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Abstract 

One of the most important challenges for thermoplastic polymers is to find flame retardants (FRs) 

capable of efficiently protecting them. At the same time, these desired FRs should be 

environmentally sustainable, cheap and suitable for most of the polymers employed at industrial 

scale. Obviously, it is almost impossible to design such a universal FR to be used for polymers 

having different chemical structures. We have recently demonstrated the efficiency of a 

deoxyribose nucleic acid (DNA) coating as FR solution for cellulose and ethylene-vinyl-acetate 

(EVA) copolymer. Pursuing this research, in the present study we investigate the FR effect of 

different DNA amounts on 3mm EVA samples in order to optimize its cost/effectiveness ratio. FR 

performances have been evaluated with a cone calorimeter under 35 and 50kW/m2. Then, the 

optimized DNA amount has been tested on EVA samples having different thicknesses (namely, 1 

and 6mm) in order to establish whether a correlation between DNA amount and sample mass exists. 

Finally, the DNA potentialities as “universal” FR have been investigated on samples of 

polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), polyethyleneterephthalate (PET) and 

polyamide 6 (PA6), and compared with some of the best FR solutions found in the literature or on 

the market.   
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Introduction 

Traditionally one of the commonest and easiest methods for conferring flame retardant properties to 

thermoplastic polymers is the addition of specific flame retardant chemicals during their processing 

[1]. In numerous cases, the most best performing systems are the so-called intumescent 

formulations (typically constituted by three components: a carbon source, an acid and a blowing 

agent) that are able to protect the polymer by creating on its surface an expanded carbonaceous 

multilamellar structure (char) that hinders the heat, oxygen and mass transfer from the 

atmosphere/flame during combustion [2-6]. With this protective barrier, it is possible to achieve a 

significant resistance to a flame or a radiating heat flux.  

Subsequently, following the mentioned above results and FR action, a different concept based on 

surface protection has been developed and recently demonstrated as a worthy alternative to bulk 

inclusion [7-9]. This latter approach may exhibit some advantages with respect to the bulk one; 

indeed, in theory a coating can be deposited on all polymeric surfaces, taking into account the 

adhesion between the two materials (or promoting it if needed), without changing the polymer bulk 

properties that, on the other hand, often suffer from detrimental effects due to effect of additive 

inclusion (e.g. reduced mechanical properties, modified processing conditions).  

In this scenario, seeking new eco-friendly FRs capable of meeting recent societal demands for the 

replacement of current toxic solutions, [10] our group has deeply investigated the use of DNA and 

its potentialities thanks to its intrinsically intumescent nature [11].  

Such complex yet effective molecule turned out to be very efficient when used as a coating for 

cotton fibres [12] and achieved unpredictable results in the case of an EVA copolymer (containing 

18wt.-% of vinyl acetate) [13, 14]. For this latter material, DNA has been used either as flame 

retardant or functional coating exhibiting comparable results with ammonium polyphosphate when 

added in bulk and outperforming it (better increase in time to ignition and better peak of heat 
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release rate reduction, as assessed by cone calorimetry) when deposited on EVA surface. Figure 1 

reports the chemical structure of DNA with its relationship to a flame retardant intumescent system 

and a schematization of the DNA coating flame retardant action. 

 

Figure 1. Chemical structure of a DNA segment and its relationship to an intumescent flame 

retardant system.  

 

The phosphate groups produce phosphoric acid, the deoxyribose units represent the carbon source 

and the nitrogen-containing bases (i.e. adenine, guanine, cytosine and thymine) act as blowing 

agents releasing ammonia [11]. Flame retardant mechanism of a DNA coating deposited on 

polymeric substrates: upon heating or flame exposure the DNA swells (degree of expansion is 20 

times the initial thickness) and produces a protective foamed structure with thermal shielding 
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properties. After deposition on the surface, DNA coating (15wt.-% on EVA) blocked the ignition of 

the copolymer when tested by cone calorimeter under 35kW/m2 heat flux, increasing the time to 

ignition by circa 200s (i.e. +380%, with respect to untreated EVA), while it significantly postponed 

(about 100s, +625% with respect to untreated copolymer) and reduced the combustion kinetic rate 

under 50kW/m2 flux. Moreover, the DNA coating was found able to protect the underlying EVA 

from the flame of a butane/propane torch preventing the polymer melting thus providing promising 

results from the reaction to flame application point of view. [13]  

These preliminary results have on one hand opened a totally new scenario in terms of fire protection 

while on the other hand they left many unanswered scientific questions concerning the use of DNA-

based coatings and both aspects have encouraged the study presented here. 

