The genetics of blood pressure regulation and its target organs from association studies in $\mathbf{3 4 2 , 4 1 5}$ individuals

A list of authors and their affiliations appears at the end of the manuscript

Abstract

To dissect the genetic architecture of blood pressure (BP) and assess how its elevation promotes downstream cardiovascular diseases, we analyzed 128,272 SNPs from targeted and genome-wide arrays in 201,529 individuals of European ancestry. Genotypes from an additional 140,886 individuals of European ancestry were used as validation for loci reaching genome-wide significance but without prior support in the literature. We identified 66 BP loci, of which 17 were novel and 15 harbored multiple distinct association signals, and which together explain up to 3.5% of BP variation. The 66 index SNPs were enriched for cis-regulatory elements, particularly in vascular endothelial cells, consistent with a primary role in BP control through modulating blood vessel tone and fluid filtration across multiple tissues, not solely the kidney. Importantly, the 66 index SNPs combined in a risk score showed comparable effects in 64,421 individuals of non-European descent (South-Asian, East-Asian and African), confirming that these are ancestral physiological effects that arose prior to human migration out of Africa. The $66-$ SNP BP risk score was significantly associated with target-organ damage in multiple tissues, with minor effects in the kidney. Our data expand current knowledge of BP pathways, and also, highlight that BP regulation and its effects may occur in multiple organs and tissues beyond the classic renal system.

There are considerable physiological, clinical and genetic data that implicate the kidney as the major regulator of $B P$ through maintaining salt-water balance and that renal damage is consequent to longterm BP elevation. However, alternative hypotheses, such as increasing systemic vascular resistance, are also serious contenders to explain the rise of BP with increasing age. The genetic basis of elevated blood pressure or hypertension (HTN) involves many loci that have been identified using large-scale analyses of candidate genes ${ }^{1,2}$, linkage studies, and genome-wide association studies (GWAS) ${ }^{3-12}$. The genes underlying BP regulation can help resolve many of the open questions regarding BP (patho-) physiology. While $\sim 40-50 \%$ of BP variability is heritable ${ }^{13,14}$, the identified genetic variation explains only $\sim 2 \%^{1-12}$. This is considerably less than that observed for other cardiovascular disease (CVD) risk factors, such as plasma lipid fractions, despite the fact that they have comparable heritability ${ }^{15}$. The sources of this discrepancy could be many, but the major reasons are likely to be the constraints on physiological variation of BP and contributions from diverse organs and tissues, potentially resulting in hundreds or thousands of genetic variants of weak effects. Consequently, the fundamental causes of hypertension susceptibility also remain unknown.

The Cardio-MetaboChip is a custom genotyping microarray designed to facilitate cost-effective follow-up of nominal associations for metabolic and cardiovascular traits, including BP. This array comprises 196,725 variants, including $\sim 5,000$ SNPs with nominal ($P<0.016$) evidence of BP association in our previous GWAS meta-analysis ${ }^{5}$. Furthermore, the array includes several dense scaffolds for fine mapping of selected loci spanning, on average, genomic regions of 350 kilobases 5,16, of which 24 include genome-wide significant BP association in the current study ${ }^{5,16}$. Here we performed BP GWAS metaanalysis of both systolic (SBP) and diastolic (DBP) BP using data from 109,096 individuals directly genotyped using the Cardio-MetaboChip array, in combination with imputed data from an additional 92,433 individuals with genome-wide genotyping, all of European (EUR) ancestry. Validation of loci reaching genome-wide significance but without previous support in the literature was sought using association results from an additional 140,886 individuals of European ancestry from the UK Biobank. We assessed whether the genome-wide significant BP SNPs identified, which are largely in non-coding DNA, were associated with expression levels of nearby genes, and tested for enrichment of BP SNPs in cis-regulatory sequences. Signal refinement and analyses of associated variants were performed in 64,421 individuals of South-Asian (SAS), East-Asian (EAS), and African (AFR) ancestry to assess their global distribution. Finally, a genotype risk score was constructed to examine the impact of the BP SNPs on cardiovascular and other end-organ outcomes.

RESULTS

Novel genetic loci associated with SBP and DBP

We performed meta-analyses of association summary statistics from a total of 201,529 individuals of EUR ancestry from 74 studies: (i) 109,096 individuals from 46 studies genotyped on Cardio-MetaboChip; and (ii) 92,433 individuals from 28 studies with imputed genotype data from genome-wide genotyping at SNPs overlapping the variants on Cardio-MetaboChip. Twenty-four of the 28 studies with genome-wide genotyping data had contributed to previous analyses (Supplementary Tables 1-3) ${ }^{5,7}$.

BP was measured using standardized protocols in all studies (Supplementary Table 1), regardless of whether the primary focus was BP or another trait. We initially analyzed affected and unaffected individuals from samples selected as cases (e.g. type 2 diabetes) or controls, separately. However, because sensitivity analyses did not reveal any significant difference in BP effect size estimates between case and control samples (data not shown), we analyzed all samples combined. When available, the average of two BP measurements was used for association analyses (Supplementary Table 1). If an individual was taking a BP-lowering treatment, the underlying SBP and DBP were estimated by adding 15 mmHg and 10 mmHg , respectively, to the measured values, as done in prior analyses ${ }^{5,17}$. Association statistics, in models adjusting for age, age ${ }^{2}$, sex, and body mass index (BMI), were obtained for each study separately, with genomic control applied to correct for study-specific population structure. Fixed-effects meta-analysis proceeded in 4 stages, separately for the following associations: Stage 1, using results based on 46 studies using Cardio-MetaboChip genotypes of 109,096 participants; Stage 2, using additional results based on imputed genotypes from genome-wide genotyping arrays in 4 previously unpublished studies; Stage 3 using imputed genotypes from genomewide genotyping arrays in 24 previously published studies ${ }^{5}$; and Stage 4, the joint meta-analysis of Stages 1-3 including a total of 201,529 independent individuals (Supplementary Figure 1,

Supplementary Tables 2-3, Supplementary Note). To account for population structure between studies in Stages 1-3 of our meta-analysis, genomic control correction was applied in each of these stages. The "double" genomic control correction applied is the same approach as other published large-scale studies of quantitative cardio-metabolic traits that combine genotype data from GWAS and Cardio-MetaboChip 18,19.

At stage 4, 67 loci attained genome-wide significance $\left(P<5 \times 10^{-8}\right)$, 18 of which without prior support in the literature (Supplementary Table 4). Quantile-quantile plots (Supplementary Figure 2) of
the stage 4 meta-analysis showed an excess of small P values, with an elevated genomic control lambda estimate that were persistent, albeit attenuated, after excluding all 66 loci. This observation is compatible with either residual uncorrected population stratification or the presence of a large number of variants that are truly associated with BP but fail to achieve genome-wide significance in the current meta-analysis. The Cardio-MetaboChip array's inclusion of SNPs from a prior BP GWAS ${ }^{5}$ does not appear to be the sole explanation, as we did not observe a significant decrease of the excess of small P values when we excluded all SNPs that were selected based on BP for the Cardio-MetaboChip. Given that the quantile-quantile plots continued to show deviation from the null expectation even after removing new, known, and additional variants related to BP (Supplementary Figures 3 and 4), we sought additional validation to support variants $(\mathrm{N}=18)$ attaining genome-wide significance, but without prior support in the literature, in up to 140,886 individuals of European ancestry from UK Biobank ${ }^{20}$. For these SNPs, stage 5 meta-analysis combined association summary statistics from stage 4 and UK Biobank, in a total of 342,415 individuals (Supplementary Table 5).

Upon stage 5 meta-analysis, 17 of 18 variants retained genome-wide significance for the primary trait (SBP or DBP result with lower P value). The one variant that was not genome-wide significant had a borderline P value of 4.49×10^{-8} at stage 4 . These findings are consistent with appropriate calibration of the association test statistics at stage 4 such that observing one failure among 18 validation tests is consistent with the use of a threshold designed $\left(P<5 \times 10^{-8}\right)$ to have a 1 in 20 chance of a result as or more extreme solely due to chance.

In total, 66 loci attained genome-wide significance: 13 loci for SBP only, 12 loci for DBP only, and 41 for both traits. Of these, 17 BP loci were novel, while 49 were previously reported at genome-wide significance (Table 1). The new loci were defined based on mapping $>1 \mathrm{Mb}$ from any previously established locus, with the exception of one region characterized by long-range LD spanning several mega-bases, which was considered a single locus. Plots of association results across the genome show the genomic features of each locus and SNP P values, with loci labeled arbitrarily according to the gene(s) nearest the lead SNP (Figure 1).

Compared with previous BP variants ${ }^{5,7,21}$, the average absolute effect size of the newly discovered variants is smaller, although the minor allele frequency (MAF) is comparable, presumably owing to the increased power of a larger sample size (Figure 2). As expected from the high correlation between SBP and DBP values, the observed directions of effects for the two traits were generally concordant (Supplementary Figure 5), and the absolute effect sizes were inversely correlated with MAF (Table 1 and Supplementary Figure 6). The 66 BP SNPs explained 3.46% and 3.36% of SBP and DBP
variance, respectively, an increase from 2.95% and 2.78% for SBP and DBP for the 49 previously reported SNPs alone (Supplementary Note). The low percent of variance explained is consistent with earlier estimates of large numbers of common variants of weak effects and a large number of genes influencing BP levels ${ }^{5}$.

Signal refinement at the 66 BP loci

Quantitative trait associations are often reported in the literature based on a single index SNP, despite the fact that linkage disequilibrium (LD) to the causal variant can implicate many nearby variants. To identify distinct signals of association at the 66 BP loci and the variants most likely to be causal for each, we started with an approximate conditional analysis using a model selection procedure implemented in the GCTA-COJO package ${ }^{22,23}$ as well as a detailed literature review of all published BP association studies. GCTA-COJO analysis was performed using the association summary statistics for SBP and DBP from the Stage 4 EUR ancestry meta-analyses, with the LD between variants estimated on the basis of Cardio-MetaboChip genotype data from 7,006 individuals of EUR ancestry from the GoDARTS cohort ${ }^{24}$. More than one distinct BP association signal was identified at 13 loci at $P<5 \times 10^{-8}$ (Supplementary Table 6, Supplementary Figures 7, and Supplementary Note). At six loci, the distinct signals were identified in separate analyses of both SBP and DBP; these trait-specific associations were represented by the same or highly correlated $\left(r^{2}>0.8\right)$ SNPs at 5 of the 6 loci (Supplementary Tables 78). We repeated GCTA-COJO analyses using the same summary association results, but with a different reference sample for LD estimates (WTCCC1-T2D/58BC, N = 2,947, Supplementary Note) and observed minimal differences arising from minor fluctuations in the association P value in the joint regression models (Supplementary Table 7-8). LD-based comparisons of published association signals at established BP loci, and the current study's findings suggested that at 10 loci, the signals identified by the single-SNP and the GCTA-COJO analyses were distinct from those in the literature (Supplementary Table 9).

We then performed multivariable regression modeling in a single large cohort (Women's Genome Health Study, WGHS, $N=23,047$) with simultaneous adjustment for 1) all combinations of putative index SNPs for each distinct signal from the GCTA-COJO conditional analyses, and 2) all index SNPs for all potential distinct signals identified by our literature review (Supplementary Table 9, Supplementary Note). Although WGHS is very large as a single study, power is reduced in a single sample compared to that in the overall meta-analysis (23 k vs. 201 k individuals) and consequently the failure to reach significance does not represent non-replication for individual SNPs. The WGHS analysis
supported two distinct signals of association from the GCTA-COJO analysis at eight of 13 loci, but could not provide support for the remaining five loci (Supplementary Table 10). The joint SNP modeling in WGHS, however, indicated two distinct signals of association at three additional loci (GUCY1A3GUCY1B3, SYNPO2L and TBX5-TBX3), at which the SNP identified in the current study is distinct from that previously reported in the literature ${ }^{5,11}$.

Established loci often extend over hundreds of kilobases and contain many genes that could plausibly underlie the BP association. We sought to refine the localization of likely functional variants at loci with high-density coverage on the Cardio-MetaboChip. We followed a Bayesian approach and used the association summary statistics from the EUR ancestry meta-analyses to define, for each signal, credible sets of variants that have 99\% probability of containing or tagging the causal variant (Supplementary Note). To improve the resolution of the method, the analyses were restricted to 24 regions selected to fine-map (FM) genetic associations, and that included at least one SNP reaching genome-wide significance in the current meta-analyses (Supplementary Table 11). Twenty-one of the Cardio-MetaboChip FM regions were BP loci in the original design, with three of the newly discovered BP loci in FM regions that were originally selected for other traits. We observed that the 99% credible sets at five BP loci spanned a small region, <10 kb (PLCE1 and SLC39A8 for SBP and DBP; FGF5 for SBP, with <20kb for DBP; JAG1 and ZC3HC1 for DBP, with <20kb for SBP). The greatest refinement was observed at the SLC39A8 locus for SBP and DBP, and at the ZC3HC1 and PLCE1 loci for DBP, where the 99\% credible sets included only the index variants (Supplementary Table 12). Although credible sets mapped primarily to non-coding sequence, they included one synonymous and seven non-synonymous variants that attained high posterior probability of driving seven distinct association signals at six BP loci (Supplementary Table 12). Of these, three variants alone account for more than 95% of the posterior probability of driving the association signal observed at each of three loci: rs13107325 at the SLC39A8 locus with posterior probability 99.4\% for SBP and nearly 100\% for DBP; rs1800562 at the HFE locus accounting for 98.1% of the posterior probability for DBP; and rs11556924 at the ZC3HC1 locus with posterior probability 97.8% for SBP and 99.9% for DBP. Despite reduced statistical power, the analyses restricted to the samples with Cardio-MetaboChip genotypes only ($N=109,096$) identified as credible causal SNPs the majority of those identified in the analyses of the GWAS+Cardio-MetaboChip data (Supplementary Table 12). Given that the Cardio-MetaboChip-only data included more eligible SNPs, a larger number of credible causal SNPs were identified. The full list of SNPs in the 99% credible sets are listed in Supplementary Table 13.

What do the BP SNPs do?

Index SNPs or their proxies $\left(r^{2}>0.8\right)$ altered amino acid sequence at 11 of 66 BP loci (Table 1). Thus, the majority of BP-association signals are likely driven by non-coding variants hypothesized to regulate expression of some nearby gene in cis. To identify their effects we first sought SNPs associated with gene expression (eSNPs) from a range of available expression data which included hypertension target end organs and cells of the circulatory system (heart tissue, kidney tissue, brain tissue, aortic endothelial cells, blood vessels) and other tissue/cell types (CD4 ${ }^{+}$macrophages, monocytes lymphoblastoid cell lines, skin tissue, fat tissue, and liver tissue). Fourteen BP SNPs at the MTHFR-NPPB, MDM4, ULK4, CYP1A1-ULK3, ADM, FURIN-FES, FIGN, and PSMD5 loci were eSNPs across different tissues (Supplementary Table 14). Of these 14 eSNPs, three were predicted to alter the amino acid sequence at the MTHFR-NPPB, MAP4 and ULK4 loci, providing two potential mechanisms to explore in functional studies. Second, we used gene expression levels measured in whole blood in two different samples each including $>5,000$ individuals of EUR descent. We tested whether the lead BP SNP was associated with expression of any transcript in cis ($<1 \mathrm{Mb}$ from the lead SNP at each locus) at a false discovery rate (FDR) of <0.05, accounting for all possible cis-transcript association tests genome-wide. It is likely that we did not genotype the causal genetic variant underlying a BP association signal. A nearby SNPtranscript association, due to LD, may therefore reflect an independent genetic effect on expression that is unrelated to the BP effect. Consequently, we assumed that the lead BP SNP and the most significant eSNP for a given transcript should be highly correlated ($r^{2}>0.7$). Furthermore, we assumed that the significance of the transcript association with the lead BP SNP should be substantially reduced in a conditional model adjusting for the best eSNP for a given transcript. Eighteen SNPs at 15 loci were associated with 22 different transcripts, with a total of 23 independent SNP-transcript associations (three SNPs were associated with two transcripts each, Supplementary Table 15, Supplementary Note). The genes expressed in a BP SNP allele-specific manner are clearly high-priority candidates to mediate the BP association. In whole blood, these genes included obvious biological candidates such as GUCY1A3, encoding the alpha subunit of the soluble guanylate cyclase protein, and $A D M$, encoding adrenomedullin, both of which are known to induce vasodilation ${ }^{25,26}$. There was some overlap of eSNPs between the whole blood and other tissue datasets at the MTHFR-NPPB, MDM4, PSMD5, ULK4 and CYP1A1-ULK3 loci, illustrating additional potentially causal genes for further study (MTHFR and CLCN6, MDM4, PSMD5, ULK4, CYP1A1, and ULK3).

An alternative method for understanding the effect on BP of non-coding variants is to determine whether they fall within DNasel hypersensitivity sites (DHSs). DHSs represent open regions of chromatin
that are accessible to protein binding and can indicate transcriptional activity. We performed two analyses to investigate whether BP SNPs or their LD proxies ($r^{2}>0.8$) were enriched in DHSs in a cell-type-specific manner (Supplementary Note). First, we used Epigenomics Roadmap and ENCODE DHS data from 123 adult cell lines or tissues ${ }^{27-29}$ to estimate the fold increase in the proportion of BP SNPs mapping to DHSs compared to SNPs associated at genome-wide significance with non-BP phenotypes from the NHGRI GWAS catalog ${ }^{30}$. We observed that 7 out of the 10 cell types with the greatest relative enrichment of BP SNPs mapping to DHSs were from blood vessels (vascular or micro-vascular endothelial cell-lines or cells) and 11 of the 12 endothelial cells were among the top quarter most enriched among the 123 cell types (Figure 3 and Supplementary Table 16). In a second analysis of an expanded set of tissues and cell lines, in which cell types were grouped into tissues (Supplementary Table 17), BP-associated SNP enrichment in DHSs in blood vessels was again observed ($P=1.2 \times 10^{-9}$), as well as in heart samples ($P=5.3 \times 10^{-8}$; Supplementary Table 18).

We next tested whether there was enrichment of BP SNPs in $\mathrm{H} 3 \mathrm{~K} 4 \mathrm{me} 3^{31}$ sites, a methylation mark associated with both promoter and enhancer DNA. We observed significant enrichment in a range of cell types including CD34 primary cells, adult kidney cells, and muscle satellite cultured cells (Supplementary Table 19). Enrichment of BP SNPs in predicted strong and weak enhancer states and in active promoters ${ }^{32}$ in a range of cell types was also observed (Supplementary Table 20, Supplementary Figure 8).

We used Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) ${ }^{33}$ to attempt to identify pathways over-represented in the BP association results. No gene sets meeting experimentwide significance for enrichment for BP association were identified by MAGENTA after correction for multiple testing, although some attained nominal significance (Supplementary Table 21, Supplementary Note). We also adapted the DEPICT ${ }^{34}$ pathway analysis tool (Data-driven Expression Prioritized Integration for Complex Traits) to identify assembled gene-sets that are enriched for genes near associated variants, and to assess whether genes from associated loci were highly expressed in particular tissues or cell types. Using the extended BP locus list based on genome-wide significant loci from this analysis and previously published SNPs that may not have reached genome-wide significance in the current analysis (Supplementary Table 9), we identified six significant (FDR $\leq 5 \%$) gene sets: embryonic growth retardation, abnormal cardiovascular system physiology, abnormal cardiac muscle contractility, SNTB1 protein complex, G Alpha 1213 signaling events, and prolonged QRS complex duration. We also found that suggestive SBP and DBP associations ($P<1 \times 10^{-5}$) were enriched for reconstituted gene-sets at DBP loci (mainly related to developmental pathways), but not at SBP loci
(Supplementary Table 22, Supplementary Note). In a final analysis, we assessed Cardio-MetaboChip SNPs at the fine-mapping loci using formaldehyde-assisted isolation of regulatory elements (FAIRE-gen) in lymphoblastoid cell lines ${ }^{35}$. Our results provided support for two SNPs, one of which SNP (rs7961796 at the TBX5-TBX3 locus) was located in a regulatory site. Although the other SNP (rs3184504 at the SH2B3 locus) is a non-synonymous variant, there was also a regulatory site indicated by DNasel and H3K4me1 signatures at the locus, making the SNP a potential regulatory variant (Supplementary Table 23) ${ }^{36}$. Both SNPs were included in the list of 99% credible SNPs at each locus.

Asian- and African ancestry BP SNP association

We tested the 66 lead SNPs at the established and novel loci for association with BP in up to 20,875 individuals of South Asian (SAS) ancestry, 9,637 individuals of East Asian (EAS) ancestry, and 33,909 individuals of AFR ancestry. As expected, the effect allele frequencies are very similar across studies of the same ethnicity, but markedly different across different ancestry groups (Supplementary Figure 9). Many associations of individual SNPs failed to reach $P<0.05$ for the BP trait with the lower P value (Supplementary Table 24), which could potentially be due to the much lower statistical power at the sample sizes available, different patterns of LD at each locus across ancestries, variability in allele frequency, or true lack of association in individuals of non-European ancestry. The low statistical power for the great majority of SNPs tested is visible considering SNP-by-SNP power calculations using European ancestry effect sizes (Supplementary Table 24). However, concordant directions of allelic effects for both SBP and DBP were observed for $45 / 66$ SNPs in SAS, 36/60 SNPs in EAS, and 42/66 SNPs in AFR samples: the strongest concordance with SAS is not surprising because South Asians are more closely related to Europeans than are East Asians or Africans. Moreover, strong correlation of effect sizes was observed between EUR samples with SAS, EAS, or AFR samples ($r=0.55,0.60$, and 0.48 , respectively). To test the overall effect of ancestry, where the BP effect may be detectable at only a subset of SNPs, a more powerful test is to construct a combined risk score weighted by allele-specific effects across 66 index SNPs, separately for SBP and DBP, as a predictor of BP in each population sample. A shortcoming of the use of a score test aggregating effects across multiple variants is that they obscure the subset of variants that does not show reliable association in multiple ethnicities. The score represents the predicted mm Hg change for an individual based on their genotype at all 66 SNPs. The SBP and DBP risk scores were significant predictors of SBP and DBP, respectively, in all samples. The change in risk score associated with a 1 mm Hg higher SBP/DBP in EUR samples was associated with a $0.58 / 0.50 \mathrm{~mm} \mathrm{Hg}$ higher SBP/DBP in SAS samples (SBP $P=1.5 \times 10^{-19}$, DBP $P=3.2 \times 10^{-15}$), 0.49/0.50 mm

Hg SBP/DBP in EAS samples (SBP $P=1.9 \times 10^{-10}$, DBP $P=1.3 \times 10^{-7}$), and $0.51 / 0.47 \mathrm{~mm} \mathrm{Hg} \mathrm{SBP/DBP} \mathrm{in}$ AFR samples (SBP $P=2.2 \times 10^{-21}$, DBP $P=6.5 \times 10^{-19}$). The attenuation of the genetic risk score estimates in non-European ancestries is presumably due to inclusion of a subset of variants that lack association in the non-European samples. In the admixed populations tested (mainly African ancestry studies), the degree of European admixture influences the extent of association. We subsequently performed a trans-ethnic meta-analysis of the 66 SNPs in all 64,421 samples across the three non-European ancestries. After correcting for 66 tests, 12/66 SNPs were significantly associated with either SBP or DBP ($P<7.6 \times 10^{-4}$), with a correlation of EUR and non-EUR effect estimates of 0.77 for SBP and 0.67 for DBP; the European-ancestry SBP or DBP risk score was associated with $0.53 / 0.48 \mathrm{~mm} \mathrm{Hg}$ higher BP per predicted $\mathrm{mm} \mathrm{Hg} \mathrm{SBP/DBP}$ respectively (SBP $P<6.6 \times 10^{-48}$, DBP $P<1.3 \times 10^{-38}$). For 7 of the 12 significant SNPs, no association has previously been reported in genome-wide studies of non-European ancestry. While some heterogeneity of effects was observed between European and non-European effect estimates (Cochran's Q p-value <0.05 for 30/132 tests), these were not distinguishable from chance effects when considering a multiple test correction (Supplementary Table 24). Taken together, these findings suggest that, in aggregate, BP loci identified using data from individuals of EUR ancestry are also predictive of BP in non-EUR samples, but larger non-European sample sizes will be needed to establish precisely which individual SNPs are associated in a given ethnic group.

Impact on hypertensive target organ damage

Long-term elevated BP causes target organ damage, especially in the heart, kidney, brain, large blood vessels, and the retinal vessels ${ }^{37}$. Consequently, the genetic effect of the 66 SBP and DBP SNPs on end-organ outcomes can be directly tested using the risk score, although some outcomes lacked results for a small number of SNPs. Interestingly, BP risk scores significantly predicted (Supplementary Note) coronary artery disease risk, left ventricular mass and wall thickness, stroke, urinary albumin/creatinine ratio, carotid intima-medial thickness and central retinal artery caliber, but not heart failure or other kidney phenotypes, after accounting for the number of outcomes examined (Table 2). Some SNPs could contribute to the risk score with effects that are stronger or weaker than their BP effects would suggest when considering all BP variants collectively. We sought to test the robustness of our risk scores to removal of SNPs with such outlier effects. We therefore repeated the risk score analysis removing iteratively SNPs that contributed to statistical heterogeneity (SNP trait effects relative to SNP BP effects). Heterogeneity was defined based on a multiple testing adjusted significance threshold for Cochran's Q test of homogeneity of effects (Supplementary Note). The risk score analyses restricted to the subset of

SNPs showing no heterogeneity of effect revealed essentially identical results, with the exception that urinary albumin/creatinine ratio was no longer significant. The per-SNP results are provided in

Supplementary Table 25 and Supplementary Figures 10. Because large-scale GWAS of non-BP cardiovascular risk factors are available, we examined the BP risk scores as predictors of other cardiovascular risk factors: LDL-cholesterol, HDL-cholesterol, triglycerides, type 2 diabetes, BMI, and height. We observed nominal ($P<0.05$) associations of the BP risk scores with risk factors, although mostly in the opposite direction to the risk factor-CVD association (Supplementary Table 26). The failure to demonstrate an effect of hypertension on heart failure may reflect power from a modest sample size, but the lack of significant effects on renal measures suggests that the epidemiologic relationship of higher BP and worse renal function may not reflect direct consequences of BP elevation.

