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ABSTRACT

We have developed a stochastic full-waveform inversion that
uses genetic algorithms (GA FWI) to estimate acoustic macro
models of the P-wave velocity field. Stochastic methods such as
GA severely suffer the curse of dimensionality, meaning that they
require unaffordable computer resources for inverse problems
with many unknowns and expensive forward modeling. To mit-
igate this issue, we have proposed a two-grid technique with
a coarse grid to represent the subsurface for the GA inversion
and a finer grid for the forward modeling. We have applied this
procedure to invert synthetic acoustic data of the Marmousi
model, and we have developed three different tests. The first
two tests use a velocity model derived from standard stacking
velocity analysis as prior information and differ only for the pa-
rameterization of the coarse grid. Their comparison indicates that
a smart parameterization of the coarse grid may significantly

improve the final result. The third test uses a linearly increasing
1D velocity model as prior information, a layer-stripping pro-
cedure, and a large number of model evaluations. All three tests
return velocity models that fairly reproduce the long-wavelength
structures of the Marmousi. First-break cycle skipping related to
the seismograms of the final GA-FWI models is significantly re-
duced compared with that computed on the models used as prior
information. Descent-based FWIs starting from final GA-FWI
models yield velocity models with low and comparable model
misfits and with an improved reconstruction of the structural
details. The quality of the models obtained by GA FWI plus
descent-based FWI is benchmarked against the models obtained
by descent-based FWI started from a smoothed version of the
Marmousi and started directly from the prior information models.
Our results are promising and demonstrate the ability of the two-
grid GA FWI to yield velocity models suitable as input to
descent-based FWI.

Full-waveform inversion (FWI) is usually based on iterative local
optimization methods and exploits the entire information of the
seismogram to determine a high-resolution image of the subsurface.
Accordingly, FWI is a very promising method and, over the past
few decades, it has received growing expectations by industry
and academy (Mora, 1988; Pratt and Worthington, 1990; Virieux
and Operto, 2009; Vigh et al., 2010; Morgan et al., 2013). However,
this method is limited by its local nature; i.e., it terminates in the
nearest minimum of the misfit function, which may not coincide
with the global minimum. To mitigate this issue, a smoother misfit
function, which is obtained by progressively incorporating the
higher frequencies of the data (the multiscale technique, Bunks
et al., 1995), is commonly used in the inversion, and the initial

model is carefully chosen. Theoretically, a good starting model
for FWI is a model that lies in the basin of attraction of the global
minimum of the data misfit surface. In practice, good starting mod-
els are usually required to be smooth (Asnaashari et al., 2013) and
able to match the main events of the observed seismogram with an
error smaller than half of the wavelet wavelength to avoid the so-
called cycle-skipping artifact (Beydoun and Tarantola, 1988). Sev-
eral methods can be used to produce a starting model for FWI. In the
oil and gas industry, the most common procedure is to apply reflec-
tion tomography followed by migration velocity analysis (see
Woodward et al. [2008] for a review of the tomographic workflow).
Other popular methods are first-arrival traveltime tomography (No-
let, 1987), stereotomography (Billette and Lambaré, 1998; Lam-
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baré, 2008), and Laplace-domain and Laplace-Fourier-domain in-
versions (Shin and Cha, 2008; Shin and Ha, 2008). Note that build-
ing an adequate initial model with these or other methods requires a
significant amount of qualified human resources and a not-negli-
gible computing time. In fact, many processing iterations and ad-
justments, which also include traveltime picking, are usually needed
to obtain the desired starting model.
A different approach to FWI may consist of using a stochastic

global method in place of a local iterative method. The advantage
of using stochastic global methods is that they are able to jump out
from local minima. Consequently, stochastic methods are less af-
fected by the choice of the starting point for the inversion (some
stochastic methods, such as genetic algorithms [GAs], do not even
require us to define a starting model). The drawback of using sto-
chastic methods is that their computational cost increases exponen-
tially with the number of unknowns. This is due to the search area of
the stochastic inversion, which grows exponentially with the num-
ber of unknowns. Such a problem for stochastic methods is usually
referred to as the curse of dimensionality (Bellman, 1957). Because
FWI commonly inverts for more than hundreds of thousands of un-
knowns, the resulting computational time for a stochastic inversion
appears to be unaffordable.
To attenuate this problem, we propose to represent the subsurface

by means of a two-grid technique; i.e., we discretize the P-wave
velocity model using a coarse grid in the stochastic inversion and
a fine grid in the modeling of the wavefield propagation (Sajeva et al.,
2014b). The coarse grid permits us to reduce the number of un-
knowns, thus mitigating the curse of dimensionality in the stochastic
inversion, whereas the fine grid is used to perform finite-difference
(FD) forward modeling on an interpolated coarse-grid model. Tuning
the fine-grid step size allows us to propagate a certain frequency range
independently of the coarse-grid parameterization. Because of the
coarse grid used in the inversion, the final model after GA FWI is at
low resolution and thus it cannot be directly compared with the result
of FWI that uses local-iterative methods (descent-based FWI), which
may solve for the finer details of the subsurface. Instead, using sto-
chastic FWI, we aim to build a macro model that contains the correct
long-wavelength structure of the subsurface. Recently, other authors
(Gao et al., 2014; Datta, 2015) proposed to determine starting models
for acoustic FWI using stochastic inversion methods combined with
different strategies to reduce the number of unknowns.
Several stochastic methods exist. Among them, them GAs (Hol-