 The DNA cost is higher than those of traditional commercial FRs and although the large-scale 

preparation method developed by Wang and coworkers, [15] has enabled DNA to become 

competitive with other chemicals, it cannot compete with commercial FRs in terms of raw material 

costs. Thus, in our opinion, it is of both scientific and industrial interest to reduce the amount 

employed for the proposed treatments in order to guarantee a good cost/effectiveness ratio. To this 

aim, we compared the results already observed with those achieved by reducing the DNA:EVA 

weight content from 15 down to 5 and 10wt.-%. Subsequently, the same 5 and 10wt.-% add-ons 

have been transferred on EVA samples having different thicknesses (namely, 1 and 6mm). 

Aim of the present work was to establish whether i) a correlation, or better a threshold value, exists 

between DNA amount employed and polymer sample mass (thus thickness) and ii) the DNA 

efficiency in protecting EVA depends only on the coating surface exposed to the radiating heat.  

This point is crucial: indeed, if a certain amount of DNA is able not only to create a char (as 

depicted in Figure 1) suitable to reduce the transmitted heat flux in the cone calorimeter, thereby 

reducing the temperature detected by the polymer, but also hindering the heat, oxygen and mass 

transfer from the atmosphere, the surrounded polymer will not reach its flammability limits and will 

undergo pyrolysis rather than combustion.  
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On the basis of such hypothesis, this finding may mean that, if the coating can act independently 

from the chemical structure and degradation pathways of the coated polymer, it can be applied to all 

polymers, thus representing a general solution to polymer flammability. This achievement might be 

an industrial breakthrough as nowadays fire protecting solutions that rely on bulk inclusion are 

specifically designed as functions of the polymer to protect, more than often requiring extremely 

high loading (30-50wt.-%) in order to achieve the FR desired properties. For instance EVA 

formulations containing inorganic flame retardants can reach loading as high as 60-70wt.-%. [16] It 

is thus evident how such a general solution could simplify and make more straightforward the 

protection of polymers. 

In order to verify this hypothesis, we selected four polymers (that together represent 30% of 

worldwide polymer production), namely PP, ABS, PET and PA6 and coated them with a DNA 

amount optimised during the first step of the present study (as schematically represented in Figure 

1). The resulting combustion properties have been measured using a cone calorimeter in order to 

simulate the conditions of a real fire scenario. This test is widely adopted as research and 

development tool as it provides useful information concerning the combustion behaviour of a 

polymer when exposed to an incident heat flux (i.e. time to ignition, heat release rate, CO and CO2 

production). Two testing conditions have been selected mimicking the heat fluxes normally found 

in developing fires (i.e. 35 and 50kW/m2). The higher irradiation levels correspond to more 

developed fires. [17] Finally, the heat releasing performances of DNA-coated polymers have been 

compared with those of the most performing FR systems found in the literature. 

 

Experimental part  

Materials  

An EVA copolymer containing 18wt.-% vinyl acetate (Elvax®470 from DuPontTM; MFI: 

0.7g/10min), PP (HP®500N from Basell Polyolefins S.r.l.; MFI: 12g/10min, density: 0.90g/m3), PA6 
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(Aquamid AQ27000 from Aquafil S.p.A; density: 1.14g/m3), ABS (Magnum®3453 from Dow; MFI: 

15g/10min, density: 1.050 kg/m3) and PET (from Sinterama S.p.A.; MFI: 15g/10min) were used.  

DNA from herring sperm was supplied as a high purity grade (98%) reagent by Sigma Aldrich, Inc. 

and used as received. 

 

Deposition of DNA on polymers  

0.65 or 0.32g of DNA were uniformly deposited on EVA square plates having 3mm thickness 

(6.5±0.5g) and subsequently compressed, using a hot compression moulding press at 120°C for 

1.5min (applied pressure: 5MPa). This process yields a homogenous coating that completely covers 

the surface of the specimen.   