DISCUSSION

The study reported here is the largest to date to investigate the genomics of BP in multiple continental ancestries. Our results highlight four major features of inter-individual variation in BP: (1) we identified 66 (17 novel) genome-wide significant loci for SBP and DBP by targeted genotyping of up to 342,415 individuals of European ancestry that cumulatively explain $\sim 3.5 \%$ of the trait variance (novel loci validated using data from additional 140,886 individuals); (2) the variants were enriched for cisregulatory elements, particularly in vascular endothelial cells; (3) the variants had broadly comparable BP effects in South Asians, East Asian and Africans, albeit in smaller sample sizes; and, (4) a 66 SNP riskscore predicted target organ damage in the heart, cerebral vessels, carotid artery and the eye with little evidence for an effect in kidneys. Overall, there was no enrichment of a single genetic pathway in our data; rather, our results are consistent with the effects of BP arising from multiple tissues and organs.

Genetic and molecular analyses of Mendelian syndromes of hypertension and hypotension point to a renal origin, involving multiple rare deleterious mutations in proteins that regulate salt-water balance ${ }^{38}$. This is strong support for Guyton's hypothesis that the regulation of sodium excretion by the kidney and its effects on extracellular volume is the main pathway determining intra-arterial pressure ${ }^{39}$. However, our genetic data from unselected individuals in the general community argues against a single dominant renal effect.

First, the 66 SNPs we identified are not chance effects, but have a global distribution and impact on BP that are consistent as measured by their effects across the many studies meta-analyzed. That they are polymorphic across all continental ancestries argues for their origin and functional effects prior to human continental differentiation.

The adrenergic autonomic system has been considered an important mediator of BP regulation, and is targeted by beta-adrenergic antagonists for the treatment of hypertension. The SNP rs6271 lies within the coding sequence of the dopamine beta hydroxylase gene ($D B H$), encoding the enzyme that catalyzes the conversion of dopamine to norepinephrine, a critical neurotransmitter and effector of sympathetic control of $B P$. The variant results in an arginine to cysteine amino acid change at the highly conserved position 549 (R549C) and is predicted to be potentially damaging by Polyphen2. Rare loss-offunction mutations in this gene are associated with low plasma dopamine beta hydroxylase activity, low plasma norepinephrine and high plasma dopamine, and a clinical syndrome including orthostatic hypotension ${ }^{40,41}$. Several of the 17 novel loci contain other strong biological candidates; these are described in greater detail in Supplementary Table 27 and the Supplementary Note.

The single most common feature we identified was the enrichment of regulatory elements for gene expression in vascular endothelial cells. The broad distribution of these cells across both large and small vessels and across all tissues and organs suggest that functional variation in these cells affect endothelial permeability or vascular smooth muscle cell contractility via multiple pathways. These hypotheses will need to be rigorously tested, in appropriate models, to assess the contribution of these pathways to BP control, and these pathways could be targets for systemic anti-hypertensive therapy as they are for the pulmonary circulation ${ }^{42}$. In summary, the genetic observations will contribute to a new and improved understanding of BP biology and a re-evaluation of the pathways considered relevant for therapeutic BP control.

REFERENCES

1. Johnson, T. et al. Blood Pressure Loci Identified with a Gene-Centric Array. The American Journal of Human Genetics 89, 1-13 (2011).
2. Newton-Cheh, C. et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nature genetics 41, 348-53 (2009).
3. Franceschini, N. et al. Genome-wide association analysis of blood-pressure traits in Africanancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet 93, 545-54 (2013).
4. Ganesh, S.K. et al. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am J Hum Genet 95, 49-65 (2014).
5. Ehret, G.B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103-109 (2011).
6. Wain, L.V. et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43, 1005-11 (2011).
7. Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet 41, 666-76 (2009).
8. Simino, J. et al. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet 95, 24-38 (2014).
9. Tragante, V. et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet 94, 349-60 (2014).
10. Wang, Y. et al. From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A 106, 226-31 (2009).
11. Kato, N. et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nature genetics 43, 531-8 (2011).
12. Padmanabhan, S. et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS genetics 6, e1001177 (2010).
13. Miall, W.E. \& Oldham, P.D. The hereditary factor in arterial blood-pressure. Br Med J 1, 75-80 (1963).
14. Levy, D. et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 8 Suppl 1, S3 (2007).
15. Teslovich, T.M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707-13 (2010).
16. Voight, B.F. et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 8, e1002793 (2012).
17. Tobin, M.D., Sheehan, N.A., Scurrah, K.J. \& Burton, P.R. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 24, 291135 (2005).
18. Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197-206 (2015).
19. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187-96 (2015).
20. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015).
21. Levy, D. et al. Genome-wide association study of blood pressure and hypertension. Nat Genet 41, 677-87 (2009).
22. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3 (2012).
23. Yang, J., Lee, S.H., Goddard, M.E. \& Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88, 76-82 (2011).
24. Kimber, C.H. et al. TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia 50, 1186-91 (2007).
25. Erdmann, J. et al. Dysfunctional nitric oxide signalling increases risk of myocardial infarction. Nature 504, 432-6 (2013).
26. Hirata, Y. et al. Mechanisms of adrenomedullin-induced vasodilation in the rat kidney. Hypertension 25, 790-5 (1995).
27. Epigenomics Roadmap et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317-30 (2015).
28. Consortium, E.P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74 (2012).
29. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-5 (2012).
30. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42, D1001-6 (2014).
31. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45, 124-30 (2013).
32. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43-9 (2011).
33. Segre, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6(2010).
34. Pers, T.H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 6, 5890 (2015).
35. Giresi, P.G., Kim, J., McDaniell, R.M., Iyer, V.R. \& Lieb, J.D. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res 17, 877-85 (2007).
36. Stergachis, A.B. et al. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515, 365-70 (2014).
37. Mancia, G. et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34, 2159-219 (2013).
38. Lifton, R., Somlo, S., Giebisch, G. \& Seldin, D. Genetic Diseases of the Kidney, (Academic Press, 2009).
39. Coffman, T.M. \& Crowley, S.D. Kidney in hypertension: guyton redux. Hypertension 51, 811-6 (2008).
40. Kim, C.H. et al. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency. American journal of medical genetics 108, 140-7 (2002).
41. Deinum, J. et al. DBH gene variants that cause low plasma dopamine beta hydroxylase with or without a severe orthostatic syndrome. Journal of medical genetics 41, e38 (2004).
42. Ghofrani, H.A. et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med 369, 330-40 (2013).

1 SUPPLEMENTARY NOTE

2 Supplementary Note is available in the online version of the paper.

3 ACKNOWLEDGEMENTS

4 We thank all the study participants of this study for their contributions. Detailed acknowledgment of 5 funding sources is provided in the Supplementary Note.

6 AUTHOR CONTRIBUTIONS

7 See Supplementary Note for Author Contributions.

8 AUTHOR INFORMATION

9 The authors declare competing financial interests (see corresponding section in the Supplementary Note).

TABLE LEGENDS

Table 1. SBP and DBP association at 66 loci.

Meta-analysis results of up to 342,415 individuals of European ancestry for SBP and DBP: Established and new loci are grouped separately. Nearest genes are shown as locus labels but this should not be interpreted as support that the causal gene is the nearest gene. The lead SNP with the lowest P value for either BP trait is shown as the lead SNP and both SBP and DBP results are presented even if both are not genome-wide significant. The SNP effects are shown according to the effect in mm Hg per copy of the coded allele (that is the allele coded $0,1,2$) under an additive genetic model. "*" in the lead SNP column indicates a non-synonymous coding SNP (either the SNP itself or another SNP in $r^{2}>0.8$). \# Established loci have smaller total sample sizes relative to novel loci (see Supplementary Note).

Table 2. Prediction of hypertensive target organ damage by a multi-BP SNP score.
Shown are the estimated effects of a BP risk score comprised of up to 66 SNPs (see column "Total \#SNPs") on risk of dichotomous outcome (as odds ratios) or increment in continuous measures per predicted mmHg of the SBP or DBP score. The effect sizes are expressed as incremental change in the phenotype for quantitative traits and natural logarithm of the odds ratio for binary traits, per 1 mmHg predicted increase in SBP or DBP. P values are bolded if they meet an analysis-wide significance threshold ($<0.05 / 18=0.0028$). Results for all SNPs ("all") and for pruned results ("p") are shown. The pruned results were obtained by iterative removal of SNPs from the risk score starting with the SNP with lowest heterogeneity P value. Iterations to remove SNPs were continued until the heterogeneity P value was <0.0028 (see Supplementary Note). The number of SNPs removed when calculating the pruned results is indicated by "\# SNPs rem.". The results per individual SNP can be found in Supplementary Table 15. CAD: coronary artery disease, LV: left ventricle, CKD: chronic kidney disease, eGFR: estimated glomerular filtration rate, cr: creatinine, cIMT: carotid intima: media thickness. Var. type denotes the variable type and cont. for continuous, or dic. for dichotomous. Eth. = Ethnicity, Consort. = Consortium, EUR $=$ European ancestry, EAS $=$ East Asian ancestry.

1 Table 1. New and known BP loci.

Locus no.	Locus name	Lead SNP	든	Position (hg19)	$\begin{aligned} & C A \\ & / N C \end{aligned}$	Coded allele freq	Traits	SBP				DBP			
								Effect	SE	P value	Total N	Effect	SE	P value	Total N\#
NEW 1	HIVEP3	rs7515635	1	42,408,070	T/C	0.468	SBP	0.307	0.0444	$4.81 \mathrm{E}-12$	340,969	0.1365	0.0263	$2.05 \mathrm{E}-07$	340,934
NEW 2	PNPT1	rs1975487	2	55,809,054	A/G	0.464	DBP	-0.2107	0.045	$2.81 \mathrm{E}-06$	337,522	-0.1602	0.0266	1.75E-09	337,517
NEW 3	FGD5	rs11128722	3	14,958,126	A/G	0.563	SBP \& DBP	-0.3103	0.0469	3.61E-11	310,430	-0.1732	0.0279	5.16E-10	310,429
NEW 4	ADAMTS9	rs918466	3	64,710,253	A/G	0.406	DBP	-0.0865	0.0459	$5.94 \mathrm{E}-02$	336,671	-0.1819	0.027	1.73E-11	336,653
NEW 5	TBC1D1-FU13197	rs2291435	4	38,387,395	T/C	0.524	SBP \& DBP	-0.3441	0.0449	$1.90 \mathrm{E}-14$	331,382	-0.156	0.0266	4.26E-09	331,389
NEW 6	TRIM36	rs10077885	5	114,390,121	A/C	0.501	SBP \& DBP	-0.284	0.0444	$1.64 \mathrm{E}-10$	338,328	-0.1735	0.0263	3.99E-11	338,323
NEW 7	CSNK1G3	rs6891344	5	123,136,656	A/G	0.819	DBP	0.2811	0.058	$1.24 \mathrm{E}-06$	338,688	0.2311	0.0343	1.58E-11	338,678
NEW 8	CHST12-LFNG	rs2969070	7	2,512,545	A/G	0.639	SBP \& DBP	-0.2975	0.0464	$1.44 \mathrm{E}-10$	335,991	-0.1821	0.0274	2.92E-11	335,972
NEW 9	ZC3HC1	rs11556924	7	129,663,496	T/C	0.384	SBP \& DBP	-0.2705	0.0468	7.64E-09	325,929	-0.2141	0.0276	8.15E-15	325,963
NEW 10	PSMD5	rs10760117	9	123,586,737	T/G	0.415	SBP	0.283	0.0457	6.10E-10	333,377	0.0999	0.0269	2.08E-04	333,377
NEW 11	DBH	rs6271*	9	136,522,274	T/C	0.072	SBP \& DBP	-0.5911	0.0899	$4.89 \mathrm{E}-11$	306,394	-0.4646	0.0532	2.42E-18	306,463
NEW 12	RAPSN, PSMC3, SLC39A13	rs7103648	11	47,461,783	A/G	0.614	SBP \& DBP	-0.3349	0.0462	4.43E-13	335,614	-0.2409	0.0272	$9.03 \mathrm{E}-19$	335,592
NEW 13	LRRC10B	rs751984	11	61,278,246	T/C	0.879	SBP \& DBP	0.4074	0.0691	3.80E-09	334,583	0.3755	0.0409	4.20E-20	334,586
NEW 14	SETBP1	rs12958173	18	42,141,977	A/C	0.306	SBP \& DBP	0.3614	0.0489	$1.43 \mathrm{E}-13$	331,007	0.1789	0.0289	5.87E-10	331,010
NEW 15	INSR	rs4247374	19	7,252,756	T/C	0.143	SBP \& DBP	-0.5933	0.0673	$1.23 \mathrm{E}-18$	302,458	-0.3852	0.0396	2.08E-22	302,459
NEW 16	Elavl3	rs17638167	19	11,584,818	T/C	0.047	DBP	-0.4784	0.1066	7.13E-06	333,137	-0.3479	0.0632	3.71E-08	333,107
NEW 17	CRYAA-SIK1	rs12627651	21	44,760,603	A/G	0.288	SBP \& DBP	0.3905	0.0513	2.69E-14	310,738	0.2037	0.0301	1.36E-11	310,722
EST 1	CASZ1	rs880315	1	10,796,866	T/C	0.641	SBP \& DBP	-0.475	0.062	2.09E-14	184,226	-0.257	0.038	$1.34 \mathrm{E}-11$	184,212
EST 2	MTHFR-NPPB	rs17037390	1	11,860,843	A/G	0.155	SBP \& DBP	-0.908	0.081	5.95E-29	195,493	-0.499	0.05	1.20E-23	195,481
EST 3	ST7L-CAPZA1-MOV10	rs1620668	1	113,023,980	A/G	0.822	SBP \& DBP	-0.535	0.076	1.45E-12	197,966	-0.285	0.047	9.00E-10	197,948
EST 4	MDM4	rs4245739	1	204,518,842	A/C	0.737	DBP	0.326	0.068	$1.37 \mathrm{E}-06$	191,594	0.243	0.041	4.63E-09	191,578
EST 5	AGT	rs2493134*	1	230,849,359	T/C	0.579	SBP \& DBP	-0.413	0.058	9.65E-13	199,505	-0.275	0.036	9.53E-15	199,502
EST 6	KCNK3	rs2586886	2	26,932,031	T/C	0.599	SBP \& DBP	-0.404	0.059	5.94E-12	197,269	-0.254	0.036	1.92E-12	197,272
EST 7	NCAPH	rs772178	2	96,963,684	A/G	0.64	DBP	-0.072	0.061	2.39E-01	192,513	-0.208	0.038	3.58E-08	192,501
EST 8	FIGN-GRB14	rs1371182	2	165,099,215	T/C	0.443	SBP \& DBP	-0.444	0.058	1.89E-14	196,262	-0.252	0.036	1.50E-12	196,240
EST 9	HRH1-ATG7	rs2594992	3	11,360,997	A/C	0.607	SBP	-0.334	0.06	2.31E-08	189,895	-0.136	0.037	2.20E-04	189,854
EST 10	SLC4A7	rs711737	3	27,543,655	A/C	0.604	SBP	0.334	0.058	9.93E-09	200,282	0.17	0.036	$2.24 \mathrm{E}-06$	200,260
EST 11	ULK4	rs2272007*	3	41,996,136	T/C	0.18	DBP	-0.11	0.077	$1.52 \mathrm{E}-01$	193,915	0.328	0.047	3.94E-12	193,900
EST 12	MAP4	rs6442101*	3	48,130,893	T/C	0.692	SBP \& DBP	0.396	0.062	$1.62 \mathrm{E}-10$	200,543	0.303	0.038	1.60E-15	200,534
EST 13	MECOM	rs6779380	3	169,111,915	T/C	0.539	SBP \& DBP	-0.439	0.06	$1.85 \mathrm{E}-13$	186,535	-0.239	0.037	6.87E-11	186,521
EST 14	FGF5	rs1458038	4	81,164,723	T/C	0.3	SBP \& DBP	0.659	0.065	5.36E-24	188,136	0.392	0.04	7.36E-23	188,088
EST 15	ARHGAP24	rs17010957	4	86,719,165	T/C	0.857	SBP	-0.498	0.082	$1.51 \mathrm{E}-09$	196,325	-0.173	0.051	6.63E-04	196,292
EST 16	SLC39A8	rs13107325	4	103,188,709	T/C	0.07	SBP \& DBP	-0.837	0.127	$4.69 \mathrm{E}-11$	175,292	-0.602	0.078	1.63E-14	175,372
EST 17	GUCY1A3-GUCY1B3	rs4691707	4	156,441,314	A/G	0.652	SBP	-0.349	0.06	7.10E-09	198,246	-0.163	0.037	$1.08 \mathrm{E}-05$	198,226
EST 18	NPR3-C5orf23	rs12656497	5	32,831,939	T/C	0.403	SBP \& DBP	-0.487	0.06	3.85E-16	194,831	-0.228	0.037	4.73E-10	194,829
EST 19	EBF1	rs11953630	5	157,845,402	T/C	0.366	SBP \& DBP	-0.38	0.065	3.91E-09	167,698	-0.23	0.04	8.07E-09	167,708
EST 20	HFE	rs1799945*	6	26,091,179	C/G	0.857	SBP \& DBP	-0.598	0.086	3.28E-12	185,306	-0.43	0.053	3.10E-16	185,273
EST 21	BAT2-bAT5	rs2187668	6	32,605,884	T/C	0.126	DBP	-0.291	0.092	$1.60 \mathrm{E}-03$	189,806	-0.372	0.057	$4.31 \mathrm{E}-11$	189,810
EST 22	ZNF318-ABCC10	rs6919440	6	43,352,898	A/G	0.57	SBP	-0.337	0.058	4.92E-09	200,733	-0.125	0.035	4.25E-04	200,730
EST 23	RSPO3	rs1361831	6	127,181,089	T/C	0.541	SBP \& DBP	-0.482	0.058	7.38E-17	197,027	-0.271	0.036	2.34E-14	197,012
EST 24	PLEKHG1	rs17080093	6	150,997,440	T/C	0.075	DBP	-0.564	0.111	3.83E-07	194,728	-0.411	0.068	1.71E-09	194,734
EST 25	HOTTIP-EVX	rs3735533	7	27,245,893	T/C	0.081	SBP \& DBP	-0.798	0.106	6.48E-14	197,881	-0.445	0.065	1.09E-11	197,880
EST 26	PIK3CG	rs12705390	7	106,410,777	A/G	0.227	SBP	0.619	0.069	$2.69 \mathrm{E}-19$	198,297	0.059	0.042	$1.63 \mathrm{E}-01$	198,290
EST 27	BLK-GATA4	rs2898290	8	11,433,909	T/C	0.491	SBP	0.377	0.058	$8.85 \mathrm{E}-11$	197,759	0.167	0.036	3.17E-06	197,726
EST 28	CACNB2	rs12243859	10	18,740,632	T/C	0.326	SBP \& DBP	-0.402	0.061	6.13E-11	199,136	-0.335	0.038	8.11E-19	199,124
EST 29	C10orf107	rs7076398	10	63,533,663	A/T	0.188	SBP \& DBP	-0.563	0.076	1.72E-13	187,013	-0.409	0.047	2.55E-18	187,024
EST 30	SYNPO2L	rs12247028	10	75,410,052	A/G	0.611	SBP	-0.364	0.063	8.16E-09	180,194	-0.159	0.039	3.89E-05	180,094
EST 31	PLCE1	rs932764*	10	95,895,940	A/G	0.554	SBP \& DBP	-0.495	0.059	6.88E-17	195,577	-0.224	0.036	6.28E-10	195,547
EST 32	CYP17A1-NT5C2	rs943037	10	104,835,919	T/C	0.087	SBP \& DBP	-1.133	0.105	2.35E-27	193,818	-0.482	0.064	4.48E-14	193,799
EST 33	ADRB1	rs740746	10	115,792,787	A/G	0.73	SBP \& DBP	0.486	0.067	4.59E-13	184,835	0.32	0.041	8.63E-15	184,868
EST 34	LSP1-TNNT3	rs592373	11	1,890,990	A/G	0.64	SBP \& DBP	0.484	0.063	$2.02 \mathrm{E}-14$	177,149	0.282	0.039	3.61E-13	177,134
EST 35	ADM	rs1450271	11	10,356,115	T/C	0.468	SBP \& DBP	0.413	0.059	3.40E-12	191,246	0.199	0.036	4.11E-08	191,221
EST 36	PLEKHA7	rs1156725	11	16,307,700	T/C	0.804	SBP \& DBP	-0.447	0.072	5.65E-10	200,889	-0.292	0.044	3.67E-11	200,899
EST 37	SIPA1	rs3741378*	11	65,408,937	T/C	0.137	SBP	-0.486	0.084	$8.04 \mathrm{E}-09$	194,563	-0.183	0.052	4.17E-04	194,551
EST 38	FL32810-TMEM133	rs633185	11	100,593,538	C/G	0.715	SBP \& DBP	0.522	0.067	6.97E-15	183,845	0.288	0.041	2.38E-12	183,825
EST 39	PDE3A	rs3752728	12	20,192,972	A/G	0.737	DBP	0.331	0.066	4.32E-07	200,440	0.319	0.04	2.35E-15	200,408
EST 40	ATP2B1	rs11105354	12	90,026,523	A/G	0.84	SBP \& DBP	0.909	0.081	3.88E-29	195,206	0.459	0.05	2.61E-20	195,195
EST 41	SH2B3	rs3184504*	12	111,884,608	T/C	0.475	SBP \& DBP	0.498	0.062	9.97E-16	177,067	0.362	0.038	1.28E-21	177,122
EST 42	TBX5-TBX3	rs2891546	12	115,552,499	A/G	0.11	DBP	-0.529	0.1	1.36E-07	172,012	-0.38	0.061	$4.71 \mathrm{E}-10$	171,980
EST 43	CYP1A1-ULK3	rs936226	15	75,069,282	T/C	0.722	SBP \& DBP	-0.549	0.067	3.06E-16	187,238	-0.363	0.041	1.03E-18	187,221
EST 44	FURIN-FES	rs2521501	15	91,437,388	A/T	0.684	SBP \& DBP	-0.639	0.069	3.35E-20	164,272	-0.358	0.042	1.85E-17	164,255
EST 45	PLCD3	rs7213273	17	43,155,914	A/G	0.658	SBP	-0.413	0.066	$4.71 \mathrm{E}-10$	164,795	-0.185	0.041	7.23E-06	164,788
EST 46	GOSR2	rs17608766	17	45,013,271	T/C	0.854	SBP	-0.658	0.083	$2.27 \mathrm{E}-15$	188,895	-0.218	0.051	$1.95 \mathrm{E}-05$	188,928
EST 47	ZNF652	rs12940887	17	47,402,807	T/C	0.38	DBP	0.321	0.06	7.06E-08	192,546	0.261	0.037	1.07E-12	192,524
EST 48	JAG1	rs1327235	20	10,969,030	A/G	0.542	SBP \& DBP	-0.395	0.059	$2.23 \mathrm{E}-11$	192,680	-0.308	0.036	1.78E-17	192,659
EST 49	GNAS-EDN3	rs6026748	20	57,745,815	A/G	0.125	SBP \& DBP	0.867	0.089	3.15E-22	192,338	0.552	0.055	4.86E-24	192,327

Table 2. BP risk score effects on disease outcomes.