land, 1975), simulated annealing (SA) (Kirkpatrick et al., 1983),
and neighborhood algorithm (NA) (Sambridge, 1999a) are the most
popular methods applied to geophysical problems (Sen and Stoffa,
2013). In this paper, we perform the stochastic inversion using a
real-valued GA. In real-valued GAs, the model parameters are rep-
resented as real numbers (Wright, 1991; Eshelman and Schaffer,
1993). Real-valued GAs are an evolution of the first implementa-
tions of GAs, which were binary coded, i.e., whose model param-
eters were encoded with a binary scheme (De Jong, 1975; Goldberg,
1989). We have chosen a real-coded GA because it proved to per-
form better than NA and adaptive SA (Ingber, 1989) for high-
dimensional spaces, using a simple 1D elastic model and analytic
functionals (Sajeva et al., 2014a). Another advantage of GA over
SA is that it can be easily parallelized because GA inverts collec-
tively a population of models.
In the first part of the paper, we describe the salient methodologi-

cal aspects of our method and in particular: the workflow of the GA

FWI, the two-grid technique, the numerical method used to solve
the forward modeling, the misfit functions, and the layer-stripping
approach. In the second part, we show three examples of GA FWI
applied to the Marmousi model. The first two examples are identical
apart from the parameterization of the coarse grid and are discussed
together. The third example is more complex because it uses differ-
ent inversion parameters and inverts for a higher number of model
parameters. This set of three examples verifies the feasibility of us-
ing the stochastic approach to FWI to invert for the large structures
of the acoustic Marmousi model. As an application of the method,
we tested the GA-FWI models as starting models for descent-based
FWI. Finally, we quantify the cycle-skipping artifacts, and we com-
pare the results of the sequence GA FWI plus descent-based FWI
with those obtained using descent-based FWI only.

METHOD

GA inversion

GAs are stochastic heuristic search algorithms that mimic the
natural selection and evolution processes of biological species to
search for optimal solutions in a model space (Holland, 1975;
Mitchell, 1996). Candidate solutions to the optimization problem
are interpreted as individuals of a population that undergo the evo-
lution process. Evolution is simulated via the operations of natural
selection (performed according to a fitness function), recombination
or mating, and mutation. First implementations of GA were binary
coded and thereafter real-coded GAs were proposed to solve many
problems (Deb and Kumar, 1995; Bessaou and Siarry, 2001; Wu
et al. 2007). Janikow and Michalewicz (1991) demonstrate that
real-coded GA outperform binary-coded GA in many optimization
problems, especially in high-dimensional nonlinear problems. Con-
sequently, we used a real-coded GA in this paper.
When setting up a GA, choices related to genetic operators and

tuning parameters must be made. These choices are often problem
dependent and they may be crucial for the success of the algorithm.
We used the GA operators described by Chipperfield et al. (1994), and
below we give a brief summary of the GA workflow we used:

1) Randomly generate a set of models (individuals) within a de-
fined search area. This set of models is called initial population.

2) Solve the forward model for each individual of the current pop-
ulation and evaluate the misfit between the observed and the
simulated data.

3) Sort the individuals according to their data misfit and assign to
each individual a rank-based fitness value (Baker, 1987); hence,
select the subset of individuals apt for mating using stochastic
universal sampling (Baker, 1987) as the selection method.

4) Pair the selected individuals and recombine their values to gen-
erate new individuals. The set of new individuals is called the
offspring.

5) Randomly mutate a fraction of the parameters of the offspring.
6) Allow for some parents to survive in the next generation by

adding the most fit parents to the offspring. To this end and
to maintain constant the desired number of models in the new
generation, a subset of the offspring may be rejected. The re-
sulting set of models constitutes the new generation.

7) Repeat steps 2 to 6 until a stopping criterion is attained.
8) Extract the best-fitting model.
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The search area is determined by the available prior information
and should contain any valuable information of the subsurface. Sev-
eral stopping criteria may be chosen, such as the achievement of a
predetermined data misfit value, the consumption of the allocated
resources (computer time, number of model evaluations), or if the
data misfit does not decrease for a certain number of generations. At
the end of the inversion, we simply extract the best-fitting model
instead of evaluating the posterior probability distribution (PPD) of
the models. This is becausewemainly aim to estimate a single model,
which can be used, for example, as starting model for descent-based
FWI. In addition, it is demonstrated that GAs are not Monte Carlo
methods, and, then, they produce a biased PPD (Sen and Stoffa,
1996). Thus, if desired, the PPD must be reconstructed from the set
of computed models using different methods (Mallick, 1999; Sam-
bridge, 1999b; Hong and Sen, 2009; Aleardi and Mazzotti, 2014).
These methods add a computational cost to the GA FWI. For these
reasons, in the following, we neglect to evaluate the PPD associated
to the GA results.