DNA content referred to EVA was set at 10 and 5wt.-%. The same procedure was employed for 

EVA samples having 1 or 6mm thickness. 

Hereafter, we will refer to such samples employing the following codes: EVAX_YDNA that point 

out the sample thickness (namely, X) and DNA:polymer weight percent composition (Y), 

respectively. As an example, EVA3_10DNA indicates an EVA sample having 3mm thickness, 

covered by a DNA amount in order to have DNA:EVA weight content equal to 10%. Sample codes 

and formulations cited in the present work have been summarised in Table S1 in Supporting 

Information.   

The same procedure mentioned above was employed for PP, ABS, PET and PA6 samples having 

3mm thickness and 10wt.-% as DNA:(co)polymer weight composition. In this case, the adopted 

codes were: (CO)POLYMER_DNA where (CO)POLYMER can be PP, ABS, PET or PA6.  

 

Characterization techniques  

Cone calorimeter tests (Fire Testing Technology) were performed according to the ISO 5660 

standard [18]. 50 x 50 x t mm3 (where t=1, 3 or 6mm) samples were placed on a sample holder and 

irradiated at a heat flux of 35 or 50kW/m2 in horizontal configuration. For each formulation, the test 
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was repeated three times and an experimental error of 5% was calculated for all the measured 

parameters. Prior to combustion tests, samples were conditioned at 23±1°C at 50% relative 

humidity for 48h.  

Time To Ignition (TTI, s), Total Heat Release (THR, MJ/m2), Heat Release Rate peak (PHRR, 

kW/m2), Total Smoke Release (TSR, m2/m2), carbon monoxide and dioxide yields ([CO] and 

[CO2], g/s) were evaluated. The Fire Performance Index (FPI, sm2/kW) was calculated as TTI to 

PHRR ratio for untreated and DNA-treated materials. The evaluation of such parameter is very 

important in order to establish the real effectiveness of the proposed treatment; indeed, as claimed 

by Schartel and coworkers [19], the higher the FPI, the better are the flame retardant performances.  

 

Results and discussion 

Effect of DNA amount on EVA  

The cone calorimeter is a useful instrument for simulating the burning behaviour of a material 

exposed to heat fluxes typically found during developing fires. During the test, squared samples are 

exposed to a radiant heating source, which is maintained at a constant heat flux selected as a 

function of the fire stage under consideration (the higher the heat flux, the more developed is the 

fire). 35 and 50kW/m2 are the most widely adopted heat fluxes when testing polymers. The 

exposure to such heat flux triggers the production of combustible volatile species from the sample. 

These volatiles are then ignited by a spark igniter causing the flaming combustion of the samples. 

The heat release during combustion is then measured by the evaluation of the oxygen consumed 

during combustion (13.1kJ of heat are released per g of oxygen consumed). Figure 2 reports cone 

calorimetry data plots and sample burning images at 35 kW/m2 for EVA and EVA-treated with 

different amounts of DNA. 
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Figure 2. (a): cone calorimetry data plots at 35kW/m2 for EVA and EVA treated with 5, 10 and 

15wt.-% DNA: A) heat release rate (HRR), B) total heat release (THR) and C) total smoke release 

(TSR). Dashed line marks the end of combustion for untreated EVA sample.  

(b): snapshots taken at different times during the cone calorimetry test of an EVA sample with only 

50% of the surface coated with DNA.  

 

Under a heat flux of 35kW/m2 all three DNA amounts employed for covering EVA samples having 

3mm thickness are able to significantly postpone the copolymer ignition (TTI values increase from 

66s to 162, 206 and 276s for EVA3_5DNA, EVA3_10DNA and EVA15_DNA, respectively, and 

considerably reduced the PHRR by at least 70% (Figure 2A). Furthermore, THR values are 

significantly reduced while TSR is reduced only by 5% and it remains unchanged at higher add-ons 

(Figures 2B and 2C).  
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Comparing the HRR curves of untreated and DNA-treated samples, it is noteworthy that, due to the 

extremely high delay in ignition imparted by the DNA coating the complete combustion of neat 

EVA takes place before those of DNA-treated samples start. Thus, during the time corresponding to 

combustion of untreated EVA, the heat and smoke released from the other samples, regardless of 

DNA amount, are close to zero (see THR and TSR plots in Figure 2 (a)).  

