
Application Requirements with Preferences in
Cloud-based Information Processing

Sabrina De Capitani di Vimercati, Giovanni Livraga, Vincenzo Piuri
Department of Computer Science

Università degli Studi di Milano – Crema, IT

Email: {sabrina.decapitani, giovanni.livraga, vincenzo.piuri}@unimi.it

Abstract—The use of cloud services is typically regulated
by a Service Level Agreement (SLA) that defines the specific
parameters of the service that will be provided by a Cloud
Provider. The ability of users to negotiate a SLA that meets
their requirements is a key issue in cloud computing. In this
paper, we illustrate an approach for allowing users to specify
their requirements and preferences over these requirements, and
to consider them in the definition of a SLA.

I. INTRODUCTION

With the progress of cloud technology, users and companies
can take full advantage of the variety of scalable and elastic
computing and storage services available in the cloud market.
The provisioning of a cloud service is usually regulated by
a Service Level Agreement (SLA) that represents a contract
between a Cloud Provider (CP) and the data/service owner,
specifying the quality of service and the properties that the
Cloud Provider should guarantee. While the definition of a
SLA typically relies on predefined templates, in some sce-
narios there might be the need to provide more flexibility and
allowing the derivations of SLAs from the requirements of the
specific services to be supported. The work in [1] introduced
the idea of supporting SLAs computed starting from applica-
tion requirements specified by users. The approach proposed
also considers dependencies among requirements that cloud
providers might imposed (e.g., if data are to be encrypted
and processing performed on encrypted data, the response
time might be not lower than a given threshold) and proposes
a formulation of the problem of computing a valid SLA
(i.e., a SLA that satisfies the user-defined requirements and
all dependencies possibly enabled by them) as a Constraint
Satisfaction Problem.

In the definition of requirements, users can include different
combinations of characteristics. For instance, consider a sce-
nario where a manager of a sensor network that measures noise
levels in a certain geographical area wishes to use a cloud
service offered by a Cloud Provider for storing and managing
the collected measurements. To be compliant with laws and
regulations, the manager requires that measurements be either
stored in the country where they have been collected (e.g., in
Italy), or in a different country if stored in encrypted form.
While the approach in [1] considers the different alternatives
in the requirements to be all equally acceptable, it might
be desirable to allow users to specify possible preferences
among alternatives, which can be taken into consideration in

the definition of the SLA. For instance, the manager might
prefer to store the measurements in the country where they
are collected rather than abroad. If both options are applicable,
the SLA should include the one preferred by the user.

In this paper, we propose an approach for including prefer-
ences among alternatives in the specification of application
requirements, and illustrate how such preferences can be
considered in the computation of a SLA. We also introduce a
solution for automatically deriving such preferences based on
preferences defined over the values that can be assumed by
the service properties. Our solution builds on the modeling
and techniques proposed in [1], thus nicely extending the
original approach. The remainder of this paper is organized as
follows. Section II briefly illustrates the basic concepts related
to the modeling of application requirements and dependencies
among service properties and provides a brief overview of how
computing a SLA satisfying them [1]. Section III describes
how preferences among alternative options in an application
requirement can be formulated and considered in the compu-
tation of a SLA. Section IV illustrates how the preferences
illustrated in Section III can be automatically derived from
preferences over the values that the service properties can
assume. Section V discusses related work. Finally, Section VI
concludes the paper.

II. SUPPORTING APPLICATION REQUIREMENTS IN SLAS

We refer our examples to a manager of a sensor net-
work wishing to find a Cloud Provider to store and man-
age measurements collected through the sensor network. The
manager requires that measurements be: i) stored in Italy;
or ii) stored in France and encrypted with AES; or iii)

stored in UK, encrypted with 3DES, and audited for security
every week. These three alternatives form the application
requirement of the manager and, according to the proposal
in [1], the provisioning of a service offered by a Cloud
Provider should be regulated by a SLA that guarantees the
satisfaction of at least one of these three options. We represent
an application requirement as a DNF Boolean formulas over
conditions defined on attributes taken from a common/shared
ontology [2] representing properties of the cloud services.
Each attribute a in a set A of attributes takes values from
a domain D(a). A condition c of the form c : ⟨a op val⟩,
with op ∈ {=, ̸=,<,≤,>,≥}, restricts the values that the
property represented by a can assume in the provisioning of