Phenotype	Var. type (cont./ dic.)	Eth.	Consort.	Total N or no. ca/co	Total \#SNPs	SBP_score					DBP_score				
						effect (all)	P value (all)	$\begin{gathered} \text { het. } P \\ \text { value (all) } \end{gathered}$	P value (p)	$\begin{gathered} \hline \# \\ \text { SNPs } \\ \text { rem. } \end{gathered}$	effect (all)	P value (all)	$\begin{gathered} \text { het. } P \\ \text { value (all) } \end{gathered}$	P value (p)	$\begin{gathered} \hline \text { \# } \\ \text { SNPs } \\ \text { rem. } \end{gathered}$
HEART															
CAD	dich.	$\begin{aligned} & \text { EUR } \\ & \text { SAS } \end{aligned}$	CARDIoG RAMplus C4D	$\begin{gathered} 63,746 \\ / 130,681 \end{gathered}$	61	1.042	1.72E-44	$1.75 \mathrm{E}-25$	4.08E-32	10	1.069	1.19E-42	$6.63 \mathrm{E}-27$	2.2E-38	10
heart failure	dich.	EUR	CHARGE	$\begin{gathered} 2,526 \\ / 18,400 \end{gathered}$	66	1.021	2.77E-02	$1.63 \mathrm{E}-01$	2.77E-02	0	1.035	$2.31 \mathrm{E}-02$	$1.70 \mathrm{E}-01$	$2.31 \mathrm{E}-02$	0
LV mass	cont.	EUR	CHARGE	11,273	66	0.480	6.43E-04	$3.58 \mathrm{E}-01$	6.43E-04	0	0.754	$1.23 \mathrm{E}-03$	$3.21 \mathrm{E}-01$	$1.23 \mathrm{E}-03$	0
LV wall thickness	cont.	EUR	CHARGE	11,311	66	0.004	4.45E-06	$5.83 \mathrm{E}-02$	4.45E-06	0	0.007	3.19E-06	$6.40 \mathrm{E}-02$	3.19E-06	0
KIDNEY															
CKD	dich.	EUR	CHARGE	$\begin{gathered} 6,271 \\ / 68,083 \end{gathered}$	65	1.010	$1.37 \mathrm{E}-01$	$1.77 \mathrm{E}-03$	$2.65 \mathrm{E}-01$	1	1.008	$4.49 \mathrm{E}-01$	$1.25 \mathrm{E}-03$	7.69E-01	1
eGFR (based on cr)	cont.	EUR	CHARGE	74,354	65	0.000	7.07E-01	$3.12 \mathrm{E}-05$	3.22E-01	2	0.000	$9.41 \mathrm{E}-01$	$3.02 \mathrm{E}-05$	$9.65 \mathrm{E}-01$	2
eGFR (based on cystatin)	cont.	EUR	CHARGE	74,354	65	0.001	$9.05 \mathrm{E}-02$	$9.28 \mathrm{E}-06$	4.11E-01	1	0.001	$3.30 \mathrm{E}-01$	$5.64 \mathrm{E}-06$	6.9E-01	1
creatinine	cont.	EUR	KidneyGE N	23,812	66	0.000	$9.42 \mathrm{E}-01$	$6.31 \mathrm{E}-03$	$9.42 \mathrm{E}-01$	0	0.000	4.11E-01	$7.16 \mathrm{E}-03$	4.11E-01	0
microalbu minuria	dich.	EUR	CHARGE	$\begin{gathered} 2,499 \\ / 29,081 \end{gathered}$	65	0.011	2.10E-01	$4.79 \mathrm{E}-02$	$2.1 \mathrm{E}-01$	0	0.023	$1.02 \mathrm{E}-01$	$5.66 \mathrm{E}-02$	$1.02 \mathrm{E}-02$	0
urinary albumin/cr ratio	cont.	EUR	CHARGE	31,580	65	0.009	2.52E-03	3.02E-04	0.53E-03	1	0.015	2.40E-03	$3.08 \mathrm{E}-04$	8.31E-03	1
STROKE															
stroke, all subtypes	dich.	EUR	CHARGE	$\begin{gathered} 1,544 \\ / 18,058 \end{gathered}$	66	0.056	6.11E-06	8.26E-02	6.11E-06	0	0.085	3.79E-05	$4.98 \mathrm{E}-02$	3.79E-05	0
stroke, ischemic subtype	dich.	EUR	CHARGE	$\begin{gathered} 1,164 \\ / 18,438 \end{gathered}$	66	0.067	3.33E-06	$1.75 \mathrm{E}-01$	3.33E-06	0	0.096	5.63E-05	8.82E-02	5.63E-05	0
stroke, ischemic subtype	dich.	EUR	MetaStro ke	$\begin{gathered} 11,012 \\ / 40,824 \end{gathered}$	66	0.036	1.69E-10	$4.72 \mathrm{E}-02$	1.69E-10	0	0.056	1.29E-09	$2.51 \mathrm{E}-02$	1.29E-09	0
VASCULATURE															
cIMT	cont.	EUR	CHARGE	27,610	66	0.004	4.80E-15	$5.06 \mathrm{E}-08$	7.32E-10	4	0.005	4.15E-11	$3.84 \mathrm{E}-10$	$6.2 \mathrm{E}-07$	5
EYE															
mild retinop.	dich.	EUR	CHARGE	$\begin{gathered} 1,122 \\ / 18,289 \end{gathered}$	66	1.021	$1.37 \mathrm{E}-01$	$6.01 \mathrm{E}-03$	$1.37 \mathrm{E}-01$	0	1.046	$5.78 \mathrm{E}-02$	7.81E-03	$5.78 \mathrm{E}-02$	0
central retinal artery caliber	cont.	EUR	CHARGE	18,576	66	0.343	3.29E-14	$2.56 \mathrm{E}-06$	2.06E-13	2	0.570	3.61E-14	$2.44 \mathrm{E}-06$	7.05E-13	3
mild retinop.	dich.	EAS	SEED	$\begin{gathered} 289 \\ / 5,419 \end{gathered}$	66	1.033	$2.55 \mathrm{E}-01$	$2.42 \mathrm{E}-01$	$2.55 \mathrm{E}-01$	0	1.087	8.55E-02	2.87E-01	8.55E-02	0
central retinal artery caliber	cont.	EAS	SEED	6,976	63	0.320	1.39E-04	$9.07 \mathrm{E}-01$	1.39E-04	0	0.533	2.19E-04	$8.91 \mathrm{E}-01$	2.19E-04	0

Figure 1. Manhattan plots for SBP and DBP from the stage 4 Cardio-MetaboChip-wide meta-analysis. P values (expressed as $-\log _{10} P$) are plotted by physical genomic position labeled by chromosome. SNPs in new loci (3.5 MB window around the index SNP), identified in this study, are labeled in dark red (SBP) or dark blue (DBP); SNPs in previously known loci are labeled in orange (SBP) or light blue (DBP). The locus names are indicated. The grey crosses indicate genomic positions at which the y-axis was truncated (SNPs with $P<10^{-15}$).

	$\mathbf{1 7}$ new loci	49 established loci	all 66 loci
		-	
		28.9%	29.8%
Minor allele frequency,	32.1%	$[7 \%-49 \%]$	$[5 \%-50 \%]$
(mean, range)	$[5 \%-50 \%]$	$0.07-1.13$	$0.07-1.13$
Effect size SBP	$0.09-0.59$	0.5	0.46
[mmHg], (range, mean)	0.34	$0.06-0.6$	$0.06-0.6$
Effect size DBP	$0.1-0.46$	0.3	0.28
[mmHg] (range, mean)	0.23	2.95%	3.46%
Variance explained	0.52%		
SBP		2.78%	3.36%
Variance explained	0.58%	-	-
DBP			
Previously known for	$5 / 20$		
BP			

Figure 2. Overview of novel and known BP variant properties. Key characteristics of the novel and established BP loci are shown. MAF and effect size estimates are derived from the Cardio-MetaboChip data. Variance explained estimates are estimated from one large study (Supplementary Note). Novel loci are classified as previously unknown to be linked to BP by a systematic PubMed review of all genes in a 200kb window (Supplementary Note).

Figure 3. Enrichment of DNAse hypersensitive sites among BP loci in different cell-types. Enrichment analyses of SBP or DBP associated loci according to discovery P value using narrow peaks (panel A) or broad peaks (panel B). SNPs were selected according to different P value cutoffs (x-axis) and a fold enrichment of overlap with DNAse hypersensitive sites compared to unrelated GWAS SNPs was calculated (y-axis) (see Supplementary Note). The 12 endothelial cell-lines are indicated in color and for each endothelial cell-type the rank using the $10^{-14} P$ value cutoff is indicated. EC denotes endothelial cells.

AUTHORS

Georg B. Ehret ${ }^{1,2,3^{*}}$, Teresa Ferreira ${ }^{4^{*}}$, Daniel I. Chasman ${ }^{5,6}$, Anne U. Jackson ${ }^{7}$, Ellen M. Schmidt ${ }^{8}$, Toby Johnson ${ }^{9,10}$, Gudmar Thorleifsson ${ }^{11}$, Jian'an Luan ${ }^{12}$, Lousie A. Donnelly ${ }^{13}$, Stavroula Kanoni ${ }^{14}$, Ann-Kristin Petersen ${ }^{15}$, Vasyl Pihur ${ }^{1}$, Rona J. Strawbridge ${ }^{16,17}$, Dmitry Shungin ${ }^{18,19,20}$, Maria F. Hughes ${ }^{21}$, Osorio Meirelles ${ }^{22}$, Marika Kaakinen ${ }^{23}$, Nabila Bouatia-Naji ${ }^{24,25}$, Kati Kristiansson ${ }^{26,27}$, Sonia Shah ${ }^{28}$, Marcus E. Kleber ${ }^{29}$, Xiuqing Guo ${ }^{30}$, Leo-Pekka Lyytikäinen ${ }^{31,32}$, Cristiano Fava ${ }^{33,34}$, Niclas Eriksson ${ }^{35}$, Ilja M. Nolte ${ }^{36}$, Patrik K. Magnusson ${ }^{37}$, Elias L. Salfati ${ }^{38}$, Loukianos S. Rallidis ${ }^{39}$, Elizabeth Theusch ${ }^{40}$, Andrew J.P. Smith ${ }^{41}$, Lasse Folkersen ${ }^{16}$, Kate Witkowska ${ }^{9,42}$, Tune H. Pers ${ }^{43,44,268,269}$, Roby Joehanes ${ }^{45}$, Stuart K. Kim ${ }^{46}$, Lazaros Lataniotis ${ }^{14}$, Rick Jansen ${ }^{47}$, Andrew D. Johnson ${ }^{45,48}$, Helen Warren ${ }^{9,42}$, Young Jin Kim ${ }^{49}$, Wei Zhao ${ }^{50}$, Ying Wu^{51}, Bamidele O. Tayo ${ }^{52}$, Murielle Bochud ${ }^{3}$, Devin Absher ${ }^{53}$, Linda S. Adair ${ }^{54}$, Najaf Amin ${ }^{55}$, Dan E. Arking ${ }^{1}$, Tomas Axelsson ${ }^{56}$, Damiano Baldassarre ${ }^{57,58}$, Beverley Balkau ${ }^{59}$, Stefania Bandinelli ${ }^{60}$, Michael R. Barnes ${ }^{14,42}$, Ines Barroso ${ }^{61,62}$, Stephen Bevan ${ }^{63}$, Joshua C. Bis ${ }^{64}$, Gyda Bjornsdottir ${ }^{11}$, Michael Boehnke ${ }^{7}$, Eric Boerwinkle ${ }^{65}$, Lori L. Bonnycastle ${ }^{66}$, Dorret I. Boomsma ${ }^{67}$, Stefan R. Bornstein ${ }^{68}$, Morris J. Brown ${ }^{69}$, Michel Burnier ${ }^{70}$, Claudia P. Cabrera ${ }^{9,42}$, John C. Chambers ${ }^{71,72,73}$, I-Shou Chang ${ }^{74}$, CHARGE-EchoGen consortium, CHARGE-HF consortium CHARGE-HF consortium, Ching-Yu Cheng ${ }^{75,76,77}$, Peter S. Chines ${ }^{66}$, Ren-Hua Chung ${ }^{78}$, Francis S. Collins ${ }^{66}$, John M. Connell ${ }^{79}$, Angela Döring ${ }^{80,81}$, Jean Dallongeville ${ }^{82}$, John Danesh 83, Ulf de Faire ${ }^{84}$, Graciela Delgado ${ }^{29}$, Vaidya Dhananjay ${ }^{85}$, Anna F. Dominiczak ${ }^{86}$, Alex S.F. Doney ${ }^{13}$, Fotios Drenos ${ }^{41}$, Sarah Edkins ${ }^{61}$, John D. Eicher ${ }^{45,48}$, Roberto Elosua ${ }^{87}$, Stefan Enroth ${ }^{88}$, Jeanette Erdmann ${ }^{89,90}$, Per Eriksson ${ }^{16}$, Tonu Esko ${ }^{91,92,93}$, Evangelos Evangelou ${ }^{71,94}$, Alun Evans ${ }^{21}$, Tove Fall ${ }^{95}$, Martin Farrall ${ }^{4,96}$, Janine F. Felix ${ }^{97}$, Jean Ferrières ${ }^{98}$, Luigi Ferrucci ${ }^{99}$, Myriam Fornage ${ }^{100}$, Terrence Forrester ${ }^{101}$, Nora Franceschini ${ }^{102}$, Oscar H. Franco Duran ${ }^{97}$, Anders Franco-Cereceda ${ }^{103}$, Ross M. Fraser ${ }^{104,105}$, Santhi K. Ganesh ${ }^{106}$, He Gao ${ }^{71}$, Karl Gertow ${ }^{16,17}$, Francesco Gianfagna ${ }^{107,108}$, Bruna Gigante ${ }^{84}$, Franco Giulianini ${ }^{5}$, Anuj Goel ${ }^{4,96}$, Alison H. Goodall ${ }^{109,110}$, Mark O. Goodarzi ${ }^{111}$, Mathias Gorski ${ }^{112,113}$, Jürgen Gräßler ${ }^{114}$, Christopher Groves ${ }^{115}$, Vilmundur Gudnason ${ }^{116,117}$, Ulf Gyllensten ${ }^{88}$, Göran Hallmans ${ }^{18}$, Anna-Liisa Hartikainen ${ }^{118,119}$, Maija Hassinen ${ }^{120}$, Aki S. Havulinna ${ }^{26}$, Caroline Hayward ${ }^{121}$, Serge Hercberg ${ }^{122}$, KarlHeinz Herzig ${ }^{123,124,125}$, Andrew A. Hicks ${ }^{126}$, Aroon Hingorani ${ }^{28}$, Joel N. Hirschhorn ${ }^{43,44,127}$, Albert Hofman ${ }^{97}$, Jostein Holmen ${ }^{128}$, Oddgeir Lingaas Holmen ${ }^{128,129}$, Jouke-Jan Hottenga ${ }^{67}$, Phil Howard ${ }^{41}$, Chao A. Hsiung ${ }^{78}$, Steven C. Hunt ${ }^{130,131}$, M. Arfan Ikram ${ }^{97,132,133}$, Thomas Illig ${ }^{134,135,136}$, Carlos Iribarren ${ }^{137}$, Richard A. Jensen ${ }^{64,138}$, Mika Kähönen ${ }^{139,140}$, Hyun Kang ${ }^{7}$, Sekar Kathiresan ${ }^{141,142,143,144}$, Brendan J. Keating ${ }^{145,146}$, KayTee Khaw ${ }^{147}$, Yun Kyoung Kim ${ }^{49}$, Eric Kim ${ }^{148}$, Mika Kivimaki ${ }^{28}$, Norman Klopp ${ }^{134,135}$, Genovefa Kolovou ${ }^{149}$, Pirjo Komulainen ${ }^{120}$, Jaspal S. Kooner ${ }^{150,72,73}$, Gulum Kosova ${ }^{151,141,152}$, Ronald M. Krauss ${ }^{153}$, Diana Kuh ${ }^{154}$, Zoltan Kutalik ${ }^{155,156}$, Johanna Kuusisto ${ }^{157}$, Kirsti Kvaløy ${ }^{128}$, Timo A Lakka ${ }^{158,120,159}$, Nanette R. Lee ${ }^{160}$, I-Te

Lee ${ }^{161,162}$, Wen-Jane Lee ${ }^{163}$, Daniel Levy ${ }^{45,164}$, Xiaohui Li ${ }^{30}$, Kae-Woei Liang ${ }^{165,166}$, Honghuang Lin ${ }^{167,45}$, Li Lin 2, Jaana Lindström ${ }^{26}$, Stéphane Lobbens ${ }^{168,169,170}$, Satu Männistö ${ }^{26}$, Gabriele Müller ${ }^{171}$, Martina MüllerNurasyid ${ }^{15,172,173}$, François Mach ${ }^{2}$, Hugh Markus ${ }^{63}$, Eirini Marouli ${ }^{14,174}$, Mark I. McCarthy ${ }^{115}$, Colin A. McKenzie ${ }^{101}$, Pierre Meneton ${ }^{175}$, Cristina Menni ${ }^{176}$, Andres Metspalu ${ }^{91}$, Vladan Mijatovic ${ }^{177}$, Leena Moilanen ${ }^{178,179}$, May E. Montasser ${ }^{180}$, Andrew D. Morris ${ }^{13}$, Alanna C. Morrison ${ }^{181}$, Antonella Mulas ${ }^{182}$, Ramaiah Nagaraja ${ }^{22}$, Narisu Narisu ${ }^{66}$, Kjell Nikus ${ }^{183,184}$, Christopher J. O'Donnell ${ }^{185,45,186}$, Paul O'Reilly ${ }^{187}$, Ken K. Ong ${ }^{12}$, Fred Paccaud ${ }^{3}$, Cameron D. Palmer ${ }^{188,189}$, Afshin Parsa ${ }^{180}$, Nancy L. Pedersen ${ }^{37}$, Brenda W. Penninx ${ }^{190,191,192}$, Markus Perola ${ }^{26,27,193}$, Annette Peters ${ }^{81}$, Neil Poulter ${ }^{194}$, Peter P. Pramstaller ${ }^{126,195,196}$, Bruce M. Psaty ${ }^{64,197,198,199}$, Thomas Quertermous ${ }^{38}$, Dabeeru C. Rao ${ }^{200}$, Asif Rasheed ${ }^{201}$, N William N.W.R. Rayner ${ }^{202,203,61}$, Frida Renström ${ }^{19,204,18}$, Rainer Rettig ${ }^{205}$, Kenneth M. Rice ${ }^{206}$, Robert Roberts ${ }^{207,208}$, Lynda M. Rose ${ }^{5}$, Jacques Rossouw ${ }^{209}$, Nilesh J. Samani ${ }^{109,210}$, Serena Sanna ${ }^{182}$, Jouko Saramies ${ }^{211}$, Heribert Schunkert ${ }^{212,213,214}$, Sylvain Sebert ${ }^{215,124,159}$, Wayne H.-H. Sheu ${ }^{216,162,217}$, Young-Ah Shin ${ }^{49}$, Xueling Sim ${ }^{7,218, ~}$ Johannes H. Smit ${ }^{190}$, Albert V. Smith ${ }^{116,117}$, Maria X. Sosa ${ }^{1}$, Tim D. Spector ${ }^{176}$, Alena Stančáková ${ }^{219}$, Alice Stanton ${ }^{220}$, Kathleen E. Stirrups ${ }^{14,221}$, Heather M. Stringham ${ }^{7}$, Johan Sundstrom ${ }^{56}$, Amy J. Swift ${ }^{66}$, AnnChristine Syvänen ${ }^{56}$, E-Shyong Tai ${ }^{222,76,218}$, Toshiko Tanaka ${ }^{99}$, Kirill V. Tarasov ${ }^{223}$, Alexander Teumer ${ }^{224}$, Unnur Thorsteinsdottir ${ }^{11,225}$, Martin D. Tobin ${ }^{226}$, Elena Tremoli ${ }^{57,58}$, Andre G. Uitterlinden ${ }^{97,227}$, Matti Uusitupa ${ }^{228,229}$, Ahmad Vaez ${ }^{36}$, Cornelia M. van Duijn ${ }^{97,230}$, Erik P.A. van Iperen ${ }^{231,232}$, Ramachandran S. Vasan ${ }^{45,233}$, Germaine C. Verwoert ${ }^{97}$, Jarmo Virtamo ${ }^{26}$, Veronique Vitart ${ }^{121}$, Benjamin F. Voight ${ }^{234,235}$, Peter Vollenweider ${ }^{236}$, Aline Wagner ${ }^{237}$, Louise V. Wain ${ }^{226}$, Nicholas J. Wareham ${ }^{12}$, Hugh Watkins ${ }^{4,96}$, Alan B. Weder ${ }^{238}$, Wellcome Trust Case Control Consortium, Harm-Jan Westra ${ }^{239}$, Rainford Wilks ${ }^{240}$, Tom Wilsgaard ${ }^{241,242}$, James F. Wilson ${ }^{104,121}$, Tien Y. Wong ${ }^{75,76,77}$, Tsun-Po Yang ${ }^{14,243}$, Jie Yao ${ }^{244}$, Loic Yengo ${ }^{168,169,170}$, Weihua Zhang ${ }^{71,72}$, Jing Hua Zhao ${ }^{12}$, Xiaofeng Zhu ${ }^{245}$, Pascal Bovet ${ }^{246,3}$, Richard S. Cooper 52, Karen L. Mohlke ${ }^{51}$, Danish Saleheen ${ }^{247,201}$, Jong-Young Lee ${ }^{49}$, Paul Elliott ${ }^{71,248}$, Hinco J. Gierman ${ }^{46,249}$, Cristen J. Willer ${ }^{8,250,251}$, Lude Franke ${ }^{252}$, G Kees Hovingh ${ }^{253}$, Kent D. Taylor ${ }^{30}$, George Dedoussis ${ }^{174}$, Peter Sever ${ }^{194}$, Andrew Wong ${ }^{154}$, Lars Lind ${ }^{56}$, Themistocles L. Assimes ${ }^{38}$, Inger Njølstad ${ }^{241,242}$, Peter EH. Schwarz ${ }^{68}$, Claudia Langenberg ${ }^{12}$, Harold Snieder ${ }^{36}$, Mark J. Caulfield ${ }^{9,42}$, Olle Melander ${ }^{33}$, Markku Laakso ${ }^{157}$, Juha Saltevo ${ }^{254}$, Rainer Rauramaa ${ }^{120,159}$, Jaakko Tuomilehto ${ }^{26,255,256,257}$, Erik Ingelsson ${ }^{95,4}$, Terho Lehtimäki ${ }^{31,32}$, Kristian Hveem ${ }^{128}$, Walter Palmas ${ }^{258}$, Winfried März ${ }^{259,260}$, Meena Kumari ${ }^{28}$, Veikko Salomaa ${ }^{26}$, Yii-Der I. Chen ${ }^{30}$, Jerome I. Rotter ${ }^{30}$, Philippe Froguel ${ }^{168,169,170,23}$, Marjo-Riitta Jarvelin ${ }^{215,124,261,262}$, Edward G. Lakatta ${ }^{223}$, Kari Kuulasmaa ${ }^{26}$, Paul W. Franks ${ }^{19,204,18}$, Anders Hamsten ${ }^{16,17}$, H.-Erich Wichmann ${ }^{80,263,264}$, Colin N.A. Palmer ${ }^{13}$, Kari Stefansson ${ }^{11,225}$, Paul M Ridker ${ }^{5,6}$, Ruth J.F. Loos ${ }^{12,265}$, Aravinda Chakravarti ${ }^{1}$, Panos Deloukas ${ }^{14,266}$, Andrew P. Morris ${ }^{267,4^{* \#}}$, Christopher Newton-

Cheh ${ }^{141,189,152^{*} \# \$}$, Patricia B. Munroe ${ }^{9,42^{*} \# \$}$

* These authors contributed equally to this work.
\# These authors jointly supervised this work.
\$ Corresponding authors: Christopher Newton-Cheh (cnewtoncheh@mgh.harvard.edu) and Patricia B. Munroe (p.b.munroe@qmul.ac.uk).