In order to make a visual proof of the fire protecting action of the DNA coatings, a sample coated 

only for 50% of its surface has been prepared and its behaviour during cone calorimetry tests is 

represented by the sequence of snapshots reported in Figure 2 (b). 

After 20s of exposure, the coating starts to react, forming a carbonaceous structure that tends to 

blow up; at longer and longer times, the expansion of such structure goes on and the surrounded 

polymer starts to pyrolyse and does not ignite. On the contrary, upon heating neat EVA 

immediately starts to decompose and after about 60s ignites, undergoing a flaming combustion that 

completely consumes the sample. By monitoring combustion as carbon monoxide and dioxide 

yields (Figure 3), it is possible to observe a drastic decrease of these two parameters in the presence 

of DNA that, by favouring the char formation from EVA, reduces the release of volatile species, 

thereby inhibiting combustion. 

 

 

Figure 3. CO and CO2 production during cone calorimetry tests for EVA and EVA treated with 5, 

10 and 15wt.-% DNA.  
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By comparing the behaviour of 5, 10 and 15wt.-% DNA, it is clear that there is a direct dependence 

between the DNA amount and the obtained performances: the lower DNA add-on, the lower are the 

resulting fire performances. On the other hand, even the lowest performance achieved with 5wt.-% 

DNA can be considered very relevant if compared with other EVA bulk systems employing FR 

loading of 30-35wt.-% [20, 21]. Furthermore, these results show also that it is possible to reduce the 

DNA add-on with respect to that used in our previous study [12], maintaining high performance in 

terms of the large increases in TTI observed.  

Namely, we can conclude that 10wt.-% DNA is the optimised amount that can guarantee a good 

probable cost/effectiveness ratio of the proposed treatment. Combustion tests by cone calorimetry 

have been repeated, under a higher heat flux, namely 50kW/m2, on EVA3 and EVA3 coated with 10 

and 15wt-% DNA (Figure S1 reported in Supporting Information). Once again, the DNA presence 

is fundamental in order to increase EVA TTI and reduce its PHRR value (Figure S1 (a) A) and 

THR (Figure S1 (a) B). As expected, by increasing the heat flux, the combustion duration is 

reduced; thus, the coating efficiency is more important as it must react more rapidly in blocking 

EVA decomposition. The curves reported in Figure S1 (a) demonstrate that the efficiency of DNA 

is very high also in these drastic conditions of radiating heat.  

Comparing the performances of EVA3_10DNA and EVA3_15DNA, it is clear that the highest 

protection level is achieved with the highest DNA add-on, but in both cases the protection level is 

very high in terms of increasing TTI and reducing PHRR values. As a matter of fact, 10wt.-% DNA 

can be considered already sufficiently able to protect EVA, significantly postponing its ignition and 

reducing the other combustion parameters. Thus, as our aim was to achieve the highest 

cost/effectiveness ratio, the further development of the present research has been focused on using 

10wt.-% as the maximum content of DNA on the polymer surface.  
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Effect of sample thickness 

Following the above results, 5 and 10wt.-% of DNA have been applied on the surface of EVA 

samples having thicknesses of 1 and 6mm in order to establish whether a correlation between the 

employed DNA amount and sample mass exists or not. A possibility, however, is that DNA 

efficiency depends only on the coating surface exposed to the radiating heat. Figure 4 reports the 

HRR curves obtained by cone calorimetry under 35kW/m2 heat flux.  

 

Figure 4. Heat release rate plots for uncoated and DNA-coated EVA samples having thicknesses of 

1 and 6mm. 

 

Both 5 and 10wt.-% turned out to be almost the same as efficient for protecting EVA1, increasing 

the TTI (from 18 to about 50s) and reducing PHRR (by -27 and 36%, respectively); overall, there 

are no significant differences between the performances of the two samples.  

On the contrary, the two add-ons behaved differently when deposited on EVA samples with 6mm 

thickness showing performances highly depending on the amount of coating add-on. More 

specifically, with 5wt.-%, EVA TTI increases from 66 to 454s but its PHRR is only slightly 

reduced (1024 vs. 1186kW/m2 for EVA6_5DNA and EVA6, respectively). On the other hand, with 

10wt.-% TTI is increased up to 644s and PHRR significantly reduced down to 477kW/m2 (-60% 

with respect to the value of untreated EVA). It is worth mentioning that in both cases by the time 

the untreated EVA ends its combustion all samples treated with DNA have not yet ignited. Indeed, 
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as mentioned above, their ignition takes place at very long TTI and is followed by combustion 

characterized by low heat release kinetics (see HRR plots in Figure 4).   

