in Fig. 5 (the solid line there).

4. Increasing the number of base functions

As shown by Delabrouille (1998) and Maino et al. (1999,
2002), a simple model with uniform baselines and white noise
models quite well the coadded noise stream. One can try to
further improve the performance of destriping by introducing
more base functions. Delabrouille (1998) found that the ad-
dition of a small number of base functions improved the per-
formance of destriping, whereas Maino et al. (2002) found
no significant improvement. The difference between these re-
sults could be due to the different noise spectra considered:
1/ f noise for Maino et al. (2002) and 1/ f 2 for Delabrouille
(1998).

We generalize the discussion of Sect. 2 to include arbi-
trary base functions. We model the correlated noise compo-
nent of the TOD by a linear combination of base functions
as ncorr = Fa. Here F is a matrix, whose columns contain the
base functions, and a is a vector containing their (unknown)
amplitudes. It is convenient to select an orthogonal set of the
base functions, so that FT F is diagonal. Equations (5)–(13)
hold as such for general baselines.

We have studied two sets of base functions: Fourier compo-
nents and Legendre polynomials. Both form an orthogonal set.

4.1. Simulation results

The solution of the general destriping problem involves the so-
lution of a large linear system of equations

FT ZFa = FT Zy. (19)

Matrix A ≡ FT ZF becomes very large if several base func-
tions are fitted. We use the iterative conjugate gradient method
(see, e.g., Press et al. 1992) to solve the system. The conjugate
gradient method only requires multiplication by matrix A. That
can easily be done algorithmically, without actually storing the
full matrix A at any one time. The conjugate gradient method

Table 3. Average rms (in µK) of the residual noise map, std of rms, and
reference rms, for different sets of base functions. The reference rms is
computed from a map from which the reference baseline functions are
removed. The base functions were: Un: uniform baseline; F1: three
Fourier modes; L1 (L2): Legendre polynomials up to 1st (2nd) order.
The two first lines (“Un.”) represent the same destriping methods as
the first and third lines of Table 1.

Fit Avg rms/µK Std of rms/µK Ref. rms/µK

Un. (w = 1) 225.162 ±0.072 224.117

Un. (w = 1/np) 224.444 ±0.073 224.117

F1 264.131 ±70.460 223.621

L1 224.463 ±0.077 223.860

L2 225.049 ±0.463 223.748

allows us to perform the destriping in a relatively small mem-
ory space.

Note that we do not need to add the term 11T , since the
conjugate gradient method has the property that, when solv-
ing system Ax = b, it automatically finds the solution for
which xT

0 x = 0, if iteration is started with x = 0, and Ax0 = 0
and bT x0 = 0. (The amplitude vector which gives unit am-
plitudes to the uniform baselines and zero amplitudes to other
baselines is an example of such a vector x0, so the average of
the uniform baselines is set to zero. The case of other possible
vectors in the null space of A is discussed further below.)

We compare four sets of functions:

1. (“Un.”) Uniform baselines only;
2. (“F1”) uniform baseline + first Fourier frequency, which

gives three components for each ring: constant, sin(2π fsct),
and cos(2π fsct). Here fsc = 1/(60 s) is the scanning fre-
quency;

3. (“L1”) uniform baseline + 1st (linear) Legendre
polynomial;

4. (“L2”) uniform baseline + 1st and 2nd Legendre
polynomials.

The first Legendre polynomials are L(x, 0) = 1, L(x, 1) = x,
and L(x, 2) = 1

2 (3x2 − 1), for x ∈ [−1, 1].
Again we averaged the residual noise C� spectra and the

residual noise map rms over 10 noise realizations.
Table 3 and Fig. 8 present our results of fitting several base

functions. We find no improvement in the map rms.
The last column of Table 3 gives a reference rms, which