AUTHOR AFFILIATIONS

1. Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
2. Cardiology, Department of Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
3. Institute of Social and Preventive Medicine (IUMSP), Centre Hospitalier Universitaire Vaudois and University of Lausanne, Route de la Corniche 10, 1010 Lausanne, Switzerland
4. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
5. Division of Preventive Medicine, Brigham and Women's Hospital, 900 Commonwealth Ave. East, Boston, MA 02215, USA
6. Harvard Medical School, Boston, MA 02115, USA
7. Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
8. Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
9. Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, UK
10. GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, UK
11. deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
12. MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
13. Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
14. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
15. Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany
16. Atherosclerosis Research Unit, Center for Molecular Medicine L8:03, Department of Medicine, Karolinska Institutet, 17176 Stockholm, Sweden
17. Center for Molecular Medicine, Karolinska University Hospital Solna, Stockholm, Sweden
18. Department of Public Health and Clinical Medicine, Ume University, Sweden
19. Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Skåne University Hospital Malmö, SE-205 02 Malmö, Sweden
20. Department of Odontology, Ume University, Sweden
21. Centre of Excellence for Public Health, Queens University Belfast, Grosvenor Road, Belfast BT126JP,

UK
22. Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
23. Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
24. INSERM UMR970, Paris Cardiovascular Research Center PARCC, 56 rue Leblanc, 75015 Paris, France
25. University Paris-Descartes, Sorbonne Paris Cité, 12 rue de l'Ecole de medicine F-75006 Paris, France
26. National Institute for Health and Welfare, FI-00271 Helsinki, Finland
27. Institute for Molecular Medicine Finland FIMM, University of Helsinki, 00290 Helsinki, Finland
28. Genetic Epidemiology Group, Dept. Epidemiology and Public Health, UCL, London, WC1E 6BT, UK
29. Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-KutzerUfer 1-3, 68167 Mannheim, Germany
30. Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
31. Department of Clinical Chemistry, Fimlab Laboratories, Tampere 33520, Finland
32. Department of Clinical Chemistry, University of Tampere School of Medicine, Tampere 33014, Finland
33. University of Lund, Dept Internal Medicine, Malmo, SE 20502, Sweden
34. University of Verona, Dept of Internal Medicine, Verona, Italy 37134
35. Uppsala University, Uppsala Clinical Research Center, SE-75185 Uppsala, Sweden
36. Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
37. Dept of Medical Epidemiology and Biostatistics, Karolinska Institutet, Box 281, SE-171 77

Stockholm, Sweden
38. Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
39. Second Department of Cardiology, Attikon Hospital, School of Medicine, University of Athens, Athens, Greece
40. Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
41. Department of Cardiovascular Genetics, Institute of Cardiovascular Sciences, University College London, London WC1E 6JF, UK
42. NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, EC1M 6BQ, UK
43. Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 02115, USA
44. Medical and Population Genetics Program, Broad Institute of MIT and Harvard, Cambridge, 02142, USA
45. National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA
46. Dept. Dev. Bio. And Genetics, Stanford University Medical Center, Stanford, CA 94305, USA
47. Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
48. National Heart, Lung and Blood Institute, Cardiovascular Epidemiology and Human Genomics Branch, Bethesda, MD 20814, USA
49. Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
50. Division of Translational Medicine and Human Genetics, Department of Medicine, University of PennysIvania, USA
51. Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
52. Department of Preventive Medicine and Epidemiology, Loyola University Chicago Stritch School of Medicine, Maywood, IL, 60153, USA
53. HudsonAlpha Institute for Biotechnology, Huntsville, AL 35086, USA
54. Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
55. Genetic Epidemiology Unit, Department of Epidemiology, Erasmus MC, Rotterdam, 3015CN, The Netherlands
56. Uppsala University, Department of Medical Sciences, SE-75185 Uppsala, Sweden
57. Dipartimento di Scienze Farmacologiche e Biomolecolari, Università di Milano, Milan, Italy
58. Centro Cardiologico Monzino, IRCCS, Milan, Italy
59. INSERM Centre for Research in Epidemiology and Population Health, U1018, Villejuif, France University Paris-Sud, URMS 1018, Villejuif, France
60. Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy
61. Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, UK
62. University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Level 4, Institute of Metabolic Science Box 289 Addenbrookes Hospital Cambridge CB2 OQQ, UK
63. Neurology Unit, University of Cambridge, R3, Box 83, Cambridge Biomedical Campus, Cambridge, Cb2 0QQ, UK
64. Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101, USA
65. Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Suite 453E, Houston, TX 77030, USA
66. Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
67. Department of Biological Psychology, VU University, Amsterdam, The Netherlands
68. Dept of Medicine III, University of Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
69. Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge CB2 2QQ, UK
70. Nephrology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Bugnon 17, 1005 Lausanne, Switzerland
71. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
72. Department of Cardiology, Ealing Hospital NHS Trust, Uxbridge Road, Southall, Middlesex UB1 3EU, UK
73. Imperial College Healthcare NHS Trust, London, UK
74. National Institute of Cancer Research, National Health Research Institutes. 35 Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
75. Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore
76. Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
77. Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119228
78. Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes. 35 Keyan Rd., Zhunan Town, Miaoli County 350, Taiwan
79. University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
80. Institute of Epidemiology I, Helmholtz Zentrum München, Neuherberg 85764, Germany
81. Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg 85764, Germany
82. UMR744 Inserm-Lille2-Institut Pasteur Lille, France
83. Department of Public Health and Primary Care, University of Cambridge, UK
84. Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
85. Johns Hopkins Medical Institutions, 1830 East Monument St., Baltimore, MD 21287, USA
86. BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8QT, UK
87. Cardiovascular Epidemiology and Genetics. IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), Barcelona, Spain
88. Dept of Immunology, Genetics, Pathology, Science for Life Laboratory, University of Uppsala, Box 815, Biomerical center, 75108 Uppsala, Sweden
89. Institut für Integrative und Experimentelle Genomik, Universiät zu Lübeck, RatzeburgerAllee 160, 23538 Lübeck, Germany
90. Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Hamburg, Kiel, Lübeck, Universität zu Lübeck, Lübeck, Germany
91. Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
92. Divisions of Endocrinology/Children's Hospital, Boston, MA 02115, USA
93. Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
94. Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
95. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
96. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, UK
97. Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, P.O.Box 2040, 3000 CA Rotterdam, The Netherlands
98. Toulouse University School of Medicine, Rangueil University Hospital, INSERM UMR1027, Toulouse, France
99. Translational Gerontology Branch, National Institute on Aging, Baltimore MD, USA
100. Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, USA
101. Tropical Metabolism Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston 7, Jamaica
102. Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
103. Cardiothoracic Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, 17176 Stockholm, Sweden
104. Institute for Population Health Sciences and Informatics, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland
105. Synpromics Ltd, 9 Bioquarter, Little France Road, Edinburgh, EH16 4UX, Scotland
106. University of Michigan Medical School, 7220 MSRB III, Ann Arbor MI 48109, USA
107. EPIMED Research Centre - Epidemiology and Preventive Medicine, Department of Clinical and Experimental Medicine, University of Insubria, Varese, Italy
108. Department of Epidemiology and Prevention, IRCCS Istituto Neurologico Mediterraneo NEUROMED, 86077 Pozzilli, Italy
109. Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester LE3 9QP, UK
110. National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP, UK
111. Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
112. Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
113. Department of Nephrology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053

Regensburg, Germany
114. Department of Medicine III, Division Pathobiochemistry, Technische Universität Dresden, Dresden, Germany
115. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford,UK
116. Icelandic Heart Association, Kopavogur, Iceland
117. Faculty of medicine, University of Iceland, Reykjavik, Iceland
118. Institute of Clinical Medicine/Obstetrics and Gynaecology, University of Oulu, Oulu, Finland
119. Medical Research Center, Oulu University Hospital, Oulu, Finland
120. Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
121. Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU

Scotland, UK
122. UREN, INSERM U557, INRA U1125, CNAM, SMBH, Sorbonne Paris Cité, Université Paris 13, Bobigny, France
123. Institute of Biomedicine, University of Oulu, Medical Research Center Oulu and Oulu University Hospital, Finland
124. Biocenter Oulu, P.O.Box 5000, Aapistie 5A, FI-90014 University of Oulu, Finland
125. Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, Poznan, Poland
126. Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, 39100, Italy affiliated institute of the University of Lübeck, Germany
127. Department of Genetics, Harvard Medical School, Boston, 02115, USA
128. HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, 7600 Levanger, Norway
129. St. Olav Hospital, Trondheim University Hospital, Trondheim, Norway
130. Cardiovascular Genetics Division, University of Utah School of Medicine, Salt Lake City, Utah, USA
131. Department of Genetic Medicine, Weill Cornell Medical College Qatar, Doha, Qatar
132. Department of Radiology, Erasmus MC, The Netherlands
133. Department of Neurology, Erasmus MC, University Medical Center Rotterdam, P.O.Box 2040, 3000 CA Rotterdam, The Netherlands
134. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany
135. Hannover Unified Biobank, Hannover Medical School, Hannover 30625, Germany
136. Hannover Medical School, Institute for Human Genetics, Carl-Neuberg-Strasse 1, 30625 Hanover, Germany
137. Kaiser Permanente, Division of Research, Oakland, CA 94612, USA
138. Department of Medicine, University of Washington, Seattle, Washington 98101, USA
139. Department of Clinical Physiology, Tampere University Hospital, Tampere 33521, Finland
140. Department of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, Finland
141. Center for Human Genetic Research, Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
142. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
143. Department of Medicine, Harvard Medical School, Boston, MA, USA
144. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA and Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
145. Division of Transplantation, Department of Surgery, University of Pennsylvania, PA 19104 USA
146. Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
147. Department of Public Health and Primary Care, Institute of Public Health, University of Cambridge, Cambridge CB2 2SR, UK
148. Institute for Translational Genomics and Population Sciences, Department of Pediatrics, LABioMed at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, USA
149. 1st Cardiology Department, Onassis Cardiac Surgery Center 356, Sygrou Ave, Athens, Greece
150. National Heart and Lung Institute, Imperial College London, Hammersmith Hospital Campus, Ducane Road, London W12 ONN, UK
151. Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
152. Broad Institute of Harvard and MIT, Cambridge, MA 02139 USA
153. Department of Medicine, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
154. MRC Unit for Lifelong Health and Ageing at UCL, London, WC1B 5JU, UK
155. Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
156. Swiss Institute of Bioinformatics, Lausanne, Switzerland
157. Department of Medicine, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
158. Institute of Biomedicine/Physiology, University of Eastern Finland, Kuopio Campus, Finland
159. Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
160. Office of Population Studies Foundation Inc. and Department of Anthropology, Sociology, and History, University of San Carlos, Talamban, Cebu City, 6000, Philippines
161. Division of Endocrine and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
162. School of Medicine, National Yang-Ming University, Taipei, Taiwan
163. Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
164. Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
165. Cardiovascular Center, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
166. Institute of Clinical Medicine, National Yang Ming University School of Medicine, Taipei 112, Taiwan
167. Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, 02446 MA, USA
168. European Genomic Institute for Diabetes (EGID), FR 3508 Lille, France
169. Centre National de la Recherche Scientifique (CNRS) UMR 8199, Lille Pasteur Institute, 1 rue du Prof Calmette, 59019 Lille Cedex, France
170. Lille 2 University, Lille, France
171. Center for Evidence-based Healthcare, University of Dresden, Medical Faculty Carl Gustav Carus, Fetscherstrasse 74, 01307 Dresden, Germany
172. Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany
173. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-Maximilians-University of Munich, Munich, Germany
174. Department of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Str, Athens, Greece
175. INSERM U1142 LIMICS, UMR_S 1142 Sorbonne Universités, UPMC Université Paris 06, Université Paris 13, Paris, France
176. Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
177. Department of Life and Reproduction Sciences, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
178. Department of Medicine, Kuopio University Hospital, Kuopio, Finland
179. Unit of General Practice, Oulu University Hospital, Oulu, Finland
180. Department of Medicine, Program for Personalized and Genomic Medicine, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
181. Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, 1200 Pressler St., Suite 453E, Houston, TX 77030, USA
182. Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monseratto, Monserrato, Cagliari 09042, Italy
183. Department of Cardiology, School of Medicine, University of Tampere, Tampere 33014, Finland
184. School of Medicine, University of Tampere, Tampere 33014, Finland
185. National Heart, Lung and Blood Institute, Division of Intramural Research, Bethesda, MD, USA
186. Cardiology Division, Department of Medicine, Massachusetts General Hospital
187. Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
188. Divisions of Endocrinology and Genetics and Program in Genomics, Children's Hospital Boston, Massachusetts 02115, USA
189. Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
190. Department of Psychiatry, EMGO Institute, Neuroscience Campus, VU University Medical Centre, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
191. Department of Psychiatry, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
192. Department of Psychiatry, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands
193. The Estonian Genome Center, University of Tartu, Estonia
194. International Centre for Circulatory Health, Imperial College London, W2 1PG, UK
195. Department of Neurology, General Central Hospital, Bolzano, 39100, Italy
196. Department of Neurology, University of Lübeck, Lübeck, Germany
197. Department of Epidemiology, University of Washington, Seattle, WA, USA
198. Department of Health Services, University of Washington, Seattle, WA
199. Group Health Research Institute, Group Health Cooperative, Seattle, WA
200. Division of Biostatistics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
201. Center for Non-Communicable Diseases, Karachi, Pakistan
202. Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
203. Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
204. Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
205. Institute of Physiology, University Medicine Greifswald, Greifswald, Germany
206. Department of Biostatistics, University of Washington, Seattle, WA, USA
207. University of Ottawa Heart Institute, Cardiovascular Research Methods Centre Ontario, Canada
208. Ruddy Canadian Cardiovascular Genetics Centre, Ontario, Canada
209. National Heart, Lung, and Blood Institute, 6701 Rockledge Ave., Bethesda, MD 20892, USA
210. Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester LE3 9QP, UK
211. South Karelia Central Hospital, Lappeenranta, Finland
212. Deutsches Herzzentrum München and Technische Universität München, Germany
213. Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), München, Germany
214. Munich Heart Alliance, Germany
215. Center For Life-course Health Research, P.O.Box 5000, FI-90014 University of Oulu, Finland
216. Division of Endocrine and Metabolism, Department of Internal Medicine, Chichung Veterans General Hospital, Taichung 40705, Taiwan
217. College of Medicine, National Defense Medical Center, Taipei, Taiwan
218. Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597
219. University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
220. Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
221. Department of Haematology, University of Cambridge, Cambridge, UK
222. Department of Medicine, National University of Singapore and National University Health System, Singapore 119228, Singapore
223. Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, 21224, USA
224. Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
225. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
226. Department of Health Sciences, University of Leicester, University Rd, Leicester LE1 7RH, UK
227. Department of internal medicine, Erasmus MC, Rotterdam, 3000CA, The Netherlands
228. Department of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
229. Research Unit, Kuopio University Hospital, Kuopio, Finland
230. Centre of Medical Systems Biology (CMSB 1-2), NGI Erasmus Medical Center, Rotterdam, The Netherlands
231. Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, Amsterdam, The Netherlands
232. Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
233. Sections of Preventive medicine and Cardiology, Department of Medicine, Boston University School of Medicine, Boston, 02446 MA, USA
234. Medical Population Genetics, The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
235. Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
236. Department of Internal medicine, University Hospital Lausanne, Lausanne, Switzerland
237. Department of Epidemiology and Public Health, EA3430, University of Strasbourg, Strasbourg, France
238. Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
239. University Medical Center Groningen, University of Groningen, Groningen, 9700RB, The Netherlands
240. Epidemiology Research Unit, Tropical Medicine Research Institute, University of the West Indies, Mona, Kingston 7, Jamaica
241. Department of Community Medicine, Faculty of Health Sciences, University of Troms \varnothing, Troms \varnothing, Norway
242. Department of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
243. MRC Cancer Unit, University of Cambridge, Cambridge, UK
244. Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
245. Department of Epidemiology and Biostatistics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
246. Ministry of Health, Victoria, Republic of Seychelles
247. Department of Biostatistics and Epidemiology, University of Pennsylvania, USA
248. MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, Norfolk Place, London W2 1PG, UK
249. Enterprise Informatics, Illumina Inc., Santa Clara CA, 95050, USA
250. Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
251. Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
252. Department of Genetics, University of Groningen, University Medical Centre Groningen, Groningen, 9711, The Netherlands
253. Dept Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
254. Department of Medicine, Central Finland Health Care District, Jyväskylä, Finland
255. South Ostrobothnia Central Hospital, 60220 Seinäjoki, Finland
256. Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La Paz, 28046 Madrid, Spain
257. Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria
258. Department of Medicine, Columbia University, 622 West 168th St., New York, NY 10032, USA
259. Synlab Academy, Synlab Services GmbH, P5, 7, 68161 Mannheim, Germany
260. Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, 8036

Graz, Austria
261. Unit of Primary Care, Oulu University Hospital, Kajaanintie 50, P.O.Box 20, FI-90220 Oulu, 90029

OYS, Finland
262. MRC-PHE Centre for Environment and Health, Imperial College London, London, United Kingdom
263. Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig-

Maximilians-Universität, München 81377, Germany
264. Grosshadern, Klinikum, München 81377, Germany
265. The Charles Bronfman Institute for Personalized Medicine and the Mindich Child health

Development Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
266. Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACERHD), King Abdulaziz University, Jeddah 21589, Saudi Arabia
267. Department of Biostatistics, University of Liverpool, Liverpool L69 3GA, UK
268. Novo Nordisk Foundation Centre for Basic Metabolic Research, Section of Metabolic, Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark 269. Department of Epidemiology Research, Statens Serum Institut, 2300, Copenhagen, Denmark

ONLINE METHODS

Cohorts contributing to systolic (SBP) and diastolic blood pressure (DBP) analyses

Studies contributing to BP association discovery including community- and population-based collections as well as studies of non-BP traits, analyzed as case and control samples separately. Details on each of the studies including study design and BP measurement are provided in Supplementary Table 1, genotyping information in Supplementary Table 2, and participant characteristics in Supplementary Table 3. All participants provided written informed consent and the studies were approved by local Research Ethics Committees and/or Institutional Review Boards.

European ancestry meta-analysis

A meta-analysis of 340,934 individuals of European descent was undertaken in four stages with subsequent validation in an independent cohort. Because stage 1 Cardio-MetaboChip samples included many SNPs selected on the basis of association with BP in earlier GWAS, we performed genomic control using a set of putative null SNPs based on $P>0.10$ in earlier GWAS of SBP and DBP or both. Stage 2 samples with genome-wide genotyping used the entire genome-wide set of SNPs for genomic control given the lack of ascertainment. The study design is summarized in Supplementary Figure 1, and further details are provided in Supplementary Tables 2-5 and the Supplementary Note.

Systematic PubMed search +/-100kb of each newly discovered index SNP

All genes with any overlap with a 200kb region centered around each of the 20 newly discovered lead SNPs were identified using the UCSC Genome Browser. A search term was constructed for each gene including the short and long gene name and the terms "blood pressure" and "hypertension" (e.g. for NPPA on chr 1: "NPPA OR natriuretic peptide A AND (blood pressure OR hypertension)") and the search results of each search term from PubMed were individually reviewed.

Trait variance explained

The trait variance explained by 66 lead SNPs at novel and known loci was evaluated in one study that contributed to the discovery effort: the Atherosclerosis Risk in Communities (ARIC) study. We constructed a linear regression model with all 66 or the subset of 49 known SNPs as a set of predictors of the BP residual after adjustment for covariates of the adjusted treatment-corrected BP phenotype (SBP or DBP). The r^{2} from the regression model was used as the estimate of trait variance explained.

European ancestry GCTA-COJO analysis

To identify multiple distinct association signals at any given BP locus, we undertook approximate conditional analyses using a model selection procedure implemented in the GCTA-COJO software package ${ }^{44,45}$. To evaluate the robustness of the GCTA-COJO results to the choice of reference data set, model selection was performed using the LD between variants in separate analyses from two datasets of European descent, both with individuals from the UK with Cardio-MetaboChip genotype data: GoDARTS with 7,006 individuals and WTCCC1-T2D/58BC with 2,947 individuals. Assuming that the LD between SNPs more than 10 Mb away or on different chromosomes is zero, we undertook the GCTA-COJO stepwise model selection to select SNPs that were conditionally-independently associated with SBP and DBP, in turn, at a genome-wide significance, given by $P<5 \times 10^{-8}$ (Supplementary Tables 6-8) using the stage 4 combined European GWAS+ Cardio-MetaboChip meta-analysis.

Conditional analyses in the Women's Genome Health Study (WGHS)

Multivariable regression modeling was performed for each possible combination of putative independent SNPs from a) model selection implemented in GCTA-COJO and b) a comprehensive manual
review of the literature (Supplementary Table 9). Any SNP with $P<5 \times 10^{-8}$ in a previous reported BP GWAS was considered. A total of 46 SNPs were examined (Supplementary Table 10). Genome-wide genotyping data imputed to 1000 Genomes in the WGHS ($N=23,047$) were used. Regression modeling was performed in the R statistical language (Supplementary Table 10).

Fine mapping and determination of credible sets of causal SNPs

The GCTA-COJO and WGHS conditional analyses identified multiple distinct signals of association at multiple loci (Supplementary Tables 6 and 10). Of the 24 loci considered in fine-mapping analyses, 16 had no evidence for the existence of multiple distinct association signals, so it is reasonable to assume that there is a single causal SNP and therefore the credible sets of variants could be constructed using the association summary statistics from the unconditional meta-analyses. However, in the remaining eight loci, where evidence of secondary signals was observed from GCTA-COJO, we performed approximate conditional analyses across the region by conditioning on each index SNP (Supplementary Table 11). By adjusting for the other index SNPs at the locus, we can therefore assume a single variant is driving each "conditionally-independent" association signal, and we can construct the 99% credible set of variants on the basis of the approximate conditional analysis from GCTA-COJO (Supplementary Tables 12-13). At five of the eight loci with multiple distinct signals of association, one index SNP mapped outside of the fine-mapping region, so a credible set could not be constructed.

eQTL analysis: Whole Blood

NESDA/NTR: Whole blood eQTL analyses were performed in samples from the Netherlands Study of Depression and Anxiety (NESDA) ${ }^{46}$ and the Netherlands Twin Registry (NTR) ${ }^{47}$ studies. RNA expression analysis was performed in the statistical software R. The residuals resulting from the linear regression analysis of the probe set intensity values onto the covariates sex, age, body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$, smoking status coded as a categorical covariate, several technical covariates, and three principal components were used. The eQTL effects were detected using a linear mixed model approach, including for each probe set the expression level (normalized, residualized and without the first 50 expression PCs) as dependent variable; the SNP genotype values as fixed effects; and family identifier and zygosity (in the case of twins) as random effects to account for family and twin relations ${ }^{48}$.

The eQTL effects were defined as cis when probe set-SNP pairs were at distance $<1 \mathrm{M}$ base pairs. At a FDR of 0.01 used genome-wide, therefore not only considering the candidate SNPs, for ciseQTL analysis the P value threshold was 1×10^{-4}. For each probe set that displayed a statistically significant association with at least one SNP located within its cis region, we identified the most significantly associated SNP and denoted this as the top cis-eQTL SNP. See Supplementary Note for details.

eQTL analysis: Selected published eQTL datasets

Lead BP SNP and proxies ($r^{2}>0.8$) were searched against a collected database of expression SNP (eSNP) results. The reported eSNP results met criteria for statistical thresholds for association with gene transcript levels as described in the original papers. The non-blood cell tissue eQTLs searched included aortic endothelial cells ${ }^{49}$, left ventricle of the heart ${ }^{50}$, cd14+ monocytes ${ }^{51}$ and the brain ${ }^{52}$. The results are presented in Supplementary Tables 14-15.

Enrichment analyses: Analysis of cell-specific DNase hypersensitivity sites (DHSs) using an OR method
The overlap of Cardio-MetaboChip SNPs with DHSs was examined using publicly available data from the Epigenomics Roadmap Project and ENCODE, choosing different cutoffs of Cardio-MetaboChip P values. The DHS mappings were available for 123 mostly adult cells and tissues ${ }^{53}$ (downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/). The DHS
mappings were specified as both "narrow" and "broad" peaks, referring to reduction of the experimental data to peak calls at 0.1% and 1.0% FDR thresholds, respectively. Thus, the "narrow" peaks are largely nested within the "broad" peaks. Experimental replicates of the DHS mappings (typically duplicates) were also available for the majority of cells and tissues.

SNPs from the Cardio-MetaboChip genome-wide scan were first clumped in PLINK in windows of 100 kb and maximum $r^{2}=0.1$ among LD relationships from the 1000 Genomes European data. Then, the resulting index SNPs at each P value threshold were tagged with $r^{2}=0.8$ in windows of 100 kb , again using LD relationships in the 1000 Genomes, restricted to SNPs with MAF > 1% and also present in the HapMap2 CEU population. A reference set of SNPs was constructed using the same clumping and tagging procedures applied to GWAS catalog SNPs (available at http://www.genome.gov/gwastudies/, accessed $3 / 13 / 2013)^{54}$ with discovery $P<5 \times 10^{-8}$ in European populations. A small number of reference SNPs or their proxies overlapping the BP SNPs or their proxies were excluded. After LD pruning and exclusions, there were a total of 1,196 reference SNPs. For each cell type and P value threshold, the enrichment of SBP or DBP SNPs (or their LD proxies) mapping to DHSs was expressed as an odds ratio (OR) relative to the GWAS catalog reference SNPs (or their LD proxies), using logistic mixed effect models treating the replicate peak determinations as random effects (glmer package in R). The significance of the enrichment ORs was derived from the significance of beta coefficients for the main effects in the mixed models (Figure 3, Supplementary Table 16).

Enrichment analyses: Analysis of tissue-specific enrichment of BP variants and H3K4me3 sites

An analysis to test for significant cell-specific enrichment in the overlap of BP SNPs (or their proxies) with H3K4me3 sites was performed as described in Trynka et al, 2013 ${ }^{55}$. The measure of overlap is a "score" that is constructed by dividing the height of an H3K4me3 ChIP signal in a particular cell by the distance between the nearest test SNP. The significance of the scores (i.e. P value) for all SNPs was determined by a permutation approach that compares the observed scores to scores of SNPs with similar properties to the test SNPs, essentially in terms of LD and proximity to genes (Supplementary Note). The number of significant digits in the P values is determined by the number of permutations and we conducted 10,000 iterations. Results are shown in Supplementary Table 19.

Enrichment analyses: Analysis of tissue-specific DHSs and chromatin states using GREGOR

 The DNase-seq ENCODE data for all available cell types were downloaded in the processed "narrowPeak" format. The local maxima of the tag density in broad, variable-sized "hotspot" regions of chromatin accessibility were thresholded at FDR 1% with peaks set to a fixed width of 150bp. Individual cell types were further grouped into 41 broad tissue categories(http://genome.ucsc.edu/ENCODE/cellTypes.html) by taking the union of DHSs for all related cell types and replicates. For each GWAS locus, a set of matched control SNPs was selected based on three criteria: 1) number of variants in LD ($r^{2}>0.7 ; \pm 8$ variants), 2) MAF ($\pm 1 \%$), and 3) distance to nearest gene ($\pm 11,655 \mathrm{bp}$). To calculate the distance to the nearest gene, the distance to the 5' flanking gene (start and end position) and to the 3' flanking gene was calculated and the minimum of these 4 values was used. If the SNP fell within the transcribed region of a gene, the distance was 0 . The probability that a set of GWAS loci overlap with a regulatory feature more often than we expect by chance was estimated.