Comparing the three samples having three different thicknesses 1, 3 and 6mm; (Figure S2A in 

Supporting Information), it is possible to observe that the effect of 10wt.-% DNA is different for 

each of them. In general, it induces an increase of EVA TTI and a decrease of its PHRR; more 

specifically, the effect of DNA amount appears to linearly depend on EVA thickness (and mass) in 

terms of TTI, but not for its PHRR. It is reasonable that having more DNA on the surface of 

EVA6_10DNA, the expanding protective layer will be thicker and more efficient in protecting the 

underlying polymer, thus requiring more time to reach EVA ignition, in comparison with the other 

two samples. Furthermore, the sample thickness should also be taken into account. Indeed, 1 mm 

specimen behaviour can be referred as thermally thin meaning that, during the test, the thermal 

gradient across the sample thickness will be close to zero. For this reason, the degradation of EVA 

and DNA expansion would start at similar times thus minimizing the effect of an expanding 

intumescent layer. On the other hand, a 6 mm thick sample would behave as a thermally thick 

material with a greater thermal gradient across the thickness. This likely allows the surface DNA 

layer for the observed more efficient increase in TTI.  

As far as PHRR trend is concerned, Figure S2 shows that, by increasing DNA add-on, EVA PHRR 

linearly decreases only for samples having 1 and 3mm thickness, but not for EVA6_10DNA (-36, -

75 and -60%, respectively). This trend can be explained observing the corresponding curves 

reported in Figures 2 (a), 4A and 4B; the curve of EVA1_10DNA is sharp and narrow, that of 

EVA3_10DNA is broad with a small maximum that cannot be considered a true peak, and that of 

EVA6_10DNA shows a broad distribution tending to a plateau with two maximum peaks at 400 

and 477kW/m2. This latter trend points out that during combustion after circa 750s a char is formed 

which is thermally stable up to 1100s but afterword it is likely broke down. The cracks formed can 

allow the leak of combustible volatile species that then provoke a second slight increase of EVA 

PHRR (namely, the peak at 477kW/m2).  
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In order to determine for each sample the contribution due to DNA presence on both TTI and 

PHRR, the FPI has been calculated and its trend reported in Figure S2B. As mentioned already in 

Experimental Part, The FPI represents a fire safety engineering parameter often adopted in order to 

rate materials, in a quick glance, on the basis of their performances under the cone calorimetry: the 

higher the value, the better are the flame retardant performances according to the literature [19]. 

It is evident that, for the same DNA amount the higher EVA thickness (and thus mass), the higher is 

EVA FPI. Thus, we can conclude that in the proposed treatment, the DNA performances linearly 

depend on the polymer mass to be protected; this is also confirmed by the linear regression plotted 

in Figure S2C that well fits the DNA coated FPIs vs sample thickness data.  

 

Extension of DNA coatings to other polymers 

As already mentioned in the Introduction, further aim of the present work has been to investigate 

the DNA performances on other polymer types, namely PP, ABS, PET and PA6. On the basis of the 

results collected for EVA, we decided to test samples having 3mm thickness and treated with 10wt.-

% DNA. Tests were performed on uncoated and DNA-coated samples under 35 and 50kW/m2 heat 

fluxes, Figure 5 reports the measured TTI and PHRR data for PP, ABS, PET and PA6, presented 

together, for clarity reasons.  



	 14 

 

Figure 5. Histograms representing time to ignition (TTI) and peak of heat release rate (PHRR) for 

neat and DNA-coated PP (A), ABS (B), PET (C) and PA6 (D). Data collected during cone 

calorimetry test under 35 and 50kW/m2. 

 

In general, regardless of the radiating heat adopted during the tests, DNA is observed to be very 

efficient in protecting all systems. The behaviour is the same as already observed for EVA: TTI is 

increased and PHRR reduced in a significant way (see also Table S2 in Supporting Information). 