was computed as follows. We defined the reference ampli-
tude vector as a0 = (FT F)−1FT n, where n is the pure noise
stream (i.e. ncorr + n of Eq. (4)). We coadded a map from the
TOD stream, from which we had removed the reference base
functions, y − Fa0, and computed the rms of the residual noise
map. Fourier components give the lowest reference rms, show-
ing that Fourier components model the noise best of our base
function sets. However, when we fit the data, Fourier compo-
nents give the poorest results, as the first column of Table 3
shows. The worst of the 10 runs gave a rms of 452 µK. The
code took a long time to converge, and the final maps contained
a very strong and obviously unphysical dipole-like structure.
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Fig. 8. Average C� spectrum of the residual noise map, for different
choices of the base functions. Thick solid line: uniform baselines. Thin
solid lower line: three Fourier components. Dashed and dot-dashed
lines: Legendre polynomials up to 1st and 2nd order. The upper solid
(gray) line shows the spectrum of a naive coadded map (no destriping).
The spectra were averaged over 10 realizations of noise.

(The large std in the case of Fourier components does not mean
that for some realizations the Fourier components would have
given a lower rms than the other methods. Rather, the distribu-
tion was just very skew; a small number of realizations gave a
very large rms, but all 10 realizations gave an rms larger than
the average for any of the other methods.)

The problem with Fourier components is related to small
eigenvalues of matrix A. If there exists a map m′ such that

Pm′ = Fa′ (20)

for some a′, then a′ is an eigenvector of A with zero eigen-
value. If a is a solution of Eq. (19), then a + a′ is also a solu-
tion. In other words, if we can produce the same TOD stream
both as a combination of the base functions, and by picking
it from a map with our scanning strategy, then it is not possi-
ble, without further information, to tell if this TOD component
comes from noise or signal. In practice zero eigenvalues are
unlikely to happen, but already small but non-vanishing eigen-
values cause similar problems. Equation (20) then holds ap-
proximatively.

The difficulty of fitting Fourier components is related to
the symmetry of the nominal scanning strategy of .
Suppose the scanning rings are regular circles with centers
on the ecliptic plane. If we give all cosine and sine compo-
nents equal amplitudes a and b such that the resulting func-
tion a cosφ + b sinφ (φ runs from 0 to 2π around the ring)
is at maximum at the northernmost point and at minimum at
the southernmost point (or vice versa), and coadd a map from
this TOD stream, we obtain a meridian symmetric map for
which relation (20) holds. This noise component cannot be
resolved without further information on noise properties. The
same problem also affects fitting 2nd order Legendre polyno-
mials, albeit less severely. We would expect that other, less

symmetric, scanning strategies would not be as prone to such
problems.

We discuss this problem quantitatively in the following.

4.2. Eigenvalue analysis of the destriping problem

Consider the solution of Eq. (19) in light of eigenvalue analysis.
Assume the TOD stream is of the form

y = Pm0 + Fa0 + n (21)

where m0 is the actual map, a0 is the “true” baseline vector,
and n represents the remaining noise component. With these
assumptions, Eq. (19) becomes

FT ZFa = FT ZFa0 + FT Zn. (22)

Let λi and ui be the eigenvalues and corresponding orthonormal
eigenvectors of matrix A = FT ZF. Because A is symmetric
and non-negative definite, all eigenvalues are positive or zero,
λi ≥ 0, and the eigenvectors form a complete orthogonal basis.
The matrix can be presented by its eigenvectors as

FT ZF =
∑

i

λiuiuT
i . (23)

We can expand a =
∑

i aiui and a0 =
∑

i a0
i ui and

FT Zn =
∑

i

ciui. (24)

We substitute these expansions into Eq. (22) to find

ai = a0
i + ci/λi. (25)

Here it must be understood that this relation holds for com-
ponents for which λi > 0. For λi = 0 one can easily show
that ci = 0 and ai remains undefined.