Forward modeling

We perform forward modeling by numerically solving the 2D
acoustic-wave equation:

�
1

v2
∂2

∂t2
− ∇2

�
Pðx; z; tÞ ¼ −∇ · f ; (1)

where P is the scalar pressure field, f ¼ f ðx; z; tÞ is the external
force field, v ¼ vðx; zÞ is the acoustic-wave speed, ∇2 is the 2D
Laplacian, and ð⋅Þ is the dot product. Despite the fact that equation 1
is strictly valid only in fluid and gaseous media, it is frequently used
in active-source FWI because its numerical solution is computation-
ally inexpensive compared with the solution of the elastic-wave
equation (Fichtner, 2011).
For each source term f , the predicted data consist of the solution

of equation 1 at the receiver positions. To numerically solve the
acoustic-wave equation, we use a simple explicit time-stepping
scheme starting from a local perturbation of the wavefield at the
source position. The scheme is implemented using a time-domain
FD method having an accuracy of second order in time and fourth
order in space. We position absorbing cells at the boundaries of the
model to avoid artifacts and to suppress surface-related multiples. In
the following, we compactly denote with g the forward operator,
and we explicit the dependence on the source position for the pres-
sure field

Pðxr; xs; tÞ ¼ gðvðx; zÞ; f ðxs; tÞÞ; (2)

where xr are the inline receiver positions (zr ¼ 0) and xs are the
inline source positions (zs ¼ 0).

Two-grid technique

Several methods have been proposed in the literature to reduce
the number of model parameters that describe the subsurface by
using geologic information. For instance, Ma et al. (2012) use the
depth-migrated image to sparsely sample the subsurface and derive
an image-guided interpolator that permits us to go back and forth
between the sparse representation and the finely and uniformly
sampled representation. In this section, we propose to use a simple

low-resolution grid with large-sized rectangular cells that is re-
sampled to a finer grid prior to the forward modeling.
To achieve this goal, we introduce two parameterizations of

the subsurface, represented by the matrices U and V. The matrix
U ∈ Rn×m contains the acoustic velocity values of the subsurface
arranged in a coarse grid at positions x1; x2 ¼ x1þ
dx; : : : ; xn ¼ x1 þ ðn − 1Þdx and depths z1; z2 ¼ z1 þ dz; : : : ;
zn ¼ z1 þ ðm − 1Þdz. We use this coarse grid to parameterize the
subsurface for the GA inversion. Note that this parameterization
is completely defined by the horizontal and vertical step sizes
(dx and dz). The values of dx and dz depend on prior information
that we have on the subsurface. For instance, if, given a P-wave
velocity prior model, we observe a vertical variability higher than
the horizontal variability, then we will use dz < dx. Prior informa-
tion may be provided by several different means, including standard
stacking velocity analysis as done in two examples of this paper.
The choice of dx and dz has a component of subjectivity; in fact,
the user may choose smaller step sizes to increase resolution or
larger step sizes to reduce the number of unknowns. Because the
matrix U contains a limited number of unknowns, the exploration
of the model space can be more thorough (in fact, the number of
unknowns equals the dimensionality of the model space) and the
statistical relevance of the inversion is higher.
In contrast, we use a finer grid to represent the subsurface for the

forward modeling. To obtain the fine-grid model V ∈ RN×M asso-
ciated with U, where N > n and M > m, we apply a bilinear inter-
polator (Proakis and Manolakis, 1996) I to the coarse-grid modelU,
that is, V ¼ IðUÞ. Using V in the forward modeling permits us to
introduce constraints in the model, such as the position of the water
bottom, and it allows us to simulate higher frequencies without nu-
merical dispersion. We denote with DX (¼ DZ) the side of the
square cells of the fine grid.
A variation of the simple coarse-grid implementation makes use

of grid step sizes (dx, dz) that vary with depth, i.e., (dxðzÞ, dzðzÞ).
In this case, the grid is more properly represented by a vector
v ∈ Rd, where d is the number of grid points and the position of
the grid points depends on the step-size functions dxðzÞ and
dzðzÞ. We use this coarse-grid implementation to enlarge the step
sizes in depth according to the loss of resolution with depth that
occurs in seismic exploration in which sources and receivers are
placed on the surface.

Misfit functions

Given a candidate solution U of the inverse problem, a simple
data misfit function can be written as

kDobs − gðIðUÞÞki; i ¼ 1; 2; (3)

where k · ki¼1;2 is the L1 or L2 norm and Dobs is the data matrix
containing the observed acoustic field (in the case of synthetic tests
Dobs ¼ gðVtrue; f Þ with Vtrue indicating the true velocity model).
Some preprocessing operations, such as low-pass/band-pass filter-
ing, trace-by-trace normalization, muting of specific events, may be
applied to the observed and/or to the predicted seismograms prior to
the data misfit computation.
We also use a more sophisticated data misfit function composed

by the weighted sum of the misfit components referred to the re-
flected and transmitted (or diving) wavefields:

Genetic FWI for acoustic macro models R175

D
ow

nl
oa

de
d 

06
/0

7/
16

 to
 8

2.
59

.7
5.

