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Abstract 

During fertilization stamen elongation needs to be synchronised with pistil growth. The phytohormone 

Gibberellic acid (GAs) promotes stamen growth by stimulating the degradation of growth repressing DELLA 

proteins. DELLA accumulation is negatively regulated by GAs through the ubiquitin-proteasome system. In 

Arabidopsis thaliana a proportion of DELLAs is also conjugated to the Small Ubiquitin-like Modifier 

(SUMO) protein, which stabilises DELLAs. Increased DELLA levels occur in the SUMO protease deficient 

OVERLY TOLERANT TO SALT 1 and 2 (ots1 ots2) double mutants, especially under salt stress conditions. 

Here we show that OTS genes play a redundant role in the control of plant fertility under non-stress 

conditions. Mutants of ots1 ots2 display reduced fertility compared with the wild type owing to reduced 

stamen elongation. Stamen growth, pollination rate and seed production is restored in ots1 ots2 della 

mutants, thus linking OTS1 function to the control of DELLA activity in the context of filament elongation. 

OTS levels appear to be developmentally regulated as OTS1/2 transcript upregulation during stamen 

development overlaps with GAs accumulations. We propose that OTS genes enable synchronization of 

stamen development by facilitating DELLA degradation at a specific developmental stage.   

Keywords 

Flower development, SUMOylation, DELLA, Gibberellin, SUMO proteases 

Results and discussion 

Gibberellins (GAs) are a class of phytohormones that promote plant growth by stimulating ubiquitination 

and proteasomal degradation of the growth repressor DELLA (Sun 2010). DELLA degradation initiates 

when GA binds to the soluble receptor GID1 (Ueguchi-Tanaka et al. 2005; Griffiths et al. 2006; Murase et al. 

2008). This event stimulates GID1–DELLA binding and recruitment of the E3 ubiquitin-ligase SLEEPY1 

(Silverstone et al. 2001; Willige et al. 2007; Wang et al. 2009). In contrast to ubiquitination, another covalent 

modification – SUMOylation – stabilises DELLA. The SUMOylated form of DELLA is proposed to 

sequester GID1 and consequently facilitate the accumulation of unmodified DELLA in plant cells (Conti et 

al. 2014; Nelis et al. 2015). The steady state levels of SUMOylated DELLA are dynamically controlled by 

SUMO proteases OTS1 and OTS2 which deSUMOylate DELLA. An increase in the SUMOylated pool of 

DELLA (as in ots1-1 ots2-1 double mutant) leads to increased DELLA accumulation and consequent growth 

restraint under salt stress conditions (when GA accumulation is low). The role of the SUMOylation state of 

DELLA under non-stress conditions is however poorly understood. 

The analysis of the first 10 siliques along the primary stem of ots1-1 ots2-1 double mutant plants revealed a 

significantly reduced number of seeds per silique in ots1-1 ots2-1 double mutant plants compared with wild-

type (Figure 1a). This phenotype was completely restored in ots1-1 ots2-1 plants transformed with the 

construct pOTS1::OTS1::GFP (Online Resource 1) or by external GA applications (Figure 1b). DELLA 

activity is responsible for the reduced fertility of ots1-1 ots2-1 mutants as the average number of seeds per 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



silique was restored to wild-type levels in four ots1-1 ots2-1 della combinations (Figure 1a). Unexpectedly, 

triple mutants of ots1-1 ots2-1 rgl2-1 produced chlorotic leaves and were not viable, suggesting a specific 

and redundant role for OTS1, OTS2 and RGL2 in leaf greening (Online Resource 2). 

To gain insights into the role of DELLA, OTS1 and OTS2 genes during Arabidopsis reproduction, we 

compared the flower morphology of ots1-1 ots2-1 with ots1-1 ots2-1 della mutant plants. In wild-type 

flowers pollination occurs at stage 13 of flower development (Smyth et al. 1990), when the length of anther 

filaments exceeds that of the gynoecium and anther dehiscence occurs (Figure 1c). The flowers of ots1-1 

ots2-1 mutants at stage 13 had anther filaments that did not fully elongate to reach the stigma, and only a 

partial elongation was observed by stage 14 when some pollen was deposited onto the stigma. Anther 

elongation appeared to be fully restored in the ots1-1 ots2-1 rga-100 triple mutants. We confirmed 

significant differences in filament elongation between wild type and mutants of ots1-1 ots2-1 at flower stage 

13 and 14 (Figure 1d). In contrast, stage 12 filament length was similar in all the genotypes analysed, 

suggesting that OTSs are required during the rapid elongation phase between stage 12 and 13. Also, no 

similar growth defects were observed in the pistil of ots1-1 ots2-1 mutants (Figure 1d). Mutations in any of 

the DELLA genes rescued the defects in filaments growth of ots1-1 ots2-1, indicating that OTSs promote 

filament growth via DELLA inactivation (Figure 1d and Online Resource 3).  