Consider then the statistical properties of coefficients ci.
Since ci = uT

i FT Zn, we find, assuming that n is white and
〈nnT 〉 = diag(σ2), that 〈ci〉 = 0 and

〈cick〉 = σ2uT
i FT ZFuk = σ

2λiδik. (26)

Looking back at Eq. (25) we observe that

〈(ak − a0
k)(ai − a0

i )〉 = σ
2

λi
δik. (27)

We see that if one of the eigenvalues is very small, then the
inaccuracy in the corresponding component ai is very large.
Actually, the vanishing eigenvalues do not pose a problem,
since the conjugate gradient algorithm always sets the corre-
sponding amplitude to zero. Problems are caused by moder-
ately small, but non-vanishing, eigenvalues. How small a value
must be regarded as zero depends on the floating point accu-
racy of the computer and on the convergence criterion one has
chosen for the conjugate gradient algorithm.

We have seen that fitting uniform baselines only already
gives good results.There is no advantage in trying to fit ad-
ditional components which have a large inaccuracy. Fitting
poorly determined components causes more error than leav-
ing them out entirely. We therefore aim to fit only compo-
nents that correspond to a large eigenvalue, and eliminate small
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eigenvalue components. In the following we present a practi-
cal method to do this. The method presented does not require
full determination of eigenvalues or eigenvectors of matrix A,
which would be a computationally expensive task.

4.3. A practical method

Consider the following equation:

(FT ZF + εFT F)a = FT Zy (28)

where ε is a small positive constant. An eigenvalue analy-
sis similar to that presented above shows that the solution of
Eq. (28) is related to the solution of Eq. (19) through

a′i = ai
λi

λi + ελmax
, (29)

where λmax is the largest possible eigenvalue of A. With our
chosen normalization FT F = diag(nb) it is equal to the number
of samples on a ring, λmax = nb.

The effect of the ε term in Eq. (28) is to wash out com-
ponents with eigenvalues smaller than ελmax, while the large
eigenvalue component remains unaffected, as long as ε is small.
At the limit ε → 0 the solution of Eq. (28) approaches that
of Eq. (19).

We have repeated our computations with this method.
Table 4 presents our results for different values of ε. The results
were again obtained using 10 different realizations of the in-
strument noise, over which the average and the standard devia-
tion were calculated. We see that, with values 10−6 ≤ ε ≤ 10−3,
the accuracy of fitting Fourier components is strongly improved
with respect to the ε = 0 case. Also the required computation
time is reduced. For 2nd order Legendre polynomials we also
find a clear improvement.

However, the results for multiple base functions are still
worse than for uniform baselines only.

Uniform baselines and 1st order Legendre polynomials,
which exhibited no problems with ε = 0, are unaffected
with ε = 10−4 or less, but with ε = 10−3 or larger the accu-
racy of fitting them begins to deteriorate.

Figure 9 shows the residual noise C� spectra for the ε =
10−4 case.

Depending on the number of base functions, the code took
3−5 s per iteration step on one processor of an IBM eServer
Cluster 1600 computer. The total computation time varied be-
tween 2 and 30 min.

To illustrate the use of several base functions we show in
Fig. 10 the same 5 h coadded noise TOD as in Fig. 1, but now
with different sets of base functions. Note that the deviations
from uniform baselines are exaggerated in this figure. The ac-
tual amplitudes of the other base functions are much smaller
(by about a factor of 20) than those of the uniform components.

In order to check how the results depend on the knee fre-
quency, we repeated our computations with rescaled noise. We
took the 1/ f noise stream, which was originally generated
with fk = 0.1 Hz, scaled it by a factor 0.5 or 2, and added
white noise with the same variance in all cases. This is equiv-
alent to changing the knee frequency by a factor of 0.25 or 4.

Table 4. Average rms (in µK) of the residual noise map, std of rms
(middle), and number of iteration steps for different sets of base
functions and for different values of ε ( fk = 0.1 Hz). The last line
gives the reference rms. Parameter ε is defined in Eq. (28). The
base functions were: Un: uniform baseline; F1: three Fourier modes;
L1 (L2): Legendre polynomials up to 1st (2nd) order.