© 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

A= {loc, encr, audit, max storage}

D(loc) = {IT, FR, DE, UK}
D(encr) = {AES, 3DES}
D(audit) = {1week, 2weeks, 4weeks}
D(max_storage) = {50TB, 100TB}

(a)

c1: ⟨loc=IT⟩ c5: ⟨encr=AES⟩
c2: ⟨loc=FR⟩ c6: ⟨encr=3DES⟩
c3: ⟨loc=DE⟩ c7: ⟨audit=1 week⟩
c4: ⟨loc=UK⟩ c8: ⟨max storage=100TB⟩

(b)

Fig. 1. An example of a set A of attributes with their domains (a), and a set
of conditions over them (b)

the service. Figure 1 illustrates a sample set A of attributes
with their domains, and of conditions over the attributes in
A. By interpreting each condition c as a Boolean variable,
an application requirement R over a set C = {c1, . . . ,cn} of
conditions can be naturally expressed as a Boolean formula
over such variables, where each conjunctive clause represents
an alternative. For instance, considering the conditions in
Figure 1(b), the application requirement R of our running
example can be formulated as (c1)∨ (c2 ∧ c5)∨ (c4 ∧ c6 ∧ c7).

Given a set C = {c1, . . . ,cn} of conditions, a SLA should
include a subset {c1, . . . ,ck} of C such that R is satisfied (i.e.,
all conditions in at least one of the clauses in R are included
in {c1, . . . ,ck}). The presence of some conditions {c1, . . . ,ck}
in a SLA may possible require also the inclusion of additional
conditions due to the existence of dependencies triggered by
{c1, . . . ,ck}. Building on the interpretation of conditions as
Boolean variables, a dependency d over a set C = {c1, . . . ,cn}
of conditions is defined as d : ch!(

∨m
i=1(

∧
j ci j)), with ci j the

j-th condition of the ith clause, and ch,ci j ∈C. As an example,
consider dependencies d1 : ⟨loc = FR⟩! ⟨max storage =
100TB⟩, and d2 : ⟨loc= IT⟩! ⟨encr= AES⟩.

A dependency ch!(
∨m

i=1(
∧

j ci j)) can be interpreted as a
material implication: if condition ch is satisfied, then also
∨m

i=1(
∧

j ci j) must be satisfied. For instance, dependency d1

states that if the storage server is located in France, the storage
space is limited to 100TB (d1), and dependency d2 states that
if the storage server is located in Italy, data are encrypted with
the AES cypher (d2).

Given a set C = {c1, . . . ,cn} of conditions, an application
requirement R over C, and a set D = {d1, . . . ,dl} of depen-
dencies over C, the set of conditions to be included in the
SLA must: i) satisfy R; ii) satisfy D; and iii) be well-formed,
that is, include at most one condition over each attribute
a∈A. A set of conditions satisfying these three constraints is
referred to as valid SLA (vSLA). With reference to our running
example, a valid SLA could include the conditions ⟨loc=FR⟩,
⟨encr=AES⟩, ⟨max storage=100TB⟩.

To compute a vSLA, the proposal in [1] introduces an
assignment function f : C → {0,1} assigning value 1 or value
0 to the conditions in C. Intuitively, all conditions ci such that
f (ci) = 1 are the conditions forming a valid SLA. By using f

to denote also the list of values assigned by f to the conditions
in C (hence, f (R) denotes the result of the evaluation of R

with respect to f), the problem of determining a vSLA can
be interpreted as finding a value assignment f such that: i)
f (R) = 1; ii) f (d) = 1,∀d ∈ D; and iii) {ci ∈C : f (ci) = 1} is
well-formed.

The proposal in [1] translates the problem of computing a
vSLA in a Constraint Satisfaction Problem (CSP) [3], which
can then be solved by adopting any CSP solver. The CSP is
formulated as follows: given a triple ⟨X ,Z,K⟩, with X a set
of variables, Z the domain of variables in X , and K a set of
constraints over X , find an assignment w : X → Z that satisfies
all the constraints in K. Therefore:

• X includes all conditions appearing in R and in the set
D of dependencies;

• Z corresponds to the set {0,1};
• K includes the requirement R, the set D of dependencies,

and the conflicts among conditions ensuring the set of
conditions to be well-formed.