More specifically, as reported in Figure 5A for PP, PHRR reduction is approximately 50%, 

regardless of the heat flux adopted. Quite surprising is very strong DNA effect on PP TTI, in 

particular when exposed to 35kW/m2 (from 15 to 156s, +940%). Indeed, when heated by the cone 

heat flux, the PP ignites after a very short TTI and vigorously burns achieving the highest PHHR 
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(1300kW/m2) among all tested polymers. Thus, it can be considered as the substrate that is more 

difficult to protect. 

Referring to ABS (Figure 5B), TTI increases (+1223 and 567% for 35 and 50kW/m2, respectively) 

and PHRR reductions (-56 and 71%) are even more relevant in comparison with the results 

achieved for PP in both fire conditions.   

Comparing the behaviour of PET and PA6 (Figures 5C and 5D), the PHRR reductions are almost 

the same, about -45% (Figure 5 and Table S2). On the other hand, DNA effect is different on TTI in 

relation to the adopted heat flux. Under 35kW/m2, the highest TTI increase has been achieved for 

PA6 (+1637%) while under 50kW/m2 is PET that yielded the highest increase (+811%).  

In order to highlight the real potential of the FR properties that could be achieved with a DNA 

coating it is worth to compare the data shown in the present paper with other flame retardant data 

found in the literature. In order to do this, the FPI values of DNA-coated polymers have been 

calculated and compared with those of the most efficient FR systems employing novel intumescent 

formulations [2], clay nanoparticles [20] and commercially available FR solutions [21]. Collected 

FPI values are reported in Figure 6 for each polymer matrix as histograms which report the 

calculated FPI values of neat and DNA-coated analogous polymers while the area between dotted 

lines represents the range of the best FPI values achievable employing the different FR solutions 

mentioned above. 
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Figure 6. Histograms representing the FPI, calculated from cone calorimetry tests performed under 

35 and 50kW/m2, of neat and DNA-coated polymers studied in the present paper. The area between 

dotted lines represents the range of the best FPI values achievable employing the literature data or 

commercial solutions for each polymer matrix.  

 

In all cases, DNA-treated materials exhibited FPI values much higher than those untreated their 

untreated analogues, often by two or three orders of magnitude and in most cases the performances 

achieved with DNA coatings outperform other flame retardant systems as demonstrated by DNA- 

coated FPIs that are well above the indicated ranges in Figure 6. Only in the case of PP at both heat 

fluxes and EVA only at 50kW/m2, the FPI of the DNA-coated polymers falls within the calculated 

range of literature values. The above achievements basically shows that the FR solution in terms of 

the FPI parameter proposed in the present manuscript can be considered the best performing one for 
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ABS, PET and PA6 and almost at the same level of other effective flame retardant for PP and EVA. 

Hence, the approach described by our research allows for a more possible environmentally 

sustainable route towards the safe and efficient fire protection of polymers.  

 

Conclusions 

In the present work, DNA has been used as FR flame retardant coating for different polymeric 

substrates. The fire retardancy properties have been evaluated by means of cone calorimetry tests 

employing heat fluxes of 35 and 50kW/m2. During a first step it has been demonstrated that 10wt.-

% is the optimised DNA:(co)polymer percent weight for guaranteeing a possible resource-effective, 

optimum. Furthermore, our results have shown that DNA efficiency is not only linked to its 

presence the surface but also to its amount. Indeed, 5% DNA had good performances when 

deposited on 3mm thick EVA but almost completely lost such performances when the thickness 

was increased to 6mm.    

Finally, and most importantly, the described DNA coating has been shown to be a potentially 

universal flame retardant for EVA, PP, ABS, PET and PA6 outperforming or matching (in the case 

of PP and EVA) the fire performances (defined in terms of TTI, PHRR and FPI parameters) of 

currently available, effective FR solutions such as novel intumescent systems, nanocomposites or 

commercial formulations. These results show that, in terms of cone calorimetry performances, the 

DNA molecule has great potential as flame retardant protective coating. This application can be 

implemented with UV-curing or other chemical crosslinking strategies in order to ensure the 

coating durability. In addition, if an industrial application is foreseen, further efforts are required in 

the near future in order increase DNA availability by either investigating other sources (e.g. plants 

and fungi) or using DNA as blueprint for the synthesis of new halogen-free flame retardant 

molecules.    
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