ε Un. F1 L1 L2

rms

0 224.444 264.131 224.463 225.049

10−7 224.444 251.648 224.463 225.047

10−6 224.444 229.675 224.463 225.025

10−5 224.444 226.034 224.463 224.866

10−4 224.444 225.640 224.463 224.563

10−3 224.463 225.438 224.502 224.678

10−2 226.192 230.141 227.691 230.396

Ref. 224.117 223.621 223.860 223.748

std of rms

0 0.073 70.460 0.077 0.463

10−7 0.073 48.449 0.077 0.461

10−6 0.073 7.044 0.077 0.445

10−5 0.073 0.450 0.077 0.327

10−4 0.073 0.168 0.077 0.109

10−3 0.072 0.196 0.078 0.130

10−2 0.230 0.803 0.491 1.311

Iteration steps

0 28 373 39 130

10−7 28 369 39 130

10−6 28 351 39 130

10−5 28 318 39 128

10−4 28 166 38 119

10−3 27 102 37 95

10−2 25 46 31 47

We thus have results for three knee frequencies: fk = 0.025 Hz,
fk = 0.1 Hz, and fk = 0.4 Hz.

The obtained residual map rms for fk = 0.4 Hz and fk =
0.025 Hz are shown in Tables 5 and 6, for different values of ε.
The optimal value of ε seems to depend somewhat on knee
frequency, being smaller at higher knee frequencies.

The C� spectra for ε = 10−4 for knee frequencies fk =
0.1 Hz, fk = 0.4 Hz, and fk = 0.025 Hz are shown in Figs. 9, 11
and 12, respectively. The std of the C� for the fk = 0.1Hz case
are shown in Fig. 14.

Looking at the average C� spectra of residual noise and
their std we see that fitting additional base functions decreases
the accuracy of destriping at low �. However the situation
for the map rms values in Table 5 seems more complicated.
For fk = 0.1 Hz or smaller, fitting additional base func-
tions does not improve the performance of destriping, but with
fk = 0.4 Hz fitting one or two Legendre polynomials besides
the constant baselines decreases the map rms, while Fourier
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Fig. 9. Same as Fig. 8, but for the improved method with ε = 10−4.
Thick solid line: uniform baselines. Thin solid lower line: three Fourier
components. Dashed and dot-dashed lines: Legendre polynomials up
to 1st and 2nd order. The corresponding map rms values are shown in
Table 4.
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Fig. 10. Same as Fig. 1, but now with different sets of base functions.
The amplitudes of the other base functions were much smaller than
the uniform components, so that it would be difficult to see the small
deviation from uniform baselines. Therefore we have exaggerated the
deviation from the uniform-baseline case by a factor of 5 in this fig-
ure. Dashed line: uniform baselines. White solid line: three Fourier
components. Black solid lines: Legendre polynomials up to 1st and
2nd order.

components still give inferior results. The improvement in the
map rms for fk = 0.4 Hz, when fitting Legendre polynomials,
comes from the high multipoles. This can be seen from Fig. 13,
where we plot the difference between the residual noise C� ob-
tained when fitting Legendre polynomials or Fourier compo-
nents, and when fitting uniform baselines only.

We see that increasing the number of base functions im-
proves the high � but worsens the low � part of the C� spec-
tra. This is true both for Fourier components and for Legendre
polynomials. This trend persists for lower fk, but the value of �

Table 5. Average rms of the residual noise map (in µK), for differ-
ent sets of base functions and for knee frequency fk = 0.4 Hz. The
base functions were: Un: uniform baseline; F1: three Fourier modes;
L1 (L2): Legendre polynomials up to 1st (2nd) order. The last line
gives the reference rms. The corresponding C� spectra for ε = 10−4

are shown in Fig. 11.

ε Un. F1 L1 L2

0 234.184 258.343 233.947 234.544

10−6 234.184 238.107 233.947 234.512

10−5 234.183 235.603 233.947 234.304

10−4 234.183 235.315 233.947 233.910

10−3 234.252 235.643 234.102 234.514

Ref. 233.337 231.626 232.430 232.045

Table 6. Same as Table 5, but for fk = 0.025 Hz. The corresponding C�
spectra for ε = 10−4 are shown in Fig. 12.