12
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



kðDobsÞdiving−ðgðVÞÞdivingki
þαkðDobsÞreflected−ðgðVÞÞreflectedki; i¼1;2; (4)

where α ∈ R is the weighting parameter. The choice of α is dictated
by the error component we would like to prevail and then be re-
duced by the inversion. For instance, when α ¼ 0, the misfit func-
tion is given by the difference between the modeled and observed
diving waves, so that the optimization focuses on the reduction of
this mismatch only. Otherwise if the value of α is chosen such as the
error components due to the diving and reflected waves balance,
that is

α ≈
kðDobsÞdiving − ðgðVÞÞdivingki

kðDobsÞreflected − ðgðVÞÞreflectedki
; i ¼ 1; 2; (5)

then the optimization operates to equally reduce both mismatches
simultaneously.
The data misfit computed by means of equation 4 facilitates a

layer-stripping approach to the inversion. It consists of solving the
inverse problem starting from the shallower layers and progressively
including the deeper layers (Yagle and Levy, 1984; Koster, 1991). We
use a layer-stripping procedure that consists of three steps:

1) First, estimate the shallow part of the model using the transmit-
ted waves only to guide the inversion within a predetermined
model search range (equation 4 with α ¼ 0).

2) Then, keep fixed the upper part of the model retrieved from step
1 (or narrow the search range of the GA around the solution
found in step 1) and estimate the deeper part of the model using
a weighted sum of reflected and transmitted waves (equation 4
with α ≠ 0).

3) Finally, if necessary, readjust the shallow and the deep parts of
the model, using again a weighted sum of reflected and trans-
mitted waves as misfit function.

The depth of the first layer may be inferred by a few trial-and-
error tests or by ray tracing over an approximate image of the sub-
surface. The first layer should embrace the area in which most of the
turning rays travel into.
For what concerns the model misfit, we use a simple average ab-

solute error formula; that is, given a fine-grid model V, its model
misfit χ is

χ ¼ kVref − V1k
N ×M

; (6)

where Vref is a reference model and N ×M is the number of nodes
in the fine grid.

TESTS ON THE MARMOUSI MODEL

We discuss three tests in which the two-grid GA-FWI method
is applied to the acoustic 2D Marmousi model (Versteeg, 1994; Fig-
ure 1a). Figure 1b shows the leftmost shot of the observed data that
were generated by means of the 2D FD engine introduced in the
theory section, using the derivative of the Ricker wavelet with
10 Hz central frequency as the seismic wavelet. The three tests dif-
fer in terms of (1) the search ranges of the GA FWI, (2) the misfit
function, (3) the parameterization of the model grids, and (4) the
simulated acquisition geometry. We can summarize the three tests
as follows:

1) velocity analysis test with uniform dx and dz (test-V1):

• search ranges: 1200 m∕s wide and centered on a simple
model determined via standard stacking velocity analysis and
Dix formula

• misfit function: equation 3 with i ¼ 2, i.e., L2 norm
• the two grids:

∘ coarse grid: n ¼ 17, m ¼ 15, corresponding to
dx ≈ 570 m and dz ≈ 150 m, and number of grid points
d ¼ 255

∘ fine grid: N ¼ 384, M ¼ 92, corresponding to
DX ¼ DZ ¼ 24 m and a maximum frequency of 12.5 Hz.

2) velocity analysis test with dx and dz increasing with depth
(test-V2):

• search ranges: same as in test-V1
• misfit function: L2 norm (same as in test-V1)
• the two grids:

∘ coarse grid: number of grid points d ¼ 140, dx and dz
increase with depth according to the loss of the vertical and
horizontal seismic resolution with depth

∘ fine grid: same as test-V1.
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Figure 1. (a) The acoustic Marmousi model. We use it to generate
the observed synthetic data and as a reference model for the com-
putation of the average absolute model error. (b) The leftmost shot
gather of the observed data set. The reflected waves and transmitted/
diving waves can be identified in the seismogram.
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3) linear-velocity increase test with a layer-stripping approach
(test-L):

• search ranges: 2000 m∕swide in the first two steps of the layer
stripping and centered on a 1D model with linearly increasing
velocity with depth from 1500 to 4000 m∕s; 1000 m∕s wide
in the last step and centered on the resulting best model of the
previous two steps

• misfit function of equation 4 with i ¼ 1, i.e., L1 norm, and
variable α in a three-step layer-stripping procedure

• the two grids:

∘ coarse grid: n ¼ 96, m ¼ 23 (i.e., dx ¼ dz ¼ 96 m), and
number of grid points d ¼ 2208

∘ fine grid: N ¼ 192, M ¼ 46, corresponding to
DX ¼ DZ ¼ 48 m and maximum frequency of 6.25 Hz.

Note that the third example uses a quarter of the number of points
of the first two examples for the fine grid. Accordingly, the fine-grid
step size is doubled, the maximum modeled frequency is halved (to
guarantee that no numerical dispersion occurs), and, above all, the
FD computational cost is reduced. Oppositely, the number of points
of the coarse grid in the third example is notably larger than that
used for the first two examples. Because the number of points
of the coarse grid equals the number of unknowns of the inversion,
this test requires an increased number of model evaluations.
Finally, note that we have developed quite different model param-

eterizations for the coarse grid. In fact, the first example uses an
asymmetric parameterization, i.e., dx ≠ dz, the second example
uses an asymmetric parameterization with step sizes increasing with
depth, and the third example has the cells square (dx ¼ dz, sym-
metric parameterization) and small.