Intuitively, a valid SLA will include all conditions assigned
value 1 by the assignment function w.

III. SUPPORTING PREFERENCES

Given an application requirement R over a set C of condi-
tions and a set D = {d1, . . . ,dl} of dependencies over C, there
can be different value assignments f1, . . . , fz that represent
correct solutions to the problem of computing a vSLA. In
fact, since an application requirement R is expressed as a DNF
formula over a set of conditions, an assignment fi represents
a vSLA when it assigns value 1 to all conditions appearing in
at least one of the conjunctive clauses in R.

While all solutions f1, . . . , fz are equivalent in terms of
correctness, the user might prefer one over another, depending
on which clause is satisfied. For instance, with reference to
our running example, the manager might prefer to maintain
data stored in Italy rather than abroad. While a SLA only
including c1 : ⟨loc=IT⟩ and a SLA including c2 : ⟨loc=FR⟩
and c5 : ⟨encr=AES⟩ are both valid, the manager would
prefer the first one. We now illustrate how preferences among
alternative requirements can be expressed and considered in
the computation of a vSLA.

Following our DNF formulation of requirements, we assume
user preferences to be expressed as an ordering relationship ≻
among the different clauses ki in R, where ki ≻ k j iff a solution
satisfying ki is preferred to another solution satisfying k j. For
simplicity, we assume the existence of a single total order
relationship with the note that our approach can be extended to
accommodate multiple and/or partial orderings. With reference
to our running example, (c1)≻ (c2∧c5)≻ (c4∧c6∧c7). Given
an application requirement R and a preference defined over
its clauses, a preference-supporting vSLA (pvSLA) is a vSLA
that satisfies the most preferred clause. We can then define the
problem of finding a pvSLA, as follows.

Problem III.1 (Preference-supporting vSLA). Given a set C =
{c1, . . . ,cn} of conditions, an application requirement R over

C, and a set D = {d1, . . . ,dl} of dependencies over C, find a

value assignment f : C → {0,1} such that:

1) f represents a vSLA; and
2) ! f ′, with f ′ a vSLA, such that ∃ki,k j ∈ R, k j ≻ ki, and

f ′(k j) = 1, f (k j) = 0, f (ki) = 1.

A solution to Problem III.1 is therefore represented by an
assignment function f assigning value 1 to the conditions in
the most preferred clause in R that can be part of a vSLA. For
instance, the solution illustrated in Section II (i.e., ⟨loc=FR⟩,
⟨encr=AES⟩, ⟨max storage=100TB⟩) is a vSLA but is not
a pvSLA, as it satisfies c2∧c5 but not c1, which could be part
of a vSLA and is preferred over c2 ∧ c5.

With the CSP-based formulation of the problem proposed
in [1], a naive solution to select the most preferred solution
among a set of possibilities (i.e., a pvSLA among the set of
vSLAs) would consist in having the CSP solver enumerating
all possible solutions, and then selecting the most suitable
according to the user preference. While this approach would
certainly do, it would require to explore the entire solution
space. To avoid this, we allow users to specify their prefer-
ences along with the requirement R, and to take them into
account during the computation of a solution. The adoption of
the CLP(fd) Prolog library can nicely help in the computation
of a pvSLA, by allowing users to specify the order in which
the variables of the CSP are grounded through the predicate
labeling [4]. Such predicate is used to find a single solution
with all ground variables and, when used with a min (max,
resp.) option, causes the solution to be computed with the
variable in the leftmost min (max, resp.) field considered first
and grounded to their minimum, (maximum, resp.) value of the
domain, going then down the list [4]. Since we aim at setting
conditions to value 1, by evaluating predicate labeling with
option max(ci), . . . ,max(c j), the CSP solver will then try to
find a solution assigning value 1 to conditions ci, . . . ,c j. A
pvSLA is then computed through an iterative process: the
CSP solver explores the solution space starting from the most
preferred solution and if a a solution satisfying the most
preferred clause does not exist, the solver is invoked looking
for a solution satisfying the second most preferred clause,
and so on until all clauses have been considered (according
to the user preference over clauses) or a pvSLA is found.
We note that, if a solution satisfying the max option of the
labeling predicate is not found, the solver will return a
solution (if it exists), as false is returned only when there
are no (more) solutions to compute. This observation, coupled
with our iterative approach, introduces a double advantage.
First, if a solution satisfying the most preferred clause exists,
it is found at the first iteration and, if no solution exists at all,
it is immediately discovered. Second, since the solver will
always return a solution (if it exists), the user can decide
whether to accept such a solution (even it does not satisfy the
preference) and terminates the iterative process, or to proceed
in the iteration, checking whether there exists a solution for a
less preferred clause. With reference to our running example,
since (c1)≻ (c2∧c5)≻ (c4∧c6∧c7), the first iteration invokes