Enrichment analyses: FAIRE analysis of BP variants in fine-mapping regions in lymphoblastoid cell lines FAIRE analysis was performed on a sample of 20 lymphoblastoid cell lines of European origin. All samples were genotyped using the Cardio-MetaboChip genotyping array, and BP SNPs and LD proxies (r^{2} >0.8) at the fine mapping loci ($N=24$, see Supplementary Table 23) were assessed to identify heterozygous imbalance between non-treated and FAIRE-treated chromatin. A paired t-test was used to
compare the B allele frequency (BAF) arising from formaldehyde-fixed chromatin sheared by sonication and DNA purified to the BAF when the same chromatin sample underwent FAIRE to enrich for open chromatin. Three hundred and fifty-seven Cardio-MetaboChip BP SNPs were directly genotyped across the fine mapping regions. The Bonferroni-corrected threshold of significance is $P<0.0001(0.05 / 357)$. The results for SNPs with $P<0.05$ are reported in (Supplementary Table 23). FAIRE results were not available for some SNPs with missing data due to genotype failure or not having >3 heterozygous individuals for statistical analysis. Therefore there are no results for three lower frequency BP loci (SLC39A8, CYP17A1-NT5C2 and GNAS-EDN3) and for the second signal at the following loci: MTHFRNPPB (rs2272803), MECOM (rs2242338) and HFE rs1800562).

Pathway analyses: MAGENTA

MAGENTA tests for enrichment of gene sets from a precompiled library derived from GO, KEGG, PATHTER, REACTOME, INGENUITY, and BIOCARTA was performed as described by Segré et al, 2010 ${ }^{56}$. Enrichment of significant gene-wide P values in gene sets is assessed by 1) using LD and distance criteria to define the span of each gene, 2) selecting the smallest P value among SNPs mapping to the gene span, and 3) adjusting this P value using a regression method that accounts for the number of SNPs, the LD, etc. In the second step, MAGENTA examines the distribution of these adjusted P values and defines thresholds for the 75%-ile and the 95%-ile. In the third step, MAGENTA calculates an enrichment for each gene set by comparing the number of genes in the gene set with P value less than either the 75th or 95 th \%ile to the number of genes in the gene set with P value greater than either the 75 th or 95 th $\%$ ile, and then comparing this quotient to the same quotient among genes not in the gene set. This gene-set quotient is assigned a P value based on reference to a hypergeometric distribution. The results based on our analyses are indicated in Supplementary Table 21.

Pathway analyses: DEPICT

We applied the DEPICT ${ }^{57}$ analysis separately on genome-wide significant loci from the overall blood pressure (BP) Cardio-MetaboChip analysis including published blood pressure loci (see Supplementary Table 22). SNPs at the HFE and BAT2-BAT5 loci (rs1799945, rs1800562, rs2187668, rs805303, rs9268977) could not be mapped. As a secondary analysis, we additionally included associated loci (P < 1×10^{-5}) from the Cardio-MetaboChip stage 4 combined meta-analyses of SBP and the DBP. DEPICT assigned genes to associated regions if they overlapped or resided within associated LD blocks with $r^{2}>$ 0.5 to a given associated SNP.

Literature review for genes at the newly discovered loci

Recognizing that the most significantly associated SNP at a locus may not be located in the causal gene and that the functional consequences of a SNP often extends beyond 100 kb , we conducted a literature review of genes in extended regions around newly discovered BP index SNPs. The genes for this extensive review were identified by DEPICT (Supplementary Table 22).

Non-European meta-analysis

To assess the association of the 66 significant loci from the European ancestry meta-analysis in nonEuropean ethnicities, we obtained lookup results for the 66 index SNPs for participants of South-Asian ancestry (8 datasets, total $N=20,875$), East-Asian ancestry (5 datasets, total $N=9,637$), and African- and African-American ancestry (6 datasets, total $\mathrm{N}=33,909$). The association analyses were all conducted with the same covariates (age, age ${ }^{2}$, sex, BMI) and treatment correction ($+15 / 10 \mathrm{~mm} \mathrm{Hg}$ in the presence of any hypertensive medication) as the association analyses for the discovery effort in Europeans. Tests for heterogeneity across effect estimates in European, South Asian, East Asian and African derived samples were performed using GWAMA ${ }^{58}$.

Genetic risk score and cardiovascular outcomes

The gtx package for the R statistical programming language was used to estimate the effect of the SNP-risk score on the response variable in a regression model ${ }^{45}$.

REFERENCES

44. Yang, J., Lee, S.H., Goddard, M.E. \& Visscher, P.M. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88, 76-82 (2011).
45. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44, 369-75, S1-3 (2012).
46. Penninx, B.W. et al. The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. Int J Methods Psychiatr Res 17, 121-40 (2008).
47. Boomsma, D.I. et al. Netherlands Twin Register: from twins to twin families. Twin Res Hum Genet 9, 849-57 (2006).
48. Visscher, P.M., Benyamin, B. \& White, I. The use of linear mixed models to estimate variance components from data on twin pairs by maximum likelihood. Twin Res 7, 670-4 (2004).
49. Romanoski, C.E. et al. Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circ Res 109, e27-41 (2011).
50. Koopmann, T.T. et al. Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS One 9, e97380 (2014).
51. Fairfax, B.P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).
52. Ramasamy, A. et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 17, 1418-28 (2014).
53. Maurano, M.T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190-5 (2012).
54. Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42, D1001-6 (2014).
55. Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 45, 124-30 (2013).
56. Segre, A.V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 6(2010).
57. Pers, T.H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 6, 5890 (2015).
58. Magi, R. \& Morris, A.P. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 11, 288 (2010).

SUPPLEMENTARY NOTE
 Table of Contents

1 Studies contributing to systolic (SBP) and diastolic blood pressure (DBP) analyses 4
2 Consortia and studies providing association results for cardiovascular outcomes 4
2.1 CHARGE - Heart Failure Working Group 4
2.2 EchoGen (LM mass and LV weight) 4
2.3 NEURO-CHARGE (stroke) 4
2.4 MetaStroke (stroke). 5
2.5 CARDloGRAMplusC4D (CAD) 5
2.6 CHARGE CKDgen (CKD, eGFR, microalbuminuria, UACR) 5
2.7 KidneyGen (creatinine) 6
2.8 CHARGE (cIMT) 6
2.9 CHARGE (mild retinopathy, central retinal artery caliber) 6
2.10 SEED (mild retinopathy, central retinal artery caliber) 6
3 European ancestry meta-analysis 7
3.1 Stage 2 meta-analyses 7
3.2 Stage 3 meta-analyses 8
3.3 Stage 4: combined meta-analyses and validation in the UK Biobank 8
3.4 Systematic PubMed search +/-100kb of each newly discovered index SNP. 9
3.5 Trait variance explained 9
4 European ancestry GCTA-COJO analysis 10
5 Conditional analyses in the Women's Genome Health Study (WGHS) 11
6 Fine mapping and determination of credible sets of causal SNPs 11
7 Expression quantitative trait loci (eQTLs) analyses 13
7.1 Whole Blood (NESDA/NTR dataset) 13
7.2 Whole blood (FHS dataset) 14
7.3 Lymphoblastoid cell lines, skin and fat biopsies (MuTHER datasets) 15
7.4 Monocytes and macrophages (Cardiogenics) 15
7.5 Advanced Study of Aortic Pathology (ASAP) dataset 15
7.6 Kidney 16
7.7 Selected published eQTL datasets 17
8 Enrichment of BP variants in experimentally annotated regulatory marks 17
8.1 Analysis of cell-specific DNase hypersensitivity sites (DHSs) using an OR method 17
8.2 Analysis of tissue-specific enrichment of BP variants and H3K4me3 sites 18
8.3 Analysis of tissue-specific DHSs and chromatin states using Genomic Regulatory Elements and GWAS Overlap Algorithm (GREGOR) 18
8.4 Formaldehyde-assisted isolation of regulatory elements (FAIRE) analysis of BP variants in fine mapping regions in lymphoblastoid cell lines 19
9 Pathway analyses 20
9.1 MAGENTA. 20
9.2 Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) 20
10 Non-European meta-analysis 21
11 Genetic risk score and cardiovascular outcomes 22
12 Literature review for genes at the newly discovered loci 22
12.1 FDG5 23
12.2 ZC3HC1 23
12.3 DBH 23
12.4 INSR 24
12.5 HIVEP3 24
12.6 TRIM36 24
12.7 CSNK1G3 25
12.8 SETBP1 25
12.9 SIK1 25
12.10 MYBPC3 26
13 Supplementary table list and legends 27
14 Supplementary figures 35
15 References 82
16 Author contributions 88
17 Acknowledgments 92
118 Author information

1 Studies contributing to systolic (SBP) and diastolic blood pressure (DBP) analyses

The cohorts contributing to the discovery meta-analysis for individuals of European ancestry comprise of studies that were directly genotyped using Cardio-MetaboChip, studies in the published ICBP-GWAS dataset ${ }^{1}$, and new GWAS studies. The total sample size is $N=201,529$. The validation dataset comprised individuals of European ancestry from UK Biobank, $N=140,886$. A targeted lookup of 66 SNPs was performed in studies of non-European ancestry (East Asian $N=9,637$, South Asian $N=20,875$, and African and African-American ancestry $N=33,909$). Details on each of the studies including study design and BP measurement are provided in Supplementary Table 1, genotyping information in Supplementary Table 2, and participant characteristics in Supplementary Table 3.

All participants provided written informed consent and the studies were approved by their local Research Ethics Committees and/or Institutional Review Boards.

2 Consortia and studies providing association results for cardiovascular outcomes

We obtained phenotype-genotype association summary statistics (effect size, standard error, and P value) for up to 66 SNPs of interest, by requesting "look-ups" in the results of analyses that had already been conducted by consortia and research groups for cardiovascular and other end-organ outcomes. In this section, we briefly summarize relevant information about each consortium.

2.1 CHARGE - Heart Failure Working Group

We obtained association summary statistics for SNPs of interest from the meta-analysis of 4 cohorts of European ancestry with a total of 20,926 participants free of clinical heart failure at baseline, in whom 2,526 incident heart failure events occurred during follow-up ${ }^{2}$. All cohorts included in the heart failure analysis are included in the published ICBP-GWAS discovery dataset ${ }^{1}$.

2.2 EchoGen (LM mass and LV weight)

Association summary statistics for left ventricular (LV) mass and LV wall thickness were obtained from the discovery meta-analysis described previously ${ }^{3}$. The discovery analysis for this study combined data from 5 cohorts of European ancestry with a total sample size of $N=12,612$. Four of the cohorts (CHS, RS, KORA F3, FHS) with total $\mathrm{N}=9,312$, overlap the studies which are included in the published ICBPGWAS discovery dataset ${ }^{1}$.

2.3 NEURO-CHARGE (stroke)

Association summary statistics for risk of incident stroke were obtained from the discovery metaanalysis of the CHARGE consortium, described previously ${ }^{4}$. The discovery analysis for these phenotypes
combined data from 4 cohorts of European ancestry with a total sample size of $N=19,602$, all of which were included in the ICBP-GWAS dataset ${ }^{1}$.

2.4 MetaStroke (stroke)

Association summary statistics for ischemic risk stroke were obtained from the discovery meta-analysis of the MetaStroke consortium, described previously ${ }^{5}$. The discovery analysis for these phenotypes included $N=11,012$ ischemic stroke cases and $N=40,824$ controls after excluding four cohorts (ARIC, CHS, FHS and RS) which are included in the NEURO-CHARGE dataset. There is some overlap of individuals from deCODE and 58BC contributing to the Cardio-MetaboChip BP analyses.

2.5 CARDIoGRAMplusC4D (CAD)

Association summary statistics were obtained from the Coronary ARtery Dlsease Genome-wide Replication And Meta-analysis (CARDIoGRAM) plus C4D consortium which combines data from GWAS and Cardio-MetaboChip studies including 63,746 cases with coronary artery disease (CAD) and/or Myocardial Infarction (MI) and 130,681 controls of European and South Asian ancestry ${ }^{6}$. More than 80% of the individuals in these analyses are included in the Cardio-MetaboChip and GWAS BP analyses.

2.6 CHARGE CKDgen (CKD, eGFR, microalbuminuria, UACR)

Association summary statistics for estimated glomerular filtration rate estimated from creatinine (eGFRcr) were obtained from the discovery meta-analysis of the CKDGen consortium (all samples of European ancestry), described previously ${ }^{7}$. The discovery analysis for these phenotypes combined data from 26 cohorts with a total sample size of $N=74,354$. Seventeen of these cohorts (AGES, Amish, ARIC, BLSA, CHS, 1300 samples from ERF, FHS, KORA F3, KORA F4, MICROS, NSPHS, ORCADES, RS, RSII, SHIP, WGHS and Vis) with total $N=65,818$, overlap the ICBP-GWAS discovery dataset previously published ${ }^{1}$. Association summary statistics for dichotomous chronic kidney disease (CKD) were obtained by querying the same datasets ${ }^{7}$. There are 17 cohorts (AGES, Amish, ARIC, BLSA, CHS, 1300 samples from ERF, FHS, KORA F3, KORA F4, MICROS, NSPHS, ORCADES, RS, RSII, SHIP, WGHS and Vis), with total N = 60,498, overlapping the ICBP-GWAS discovery datasets. Association summary statistics for eGFR estimated from cystatin C (eGFRcys) were obtained from 10 datasets; 7 of these cohorts (Amish, ARIC, CHS, FHS, KORA F3\&F4, MICROS, and SHIP) with $N=21,274$ overlap the discovery cohorts in the published ICBP-GWAS dataset ${ }^{1}$. Association summary statistics for urinary albumin:creatinine ratio (UACR) phenotypes combined data from 12 cohorts with a total sample size of $N=31,580$. Individuals in all 12 of the cohorts overlap the ICBP-GWAS dataset ${ }^{1}$. Microalbuminuria was defined as UACR $>25 \mathrm{mg} / \mathrm{g}$ in women or $>17 \mathrm{mg} / \mathrm{g}$ in men^{8}.

2.7 KidneyGen (creatinine)

Association summary statistics for serum creatinine were obtained from the discovery meta-analysis of the KidneyGen consortium, described previously ${ }^{9}$. The discovery analysis for this study combined data from 9 cohorts, all of European ancestry, with a total sample size of $N=23,812$. Six of the cohorts (CoLaus, SardiNIA, 873 samples from TwinsUK, Fenland, InCHIANTI, NFBC1966) with a total sample size of $N=17,699$, overlap the ICBP-GWAS discovery dataset ${ }^{1}$.

2.8 CHARGE (cIMT)

Association summary statistics for carotid intimal thickness (cIMT) were obtained from the discovery meta-analysis of the CHARGE consortium ${ }^{10}$. Each study evaluated the carotid arteries with highresolution B-mode ultrasonography, and cIMT was defined as the average of multiple measurements from both the left and right arteries. The discovery analysis combined data from 9 cohorts, all of European ancestry, with a total sample size $N=31,211$. All cohorts (AGES, Amish, ARIC, CHS, ERF, FHS, RS, Sardinia and SHIP) overlap the ICBP-GWAS discovery dataset ${ }^{1}$.

2.9 CHARGE (mild retinopathy, central retinal artery caliber)

Association summary statistics for mild retinopathy were obtained from the discovery meta-analysis of the CHARGE consortium. Retinopathy is defined as the presence of micro-aneurysms or dot-blot hemorrhages ${ }^{11}$. The discovery analysis combined data from 6 cohorts, all of European ancestry, with a total sample size of $N=18,411$. Five of the cohorts, AGES, ARIC, CHS, RS, and MESA, overlap the ICBPGWAS samples. Association summary statistics for central retinal artery caliber were obtained from the discovery meta-analysis of the CHARGE consortium. Participants underwent film or digital retinal photography, and the images were analyzed with a semi-automated retinal vessel measurement system ${ }^{12}$. The discovery analysis for this study combined data from 5 cohorts, with a total sample size of $N=18,722$. Four of the cohorts (AGES, ARIC, CHS and RS) overlap the ICBP-GWAS discovery dataset ${ }^{1}$.

2.10 SEED (mild retinopathy, central retinal artery caliber)

Association summary statistics for mild retinopathy were obtained from the discovery meta-analysis of the Singapore Epidemiology of Eye Diseases (SEED) Study (unpublished). Retinopathy and central retinal artery caliber were measured as previously described ${ }^{11,12}$. The discovery analysis for this study has a total sample size of $N=6,976$. None of the studies overlap the BP cohorts analyzed in the current report.

3 European ancestry meta-analysis

A meta-analysis of 201,529 individuals of European descent was undertaken in four stages. The study design is summarized in Supplementary Figure 1. The stage 1 meta-analyses consisted of 109,096 individuals of European descent across 46 studies (Supplementary Tables 2-3). All samples were genotyped using the Cardio-MetaboChip genotype array ${ }^{13}$. Sample and SNP quality control (QC) were undertaken by each study separately. All SNPs with minor allele frequency (MAF) $>1 \%$, Hardy-Weinberg Equilibrium (HWE) $P>1 \times 10^{-7}$ and per SNP call-rate >0.98 were separately tested for association with SBP and DBP in a linear regression framework assuming an additive model. The BP values were treatment corrected by adding 15 mm Hg to the measured SBP and 10 mmHg to DBP in individuals on one or more anti-hypertensive medications ${ }^{14}$. Association analyses included sex (some studies stratified their analyses by gender instead), age, age-squared, and BMI as covariates, except where these covariates were identical for all individuals, such as birth cohorts of individuals born in the same year. Where available and appropriate, additional covariates were used to correct for potential within-cohort stratification. The results of each GWAS were corrected for residual stratification using the genomic control inflation factor ${ }^{1,15}$. As the Cardio-MetaboChip was designed in part on the basis of association results from the ICBP-GWAS analysis of SBP and DBP, we observed, as expected, test statistic inflation in association signals across the content of this array. The results of each study were therefore corrected for residual population structure using the genomic control inflation factor obtained from a subset of SNPs that were not found to be associated with BP in the earlier ICBP-GWAS. This set of "putative null BP SNPs" was chosen to be the overlap of the Cardio-MetaboChip SNPs with the GWAS SNPs imputed from HapMap if the association test significance for both SBP and DBP were both $P>0.10$. All SNPs lying in fine mapping regions (defined as average inter-SNP distance < 5kb using a 10 inter-SNP sliding window) were also excluded from the "putative null BP SNPs" dataset, resulting in a final set of 44,951 "putative null BP SNPs". The results of all Cardio-MetaboChip studies were combined by inversevariance weighted fixed-effects meta-analysis, with the results subsequently corrected by a second round of genomic-control using "putative null BP SNPs", with $\lambda_{G C}=1.15$ for both SBP and DBP.

3.1 Stage 2 meta-analyses

The stage 2 meta-analyses consisted of 35,952 individuals of European descent across four GWA studies which were not part of the 2011 ICBP-GWAS (WGHS, JUPITER, NESDA, MESA, see Supplementary Tables 1-3 for abbreviations and details) and SNPs overlapping with Cardio-MetaboChip SNPs were used. Samples were genotyped with a range of GWAS genotyping arrays and unmeasured SNPs were imputed using samples from the International HapMap Project for three of the studies and from the

1000 Genomes Project Consortium ${ }^{16}$ for one study (see Supplementary Table 2 for details of data cleaning and imputation reference panels). The same QC and analytical protocols implemented for studies in stage 1 were also applied to stage 2 studies with the exception that genome-wide SNPs were used per study for a first round of genomic-control (Supplementary Figure 1). For each SNP with imputation quality $r^{2}>0.3$, association summary statistics were combined across studies by means of inverse-variance weighted fixed-effects meta-analysis, with results subsequently corrected by a second round of genomic control based on all genome-wide SNPs ($\lambda_{G C}=1.02 / 1.01$ for SBP/DBP respectively).

3.2 Stage 3 meta-analyses

The stage 3 meta-analyses consisted of 56,481 individuals of European ancestry from 24 published ICBPGWAS studies ${ }^{1}$ (Supplementary Tables 1-3). Samples were genotyped using a range of commercially available arrays with $>300,000$ SNPs. Genotypes for unmeasured SNPs were imputed using CEU samples from Phase 2 of the International HapMap Project Consortium ${ }^{17}$ and a common set of $\sim 2.5 \mathrm{M}$ SNPs available across the samples were available for analysis. Within each study, sample and SNP quality control procedures were implemented ${ }^{1}$. SNPs with MAF $>1 \%$ and passing QC were tested for association with SBP and DBP under additive genetic models in a linear regression framework with adjustment for the same covariates as in stages 1 and 2. Genome-wide SNPs were used per study for a first round of genomic-control (Supplementary Figure 1). For each SNP with imputation quality $r^{2}>0.3$, association summary statistics were combined across studies by means of inverse-variance weighted fixed-effects meta-analysis, with results subsequently corrected by a second round of genomic control using all SNPs ($\lambda_{G C}=1.12 / 1.11$ for SBP/DBP respectively).

3.3 Stage 4: combined meta-analyses and validation in UK Biobank

The results of the stage 1, stage 2 , and stage 3 meta-analyses for SBP and DBP were combined for all Cardio-MetaboChip SNPs by means of inverse-variance weighted fixed-effects meta-analysis. The combined meta-analyses consisted of 201,529 individuals. A third round of genomic control was not applied to the combined meta-analyses results because of the ascertainment of the Cardio-MetaboChip SNPs and of the "putative null SNPs" using results from a subset of the stage $1+2+3$ samples $\left(\lambda_{G C}=\right.$ 1.00/0.99 using the "putative null BP SNPs" for SBP/DBP respectively). Small sample size reduces the statistical power and increases the false positive rate (FDR), and variability in genotyping call rate makes SNP-by-SNP comparison of P values difficult. Therefore, SNPs were required to have passed quality control (whether directly genotyped and imputed) in at least 25% of the total sample size, or were otherwise excluded from downstream analyses. All meta-analyses were conducted in parallel by two analysts using a combination of custom scripts and a) the METAL software ${ }^{18}$ and b) scripting using the R
statistical language ${ }^{19}$ respectively. We sought independent validation of newly discovered BP loci using summary association results from an analysis of UK Biobank participants (Supplementary Tables 1-3). The analysis was restricted to Caucasians according to PCA based on a clustering algorithm, and unrelated individuals. The mean of two BP recordings was used, and medication-adjusted SBP and DBP variables were obtained by $+10 / 15 \mathrm{mmHg}$ for those on BP lowering treatment. All SNPs were tested for association with SBP and DBP in a linear regression framework assuming an additive model. The association analyses included sex, age, age ${ }^{2}$, BMI, genotyping array, and the top 10 PCs.

3.4 Systematic PubMed search +/-100kb of each newly discovered index SNP

To systematically assess whether genes near the index SNPs have been previously described to be involved in BP regulation or hypertension, we performed a systematic PubMed search. All genes with any overlap with a 200 kb region centered around each of the 17 newly discovered index SNPs were identified using the UCSC Genome Browser ${ }^{20}$. Two loci did not contain any genes within their genomic spans (TBC1D1-FLJ13197, CSNK1G3), the remaining 15 loci overlapped with a total of 64 genes (1-11 genes per locus). A search term was constructed for each gene including the short and long gene name and the terms "blood pressure" and "hypertension" (e.g. for NPPA on chr 1: "NPPA OR natriuretic peptide A AND (blood pressure OR hypertension)") and the search results of each search term from PubMed were individually reviewed. Of the 17 newly discovered loci, 6 contained genes within the 200kb interval that were previously described to be related to blood pressure or hypertension (ELAVL3, CHST12-LFNG, RAPSN-PSMC3-SLC39A13, DBH, CRYAA-SIK1, INSR). Among the 49 known loci there are 3 genes in gene-poor regions without any UCSC Gene in the 200kb interval (FIGN-GRB14, EBF1, TBX5TBX3). The same search on previous knowledge based on molecular biology could not be performed in a meaningful way for the known loci as here molecular biology experiments could have been carried out with the knowledge of a BP GWAS signal.

3.5 Trait variance explained

The trait variance explained by all 66 SNPs at novel and known loci was evaluated in one study that had also been used for the discovery effort (the Atherosclerosis Risk in Communities (ARIC) study. We constructed a linear regression model with all 66 or the subset of 49 known SNPs in the model, regressing in the residual from the covariate-adjusted treatment-corrected BP phenotype (SBP or DBP). R^{2} from the regression model was used as trait variance explained. Some over-fitting of these estimates may exist due to the sample overlap between the individual cohorts and the overall meta-analysis samples and because each regression model will estimate the best estimate of the per-SNP effect for
that sample. The variance explained (r^{2} implemented in the $\operatorname{Im}()$ function of R Statistical language) were calculated for SBP and DBP respectively (one SNP per locus). The phenotypes used in the regression were adjusted for BP lowering medication in the same way as in the meta-analysis and we used age, age 2, sex, and BMI as covariates. One SNP (rs9268977) was missing in ARIC and was replaced by a perfect proxy.

4 European ancestry GCTA-COJO analysis

To identify multiple distinct association signals within BP loci we undertook a model selection procedure implemented in the GCTA-COJO software package ${ }^{21,22}$. SNPs are selected by GCTA-COJO as conditionally-independently associated with a trait, at a pre-determined level of significance. GCTACOJO employs approximate conditional analyses using association summary statistics from the metaanalysis and the linkage disequilibrium (LD) between variants (and estimates the correlation between allelic effects in a joint association model) estimated from a reference dataset of individual-level genotype data, preferentially a study contributing to the meta-analysis. Although the set of SNPs selected and their effect estimates are expected to depend somewhat on the reference dataset, the results should be fairly robust when the LD pattern between variants in the cohorts under consideration is well represented by the reference dataset (when it is large and includes individuals with similar ancestral histories and therefore genotype frequencies and correlations) and thus offers good coverage of the SNPs in the meta-analysis ${ }^{21}$.