Velocity analysis tests (test-V1 and test-V2)

The prior information for these tests is derived by standard stack-
ing velocity analysis and the Dix formula that enabled us to com-
pute the velocity model shown in Figure 2a. This model is
resampled to the coarse grids of test-V1 and test-V2 (Figure 2b
and 2c, respectively), and the resulting resampled models define
the central values of the search areas for the GA inversions. In both
tests, the search area is 1200 m∕s wide for each model parameter.
The relevant GA parameters used in test-V1 and test-V2 are

shown in Table 1. The simulated acquisition geometry consists
of 31 sources with spacing of 288 m. Each source hits 127 receivers,
uniformly spaced at 72 m and placed at fixed locations on the sur-
face. For the computation of the inversions, we used five compute
nodes of a Linux cluster (each compute node is a two eight-core
Intel Xeon CPU E5-2630 v3 at 2.40 GHz). We stopped both inver-
sions after 100 generations, which corresponded to 40,500 evalu-
ated models, and the runtime was approximately 10 days.
Figure 3 shows the evolution of the data misfit during the GA

inversions for test-V1 (red) and test-V2 (green): Dashed lines refer
to the mean values of the data misfit per generation, and continuous
lines show the minimum values of the data misfit per generation.
Note that for both inversions, the mean value curve approaches
the minimum value curve. This indicates a loss of genetic diversity
during the inversion (Reeves and Rowe, 2002). When the genetic
diversity is low, the genetic optimization is less efficient (Reeves
and Rowe, 2002) and continuing the inversion further may bring

minimal improvements at the expense of significant additional
CPU time.
The best-fitting model for test-V1 is shown in Figure 4a. This

model is interpolated to the fine grid (Figure 4b) and, hence, the
reference Marmousi model of Figure 1a is subtracted from the in-
terpolated model for comparison (Figure 4c). Analogously, for test-
V2, the best-fitting model is shown in Figure 5a in the coarse grid,

Table 1. Some important GA parameters used for test-V1
and test-V2.

Parameters Values

Number of models per generation 500

Ratio of models selected for mating 80%

Ratio of mutated models 10%

Selection method Stochastic universal sampling

20 40 60 80 100
Generations

2.8

2.9

3

3.1

3.2

3.3

3.4

M
is

fit

mean test-V1
min test-V1
mean test-V2
min test-V2

Figure 3. The evolution of the data misfit for test-V1 (red) and test-
V2 (green) from generation 20 to 100. Continuous and dashed lines
denote the minimum and the mean values of the data misfit per gen-
eration, respectively. Note that the minimum value of the data misfit
for test-V2 is smaller than that of test-V1 and that the mean value
curve approaches the minimum value curve in both tests.
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Figure 2. (a) The model determined via standard stacking velocity
analysis and the Dix equation. This model is resampled to the coarse
grid of (b) test-V1 and (c) test-V2. Models of panels (b and c) are
used as the center of the search areas for test-V1 and test-V2, re-
spectively.

Genetic FWI for acoustic macro models R177

D
ow

nl
oa

de
d 

06
/0

7/
16

 to
 8

2.
59

.7
5.

12
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



in Figure 5b in the fine grid, and Figure 5c shows the difference
between the estimated model of Figure 5b and the reference model.
Note that the quality of both inversions worsens with depth (see
Figures 4c and 5c).
To evaluate the quality of the final models, we calculated the

average absolute error χ using equation 6 with respect to the refer-
ence Marmousi model of Figure 1a. For test-V1 and test-V2 χ ¼
254 m∕s. However, if we are limited to the shallow half of the
model, the average absolute errors are χ ¼ 188 and 115 m∕s for
test-V1 and test-V2, respectively. This means that the shallower half
of the model is better resolved in test-V2. In addition, test-V2 pro-
duces a smoother model with fewer anomalies (see Figure 5b) than
the final model of test-V1 (Figure 4b). We believe that the smooth-
ness of the final model and the more correct reconstruction of the
shallow part are indications that the result of test-V2 is an improve-
ment with respect to test-V1.
Inspection of the seismic data offers some insights into the seis-

mic events that guide the inversion. Figure 6 shows a magnification
of the leftmost shot of Figure 3 and displays the observed data (Fig-
ure 6a), the predicted data for test-V1 and test-V2 (Figure 6b and

6d, respectively), and the differences between the predicted and ob-
served data for test-V1 and test-V2 (Figure 6c and 6e, respectively).
Note that the predicted data do not show strong reflectors (Fig-

ure 6b and 6d), whereas the observed data contain some evident
reflections (Figure 6a). This is because the true model presents
sharp contrasts and a fine layering (see Figure 1a), which produce
strong reflections, whereas the fine-grid final models for test-V1
and test-V2, which are interpolated models, have a smooth structure
and thus they cannot produce strong reflections. The red circles in
Figure 6 highlight an area in which the improvement from test-V1
to test-V2 is evident (compare Figure 6c and 6e).The final data mis-
fit for test-V1 is 2.83 and test-V2 is 2.80. This further proves the
better performance of test-V2 with respect to test-V1.