IT

FR DE

UK

1 week

4 weeks

AES

3DES 2 weeks

D(loc) D(audit)D(encr)

Fig. 2. Hasse diagrams representing the domains of attributes loc, encr,
and audit with their value preferences

the CSP solver with predicate labeling and option max(c1),
returning a solution assigning value 1 to conditions c1 and
c5 (c5 being included in the SLA due to the triggering of
dependency d2). Such an assignment represents a vSLA and
is also preference-supporting (Problem III.1), since it satisfies
the most preferred clause that can be included in a SLA.

IV. DERIVING PREFERENCES FROM ATTRIBUTE VALUES

In the previous section, we have illustrated how preferences
among alternative clauses of an application requirement can
be specified by users and considered in the establishment of a
SLA. However, it might be simpler to specify preferences over
the values that can be assumed by the attributes characterizing
the service provisioning rather than on the clauses themselves.
We note that such a strategy might be useful for users who
can have the need of moving to the cloud several applications
with different requirements. In fact, they can specify their
preferences over the values that can be accepted in the service
provisioning once and for all, and then automatically derive
preferences over the clauses based on them (thus saving the
burden of manually specifying preferences among clauses for
each application). For instance, with reference to our running
example, a user might state that she prefer AES over 3DES
since AES is more secure than 3DES.

We now illustrate how preferences among clauses can be
possibly derived from preferences over attribute values. For
simplicity, we focus our discussion on equality conditions of
the form c : ⟨a = v⟩ with the note that on finite domains other
conditions can be represented with them. For instance, with
respect to our running example, condition ⟨audit ̸= 1week⟩
can be interpreted as ⟨audit= 2weeks⟩∨⟨audit= 4weeks⟩.

Given an attribute a, the preferences among the values of
D(a), called value preferences translate to a partial order rela-
tionship, denoted ≻a , over the values in D(a) such that, given
two values v1,v2 ∈D(a),v1 ≻a v2 iff v1 is preferred over v2. For
instance, given attribute encr with D(encr) = {AES,3DES},
we have that AES≻encr3DES. Value preferences over the
domain of an attribute can be naturally represented through a
Hasse diagram. Figure 2 reports such graphical representation
for attributes loc, encr, and audit, where values are repre-
sented as nodes and preferences over values are represented
as edges among them. For instance, the preferences for loc

state that value IT is preferred over FR and DE, which are
in turn preferred to UK. We assume each domain to have a
top value v⊤ (most preferred) and a bottom value v⊥ (less

D(loc) D(encr) D(audit)

w(IT): 1 w(AES): 1 w(1week): 1
w(FR): 2/3 w(3DES): 1/2 w(2weeks): 2/3
w(DE): 2/3 w(4weeks): 1/3
w(UK): 1/3

Fig. 3. An example of score values

preferred). For instance, values IT and UK are the maximum
and minimum values in D(loc) (see Figure 2).

Since we are considering equality conditions, value prefer-
ences can easily be used to derive the preferences over the
clauses of an application requirement as follows. Intuitively,
for each clause in an application requirement R we derive
a score vector representing “how much” the user prefers the
clause. To this purpose, we first assign a score value w(v) to
each value v in D(a). Score w(v) quantifies how v is ranked
in the preferences over D(a). In particular, we assume that
score values are normalized in (0,1] where, the higher the
score, the more preferred the value. Using the Hasse diagram,
we assign to value v a score w(v) representing the relative
depth of v in the diagram (i.e., with val(vi,v j) = val(v j,vi)
the number of values in the shorted path between vi and v j

including them, w(v) = val(v,v⊤)/val(v⊥,v⊤)). Note that
other strategies for assigning these score values can work as
well. Figure 3 illustrates the scores assigned to the values in
the domains of attributes loc, encr, and audit.