DELLA are involved in different aspects of plant fertility, including pollen development (Tyler et al. 2004; 

Plackett et al. 2014). We found no defects in pollen germination in ots1-1 ots2-1 mutant plants (Online 

Resource 4), suggesting that pollen viability is not altered in absence of OTS1 and OTS2 function. OTS may 

thus control fertility by synchronizing stamen growth with pistil through DELLA deactivation. GAs control 

stamen development and act during the early phase of filament elongation (Cheng et al. 2009). Transcript 

analysis on samples harvested at specific floral stages showed that upregulation of OTS1 and OTS2 genes 

overlapped with GA3ox1 (encoding a key GA biosynthetic enzyme) between floral stages 12 and 13 (Figure 

1e). Thus, OTSs accumulation occurs immediately before fertilization, mimicking the pattern of GA 

accumulation (Hu et al. 2008).   

SUMOylation of DELLA restrains growth independent of GA accumulation whereas DELLA degradation 

relies on GA–activated ubiquitination. DELLA deSUMOylation during floral stages 12-13 may promote 

their degradation. Global accumulation of bioactive GAs is not altered in ots1-1 ots2-1 mutants as compared 

with the wild type (Conti et al. 2014). Furthermore, we found no obvious alterations in GA3ox1 transcript 

accumulation in ots1-1 ots2-1 mutants at stages 12 and 13 (Figure 1e). This indicates that endogenous 

bioactive GA is not sufficient to reset the physiological rate of filament growth of ots1-1 ots2-1 mutants. 

Whether SUMOylated DELLA is somewhat resistant to the GA-mediated proteasome destruction is an 

interesting question for future research. Reduced filament elongation is also associated with defects in the 

Jasmonate (JA) pathway (Stintzi and Browse 2000). GA and JA signalling pathways exhibit different points 

of interactions through DELLA (Cheng et al. 2009; Hou et al. 2010; Qi et al. 2014). Exogenous applications 
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of JA could rescue the reduced fertility of ots1-1 ots2-1 (Figure 1b). External JA can thus disengage 

SUMOylated DELLA action and reactivate growth–promoting processes downstream of DELLA.   

Besides regulating different steps of GA signalling (Conti et al. 2014; Kim et al. 2015), SUMOylation 

controls several responses towards abiotic stress, which usually negatively impact on fertility (Lois et al. 

2003; Miura et al. 2007; Su et al. 2013). Thus, a detailed comprehension of the mechanisms underlying 

reproductive organs differentiation is required to improve crop yield under different environmental 

conditions.  
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Figure Legends 

Figure 1. OTS1 and OTS2 redundantly control filament length and fertility of Arabidopsis. a Seed yields in 

different genetic backgrounds. Bars indicate the average number of seeds in each silique at the indicated 

node positions (1 is the oldest silique). n = 10 independent plants for each genotype. Error bars = SE. b as in 
a, after treatment of ots1-1 ots2-1 plants with hormones GA or JA or mock. c Stereomicroscopy images of 

flowers at stage 13 and 14 in wild-type, ots1-1 ots2-1 and ots1-1 ots2-1 rga-100 genetic backgrounds. Stage 

12 is reported in the insets. At stage 13, pollen grains are visible on the top of pistil in wild-type and ots1-1 
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ots2-1 rga-100 plants; anther filaments do not fully elongate in ots1-1 ots2-1 mutant flowers. Scale bar = 0,5 

mm d Anther filament and pistil length in wild-type, rga-100, ots1-1 ots2-1 and ots1-1 ots2-1 rga-100 

flowers at stage 12, 13 and 14. n = 14 measurements from at least 5 independent plants / genotype. Error bars 

= SE. Student’s t test P values ≤ 0.001 (*) e qRT-PCR analysis performed on flowers at stage 12 and 13. Left 

panel, accumulation of OTS1 and OTS2 transcripts. Right panel, accumulation of GA3ox1 transcript. At each 

time point, values represent fold change variations relative to stage 12 in wild type. ACT2 expression was 

used for normalization; error bars represent SD of three biological replicates. 

 

Electronic supplementary material 

Online resource 1 

Seed number in wild-type, ots1-1 ots2-1 and ots1-1 ots2-1 mutant plants transformed with a construct 

carrying the OTS1 gene under the control of its promoter. These lines were included in the same experiment 

reported in Fig. 1. The results of wild type and ots1 ots2 are therefore duplicated here for clarity. 

Online resource 2 

Picture of wild-type and ots1-1 ots2-1 rgl2-1 plants grown under in vitro conditions on standard Murashige 

and Skoog medium for 21 days. 

Online resource 3 

Ratio between pistil and filament length in wild-type and mutant plants at stage 13 of flower development. 

Self-fertilization is impaired when the value is higher than 1 as in ots1-1 ots2-1 mutant flowers. Shown are 

seven independent measurements of flowers at stage 13 from at least 3 different plants of the indicated 

genotypes. 

Online resource 4 

Pollen grains germination in wild-type and ots1-1 ots2-1 genetic background. Shown is the average 

percentage of germination in 10 replicated slides. Error bars = SE. N = 300 - 500 pollen grains analysed. 

Online resource 5 

Material and Methods 
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