Linear-velocity increase test with a layer-stripping
approach (test-L)

In this test, we applied the layer-stripping procedure described in
the theory section, and we used the misfit function of equation 4. The
data portion that includes the diving waves had been low-pass filtered
(3 Hz) and subjected to a trace-by-trace normalization. The reflected
waves portion had been low-pass filtered (6.25 Hz) and trace-by-trace
normalized.
The simulated acquisition geometry uses 11 sources and 96 uni-

formly spaced receivers. Note that the number of sources is smaller
than those used in the previous tests (11 instead of 31), and this re-
duces the computational cost of the forward modeling. Figure 7a and
7b shows the diving and the reflected wavefield components for one
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Figure 5. Test-V2: (a) best model in coarse grid at the end of the
100th generation, (b) the same model in fine grid, and (c) difference
between the best model in fine grid and the reference model (Fig-
ure 1a). The average absolute error between panel (b) and the refer-
ence model is 254 and 115 m∕s if we take only the shallower half of
the model.
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Figure 4. Test-V1: (a) best model in coarse grid at the end of the
100th generation, (b) the same model in fine grid, and (c) difference
between panel (b) and the reference model (Figure 1a). The average
absolute error between panel (b) and the reference model is
254 m∕s for the entire model, and it is 188 m∕s if we take only
the shallower half of the model.
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of the observed shots, which is approximately located at the center of
the model (the 5th shot out of 11).
Some relevant GA parameters used in this test are shown in Ta-

ble 2. Due to the increased number of unknowns, we set a larger
number of models per generation (4800 instead of 300 as in the first
two tests) resulting in approximately 3 × 106 evaluated models.
Nine compute nodes (i7-3770 CPUs at 3.4 GHz) were used to con-
currently compute the forward modelings. The overall run
time of test-L was approximately 41 days, corresponding to approx-
imately 1.2 s per forward model. Note that the GA inversion is
highly parallelizable, and the runtime would have dropped drasti-
cally if a higher number of compute nodes were used and if the code
had been fully optimized for parallel computing.
In the first step of the layer-stripping procedure, the shallower

model parameters (down to 1 km of depth) are allowed to vary in-
side a search area 2000 m∕s wide, centered on a simple 1D model
where the acoustic velocity increases linearly with depth from 1500
to 4000 m∕s (see Figure 8a). Note that this model contains inaccu-
rate prior information, and we will show in the following sections
that the descent-based FWI started from this model fails to converge
(see Figure 16a). Hence, it is of interest to investigate for an inver-
sion procedure that is different from descent-based FWI and more
robust with respect to inaccurate starting models. In this step, the α
parameter in the data misfit function of equation 5 is zero. We stop
the first inversion after approximately 265,000 evaluations, when
the trend of the minimum value of the misfit per generation begins
to flatten (see Figure 8b). Figure 8c shows the best-fitting model
after this first inversion. Note the improvement in the shallow part
of the model, especially in the center.
To preserve genetic continuity, we used the last generation of the

first inversion to start the second step of the layer-stripping pro-
cedure in which we focused on the deeper part of the model. We
used a search area of 2000 m∕s wide, and we stopped the inversion
after approximately 1.4 × 106 model evaluations. The parameter α
was set to one such that the contributions of the error components
relative to the diving waves and reflected events were comparable.
However, because the previous inversion step was focused on the
optimization of the diving waves only, in the present step the data
misfit of the reflected waves was some two to three times higher
than the data misfit of the diving waves. Thus, it is the reflected
events that mainly drive the inversion in the first generations. The
cyan curve in Figure 9a indicates the data misfit evolution of the
second inversion step. We allowed a third inversion step, perform-
ing approximately 1.4 × 106 model evaluations and setting again
α ¼ 1, in which the model parameters at all depths may vary in
a search area �500 m∕s wide centered on the best-fitting model
of the second inversion. The blue curve of Figure 9a indicates
the data misfit evolution, Figure 9b shows the final best-fit model,
and Figure 9c displays the difference between the final best-fit
model and the reference model.
The average absolute errors between the best-fitting model and

the reference model are 369 m∕s in the first inversion, 251 m∕s in
the second inversion, and 212 m∕s in the third inversion. If we take
only the shallower half of the model, the average absolute errors are
167, 129, and 99 m∕s, respectively. Comparing these values with
those of test-V1 and test-V2 shows that the final model of test-L is
the one with the smallest model misfit.
As in the previous tests, the diving wavefield (Figure 10) is better

recovered than the reflections (Figure 11). However, the match

between the predicted reflected waves (Figure 11a) and the
low-frequency part of the observed wavefield (Figure 11b) is im-
proved with respect to the previous two tests, whereas the high-fre-
quency components dominate the difference panel (Figure 11c).
Note that, in this test, the low-frequency components of the re-
flected wavefield can be correctly reconstructed thanks to the finer
coarse grid used in the inversion, which allows for a more detailed
representation of the subsurface.

GA-FWI macro models as starting models for
descent-based FWI

While waiting for computers that can permit us to run GA-based
FWI on industrial scale projects at a convenient performance-to-
cost ratio, a possible application of GA FWI is to produce a suitable
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Figure 7. One of the shots of the observed data in test-L split into
two parts: (a) the transmitted/diving wavefield and (b) the reflected
waves down to 4.2 s. Both data are low-pass filtered and trace-by-
trace normalized.

Table 2. Some important GA parameters used for test-L.