Let AR ⊆A be the set of attributes involved in the conditions
of an application requirement R. We then associate each
clause k in R with a score vector

»

Wk , with |
»

Wk | = |AR |
and

»

Wk [ai] = w(v j), where v j is the value required by the
condition in k for attribute ai. Note that the clauses in an
application requirement R can include conditions on different
(and possibly disjoint) sets of attributes. For instance, the first
clause of the requirement of our running example includes
only one condition c1 on attribute loc, while the second clause
k2 includes two conditions c2 and c5 on attributes loc and
encr, respectively. We assume that the lack of a condition over
an attribute a in a clause k can simply mean that any value
v in D(a) is acceptable for the user. For instance, considering
the requirement of our running example, since the first clause
k1 does not include any condition over attribute, say, encr,
then any value in D(encr) would be fine for the user – as
otherwise k1 would also have included a condition imposing
encr to assume a certain value. Therefore, given an attribute
a ∈ AR not involved in a clause ki of a requirement R, the
score value w for a in the score vector

»

Wki
will be that of

the most preferred value v⊤ in D(a). With reference to our
running example, consider clause k2, which does not have any
condition on attribute audit. The score vector

»

Wk2
would

then be defined as
»

Wk2
= [2/3,1,1], assigning value 1 as

the score for the (missing) value for attribute audit. The
problem is now how to compare the score vectors associated
with the different clauses in R to derive their preferences.
A simple approach consists in summing the score values in
the vectors of the clauses, resulting in a clause score (since
score values for all attributes are normalized, the same score

assigned to values of two different attributes represent the
same ranking in the Hasse diagrams of the two attributes). The
preferences over clauses would then be immediately derived
from the ordering of the clauses based on such score. To
illustrate, consider our running example. The score vectors
of the three clauses k1, k2, and k3 of R are

»

Wk1
= [1,1,1],

»

Wk2
= [2/3,1,1], and

»

Wk3
= [1/3,1/2,1], respectively. The

clause score assigned to k1 (k2 and k3, resp.) is therefore 3
(8/3 and 11/6, resp.). Since 3 > 8/3 > 11/6, the resulting
preference among clauses is defined as k1 ≻ k2 ≻ k3 (which
corresponds to (c1) ≻ (c2 ∧ c5) ≻ (c4 ∧ c6 ∧ c7)). A pvSLA
satisfying such preference is the SLA illustrated in Section III,
which includes c1 : ⟨loc= IT⟩ and c5 : ⟨encr= AES⟩.

V. RELATED WORK

The appeal of cloud computing has attracted the attention of
researchers who have been investigated solutions for address-
ing several challenging issues, ranging from the protection of
the confidentiality and integrity of data and computations, fault
tolerance, private access, and the specification and assessment
of requirements to be satisfied by providers (e.g., [1], [5], [6],
[7], [8], [9]). In particular, the work presented in this paper
extends the proposal in [1] with the consideration of user-
based preferences in the definition of a SLA. The original
proposal in [1] was framed in the context of cloud-based IoT
information processing where the adoption of cloud solutions
to store and manage IoT information has been recently sub-
ject of several proposals (e.g., [10], [11], [12]). Our work,
also applicable to cloud-based processing of IoT information,
addresses an issue orthogonal to such works.

Another close line of work is related to the problem
of establishing a SLA between users and cloud providers.
The solution in [13] focuses on the assessment of services
offered by cloud providers based on customer requirements.
Similarly, also the work in [14] aims at comparing different
cloud providers over different performance indicators, focus-
ing specifically on the performance and cost of the providers.
The goal of this proposals is however that of prioritizing
cloud services, while we focus on defining and enforcing
preferences over user requirements in the computation of
a SLA. The proposal in [15], while providing support for
user-based constraints in cloud computing (which may recall
our application requirements), focuses on a different problem
related to cloud resource management where constraints model
security requirements, and does not model preferences over
the requirements. Multi-criteria decision making techniques
have also been extensively adopted to rank / prioritize cloud
providers (e.g., [16], [17]), considering, however, a scenario
different from ours, characterized by the existence of an
application requirement as in [1], and aimed at prioritizing
the alternative options included in the requirement.

VI. CONCLUSIONS

We have presented an approach for allowing users to define
their preferences over different alternative clauses in their
application requirements. We have also shown how such

preferences can be considered in the definition of a SLA
meeting the users’ requirements, and how such preferences
can be derived from preferences expressed over the values of
the properties characterizing a cloud service.