To evaluate the robustness of the GCTA-COJO results to the choice of reference data set, model selection was performed using the LD between variants in separate analyses from two datasets of European descent, both with individuals from the UK with Cardio-MetaboChip genotype data: GoDARTS with 7,006 individuals and WTCCC1-T2D/58BC with 2,947 individuals. Assuming that the LD between SNPs more than 10 Mb away or on different chromosomes is zero, we undertook the GCTA-COJO stepwise model selection to select SNPs independently associated with SBP and DBP, in turn, at a genomewide significance, given by $P<5 \times 10^{-8}$ (Supplementary Tables 6-8) using the stage 4 combined European GWAS+ Cardio-MetaboChip meta-analysis.

Although the sets of SNPs selected by GCTA-COJO as associated with SBP or DBP when using either reference dataset were very similar, with the estimated effect sizes in the joint association model highly correlated, a small number of differences were observed. These were always the result of minor differences between the estimated association P value for the joint model, with some SNPs falling on either side of the $P<5 \times 10^{-8}$ threshold when using one dataset as reference but not the other. Given these observations, we chose to report, as primary, the results when using GoDARTS as reference data
set given its larger sample size. Supplementary Figures 7 present locus zoom plots ${ }^{23}$ for the 13 BP loci with more than one association signal.

5 Conditional analyses in the Women's Genome Health Study (WGHS)

To further test for the presence of independent signals of association at the same locus, we performed multivariable regression modeling in a large single cohort study with simultaneous adjustment for each possible combination of putative independent SNPs from a) the Cardio-MetaboChip analysis and b) a comprehensive manual review of the literature (Supplementary Table 9). A total of 46 SNPs were considered (Supplementary Table 10). We used genome-wide genotyping data imputed to 1000 Genomes in the WGHS, $N=23,047$. The regression modeling was performed in the R statistical language with adjustment for age, age2, sex, and $\mathrm{BMI}{ }^{19}$. If a locus included 3 different SNPs (a, b and c), we tested association of each SNP in an individual model (model \#1: a; model \#2: b; model \#3: c), as well as the three models with 2 SNPs (model \#4: a, b; model \#5: $b, c ;$ model \#6: a, c) and finally a model with all 3 SNPs (model \#7: a, b, c).

6 Fine mapping and determination of credible sets of causal SNPs

We used association summary statistics from the European ancestry meta-analyses to define credible sets of variants that are most likely to drive the association signal (or tag an unobserved variant driving the association signal) across Cardio-MetaboChip fine mapping regions. Given the summary statistics from the European ancestry meta-analysis, an approximate Bayes' factor ${ }^{24}$ in favor of association of SNP j with the trait can be defined by

$$
A B F_{j}=\sqrt{1-r} \exp \left(\frac{z_{j}^{2}}{2} r\right)
$$

where $z_{j}=\frac{\beta_{j}}{\sigma_{j}}$ is the Z-statistic for SNP j, with B_{j} the allelic effect and σ_{j} the corresponding standard error. The shrinkage factor

$$
r=\frac{\varepsilon^{2}}{\sigma_{j}^{2}+\varepsilon^{2}}
$$

is the ratio of the prior variance, ε^{2}, to the total variance. Here, we assume $\varepsilon=0.2$ in the prior distribution for B_{j}^{25}. Under the assumption that there is exactly one variant driving the association signal in a given region, and taking a uniform prior on any of the k SNPs in the region being the causal variant, the total Bayes' factor for the region, measuring the evidence that there is one causal variant in the region, is then the mean of the single-SNP Bayes' factors ${ }^{26}$,

$$
B F_{\text {region }}=\frac{1}{k} \sum_{j=1}^{k} A B F_{j}
$$

The posterior probability that a given SNP is driving the signal given our data is proportional to its Bayes' factor

$$
\operatorname{Pr}(\mathrm{SNP} j \text { is driving association } \mid \text { data })=\frac{A \mathrm{BF}_{j}}{\mathrm{k} \times \mathrm{BF}_{\text {region }}} \propto \mathrm{BF}_{j}
$$

A 99\% credible set of variants can then be constructed by ranking all SNPs in the region based on their posterior probability and combining them until the cumulative posterior probability exceeds 0.99. Given the data under analysis and if the causal variant is among the genotyped variants or perfectly correlated to one of the variants, there is therefore at least 99\% probability that the constructed set of variants contains the variant driving the association signal or tags an unobserved variant driving the association signal.

The loci represented on the Cardio-MetaboChip are not all densely covered by design ${ }^{13}$. We therefore only consider for this analysis the Cardio-MetaboChip fine mapping loci where SNP coverage is dense. Of these fine mapping regions, some of which selected for a non-BP trait originally, only 24 loci included at least one SNP that reached genome-wide significance for the BP association in the Stage 4 combined meta-analysis of GWAS+Cardio-MetaboChip among those of European ancestry. The Cardio-MetaboChip-only analyses often include more eligible SNPs (broader coverage of variants) than GWAS+Cardio-Metabochip meta-analyses, because some SNPs are only present on the CardioMetaboChip array, but at the cost of reduced power to detect association due to the smaller sample size. We therefore determined, for comparison, the credible sets for both the GWAS+CardioMetaboChip and the Cardio-MetaboChip-only meta-analyses. Given that there must be a) adequate power to detect association ${ }^{24}$, and b) a relatively even sample size across all SNPs that are being compared, the credible sets were determined using only SNPs with sample size greater than 80% of our total sample size (Cardio-MetaboChip and GWAS combined). In constructing credible sets, we assume that there is a single variant driving the association signal in each locus. However, the GCTA-COJO analyses identified multiple signals of association at 13 of the 66 loci identified in our study as associated with SBP and/or DBP, while review of the literature identified additional association signals at two loci that appear to be independent of those identified in our study (Supplementary Table 9). Of the 24 loci considered in our fine mapping analyses, 16 had no evidence for the existence of multiple association signals, so it is reasonable to assume that there is a single causal SNP and therefore the credible sets of variants could be constructed as described above using the association summary statistics from the unconditional meta-analyses. However, in the remaining 8 loci, where evidence of secondary signals
was observed from GCTA-COJO, we performed approximate conditional analyses across the region by conditioning on each index SNP (Supplementary Table 11). By adjusting for the other index SNPs at the locus, we can therefore assume a single variant is driving each "conditionally-independent" association signal, and we can construct the 99% credible set of variants on the basis of the approximate conditional analysis from GCTA-COJO (Supplementary Tables 12-13). Note that at five of the eight loci with multiple signals of association, one index SNP mapped outside of the fine mapping region so that a credible set could not be constructed.

7 Expression quantitative trait loci (eQTLs) analyses

7.1 Whole Blood (NESDA/NTR dataset)

The dataset used for eQTL analyses came from samples from the Netherlands Study of Depression and Anxiety (NESDA) ${ }^{27}$ and the Netherlands Twin Registry (NTR) ${ }^{28}$ studies. The sample consisted of 5,071 subjects: 3,109 NTR (from 1,571 families: 614 dizygotic twin pairs; 1 monozygotic [MZ] triplet; 668 MZ twin pairs; 394 non-twin siblings; and 148 unrelated subjects) and 1,962 NESDA participants (all unrelated). The blood sampling, RNA and DNA extraction; gene expression measurements; and gene expression quality control (QC) for the eQTL analyses have been described previously ${ }^{29,30}$. RNA samples were hybridized to Affymetrix U219 arrays (Affymetrix, Santa Clara, CA). After filtering, data for analysis remained for 423,201 probes that were summarized into 44,241 probe sets targeting 18,238 genes. Further RNA analysis was performed in the statistical software R^{19}. The residuals resulting from the linear regression analysis of the probe set intensity values onto the covariates sex, age, body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$, smoking status coded as a categorical covariate, several technical covariates (plate, well, hour of blood sampling, lab, etc.) and the scores on three principal components (PCs) as estimated from the imputed SNP genotype data using the EIGENSOFT package, were subjected to a principal component analysis, with the aim to further filter out environmental variation from the data. For each principal component a genome-wide association study was performed, and the first 50 expression PCs that did not display genome-wide significant SNP associations were, together with the above mentioned covariates, regressed out of the probe set intensity values before eQTL analysis.

SNP genotype pre-imputation quality control, haplotype phasing, and imputation were performed as described previously ${ }^{31}$ using 1000 Genomes data. The mean imputation quality r^{2} metric equaled 0.38 for all $30,051,533$ imputed autosomal SNPs. Following filtering of SNPs based on Mendelian error rate in families, HWE P value, imputation quality r^{2}, MAF, and comparison of allele
frequencies to the 1,000 Genomes reference haplotypes, a total of $7,209,091$ SNPs with a mean r^{2} of 0.86 were available for eQTL analysis.

The eQTL effects were detected using a linear mixed model approach, including for each probe set the expression level (normalized, residualized and without the first 50 expression PCs) as dependent variable; the SNP genotype values as fixed effects; and family identifier and zygosity (in the case of twins) as random effects to account for family and twin relations ${ }^{32}$.

The eQTL effects were defined as cis when probe set-SNP pairs were at distance $<1 \mathrm{M}$ base pairs (Mb), and as trans when the SNP and the probe set were separated by more than 1 Mb on the genome according to hg19. At a FDR of 0.01 used genome-wide, therefore not only considering the candidate SNPs, for cis-eQTL analysis the P value threshold was 1×10^{-4}, and for trans-eQTL analysis 1×10^{-8}. For each probe set that displayed a statistically significant association with at least one SNP located within its cis region, we identified the most significantly associated SNP and denoted this as the top cis-eQTL SNP.

7.2 Whole blood (FHS dataset)

We considered whether any blood pressure SNP association was likely to be explained by association of the SNP with expression of a nearby gene in whole blood in humans. We tested whether the BP SNP or a close proxy ($r^{2}>0.8$, usually almost 1.0) was associated with a transcript of a gene within 1 Mb of the lead BP SNP, at an $\mathrm{FDR}<0.05$. As association of a blood pressure SNP with expression of a cis transcript could arise due to LD with a stronger and independent eSNP in the region in a scenario in which two independent signals exist (one BP signal and one eSNP association), we considered conditional models. For every BP SNP significantly associated with a cis transcript, we identified the best cis eSNP for that transcript. We considered strong evidence of one signal and therefore a possible mediating effect of SNP association with blood pressure through association with expression of that transcript when the correlation of the BP SNP and best eSNP was strong ($r^{2}>0.8$) and the significance of the BP-transcript association was substantially attenuated (significance reduced) in a model adjusting for the best eSNP. In that circumstance, we considered that the BP and expression association signals coincide and thus nominate the expression effect of the signal as a potential mediator of the BP association. For SNPs with $0.3<r^{2}<0.8$ and significant attenuation of the signal in conditional models, we considered possible coincidence of a single signal of BP and expression association. For SNPs with $r^{2}<0.3$ or SNPs that showed minimal attenuation of the BP-transcript association in conditional models two independent signals seemed more likely with probably no coincidence of those signals. Lastly, because BP signals in fine mapping regions are more precisely localized, we stratified on signal fine mapping (fine mapping of a prior BP SNP association), locus fine
mapping (fine mapping of the region) and no fine mapping in the region. The results are summarized in

Supplementary Table 15.

7.3 Lymphoblastoid cell lines, skin and fat biopsies (MuTHER datasets)

In the MuTHER study, RNA levels were measured in LCLs $(N=826)$, skin $(N=705)$ and fat biopsies ($\mathrm{N}=825$) from 850 female twins (one-third monozygotic and two-thirds dizygotic) from the TwinsUK resource using the Illumina HumanHT-12v3 array ${ }^{33}$. Genotyping was performed using three different arrays - Illumina HumanHap300, HumanHap610Q, and 1M-Duo, 1.2M Duo 1 M chips. Imputation was done using the IMPUTE software package using two reference panels (HapMap2, a combined ancestry panel) and a 610K+ panel. We assessed genotype with gene expression associations, using an additive linear model across a 2 Mb window centered on the index BP SNP or proxy SNP. At loci with significant cis-eQTL signal(s) $\left(P<1 \times 10^{-4}\right)$, the most strongly associated cis-eQTL SNP (eSNP) for the corresponding transcript was identified. If the BP SNP and the eSNP were the same or in high LD ($\mathrm{r}^{2}>$ 0.8) the BP SNP was defined as an eSNP. All index BP SNPs ($N=91$ at 66 loci see Supplementary Table 9) or proxies ($r^{2}>0.8$, if index SNP was not available) were considered. The results are summarized in

Supplementary Table 14.

7.4 Monocytes and macrophages (Cardiogenics)

Monocytes and macrophages were collected from healthy subjects and individuals with coronary artery disease (CAD), and RNA was profiled with the Illumina Human Ref-8 array ${ }^{34}$. Genotyping was performed using either Human Custom1.2M or Human Quad custom 670 arrays from Illumina. The eQTL analysis was undertaken in 459 healthy individuals from Cambridge, UK using an additive linear model across a 2 Mb window centered on the index BP SNP or proxy SNP. At loci with significant ciseQTL signal(s) ($P<1 \times 10^{-4}$), the most strongly associated cis-eQTL SNP (eSNP) for the corresponding transcript was identified. If the BP SNP and the eSNP were the same or in high LD ($r^{2}>0.8$), the BP SNP is defined as an eSNP. All index BP SNPs ($\mathrm{N}=91$ at 66 loci, see Supplementary Table 9) were considered or their proxies ($r^{2}>0.8$) if the index SNP was not available. The results are summarized in

Supplementary Table 14.

7.5 Advanced Study of Aortic Pathology (ASAP) dataset

The ASAP study included five tissues: aorta adventitia ("AAdv"), aorta intima-media ("AMed"), mammary artery intima-media ("MMed"), heart ("H") and liver ("L"). The expression data were generated using the Affymetrix ST1.0 Exon array and genotyping was performed using the Illumina Human 610W- Quad Bead array ${ }^{35}$. The sample sizes ranged between 100 and 200 per data set, 86 of the
requested SNPs or proxies ($r^{2}>0.8$) were available in the datasets. There were no probes on the arrays for 9 genes (c10orf22, DBH, EVX, FLJ32810, HOTTIP, LRRC1OB, PLEKHG1, and TMEM133), and data was not provided for 4 of the loci (NCAPH, ADAMTS9, RAPSN and ELVL3). Imputation was performed using Mach 1.0 and 1,000 Genomes as a reference. At loci with significant cis-eQTL signal(s) $\left(P<1 \times 10^{-4}\right)$, the most strongly associated cis-eQTL SNP (eSNP) for the corresponding transcript was identified. If the BP SNP and the eSNP were the same or in high LD ($r^{2}>0.8$) the BP SNP is defined as being an eSNP. For this analysis, the P value of all directly genotyped SNPs within 200 Kb of the index SNP in question were considered, which included around 100 proximal SNPs per locus. The results are summarized in

Supplementary Table 14.

7.6 Kidney

The dataset comprises 81 biopsies of normal kidney cortex tissue from transplantation donors or nephrectomy patients ${ }^{36,37}$. The biopsies are drawn from two cohorts: Cohort 1 - gene expression data from Rodwell et al. 2004^{36}, and Cohort 2 - gene expression data from Wheeler et al. ${ }^{37,38}$.

All samples for each cohort were analyzed on Affymetrix U133 A\&B set. Expression was normalized within each cohort using dChip (perfect match probe sets only). Genotyping was performed using Affymetrix 6.0 Genome-wide chips. SNP probe sets were called with Affymetrix GTC Software.

Perl and R scripts were used to link every SNP probe set to the nearest upstream and downstream genes using the mapped RefSeq annotation from the Affymetrix annotation files (build 30). In total, 29,782 unique RefSeq annotations map to 18,930 unique genes. To determine eQTLs, R scripts were used to perform a linear multivariate regression within each cohort,

$$
Y_{\mathrm{ij}}=\beta_{0 \mathrm{j}}+\beta_{1 \mathrm{j}} g_{\mathrm{ij}}+\beta_{2 \mathrm{j}} a g e_{\mathrm{i}}+\beta_{3 \mathrm{j}} a n c_{\mathrm{i}}+\beta_{4 j} S_{\mathrm{i}}+\varepsilon_{\mathrm{ij}}
$$

where $Y_{i j}$ is the $\log _{2}$ normalized expression for the U133 probe set of SNP j in the kidney sample $\mathrm{i}, \mathrm{g}_{\mathrm{ij}}$ denotes the respective genotype; $\mathrm{age}_{\mathrm{i}}$, $\mathrm{anc}_{\mathrm{i}}$ and s_{i} are the age, ancestry (European ancestry or other) and sex (male or female) of the individual i , respectively; and $\varepsilon_{\mathrm{ij}}$ is a random error term. Only cortex samples were used, so tissue was not a variable. Coefficients β (1 to 4) are estimated by least squares. R and Bioconductor scripts were used to calculate a meta-analysis P value over both cohorts using a Fisher's combined probability test. Only those eQTL combinations with a nominal $P<0.05$ (for genotype) and an effect in the same direction in both cohorts were selected, yielding 9,989 eQTL combinations (meta-analysis P value range: 1.7×10^{-2} to 2.75×10^{-35}). The P values were then combined into one test statistic

$$
X^{2}=-2 \sum_{i=1}^{k} \log _{\mathrm{e}}\left(p_{\mathrm{i}}\right)
$$

which has an approximate chi-square distribution with 2 k degrees of freedom.
The FDR was determined using R scripts by permutations, with labels swapped for the samples to preserve LD between SNPs. One thousand permutations on each cohort were seeded randomly using the Stanford BioX2 supercluster with a LSF batch system. A combined P value for each seed was calculated using Fisher's combined test (see previous paragraph). The FDR cutoff of $\mathrm{Q}<0.025$ was iterated for the true dataset: At a cutoff P value of 2.90×10^{-05}, FDR is 0.025 (i.e. the average number of permuted eQTLs is 31 (peak at 28) which is 2.5% of the 1,220 true eQTLs for considered cutoff). The results are presented in Supplementary Table 14.

7.7 Selected published eQTL datasets

Index BP SNP and proxies ($r^{2}>0.8$) were also searched against a collected database of expression SNP (eSNP) results. The reported eSNP results met criteria for statistical thresholds for association with gene transcript levels as described in the original papers. The non-blood cell tissue eQTLs searched included aortic endothelial cells ${ }^{39}$, left ventricle of the heart ${ }^{40}$, CD41+ monocytes ${ }^{41}$ and the brain ${ }^{42}$. The results are presented in Supplementary Table 14.

8 Enrichment of BP variants in experimentally annotated regulatory marks

8.1 Analysis of cell-specific DNase hypersensitivity sites (DHSs) using an OR method

The overlap of Cardio-MetaboChip SNPs with DHSs was examined using publicly available data from the Epigenomics Roadmap Project and ENCODE, choosing different cutoffs of Cardio-MetaboChip P values. The DHS mappings were available for 123 mostly adult cells and tissues ${ }^{43}$ (downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/). The DHS mappings were specified as both "narrow" and "broad" peaks, referring to reduction of the experimental data to peak calls at 0.1% and 1.0% FDR thresholds, respectively. Thus, the "narrow" peaks are largely nested within the "broad" peaks. Experimental replicates of the DHS mappings (typically duplicates) were also available for the majority of cells and tissues.

SNPs from the Cardio-MetaboChip genome-wide scan were first clumped in PLINK ${ }^{44}$ in windows of 100 kb and maximum $\mathrm{r}^{2}=0.1$ among LD relationships from the 1000 Genomes European data. Then, the resulting index SNPs at each P value threshold were tagged with $r^{2}=0.8$ in windows of 100 kb , again using LD relationships in the 1000 Genomes, restricted to SNPs with MAF > 1% and also present in the HapMap2 CEU population. A reference set of SNPs was constructed using the same clumping and tagging procedures applied to GWAS catalog SNPs (available at http://www.genome.gov/gwastudies/, accessed $3 / 13 / 2013)^{45}$ with discovery $P<5 \times 10^{-8}$ in European populations. A small number of reference SNPs or their proxies overlapping with the BP SNPs or their proxies were excluded. After LD pruning and
exclusions, there were a total of 1,196 reference SNPs. For each cell type and P value threshold, the enrichment of SBP or DBP SNPs (or their LD proxies) mapping to DHSs was expressed as an odds ratio (OR) relative to the GWAS catalog reference SNPs (or their LD proxies), using logistic mixed effect models treating the experimental replicate peak determinations as random effects (glmer package in R). The significance of the enrichment ORs was derived from the significance of beta coefficients for the main effects in the mixed models (Figure 3, Supplementary Table 16).

8.2 Analysis of tissue-specific enrichment of BP variants and H3K4me3 sites

An analysis to test for significant cell-specific enrichment in the overlap of BP SNPs (or their proxies) with H3K4me3 sites was performed as described in Trynka et al, 2013^{46}. The measure of overlap is a "score" that is constructed by dividing the height of an H3K4me3 ChIP signal in a particular cell by the distance between the nearest test SNP. The significance of the scores (i.e. P value) for all SNPs was determined by a permutation approach that compares the observed scores to scores of SNPs with similar properties to the test SNPs in terms of LD, proximity to genes, etc. The number of significant digits in the P value was determined by the number of permutations following the 10,000 iterations. .Results are shown in

Supplementary Table 19.

8.3 Analysis of tissue-specific DHSs and chromatin states using Genomic Regulatory Elements and GWAS Overlap Algorithm (GREGOR)

Data acquisition and pre-processing

The DNase-seq ENCODE data for all available cell types were downloaded in the processed "narrowPeak" format. The local maxima of the tag density in broad, variable-sized "hotspot" regions of chromatin accessibility were thresholded at FDR 1% with peaks set to a fixed width of 150bp. Individual cell types were further grouped into 41 broad tissue categories (http://genome.ucsc.edu/ENCODE/cellTypes.html) by taking the union of DHSs for all related cell types and replicates. A set of BED files in hg19 assembly from the Integrative Analysis and original ENCODE analysis was also obtained. These data include uniformly processed datasets in 125 cell types generated by the "Open Chromatin" (Duke University) and University of Washington (UW) ENCODE groups. Data processed during the ENCODE Integrative Analysis were downloaded for available tissues. Otherwise, data from the original ENCODE analysis were obtained. The overlap of DHSs across different cell types was examined; we found that as expected, cell types derived from related tissues generally clustered together. The chromatin state segmentation by HMM generated from ENCODE/Broad in nine human cell types was also examined ${ }^{47}$.

Selecting matched control SNPs for GWAS index SNPs

For each GWAS locus, a set of matched control SNPs was selected based on three criteria: 1) number of variants in LD ($r^{2}>0.7 ; \pm 8$ variants), 2) MAF ($\pm 1 \%$), and 3) distance to nearest gene ($\pm 11,655 \mathrm{bp}$). To calculate the distance to the nearest gene, the distance to the 5' flanking gene (start and end position) and to the 3^{\prime} flanking gene was calculated and the minimum of these 4 values was used. If the SNP fell within the transcribed region of a gene, the distance was 0 .

Estimating the probability of observed and expected overlap between a regulatory feature and GWAS locus

The probability that a set of GWAS loci overlap with a regulatory feature more often than we expect by chance was performed using the following method. A GWAS locus was represented by the GWAS index SNP or a SNP in LD with the index SNP ($r^{2}>0.7$). For each regulatory feature, the number of GWAS loci in which the physical overlap was observed with at least one experimentally defined genomic region of the feature was counted. The number of GWAS index SNPs in the $i t h$ matched control set that demonstrated a positional overlap with a given epigenomic feature, written as s_{i}, follows a binomial distribution with parameters n_{i} and p_{i}. The parameter n_{i} is equal to the number of index SNPs present in the $i t h$ control set. The second parameter p_{i} is calculated as the number of variants in the ith control set or their LD proxies that overlaps with the feature, divided by the total number of variants in the ith control set. If we assume there are r control sets in total, the number of index SNPs from all control sets that falls in a single feature is the sum of independent non-identical binomial random variables:

$$
S=\sum_{i=1}^{r} s_{i}
$$

In most cases, only one index variant was assigned to a matched control set, but there were some exceptions where more than one index SNP could match on the same 3 properties. An enrichment P value for any given s as $P(S \geq s)$ was estimated. P is the cumulative right tail probability based on the distribution of S and is calculated using a saddlepoint approximation method ${ }^{48}$. The results are shown in Supplementary Tables 17-19 and Supplementary Figure 8. A collection of BP SNPs enriched in DHS sites in blood vessels is indicated in Supplementary Table 20.

8.4 Formaldehyde-assisted isolation of regulatory elements (FAIRE) analysis of BP variants in fine mapping regions in lymphoblastoid cell lines

FAIRE analysis was performed on a sample of 20 lymphoblastoid cell lines of European origin. All samples were genotyped using the Cardio-MetaboChip genotyping array, and BP SNPs and LD proxies (r^{2} >0.8) at the fine mapping loci ($N=24$, see Supplementary Table 23) were assessed to identify heterozygous imbalance between non-treated and FAIRE-treated chromatin. A paired t-test was used to
compare the B allele frequency (BAF) arising from formaldehyde-fixed chromatin sheared by sonication and DNA purified to the BAF when the same chromatin sample underwent FAIRE to enrich for open chromatin. Three hundred and fifty-seven Cardio-MetaboChip BP SNPs were directly genotyped across the fine mapping regions. The Bonferroni-corrected threshold of significance is $P<0.0001(0.05 / 357)$. The results for SNPs with $P<0.05$ are reported in Supplementary Table 23. FAIRE results were not available for 54 SNPs: the missing data was due to genotype failure or not having >3 heterozygous individuals for statistical analysis. Therefore there are no results for three lower frequency BP loci (SLC39A8, CYP17A1-NT5C2 and GNAS-EDN3) and for the second signal at the following loci: MTHFRNPPB (rs2272803), MECOM (rs2242338) and HFE rs1800562).