Parameters Values

Number of models per generation 4800

Ratio of models selected for mating 42%

Ratio of mutated models 10%

Selection method Stochastic universal sampling
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starting model for descent-based FWI. To this end, we used test-V1,
test-V2, and test-L final GA models as starting models for descent-
based FWI. Our descent-based FWI algorithm uses the steepest-
descent method and a multiscale approach (we performed five iter-
ations at 4, 5, 6, 8, and 10 Hz). Inversions and forward problems are
formulated in time domain. The starting models for descent-based
FWI (i.e., the final models retrieved by GA FWI) for test-V1,
test-V2, and test-L are shown in Figure 12a, 12d, and 12g, respec-
tively, whereas in Figure 12b, 12e, and 12h, the final models after
descent-based FWI are illustrated. Figure 12c, 12f, and 12i displays
the differences between the final models after descent-based FWI and
the reference model of Figure 1a.
Note that in all the three cases, the structure features of Marmousi

are fairly reconstructed, especially down to depths of 1–1.2 km. With
respect to the GA FWI results, the average absolute error obtained
with the sequence GA FWI plus ent-based FWI decreases to 158,
150, and 120 m∕s for test-V1, test-V2, and test-L, respectively.
As a benchmark test, we performed a descent-based inversion

that starts from a smoothed version of the Marmousi (Figure 13a).
This model contains the correct long wavelengths of the true model,
and therefore, it is a suitable starting model for FWI (Virieux and
Operto, 2009). Figure 13b shows the final model after descent-
based FWI, and Figure 13c displays the difference between the
reference model and the model of Figure 13b. Note that this final
model (Figure 13b) correctly reproduces the intermediate/fine scale
of the Marmousi model, and, as expected, it has an average absolute
error (80 m∕s) smaller than those of the three GA FWI plus descent-
based FWI tests.

We also prove the benefit of performing GA FWI prior to the
descent-based FWI by analyzing the cycle skips associated to
the first breaks of the observed data and data modeled on the start-
ing models of descent-based FWI for each of the three tests. We
restrict the cycle-skip analysis to the first breaks because these
transmission events are crucial to reconstruct the large and inter-
mediate wavelengths of the model in descent-based FWI (Mora,
1989). To compute the amount of cycle skipping associated with
a given starting model, we use the method proposed by Shah et al.
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Figure 10. Result of the inversion on the diving waves for the fifth
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Position (km)

0

1

2

D
ep

th
 (

km
)

VP (km/s)

50 100
Generations

4

5

M
is

fit

first

0 2 4 6 8 0 2 4 6 8
Position (km)

0

1

2

D
ep

th
 (

km
)

2 3 4 2 3 4
VP (km/s)

a) b) c)Figure 8. The first step of the layer-stripping pro-
cedure of test-L: (a) the model used to center the
search domain, (b) the evolution of the minimum
value of the data misfit per generation, and (c) the
best-fitting model. Note that we updated only the
shallow part of the model down to approximately
1 km of depth.

R180 Sajeva et al.

D
ow

nl
oa

de
d 

06
/0

7/
16

 to
 8

2.
59

.7
5.

12
5.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



(2012). Their method analyzes the first arrivals of the data and com-
putes the phase differences between the observed data and the data
predicted on the starting model, at a given frequency, for each
source-receiver pair. In this residual phase domain, cycle skipping
occurs when there is a 2π jump. Figure 14 shows the residual phase
associated with the three different models representing the central
models of the search range for GA FWI (Figure 14a–14c) and the
three best-fitting models found by GA FWI (Figure 14d–14f), in the
three tests V1, V2, and L. Note that for each of the three tests, the
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Figure 11. Result of the inversion on the reflected waves for the
fifth shot gather: (a) final predicted data after the third inversion
step of test-L, (b) observed data, and (c) difference between the pre-
dicted and observed data. Note that the low-frequency content of the
observed wavefield is correctly recovered, and the mismatch is
mainly due to the high-frequency content.
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model for descent based FWI, i.e., the best-fitting model after GA
FWI, (b) final model after descent-based FWI, and (c) the difference
between panel (b) and the reference model of Figure 1a. In analogy
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Figure 13. Benchmark test: (a) smoothed version of the Marmousi
used as starting model for descent-based FWI, (b) final model after
descent-based FWI, (c) difference between the descent-based FWI
model and the reference model of Figure 1a. The average absolute
error of panel (b) is 80 m∕s.
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Figure 14. Phase residual panels (Shah et al., 2012) referred to dif-
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of Figure 2b after fine interpolation), (b) the second velocity analysis
model (the model of Figure 2c after fine interpolation), (c) the linearly
increasing with depth model (the model of Figure 8a in fine grid).
Phase residual panels for panel (d) the best-fitting model of test-
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of test-L.
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final models obtained by GA FWI produce significantly lower cycle
skips than the models corresponding to the prior information, that is
the models corresponding to the central values of model search
ranges. Therefore, it is evident the advantage to descent-based
FWI of starting from a model estimated by GA FWI.
The benefit of performing GA FWI prior to descent-based FWI is

further proved by comparing each of the three tests with counterpart
descent-based FWIs that start directly from the velocity models
corresponding to the centers of the search ranges for the GA FWIs
interpolated in the fine grid. The bar diagram of Figure 15 shows the
average absolute error of the final models from all these six inversions
and illustrates that the descent-based only approach returns worse
results than the inversions that also make use of GA.
Note that test-L is the one that most benefits from the introduc-

tion of the GA inversion. Given the highly inaccurate prior infor-
mation (see Figure 8a), the descent-based FWI falls, as expected,
into a local minimum (Figure 16a). Differently, the GA FWI starting
from the same prior information returns a more accurate image of

the subsurface, even though at low resolution, which is shown in
Figure 16b. Therefore, we suggest using this GA model as starting
model for descent-based FWI. The final result of the combined GA
FWI + descent-based FWI is shown in Figure 16c. Finally, the aver-
age absolute errors of the three models of Figure 16 are monoton-
ically decreasing from left to right: 416, 212, and 120 m∕s.