ε Un. F1 L1 L2

0 221.943 262.149 222.030 222.597

10−5 221.943 223.588 222.030 222.433

10−4 221.943 223.173 222.030 222.163

10−3 221.948 222.825 222.038 222.149

10−2 222.385 223.676 222.835 223.565

Ref. 221.753 221.575 221.665 221.626

above which we get an improvement goes up and the improve-
ment for those � becomes smaller.

Delabrouille (1998) obtained improved results by fitting
several base functions already with fk = 0.1 Hz. The differ-
ence between our results and his is probably due to differences
in the noise model. While we assume P ∝ f −1, as appropriate
for LFI radiometers (Seiffert et al. 2002), Delabrouille assumes
a noise spectrum of the form P ∝ f −2 to account also for possi-
ble thermal fluctuations and atmospheric noise in ground based
and balloon borne bolometer experiments. This leads to more
low-frequency noise for a given knee frequency.

The std of the residual noise C� influences the accuracy at
which the C� spectrum of the CMB can be estimated from the
noisy data. From Fig. 14 we can see that at low � uniform base-
lines give the best performance in the sense that the C� of the
residual noise varies the least from one realization to another.
At high � there is no clear difference between the performances
of different sets of base functions.

5. Conclusions

We have presented a maximum-likelihood formulation of the
destriping approach to the CMB map-making problem, and a
rigorous derivation of the destriping algorithm, and we have
applied it to the case of the  mission.

We have formulated the method in matrix form, which al-
lows us to apply the conjugate gradient technique in such a way
that we can handle very large data sets.
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Fig. 11. Same as Fig. 9 but for knee frequency fk = 0.4 Hz.
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Fig. 12. Same as Fig. 9 but for knee frequency fk = 0.025 Hz.

We have compared the three different destriping methods,
the one derived here and the other two already presented in
the literature, using simulated  data (one 100 GHz
LFI detector). The differences between these methods can be
expressed in terms of a weight function, which varies between
methods. This function assigns weights to pixels based on the
number of observations falling on that pixel.

We found that our new method provides some improvement
to the method used in Burigana et al. (1997) and Maino et al.
(1999, 2002). However, our new method was not better than the
method given by Delabrouille (1998), although he gives only a
heuristic justification for his weight function. The difference
between the latter two methods was insignificantly small, but
was systematic. That the maximum-likelihood derivation did
not lead to the optimal method in practice is due to actual noise
properties differing from the idealization used in the derivation.
We recommend using either the weight function derived here
(w = 1/np) or the one given by Delabrouille (w = 1/(np − 1)).
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Fig. 13. Differences between C� spectra shown in Fig. 11 ( fk =

0.4 Hz). The three panels show the change in the C� spectrum when
fitting Legendre polynomials up to a) 1st or b) 2nd order, or c) three
Fourier components, instead of uniform baselines only.
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Fig. 14. Standard deviation (std) of the residual noise C� over 10 noise
realizations, for different choices of the base functions ( fk = 0.1 Hz,
ε = 10−4). Thick black line: uniform baselines with w = 1/np. Grey
line: uniform baselines with w = 1. Thin solid line: three Fourier
components. Dashed and dot-dashed lines: Legendre polynomials up
to 1st and 2nd order. The corresponding map rms and std of map rms
values are shown in Table 4.

We have tested the possibility of improving the accuracy
of destriping by fitting more base functions besides the uni-
form baseline, but we have found no systematic improvement
in the case of instrumental 1/ f noise. (Fitting several base func-
tions may be more beneficial when removing other types of
systematics, i.e. periodic fluctuations induced by thermal in-
stabilities.) The optimal selection of base functions seems to
depend on the actual spectrum of the instrument noise, and
on which multipoles one is mainly interested in. However, the
great virtue of the destriping method is its simplicity: it does not
require prior information on the noise spectrum. We lose this
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advantage if we incorporate information on the noise spectrum
into the method.
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