9 Pathway analyses

9.1 MAGENTA

MAGENTA tests for enrichment of significant gene-wide P values in gene sets from a precompiled library derived from GO, KEGG, PATHTER, REACTOME, INGENUITY, and BIOCARTA and was performed as described by Segré et al, 2010^{49}. Enrichment of significant gene-wide P values in gene sets is assessed by 1) using LD and distance criteria to define the span of each gene, 2) selecting the smallest P value among SNPs mapping to the gene span, and 3) adjusting this P value using a regression method that accounts for the number of SNPs, the LD, etc. In the second step, MAGENTA examines the distribution of these adjusted P values and defines thresholds for the 75%-ile and the 95%-ile. In the third step, MAGENTA calculates an enrichment for each gene set by comparing the number of genes in the gene set with P value less than either the 75 th or 95 th \%ile to the number of genes in the gene set with P value greater than either the 75 th or 95 th $\%$ ile, and then comparing this quotient to the same quotient among genes not in the gene set. This gene-set quotient is assigned a P value based on reference to a hypergeometric distribution. The results based on our analyses are indicated in

Supplementary Table 21.

9.2 Data-driven Expression Prioritized Integration for Complex Traits (DEPICT)

We applied the DEPICT ${ }^{50}$ separately on genome-wide significant loci from the overall blood pressure (BP) Cardio-MetaboChip analysis including published blood pressure loci (see Supplementary Table 22). SNPs at the HFE and BAT2-BAT5 loci (rs1799945, rs1800562, rs2187668, rs805303, rs9268977) could not be mapped. We also included associated loci ($P<1 \times 10^{-5}$) from the CardioMetaboChip stage 4 combined meta-analyses of SBP and the DBP. DEPICT assigned genes to associated regions if they overlapped or resided within associated LD blocks defined $r^{2}>0.5$ to a given associated SNP. After merging overlapping regions and discarding regions that mapped within the extended major
histocompatibility complex locus (we excluded chromosome $6,20-40 \mathrm{Mb}$), we were left with 76,120 , and 131 non-overlapping regions that covered 226, 292, and 329 genes for BP, SBP and DBP respectively. The gene counts differed from the loci used for manual lookups because DEPICT only included genes which passed quality control on Affymetrix gene expression microarrays (platforms U133 Plus 2.0, Human Genome U133 A, Mouse 430 2.0, and Rat 230 2.0). We used DEPICT to test enrichment at these regions for a total of 14,461 reconstituted gene sets, and for 209 tissue and cell type annotations. DEPICT relies on random loci to adjust for biases such as gene length and expression properties. In this work, we restricted the random loci construction to autosomal SNPs that were present on the Cardio-MetaboChip as well as in the 1000 Genomes data, which resulted in a total of 120,972 SNPs that covered $>11,800$ genes. To ensure that DEPICT worked well for the Cardio-MetaboChip-based analysis we performed 100 meta-analyses that were limited to the 120,972 CardioMetaboChip SNPs that passed quality control. Each simulated study comprised ~ 65 independent regions, which were subjected to DEPICT. Plotting of the gene set enrichment and tissue/cell type enrichment P values did not indicate any elevated type 1 error. We did, however, observe a slightly elevated type 1 error (data not shown) for the gene prioritization analyses and decided not to include this part of the DEPICT analysis in the results presented here. DEPICT was run using default settings, that is using 500 permutations for bias adjustment, 20 replications for false discovery rate estimation, normalized expression data from 77,840 Affymetrix microarrays for gene set reconstitution ${ }^{51}$, assessing 14,461 reconstituted gene sets for enrichment (5,984 protein complexes that were derived from 169,810 high-confidence experimentally-derived protein-protein interactions ${ }^{52} ; 2,473$ phenotypic gene sets derived from 211,882 gene-phenotype pairs from the Mouse Genetics Initiative ${ }^{53} ; 737$ Reactome database pathways ${ }^{54}$; 184 KEGG database pathways ${ }^{55}$; and 5,083 Gene Ontology database terms ${ }^{56}$), and testing 209 tissue/cell types assembled from 37,427 Affymetrix U133 Plus 2.0 Array samples for enrichment in tissue/cell type expression.

10 Non-European meta-analysis

To assess the association of the 66 significant loci from the European ancestry meta-analysis in nonEuropean ancestries, we obtained lookup results for the 66 index SNPs for participants of South-Asian ancestry (8 datasets, total $N=20,875$), East-Asian ancestry (5 datasets, total $N=9,637$), and African- and African-American ancestry (6 datasets, total $N=33,909$). The association analyses were all conducted with the same covariates (age, age ${ }^{2}$, sex, BMI) and treatment correction ($+15 / 10 \mathrm{~mm} \mathrm{Hg}$ in the presence of any hypertensive medication) as the association analyses for the discovery effort in Europeans. Quality control was conducted for each dataset, including a verification of the alignment of the coded
allele frequencies (Supplementary Figure 9). The full per-SNP meta-analysis results are given in Supplementary Table 24, including a trans-ethnic non-European meta-analysis. All meta-analyses were conducted using custom scripts in R statistical computing language ${ }^{19}$. The heterogeneity statistics were calculated using the software package GWAMA ${ }^{57}$.

11 Genetic risk score and cardiovascular outcomes

In order to estimate the joint effect of the 66 BP SNPs on cardiovascular outcomes and other risk factors, we used a 66 SNP risk score, weighted by the effect size of SBP and DBP in the stage 4 combined meta-analysis for two separate risk scores (SBP-risk score and DBP-risk score). Individual-level data on cardiovascular outcomes were not available in large sample sizes. However, summary statistics from SNP-phenotype association studies can be used reliably to estimate the effect of predictor SNPs on the outcome phenotype as we have previously established ${ }^{1,58}$. The gtx package ${ }^{59}$ for the R statistical programming language was used to estimate the effect of the SNP-risk score on the response variable in a regression model. The effect sizes are expressed as incremental change in the phenotype for quantitative traits and natural logarithm of the OR for binary traits, per 1 mmHg predicted increase in SBP or DBP (Table 2). Some SNPs may be related to more than one risk factor for cardiovascular disease and such pleiotropic effects could potentially lead to increased or reduced association on the cardiovascular outcome than the BP effect would be expected to cause. Such confounding by pleiotropy would be expected to lead to a decrease in the goodness of fit of the regression model described above. We tested each model for such homogeneity of outcome/BP effects as implemented in the gtx package for R statistical computing language ${ }^{59}$ and performed sensitivity analyses to determine whether removal of outlier predictor SNPs would alter the association of BP SNPs in aggregate to each cardiovascular outcome. We proceeded by iterative removal of the most extreme outlier SNP (proportional distance of the outcome/BP effect from the mean across all SNPs) and calculation of a heterogeneity P value until the deviation from homogeneity test is associated at a significance level of no less than 0.0028 ($\sim 0.05 /$ number of phenotypes), see results in Table 2. The per-SNP results for each outcome are summarized in Supplementary Table 25. A graphical presentation of the relationship between predictor and response variable, before and after outlier removal is given in Supplementary Figures 10.

12 Literature review for genes at the newly discovered loci

Recognizing that the most significantly associated SNP at a locus may not be located in the causal gene and that the functional consequences of a SNP often extends beyond 100 kb , we conducted a literature review of genes in extended regions around newly discovered BP index SNPs: The genes for this
extensive review were identified by DEPICT (see Section 9.2, and Supplementary Table 27). The DEPICT method assigns genes to associated regions if they overlap or reside within associated LD blocks defined by linkage disequilibrium $r^{2}>0.5$ to an index SNP. A literature review of candidate genes identified by this method was manually performed, and summary paragraphs are provided. Using the DEPICT method, two loci can be categorized as intergenic and not containing any genes in the genomic interval considered; for 10 of the loci there was only one gene at the locus (HIVEP3, FGD5, ARHGAP24, TRIM36, CSNK1G3, ZC3HC1, LLRC1OB, PDE3A, SETBP1 and INSR); for 7 loci there were multiple genes in the interval, a select few of these were considered for review (DBH, SIK1, MYCBP3).

12.1 FDG5

The FGD5 gene encodes the FYVE Rho guanine exchange factor and pleckstrin homology domain containing 5 protein; a member of a larger family of FGD proteins characterised by a combination of highly conserved homology domains (eg Dbl, FYVE and PH). As guanine exchange factor (GEF) proteins, they act as a molecular switch facilitating GDP to GTP exchange in small GTPases such as Cdc42, RhoA, and Rac1. FGD5 is a unique member of the family with its specialized tissue distribution at mRNA and protein levels showing enrichment in human endothelial cells, mouse aorta, and carotid arteries ${ }^{60}$. FGD5 is shown to be of importance during various stages of mouse and zebrafish vasculature development. In vitro experiments in mouse and human cell lines implicate FGD5 in angiogenesis and vasculature remodelling, modulated by VEGF signalling and involving downstream Cdc42 activation ${ }^{61}$.

12.2 ZC3HC1

The ZC3HC1 gene encodes Zinc-finger C3HC-type protein 1, also known as Nuclear-Interacting Partner of ALK (NIPA). It is broadly expressed in human tissues, with highest expression in heart, skeletal muscle and testis ${ }^{62}$. The gene product is an F-box protein that is an interchangeable part of the SCF ubiquitin E3 ligase complex and, as such, is function defining. Phosphorylated NIPA targets cyclin B for SCF-dependent degradation. This control of cyclin B accumulation and degradation is one of key events in mitotic cell cycle progression and apoptotic events ${ }^{63}$. Recently, the same non-synonymous variant (rs11556924) in ZC3HC1 has been reported to be associated with coronary disease ${ }^{34}$

12.3 DBH

Dopamine β-hydroxylase (DBH) catalyzes the conversion of dopamine to norepinephrine, a key neurotransmitter in maintaining heart rate and blood pressure. DBH is co-released with norepinephrine from noradrenergic nerve endings ${ }^{64}$. The resulting DBH activity is highly correlated with this enzyme's levels in the plasma and cerebrospinal fluid in humans and mice, as confirmed by QTL ${ }^{65}$ and GWAS ${ }^{66}$
analyses. Genetic variation in DBH has been associated with hypertension and cardiovascular disease. To date, three SNPs in the $D B H$ promoter region ($\mathrm{rs} 161115^{67}$, $\mathrm{rs} 1989787^{68}$, rs1076150) have been functionally characterized; all of these influence the binding motifs of transcription factors, regulating $D B H$ gene expression. Furthermore, these variants have been shown to have additive effects, giving rise to a spectrum of dopamine beta hydroxylase traits ${ }^{66}$.

12.4 INSR

The INSR (insulin receptor, IR) gene encodes a tyrosine kinase receptor; it mediates transduction of signals induced by pleiotropic endocrines, insulin and insulin-like growth factor 1 (IGF1), into the cellular milieu. This occurs via receptor homodimerization (IR-IR) and/or heterodimerization (IR-IGFR) and subsequent receptor autophosphorylation. Impaired insulin signaling is most commonly associated with diabetes mellitus, with most disease incidence attributed to IR malfunction. Impaired insulin signaling is identified as one of the key contributors to metabolic syndrome, a collective term given to a pathophysiological state including obesity, insulin resistance, hypertension and dyslipidemia, and an ultimate risk factor for cardiovascular disease ${ }^{69}$. Large-scale meta-analysis using the IBC (IMAT-BroadCARe) array has identified a polymorphism in INSR (rs8112883) associated with altered plasma triglyceride levels, defining a novel gene locus for cardiovascular risk ${ }^{70}$. Insulin's tissue-specific effects on vascular endothelium ${ }^{71}$ and smooth muscle ${ }^{72}$ as well as cardiomyocytes ${ }^{73}$ are well documented in modulating cardiovascular phenotypes, but the context-specific complexity of phenotypes in in vitro and in vivo IR model systems suggests involvement of many post-receptor modulators ${ }^{74}$.

12.5 HIVEP3

HIVEP3, also known as SHN3, encodes for human immunodeficiency virus type 1 enhancerbinding protein 3, or Schnurri 3. In general, proteins of this family (HIVEP/SHN) bind to кB enhancer elements modulating gene expression in a rel/NFKB-independent manner ${ }^{75}$. They are relatively large proteins containing zinc-fingers. HIVEP3 was initially described to undergo alternate splicing, leading to functional diversity of its isoforms ${ }^{76}$. Today, Schnurri 3 is best recognised for its role in adult osteoblast function and bone mass regulation ${ }^{77}$ via involvement of Wnt and ERK pathways ${ }^{78}$. Importantly, through use of high-throughput transcript profiling in VSMCs, HIVEP3 was identified as one of the novel transcripts to respond to Ang-II stimulus, implicating it in the maintenance of BP homeostasis ${ }^{79}$.

12.6 TRIM36

The product of TRIM36, as well as the other members of this 71 gene family, contains a tripartite motif (TRIM) of the following domains: RING finger, B-box zinc finger, and C-terminal coil-coil.

It is expressed selectively in testis, prostate and brain as well as, to a lesser extent, in lung, kidney and heart ${ }^{80,81}$. TRIM36 is reported to be involved in post-translational protein modification known as sumoylation, aiding in transfer of small ubiquitin-related modifier 1 (SUMO1) from E2 ligase to a substrate, ultimately regulating processes such as cell cycle progression, cytoplasm-nucleus trafficking, and apoptosis ${ }^{81,82}$. TRIM36 expression is induced by actions of androgen receptor binding to intronic motifs within this gene, making it a candidate oncogene in progression of prostate cancer ${ }^{83}$.

12.7 CSNK1G3

CSNK1G3 encodes for casein kinase 1 (CK 1/CK I) isoform \curlyvee 3. Kinases from this family are thought to be responsible for phosphorylation of 10% of the whole known eukaryotic phosphoproteome. CK1 serine/threonine kinases are ubiquitously expressed, monomeric proteins which are described as "constitutively active" for priming activity of other phosphoproteins ${ }^{84}$.

12.8 SETBP1

SETBP1 encodes the translocation breakpoint-encoded protein (SET) binding protein 1, which is ubiquitously expressed in human tissues. SET is a nuclear phosphoprotein characterized by its inhibitory effect on a nuclear protein phosphatase 2A (PP2A), a regulator of cell proliferation, differentiation and transformation, and its close interaction with leukemia causing oncogenes. SET and SETBP were shown to form a complex and are postulated to be a part of multimeric protein aggregates ${ }^{85}$. Exome sequencing approaches have identified de novo mutations in this gene's SKI homology domain as an underlying cause for Schinzel-Giedion syndrome ${ }^{86}$, as well as secondary mutations responsible for progression of myeloid leukemias. Although molecular mechanisms of SETBP1 function are still poorly understood, and are likely tumor-specific, observed mutations are believed to influence SETBP1 ubiquitination and its subsequent degradation and/or the proto-oncogene's interaction with homeobox genes (HOXA9, HOXA10) ${ }^{87}$.

12.9 SIK1

The SIK1 gene encodes a serine-threonine protein kinase family member known as the saltinducible kinase isoform 1, further classified into the AMP-activated protein kinase (AMPK) subfamily. The SIK1 protein is ubiquitously expressed in many human tissues. Several kinase domains have been identified within the protein including: a cAMP-dependent domain ${ }^{88}$, a calmodulin domain, a master regulator LKB1 domain (Thr-182) ${ }^{89}$, and an autophosphorylation domain (Ser-186) ${ }^{90}$. The protein is best characterised as part of a signalling network involved in control of intracellular sodium homeostasis via direct interaction with the sodium-potassium ATPase, the key cellular housekeeper of salt and water
balance ${ }^{91}$. Angiotensin II is postulated to modulate SIK1 and, in turn, the sodium-potassium ATPase, most likely through regulation of its shuttling between the endosomal and plasma membrane pools ${ }^{92}$. In this tissue, blocking SIK1 activity prevents the hypertensive cell phenotype induced by hypertensionlinked non-synonymous polymorphisms in α-adducin gene ${ }^{93}$. Furthermore, in the adrenal glands, similar mechanisms are thought to be involved in the angiotensin II regulation of CYP11B2, another BP gene candidate, and ultimately aldosterone secretion. However, the molecular identity of SIK1 in the adrenals has not been empirically confirmed ${ }^{92}$. In cardiac tissue, absence of SIK1 has been shown to be impair mouse cardiomyogenesis, suggesting this gene's involvement in cell cycle regulation and cellular differentiation ${ }^{94}$.

12.10 МҮВРС3

The MYBPC3 gene encodes the cardiac myosin-binding protein C ($\mathrm{MyBP}-\mathrm{C}$), and mutations in MYBPC3 are associated with familial hypertrophic cardiomyopathy (FHC or HCM), an autosomal dominant disease which is the most common cause of sudden death in young ${ }^{95}$. The MyBP-C protein binds myosin and titin within the thick filaments of the myocardial sarcomere, ultimately modulating cardiac muscle contractility. Its expression is strictly confined to heart tissue ${ }^{96}$. Two early independent genetic studies of unrelated families have identified mutations which produce aberrant MyBP-C protein, as a result of alternative splicing and gene duplication events ${ }^{95,97}$. To date, over 200 mutations in this gene alone have been associated with cardiomyopathy and heart failure, explaining 30-35\% of its genetic component ${ }^{96}$. Animal model studies have also shown that expression of MyBP-C is important for determining diastolic function of the heart, independent of hypertrophy ${ }^{98}$.

13 Supplementary table list and legends

The following supplementary tables are in a supplementary Excel file named "05_CMBP_SuppInform_tables_NGrevision2_final.xlsx". The legends of the supplementary tables are below.

Supplementary Table 1: Individual cohort study information and blood pressure measurement methods.
Supplementary Table 2: Genotyping methods.
Supplementary Table 3: Data-type contribution and participant characteristics.
Supplementary Table 4: Meta-analysis stage 4 results
Supplementary Table 5: UK Biobank validation
Supplementary Table 6: Loci identified by GCTA with multiple signals of association.
Supplementary Table 7: All SNPs selected by GCTA as independently associated with SBP.
Supplementary Table 8: All SNPs selected by GCTA as independently associated with DBP.
Supplementary Table 9: SNPs at 66 genome-wide significant CM loci or in the literature for conditional analysis in WGHS, annotation in eSNP analyses or inclusion in pathway analyses.
Supplementary Table 10: Conditional analysis using the WGHS dataset.
Supplementary Table 11: Summary of Cardio-MetaboChip BP fine mapping regions.
Supplementary Table 12: Ninety-nine percent credible intervals at Cardio-MetaboChip BP fine mapping regions.
Supplementary Table 13: Ninety-nine percent credible causal SNPs at Cardio-MetaboChip BP fine mapping regions.
Supplementary Table 14: eSNP analysis for cell types other than whole blood.
Supplementary Table 15: eSNP analysis for whole blood.
Supplementary Table 16: Analysis of enrichment of DNase-hypersensitive sites among the BP loci, by cell type.
Supplementary Table 17: Tissue categorization for DNase-hypersensitive site analyses.
Supplementary Table 18: Analysis of enrichment of DNase-hypersensitive sites among the BP loci, grouping cell types by tissue.
Supplementary Table 19: Analysis of enrichment of methylation sites among the BP loci.
Supplementary Table 20: BP SNPs enriched in DHS sites in blood vessels.
Supplementary Table 21: MAGENTA analysis.
Supplementary Table 22: DEPICT analysis.
Supplementary Table 23: FAIRE analysis.
Supplementary Table 24: Non-European meta-analysis.
Supplementary Table 25: Detailed results of risk score analyses for each SNP.
Supplementary Table 26: Genetic BP risk-score analysis applied to related cardiovascular phenotypes.
Supplementary Table 27: Genes at new BP loci using DEPICT.

Supplementary Table 1: Individual cohort study information and blood pressure measurement methods.

All participating studies are listed in alphabetical order. Information is provided on the full name of the study, the parent study name (if the study is part of a consortium of studies), ethnicity and study design. Key characteristics of the BP values used in our analyses, including the device used for BP measurement, the number of BP values averaged when more than one value was available, and the position of the patient when taking the BP measurement is indicated. A published reference and/or a
website is indicated when available. CAD = coronary artery disease, EUR = European ancestry, SAS = South Asian ancestry, EAS = East Asian ancestry, AFR = African ancestry, MI = myocardial infarction, NA = not available.

Supplementary Table 2: Genotyping methods.
Information on genotyping and imputation methods for both Cardio-MetaboChip and imputed datasets are indicated. The platform, calling algorithm, the number of SNPs used for either discovery analysis or for a lookup is indicated. Filtering parameters before imputation for the studies supplying imputed genotypes are provided including the cutoffs for sample call rate, SNP call rate, HardyWeinberg equilibrium (HWE), minor allele frequency (MAF) and others used. For studies using imputed (imput.) genotypes, the number of SNPs used for imputation, the software and reference panel used for imputation, and the filtering parameters of imputed genotypes are provided.

Supplementary Table 3: Data-type contribution and participant characteristics.
Demographic data including BP are indicated for all studies (European-, South-Asian, East-Asian, and African-Ancestry). The general demographic information includes the number of participants analyzed (N) and genotyping platform used (CM indicates Cardio-Metabochip, and ICBP 2011 indicates if this dataset was included in the published ICBP-GWAS dataset). The basic description includes the percentage of categorical values and the mean and SD of continuous measurements. The BP values presented are after applying the treatment correction of $+15 / 10 \mathrm{mmHg}$ to individuals on any antihypertensive medication (see Supplemental Text). The standard deviation (SD) of the residual from a linear regression on age, age ${ }^{2}$, sex, and BMI are indicated for SBP and DBP. The percentage of participants on any anti-hypertensive medication and the percentage of participants with hypertension defined as $S B P \geq 140 \mathrm{mmHg}$ or $\mathrm{DBP} \geq 90 \mathrm{mmHg}$ or presence of ≥ 1 anti-hypertensive medication (\% HTN) are also indicated.

Supplementary Table 4: Meta-analysis stage 4 results.
The meta-analysis results of stage 4 is shown is this table, analogous to Table 1 of the main text.

Supplementary Table 5: UK Biobank validation.
The results of the 18 SNP lookup in the UK Biobank are shown here, analogous to Table 1 of the main text.

Supplementary Table 6: Loci identified by GCTA with multiple signals of association.

Loci for which the GCTA-COJO software identified multiple association signals for SBP and/or DBP using the GoDARTS study as a reference dataset at a threshold $P<5 \times 10^{-8}$. The SNPs selected and their summary statistics from the single-SNP and approximate conditional analyses are reported. For loci where both traits are observed with multiple association signals, if the same SNPs are selected, these are listed in the table. When GCTA-COJO selects different SNPs for each of the traits, but they are proxies $\left(r^{2}>0.8\right)$, results for the signals with the lowest P value are reported. Otherwise, all SNPs selected for SBP and DBP can be found in the table with their summary statistics only for the trait for which they were selected. The lowest P values in the joint analysis are shown in bold. a: proxy SNP was selected for DBP in the joint analysis. b: proxy SNP was selected for SBP in the joint analysis.

Supplementary Table 7 and Supplementary Table 8: ALL SNPs selected by GCTA as independently associated with BP.

The results based on SBP results are in Supplementary Table 7 and the results based on DBP are in Supplementary Table 8. A threshold of $P<5 \times 10^{-8}$ was used and we utilized GoDARTS (primary analysis) and WTCCC1-T2D/58BC (secondary analysis) as reference datasets.

All SNPs for which the GCTA-COJO software identifies independent association at $P<5 \times 10^{-8}$. The coded allele (CA) and non-coded allele (NCA), the total sample size (N) are indicated for the analyses using GoDARTS and WTCCC1-T2D/58BC as a reference along with their association statistics. "LD r" denotes the correlation coefficient, r, in the reference dataset between a SNP and the one following in the table. Given that GCTA-COJO assumes the LD between SNPs more than 10 Mb away or on different chromosomes is zero, the correlation coefficient is omitted in the table for those SNPs. The final columns indicate whether the two analyses using the different reference datasets are in agreement and the r^{2} between the two SNPs if different SNPs were selected. The yellow highlight indicates that a SNP was identified in one analysis, but not in the other.

Supplementary Table 9: List of SNPs at genome-wide significant Cardio-MetaboChip loci for secondary analyses.

Information is provided on SNPs selected for conditional analysis in WGHS, for annotation and inclusion in eSNP and DNase Hypersensitivity analyses, and for pathway analyses. CM1 = indicates associated SNP in the GCTA analyses; CM2 = indicates a second associated SNP at a locus in the GCTA analysis; NOT IN LIT = unpublished, not reported in the literature. The "notes" column indicates the provenance of the selected SNPs and references. Ho et al (2010) ${ }^{99}$; Padmanabhan et al (2010) ${ }^{100}$, Takeuchi et al (2010) ${ }^{101}$; Ehret et al (2011) ${ }^{1}$; Johnson et al (2011a) ${ }^{102}$; Johnson et al $(2011 b)^{103}$; Kato et al (2011) ${ }^{104}$; Salvi et al $(2011)^{105}$; Wain et al (2011) ${ }^{106}$; Ganesh et al (2013) ${ }^{107}$; Kato et al (2015) ${ }^{108}$; WGHS= Women's Genome

Health Study; GCTA_CM (using GWAS+CM) status refers to the results from GCTA analysis which are presented in full in Supplementary Tables 6-8.

