Improve mastitis detection through better decisions

Alfonso Zecconi
• **Whittlestone (AU) said:**

 At this stage in the growth of the Dairy Industry, two things are important:

 A. The improvement in the efficiency of the dairy farm so that the cost of production can be lowered

 B. An increase in quality of the milk produced

Good quality dairy products cannot be made from poor quality milk, and in a competitive world, the highest quality at the lowest price must be the aim.
• Many issues:
 o Cow welfare
 o Sustainability
 o Prudent use of antibiotics
 o Emerging pathogens
 o Food safety

• One answer: **Prevention**
• Application of pre- and post dipping
• Application of management practices decreasing risk of infections
 o Milking hygiene
 o Bedding hygiene
 o Proper nutrition
 o …
• Monitoring
To monitor:
Watch and check a process carefully for a period of time in order to discover something about it

- Benchmarking
- (Early) Diagnosis

Monitoring
Early diagnosis
• **Early diagnosis aims**
 - To identify diseased cows
 - To identify cows at risk

• **Classical methods**
 - CMT
 - SCC

• **New methods**
 - Sensors
 - Pattern identification (quality control curves)
There are pros, but also cons

Oldest and most applied procedures
- Selection of cows to sample
- Selection of cows to treat
- Identification of problem cows

Sensitivity vs CMT > 0

- ANY INFECTION
 - first: 47
 - second: 52
 - third: 57

- MAJOR PATH
 - first: 58
 - second: 61
 - third: 67

- MINOR PATH
 - first: 38
 - second: 45
 - third: 49

E.D. example: CMT
Sensivity vs SCC>500,000/ml

E.D.example: SCC contagious

Zecconi & Piccinini 2002, Recent developments and perspectives in bovine medicine, 346-359
Take home message 1

• Diagnostic tests are an essential component of monitoring.
• Sensitivity and specificity of each test should be known.
• How to select parameter to be monitored:
 o Cow side / on line
 o High Se (Sp)
 o Cheap to perform
 o Easy to record
 o Easy to interpret
Benchmarking
• Benchmark: a level of «quality» which can be used as a standard to compare performances.

• The terms «objective», «threshold», «target», «level» are also often used.

• A benchmark can be:
 o Legal (i.e. SCC 400,000 cell/ml EU)
 o Local (i.e. SCC levels to determine milk price)
 o Practical (i.e. acceptable levels for the frequency of a disease)
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Benchmark/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactational new IMI rate</td>
<td><5-7%</td>
</tr>
<tr>
<td>% herd > 200,000 cells/ml</td>
<td><15%</td>
</tr>
<tr>
<td>Fresh calver IMI rate</td>
<td><10%</td>
</tr>
<tr>
<td>Dry period new IMI rate</td>
<td><10%</td>
</tr>
<tr>
<td>Dry period cure rate</td>
<td>>85%</td>
</tr>
<tr>
<td>Incidence rate clinical mastitis (100 cow/year)</td>
<td><25</td>
</tr>
</tbody>
</table>

Bradley et al, 2012 *Dairy Herd Health*
Frequency of clinical mastitis in 125 Italian dairy herds

Zecconi, 2016, Summa veterinaria, 11, 12-16
Benchmark/target: subclinical mastitis

Frequency of subclinical mastitis ($\approx 160,000$ QMS)

Zecconi, 2016, Summa veterinaria, 11, 12-16
Blood NAGase pattern during the periparturient period in the three dairy herds

Albonico et al, 2016
Take home message 2

A benchmark/target should be:
1. Measurable
2. Fitted to herd characteristics
3. Credible
4. Achievable
5. Rewarding (economically or psychologically)
6. Flexible (when required)
From benchmarking to action
Continuous improvement process

Plan: say what you do
Do: do what you said
Check: record what you have done
(re)Act: repeat a new cycle based on results
CM frequency: 2%/month

Records

Target achieved

Yes

No

Procedures

- Milk Sampling
- Bact analysis
- Epi data analysis
- Ther.prot. update
SCC post-calving

<100,000 cells/ml

Individual Test

Target achieved

END

Yes

NSAID

No

M.P. Bact. +ve

A.M. Therapy

Yes

Milk sampling Analysis

No

Target achieved

END
Bimodality

<20%

Test

Target achieved

Yes

No

Milking procedure and M.M. assessment
1. Monitoring is essential to assess production process in an effective way.
2. An effective and easy-to-retrieve recording system should be in place.
3. Parameters should be selected among the ones that can be linked to a practical intervention (action).
4. Parameters which are frequently measurable (daily/weekly) should be preferred.
5. Benchmarks (targets) should be defined based on achievable results at herd level.
6. An operational procedure should be implemented any time a significant change (or alarm) is observed.
7. Benchmarks should be changed as long as the targets are achieved and efficiency of the process improves.
CONCLUSIONS

• Milk production is a **continuous process** involving different factors (biological, economical, mechanical, psychological...).

• This process **must be monitored** like any other production process.

• Only when information (data) are collected and evaluated promptly and efficiently, **proper decisions** can be taken and positive results expected.
Thank you!