ACKNOWLEDGMENTS

This work was supported in part by the EC within the
7FP under grant agreement 312797 (ABC4EU) and within the
H2020 under grant agreement 644579 (ESCUDO-CLOUD).

REFERENCES

[1] S. De Capitani di Vimercati, G. Livraga, V. Piuri, P. Samarati, and
G. Soares, “Supporting application requirements in cloud-based iot
information processing,” in Proc. of the International Conference on
Internet of Things and Big Data (IoTBD 2016), Rome, Italy, April 2016.

[2] M. Galster and E. Bucherer, “A taxonomy for identifying and specifying
non-functional requirements in service-oriented development,” in Proc.
of the 2008 IEEE Congress on Services (IEEE SERVICES 2008), Hawaii,
USA, July 2008.

[3] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Para-
boschi, and P. Samarati, “Fragmentation in presence of data dependen-
cies,” IEEE Transactions on Dependable and Secure Computing (IEEE
TDSC), vol. 11, no. 6, pp. 510–523, November/December 2014.

[4] M. Triska, “The finite domain constraint solver of SWI-Prolog,” in
Poc. of the 11th International Symposium on Functional and Logic
Programming (FLOPS 2012), Kobe, Japan, May 2012.

[5] S. De Capitani di Vimercati, S. Foresti, and P. Samarati, “Managing and
accessing data in the cloud: Privacy risks and approaches,” in Proc. of
the 7th International Conference on Risks and Security of Internet and
Systems (CRiSIS 2012), Cork, Ireland, October 2012.

[6] S. De Capitani di Vimercati, S. Foresti, S. Paraboschi, G. Pelosi, and
P. Samarati, “Efficient and private access to outsourced data,” in Proc.
of the 31st International Conference on Distributed Computing Systems
(ICDCS 2011), Minneapolis, Minnesota, USA, June 2011.

[7] R. Jhawar and V. Piuri, “Fault tolerance management in iaas clouds,” in
Proc. of the 2012 IEEE Conference in Europe about Space and Satellite
Telecommunications (ESTEL 2012), Rome, Italy, October 2012.

[8] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements
for resource management in cloud computing,” in Proc. of the 15th IEEE
International Conference on Computational Science and Engineering
(CSE 2012), Paphos, Cyprus, December 2012.

[9] R. Jhawar and V. Piuri, “Fault tolerance and resilience in cloud com-
puting environments,” in Computer and Information Security Handbook,
2nd Edition, J. Vacca, Ed. Morgan Kaufmann, 2013, pp. 125–141.

[10] L. Jiang, L. D. Xu, H. Cai, Z. Jiang, F. Bu, and B. Xu, “An IoT-
oriented data storage framework in cloud computing platform,” IEEE
Transactions on Industrial Informatics (IEEE TII), vol. 10, no. 2, pp.
1443–1451, May 2014.

[11] Y. Ma, J. Rao, W. Hu, X. Meng, X. Han, Y. Zhang, Y. Chai, and
C. Liu, “An efficient index for massive IoT data in cloud environment,”
in Proc. of the 21st ACM International Conference on Information
and Knowledge Management (ACM CIKM 2012), Maui, Hawaii, USA,
October-November 2012.

[12] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud
services for the Internet of Things with CoAP,” in Proc. of the 2014
IEEE International Conference on the Internet of Things (IEEE IOT
2014), Cambridge, MA, USA, October 2014.

[13] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, Jun. 2013.

[14] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloudcmp: Comparing
public cloud providers,” in Proc. of ACM SIGCOMM 2010, Melbourne,
Australia, August – September 2010.

[15] R. Jhawar, V. Piuri, and P. Samarati, “Supporting security requirements
for resource management in cloud computing,” in Proc. of the 15th IEEE
International Conference on Computational Science and Engineering
(IEEE CSE 2012), Paphos, Cyprus, December 2012.

[16] Z. Rehman, O. Hussain, and F. Hussain, “IaaS cloud selection using
MCDM methods,” in Proc. of the 9th IEEE International Conference
on e-Business Engineering (IEEE ICEBE 2012), Hangzhou, China,
September 2012.

[17] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1012–1023, 2013.