CONCLUSIONS

We present a GA FWI that uses a two-grid technique to estimate a
low-resolution acoustic model (macro model) of the subsurface. The
two-grid technique allows us to reduce the number of unknowns in
the inversion; thus mitigating the so-called curse of dimensionality,
and to increase the frequency range in the acoustic propagation.
We demonstrate the feasibility of the proposed GA FWI on three

different examples from the Marmousi model, using noise-free syn-
thetic data and known source wavelet, a quite convenient situation
that clears the ground from other issues than stochastic FWI. The
first two examples (test-V1 and test-V2) of GA FWI allow the sto-
chastic algorithm to explore a broad search area centered on a veloc-
ity model derived from standard stacking velocity analysis. They
share the same input data (31 shots), GA parameters setting, and
a data misfit functional that takes into account the whole recorded
wavefield. They differ only for the parameterization of the coarse
grids: test-V1 uses constant-size grid cells, whereas test-V2 uses a
grid with the cell dimensions increasing with depth. In the third
example (test-L), the GA FWI starts from a search area centered
on a 1D velocity model with velocity linearly increasing with depth,
it makes use of a layer-stripping procedure and data-misfit equation
that is composed of two terms, one associated to the diving waves
and the other related to the reflected wavefield. It also differs from
the previous two examples because a larger number of model eval-
uations are performed due to a higher number of unknowns (coarse-
grid points). This in turn requires different GA parameters, a larger
fine-grid step size and a reduced number of input data (11 shots) to
allow for a sustainable computational effort.
Comparing the results of the first two tests, we find that a smart

implementation of the coarse grid, with cell size that increases with
depth (test-V2), improves the final result (compare the final model
shown in Figure 4b with the one in Figure 5b). This is due
to the fact that in the coarse grid more cells are placed on the shal-
low part of the model, in which the seismic illumination is higher,
whereas the deeper part of the model, with poorer illumination, is
discretized using much larger cell sizes. Note that the better results
of test-V2 are achieved making use of a total number of grid points
(the unknowns in the inversion) that is less than in test-V1 (140
versus 255). In spite of the very simple 1D velocity field that de-
fined the initial model parameter search, the GA FWI performed in
the third example (test-L) is the one that returns the best result. This
highlights the importance of letting the GA perform a large explo-
ration of the model space (3 × 106 models were computed for this
test) and of choosing an efficient inversion strategy, such as the
layer-stripping approach, for the success of the stochastic inversion.
Note that in all cases, the major differences between the estimated

GA FWI models and the reference model (Figures 4c, 5c, and 9c)
are concentrated at the edges and at the base of the models, in which
the seismic illumination is poor and any purely data-driven inver-
sion cannot do much. However, all the estimated macro models
fairly reproduce the long-wavelength structures of the Marmousi
model.
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Figure 15. Bar diagram that shows, in blue, the average absolute
error after descent-based FWIs started from models that represent
the prior information used in the three tests (V1,V2, and L), and, in
red, the average absolute error of the final models after GA FWI
plus descent-based FWI for the three tests (V1,V2, and L). Note
that performing a GA FWI prior to descent-based FWI improves
the final model misfit for each of the three tests.
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Figure 8a as starting model, (b) final model after GA FWI using
model of Figure 8a to center the ranges of the stochastic inversion,
and (c) final model after descent-based FWI using the GA FWImodel
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Starting descent-based FWI from the three best models estimated
via GA FWI, we found that the final models improve the
reconstruction of the finer details (see Figure 12b, 12e, and 12h).
Moreover, the final models resulting from the sequence GA FWI +
descent-based FWI turn out to be quite similar to the model ob-
tained starting the descent-based FWI from a smooth version of
the true Marmousi (compare Figure 12b, 12e, and 12h with Fig-
ure 13b). Considering the average absolute model error for the final
models of the sequence GA FWI plus descent-based FWI, we have
158, 150, 120 m∕s for test-V1, test-V2, and test-L, respectively,
whereas we register 80 m∕s for the final descent-based FWI model
obtained starting from the smoothed version of theMarmousi. In fact,
the models resulting from GA FWI fulfill an important prerequisite
for the success of descent-based FWI, that is the seismograms com-
puted on them show minor first-breaks cycle skips with respect to the
observed seismic data. In particular, we verified that GA FWI macro
models give rise to seismograms with significant increases of first-
breaks matching compared with the seismograms of the prior models
(corresponding to the central values of the GA FWI search ranges).
Descent-based FWI started straight on the prior models brings, as
expected, to considerably worse results.
We interpret the increased likeness among the three final models

after the sequence GA FWI plus descent-based FWI, their decreased
model misfits, and their good similarity with the model estimated
from the smoothed Marmousi model as positive indications of the
ability of the proposed two-grid GA FWI to estimate reliable veloc-
ity macro models of the subsurface, suitable as input for further
descent-based inversions.
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