Supplementary Table 10: Conditional analysis using the WGHS dataset. Conditional association analyses were conducted in the WGHS by linear regression analyses using more than one predictor SNP at the same time. Each sub-table shows the association statistics for single association analyses and the conditional analyses for each locus where there was more than one signal identified in the GCTA analyses or based on comparison to the literature and reference to linkage disequilibrium patterns in reference samples. The BP trait is indicated for the genome-wide significant SNP. The highlighted bottom line of each sub-table shows our interpretation of the conditional analysis results, taking into account the conditional analysis results using GCTA-COJO software. All BP loci indicated in Supplementary Table 6 were examined in the analysis, although only results for loci that were informative in the WGHS are presented for space reasons. Uninformative results are those in which no more than one SNP was nominally significant ($P<0.05$) in a single or joint model.

Supplementary Table 11: Summary of Cardio-MetaboChip BP fine mapping regions.
The genomic positions (hg 19) of the Cardio-MetaboChip fine-mapping regions overlapping with SBP or DBP loci are shown. Consortia indicates which consortium has submitted the fine-mapping region at Cardio-MetaboChip design, trait/type/rank indicates the trait used for the analyses, the type of finemapping region (locus fine-mapping = LFM, signal fine-mapping - SFM) and its rank as indicated by Voight et al ${ }^{13}$. Start and End regions indicates the genomic region. Locus with multiple signals indicates whether there are multiple signals at the locus, based on GCTA or WGHS conditional analyses in this study. The traits (SBP or DBP) that reached genome-wide significance in our analyses are indicated, the main trait provides the trait with the most significant association, and the index SNPs of the independent signals observed in our results at the locus (main trait index SNP). SNPs that are not present in the FM interval are marked with a "*".

Supplementary Table 12: Ninety-nine percent credible intervals at Cardio-MetaboChip BP fine-mapping regions.

The 99% credible intervals were estimated in the Cardio-MetaboChip (MC) fine-mapping regions reaching genome-wide significance in our association analyses. Three sets of results are provided: A) the GWAS+MC meta-analyses (entire dataset), B) in the MC-only meta-analyses, and C) overlapping SNPs from both analyses (last columns). We have indicated whether the locus contains multiple signals, the identity of the index SNP, the conditioning SNP and their position. High resolution fine mapping is an
arbitrary metric of fine mapping success, defined as a number of 99% credible SNPs for SBP and DBP ≤ 5 and a reduction of the total number of SNPs in the credible interval by a factor 5 or more for SBP and DBP in the GWAS+MC analysis. The number of SNPs in the FM region that account for 99\% of the posterior probability are indicated (\#SNPs) in relation to the total number of SNPs in the fine-mapping region (\#SNPs in fine-map.). The distance (kb) covered by the set of SNPs in the FM region that account for 99% of the posterior probability is indicated (distance). The start and end position denote the starting and end base position of the interval covered by the set of SNPs in the FM region that account for 99% of the posterior probability. For FM regions where a larger refinement was achieved (number of credible causal SNPs threshold arbitrarily set to <20; FM regions identified with NA otherwise), the list of missense/synonymous credible causal SNPs in given. The number of SNPs overlapping between the credible sets for GWAS+CM and CM-only are indicated in the last two columns (\#overl. SNPs). The number of SNPs in the FM regions may vary between traits due to slight differences in the datasets included for each analysis as the results of the QC. ND = conditional analysis not performed for locus as second signal not present in the fine-mapping region. All coordinates are on b37.

Supplementary Table 13: Ninety-nine percent credible causal SNPs at Cardio-MetaboChip BP fine mapping regions.

The rs numbers of all SNPs that account for 99% of the posterior probability within the 99% credible intervals (within the fine-mapping regions- cf. Supplementary Table 11) are listed for both BP traits (SBP and DBP) and for the two analyses (GWAS + CM = all data or CM only). The last two columns (GWAS+CM vs CM- only) indicate the overlapping SNPs between both sets of analyses per trait.

Supplementary Table 14: eSNP analysis for cell types other than whole blood.
For the experiments including: macrophages, monocytes, skin, lymphoblastoid cell lines (LCLs), fat, blood vessels, heart and liver the results presented are the BP SNPs or a proxy SNP ($r^{2}>0.8$) if the index BP SNP was not directly genotyped which were significantly associated with expression of a cis transcript ($P<1 \times 10^{-4}$), and the most significantly associated eSNP for that transcript was identical or in high LD with the BP SNP ($r^{2}>0.8$). Abbreviations: aorta adventitia =AAdv, aorta intima-media = AMed, mammary artery intima-media $=\mathrm{MMed}$, heart $=\mathrm{H}$ and liver $=\mathrm{L}$. For the experiment on kidney tissue, the results of a Fisher's combined test are presented at an FDR of <0.025. For the experiment with aortic endothelial cells the results with $-\log P<1 \times 10^{-6}$ (Bonferroni corrected $\alpha<0.05$) are presented. For the experiments on CD41+ monocytes, and brain tissue, the results met criteria for statistical thresholds for association with gene transcript levels as described in the original papers. The experiment is the tissues tested, and the coded allele (CA), non-coded allele (NCA), coded allele frequency (CAF) is provided.

Imputation quality (imput. qual.) is provided if available. Full details of the analysis per tissue and cell type are provided in Section 7.

Supplementary Table 15: eSNP analysis for whole blood.
Association results are shown for the index BP SNP to any transcript within 1 Mb achieving $\mathrm{FDR}<0.05$. The best eSNP for that transcript in whole blood is identified and then the association results for the index BP SNP are shown after adjustment for the best eSNP for that transcript (BP SNP conditional Pvalue). "BP SNP" denotes Cardio-MetaboChip index or proxy-SNP. "Input." denotes imputation quality r^{2}, the effect (beta) for both the BP SNP and eSNP effects are also provided.

Supplementary Table 16: Analysis of enrichment of DNase-hypersensitive sites among the BP loci, by cell type.

The odds ratios for each P value cutoff among the CM BP association data are listed for each cell type. The endothelial cell types are listed first, followed by all other cell types sorted alphabetically. The SNPs from the SBP or DBP discovery genome-wide scans meeting a series of P value thresholds in the range $10^{-4}-10^{-16}$ were clumped and tagged as described above and then compared to GWAS catalog SNPs for enrichment in narrow or broad DHS peaks for each of 123 cell types.

Supplementary Table 17: Tissue categorization for DNase-hypersensitive site analyses.
Grouping categorization for related tissues in the DNase-hypersensitive site analysis. Two different tissue categorizations were available (Broad tissue category and ENCODE tissue category). The published region definitions listed were used (see Section 8; the name is the concatenation of the experiment name and the experiment definition).

Supplementary Table 18: Analysis of enrichment of DNase-hypersensitive sites among the BP loci, grouping cell types by tissue.

The enrichment of DNase-hypersensitive sites among the BP loci is expressed by comparing the observed and expected number of SNPs overlapping DNA hypersensitive sites for each cell type. The enrichment is expressed numerically as "fold change".

Supplementary Table 19: Analysis of enrichment of methylation sites among the BP loci.
For each tissue, enrichment of overlap of BP SNPs (or proxies) ${ }^{16}$ with H 3 K 4 me 3 sites was calculated and the significance tested according to the approach in Trynka et al, 2013^{46}. The P value is indicated for each of the two BP phenotypes (SBP and DBP) and their combination (SBP and DBP / SBP or DBP). The table is sorted by "SBP or DBP" P value.

Supplementary Table 20: BP SNPs enriched in DHS sites in blood vessels.
The index BP SNP is indicated and its chromosomal position, and the SNP that is enriched in DHSs in blood vessels. Further information on tissue categorisation and the DHS results is provided in Supplementary Table 17. DHS= DNase hypersensitivity site.

Supplementary Table 21: MAGENTA analysis.
In total 3,216 gene-sets were interrogated; only the gene sets (GS) yielding a FDR of < 0.5 ($75 \% P$-value threshold) are shown in this table. The original and effective gene-set sizes are indicated (orig. GS size and eff. GS size). The analyses were run using two conditions: using a P value cutoff at either 95% or 75% in the CM-BP analyses.

Supplementary Table 22: DEPICT analysis.
Data-driven Expression Prioritized Integration for Complex Traits (DEPICT) ${ }^{50}$ was used to assess whether genes in genome-wide significant blood pressure regions were enriched for any of 14,461 reconstituted gene sets (see Section 9). Identifiers of reconstituted gene sets are prefixed by the Gene Ontology database, the Mouse Genome Project database, REACTOME, InWeb protein-protein interaction database, KEGG. The gene set name is based upon the source gene set. The column labeled Top 5 genes in reconstituted gene set provides the top 5 genes annotated to a given reconstituted gene set within an associated region along with the genes' strength of association (as Z score in brackets) for that reconstituted gene set. Among all tests conducted, only the tests yielding an FDR of $\leq 5 \%$ are retained in this table.

Supplementary Table 23: FAIRE analysis.
The P values for allele-specific FAIRE are provided for each SNP at each of the fine mapping loci $(P<$ 0.05). The index and proxy SNPs, their positions (hg19), correlation (r 2), and number (n) of heterozygotes are shown.

Supplementary Table 24: Non-European meta-analysis.
Association results for 66 SNPs from the European meta-analysis for each BP phenotype (SBP and DBP) in three samples of non-European ancestry (South Asian, East Asian and African). The coded allele (CA) and non-coding allele (NCA) are indicated alongside the coded allele frequencies (CAF) for Europeanancestry participants (CAF_EUR), for South Asian ancestry participants (CAF_SAS), for East Asian ancestry participants (CAF_EAS), and for African ancestry participants (CAF_AFR). The association results for each ancestry include beta, standard error (SE), P value, and the total sample size (Total N). The association results for a meta-analysis across all non-European participants is provided, and include
beta, SE, P-value and Total N. The previously significant (signif.) column indicates if the variant was previously reported to be associated with blood pressure in a non-European ancestry analyses. The heterogeneity metrics Cochrane $Q\left(\right.$ Coch_Q) and I^{2} are indicated, calculated using summary results from all ancestries. Power indicates statistical power using an additive model, the effect size estimated in the European ancestry analyses, and an alpha of 0.05/66SNPs.

Supplementary Table 25: Detailed results of risk score analyses for each SNP per outcome.
The per SNP results underlying the risk score results shown in Table $\mathbf{2}$ are presented. The chromosome (Chr) and position (hg19) of the index SNP is provided; the coded allele (CA) and non-coded allele (NCA) are indicated; and beta, SE and P value for each outcome. CAD: coronary artery disease, LV: left ventricle, CKD: chronic kidney disease, eGFR: estimated glomerular filtration rate, cr: creatinine,

Supplementary Table 26: Genetic BP risk-score analysis applied to related cardiovascular phenotypes. The BP genetic risk score was applied to related cardiovascular phenotypes using public databases (T2D: http://diagram-consortium.org/about.html; BMI and height:
https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files; lipids: http://csg.sph.umich.edu//abecasis/public/lipids2013/). Pt = phenotype investigated, noSNPs = number of SNPs used in the analysis, SBPeffect/DBPeffect = effect size of the genetic BP risk score, SBPpval/DBPpval = p-value of the genetic risk score analysis. Information is provided on candidate genes per new locus using the definition described in Section 12 of this document.

Supplementary Table 27: Genes at new BP loci using DEPICT.
Information is provided on candidate genes per new locus using the definition described in Section 12 of this document.

114 Supplementary figures

Supplementary Figure 1. Schematic of the experimental design of the meta-analyses. Meta-analyses were carried out in 4 stages (see Supplementary Information). Stage 1: results from 46 studies genotyped using CardioMetaboChip; Stage 2: unpublished results based on imputed genotypes from genome-wide genotyping arrays of 4 studies; Stage 3: results from published imputed genotypes from genome-wide genotyping arrays of 24 studies; Stage 4: meta-analysis of the 3 separate meta-analyses, including a total of 201,529 individuals. "GC" indicates at what stages genomic-control was applied and the SNPs that were used. The final meta-analysis was not corrected by genomiccontrol. Subsequently, a validation step was performed for 18 sentinel SNPs from genome-wide significant loci without prior support in the literature. UKB $=$ UK Biobank.

Supplementary Figure 2. Quantile-quantile-plots of the p-values from the Stage 4 Cardio-MetaboChip-wide meta-analysis for SBP and DBP. Observed $-\log _{10} P$ are plotted against expected $-\log _{10} P$ for three datasets: in black the entire dataset; in orange (SBP) and light blue (DBP) results after removal of all SNPs within a 3.5 Mb window around index SNPs at previously reported loci; in red (SBP) and dark blue (DBP) results after removal of all 66 loci significant in our study.

Supplementary Figure 3. Quantile-quantile-plots of the \mathbf{P} values at each stage of the meta-analysis. The numbers include GC correction for the given stage.

Supplementary Figure 4. Quantile-quantile-plots of the P values of final meta-analysis results after subtracting new, known, and all BP related SNPs contained on the Cardio-MetaboChip. In addition to the 5,000 SNPs selected from previous studies, the Cardio-MetaboChip contains additional SNPs selected for fine-mapping of BP regions, in total amounting to 36,855 SNPs. The figures explores the impact of removing these SNPs from the dataset.

Supplementary Figure 5. Effect-size plot for each of the $\mathbf{6 6}$ index SNPs.
The effect sizes in mm Hg per allele at each of 66 index SNPs are plotted for both phenotypes: the SBP effect size (y-axis) is plotted as a function of the DBP effect size (x-axis). Each index SNP is labeled with a different color and the corresponding locus-name is given in the legend insert.

Supplementary Figure 6. Effect-size by allele frequency plot for SBP and DBP. The absolute effect size per allele at each of the 66 index SNPs is plotted as a function of minor allele frequency (MAF). The regression line includes 95%-confidence bounds (lower-bound in red, higher-bound in green).

MTHFR-NPPB

Analysis Conditional on rs2272803
SBP

Analysis Conditional on rs17037390

Analysis Conditional on rs2932538
Analysis Conditional on rs3790606

DBP

Unconditional Analysis

Analysis Conditional on rs351370

Analysis Conditional on rs3790606
rs351370
(rs351370

FIGN-GRB14

МЕСОМ

Unconditional Analysis

Analysis Conditional on rs1918966
Analysis Conditional on rs2242338

SBP

DBP

GUCY1A3

HFE

HOTTIP-EVX

DBP

$100-15-100$

ADRB1

SBP

Analysis Conditional on rs4359161

DBP

ADM

SBP

Analysis Conditional on rs1450271

DBP

DBP

SBP

DBP

Gm12878	2.3	1.9	1.2	2.4	2.2	1.5	1.5	0.8	2.5	1.7	1.5	1.6	1	1.6	0.8
H1hesc	2.1	1.3	2.2	2	1.5	1.3	1.1	1	1.7	1.7	1.2	1.9	1	1.5	
Hepg2	2.1	1.8	2.6	1.3	1.7	1.3	1.1	1.2	1.9	1.6	1.3	1.4	1	0.8	
Hmec	1.6	1.8	2.1	1.9	1.5	1.6	1.3	1.4	1.6	1.9	1.4	1.5	1		
Hsmm	1.9	1.5	2.6	1.9	1.6	1.5	1.7	1.2	1.5	1.5	1.4	1.6	1		0.9
Huvec	1.7	1.4	1.5	2.2	1.9	1.9	1.7	1.3	2	1.8	1.4	1	1	0.7	0.6
K562	1.8	1.4	2.7	1.9	1.8	1.5	1.4	1.3	2.4	1.8	1.3	1.3	0.9		1.1
Nhek	1.6	2.1	1.2	1.3	1.8	1.7	1.3	1.1	1.6	1.7	1.3	1.5	1	1.3	
Nhif	2.2	1.7	1.4	3.3	2	1.5	1.5	1.3	2.8	1.7	1.5	1.3	1		0.7
	$-\log$	$\mathrm{P}-$	e											$e^{2 e^{2}}$	0^{4}

Supplementary Figure 8. Matrix of fold enrichment for BP SNPs in predicted chromatin states in nine human cell types. The boxes are colored by $-\log _{10} P$ for enrichment. The white color indicates lack of significance after Bonferroni correction for 15 chromatin states and 9 tissues (see Supplementary Information). HMM = hidden Markov model; txn = transcription; lo=low signal; CNV = copy number variation. The ENCODE cell type codes are: embryonic stem cells (H1 ES), erythrocytic leukaemia cells (K562), B-lymphoblastoid cells (GM12878), hepatocellular carcinoma cells (HepG2), umbilical vein endothelial cells (HUVEC), skeletal muscle myoblasts (HSMM), normal lung fibroblasts (NHLF), normal epidermal keratinocytes (NHEK) and mammary epithelial cells (HMEC).

Supplementary Figure 9. Effect allele frequency plots for all samples of non-European ancestry. The effect allele frequency of each study is plotted against the effect allele frequency of every other study for all 66 index SNPs. The study names are indicated in the middle diagonal.

CAD, SBP; all SNPs

CAD, DBP; 10 pruned

LV mass, SBP; all SNPs

LV mass, SBP; 0 pruned

LV mass, DBP; all SNPs

LV mass, DBP; 0 pruned

LV wall thickness, DBP; all SNPs

CKD, SBP; all SNPs

CKD, SBP; 1 pruned

CKD, DBP; all SNPs

CKD, DBP; 1 pruned

eGFR (based on cystatin), SBP; all SNPs
eGFR (based on cystatin), SBP; 1 pruned

eGFR (based on cystatin), DBP; all SNPs
eGFR (based on cystatin), DBP; 1 pruned
creatinine, SBP; all SNPs

stroke, all subtypes, SBP; all SNPs

stroke, all subtypes, SBP; 0 pruned

stroke, all subtypes, DBP; all SNPs

stroke, ischemic subtype [C], SBP; all SNPs

stroke, ischemic subtype [C], SBP; 0 pruned

stroke, ischemic subtype [C], DBP; all SNPs

stroke, ischemic subtype [C], DBP; 0 pruned

cIMT, SBP; all SNPs

cIMT, SBP; 4 pruned

cIMT, DBP; all SNPs

cIMT, DBP; 5 pruned

mild retinopathy [EU], SBP; all SNPs

mild retinopathy [EU], SBP; 0 pruned

mild retinopathy [EU], DBP; all SNPs

mild retinopathy [EU], DBP; 0 pruned

central retinal artery caliber [EU], SBP; all SNPs

central retinal artery caliber [EU], SBP; 2 pruned

central retinal artery caliber [EU], DBP; all SNPs

central retinal artery caliber [EU], DBP; 3 pruned

mild retinopathy [AS], SBP; 0 pruned

mild retinopathy [AS], DBP; 0 pruned

central retinal artery caliber [AS], SBP; all SNPs

central retinal artery caliber [AS], SBP; 0 pruned

central retinal artery caliber [AS], DBP; all SNPs

central retinal artery caliber [AS], DBP; 0 pruned

LDL, SBP; all SNPs

LDL, SBP; 6 pruned

LDL, DBP; all SNPs

LDL, DBP; 6 pruned

HDL, SBP; all SNPs

HDL, SBP; 12 pruned

HDL, DBP; 12 pruned

TG, DBP; 6 pruned

BMI, SBP; all SNPs

BMI, SBP; 10 pruned

BMI, DBP; all SNPs

BMI, DBP; 10 pruned

t2d, SBP; all SNPs

t2d, SBP; 2 pruned

t2d, DBP; all SNPs

t2d, DBP; 2 pruned

height, SBP; all SNPs

15 References

1. Ehret GB, Munroe PB, Rice KM, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 2011;478:103-9.
2. Smith NL, Felix JF, Morrison AC, et al. Association of genome-wide variation with the risk of incident heart failure in adults of European and African ancestry: a prospective meta-analysis from the cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 2010;3:256-66.
3. Vasan RS, Glazer NL, Felix JF, et al. Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 2009;302:168-78.
4. Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke. N Engl J Med 2009;360:1718-28.
5. Traylor M, Farrall M, Holliday EG, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol 2012;11:951-62.
6. Deloukas P, Kanoni S, Willenborg C, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet 2012.
7. Pattaro C, Kottgen A, Teumer A, et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet 2012;8:e1002584.
8. Boger CA, Chen MH, Tin A, et al. CUBN is a gene locus for albuminuria. J Am Soc Nephrol 2011;22:555-70.
9. Chambers JC, Zhang W, Lord GM, et al. Genetic loci influencing kidney function and chronic kidney disease. Nat Genet 2010;42:373-5.
10. Bis JC, Kavousi M, Franceschini N, et al. Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet 2011;43:940-7.
11. Jensen RA, Sim X, Li X, et al. Genome-Wide Association Study of Retinopathy in Individuals without Diabetes. PLoS One 2013;8:e54232.
12. Sim X, Jensen RA, Ikram MK, et al. Genetic loci for retinal arteriolar microcirculation. PLoS One 2013;8:e65804.
13. Voight BF, Kang HM, Ding J, et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 2012;8:e1002793.
14. Tobin MD, Sheehan NA, Scurrah KJ, Burton PR. Adjusting for treatment effects in studies of quantitative traits: antihypertensive therapy and systolic blood pressure. Stat Med 2005;24:2911-35.
15. Devlin B, Roeder K. Genomic control for association studies. Biometrics 1999;55:997-1004.
16. Abecasis GR, Auton A, Brooks LD, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56-65.
17. Consortium IH. The International HapMap Project. Nature 2003;426:789-96.
18. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190-1.
19. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
20. Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res 2002;12:996-1006.
21. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 2011;88:76-82.
22. Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 2012;44:369-75, S1-3.
23. Pruim RJ, Welch RP, Sanna S, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 2010;26:2336-7.
24. Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 2007;81:208-27.
25. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genomewide association studies by imputation of genotypes. NatGenet 2007;39:906-13.
26. Wellcome Trust Case Control C, Maller JB, McVean G, et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat Genet 2012;44:1294-301.
27. Penninx BW, Beekman AT, Smit JH, et al. The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. International journal of methods in psychiatric research 2008;17:121-40.
28. Boomsma DI, de Geus EJ, Vink JM, et al. Netherlands Twin Register: from twins to twin families. Twin Res Hum Genet 2006;9:849-57.
29. Jansen R, Batista S, Brooks AI, et al. Sex differences in the human peripheral blood transcriptome. BMC Genomics 2014;15:33.
30. Wright FA, Sullivan PF, Brooks AI, et al. Heritability and genomics of gene expression in peripheral blood. Nat Genet 2014;46:430-7.
31. Nivard MG, Mbarek H, Hottenga JJ, et al. Further confirmation of the association between anxiety and CTNND2: replication in humans. Genes Brain Behav 2014;13:195-201.
32. Visscher PM, Benyamin B, White I. The use of linear mixed models to estimate variance components from data on twin pairs by maximum likelihood. Twin research : the official journal of the International Society for Twin Studies 2004;7:670-4.
33. Grundberg E, Small KS, Hedman AK, et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet 2012;44:1084-9.
34. Schunkert H, Konig IR, Kathiresan S, et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet 2011;43:333-8.
35. Folkersen L, van't Hooft F, Chernogubova E, et al. Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease. Circ Cardiovasc Genet 2010;3:365-73.
36. Rodwell GE, Sonu R, Zahn JM, et al. A transcriptional profile of aging in the human kidney. PLoS biology 2004;2:e427.
37. Wheeler HE, Metter EJ, Tanaka T, et al. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging. PLoS Genet 2009;5:e1000685.
38. The Diabetes Control and Complications Trial (DCCT). Design and methodologic considerations for the feasibility phase. The DCCT Research Group. Diabetes 1986;35:530-45.
39. Romanoski CE, Che N, Yin F, et al. Network for activation of human endothelial cells by oxidized phospholipids: a critical role of heme oxygenase 1. Circ Res 2011;109:e27-41.
40. Koopmann TT, Adriaens ME, Moerland PD, et al. Genome-wide identification of expression quantitative trait loci (eQTLs) in human heart. PLoS One 2014;9:e97380.
41. Fairfax BP, Humburg P, Makino S, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 2014;343:1246949.
42. Ramasamy A, Trabzuni D, Guelfi S, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci 2014;17:1418-28.
43. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 2012;337:1190-5.
44. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559-75.
45. Welter D, MacArthur J, Morales J, et al. The NHGRI GWAS Catalog, a curated resource of SNPtrait associations. Nucleic Acids Res 2014;42:D1001-6.
46. Trynka G, Sandor C, Han B, et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat Genet 2013;45:124-30.
47. Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011;473:43-9.
48. Te Grotenhuis M, Eisinga R, Pelzer B. Saddlepoint approximations for the sum of independent non-identically distributed binomial random variables. Statistica Neerlandica 2013;67:190-201.
49. Segre AV, Consortium D, investigators M, et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet 2010;6.
50. Pers TH, Karjalainen JM, Chan Y, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun 2015;6:5890.
51. al. Fe. Gene expression analysis identifies global gene dosage sensitivity in cancer. Nature Genetics - In Press 2015.
52. Lage K, Karlberg EO, Storling ZM, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nat Biotechnol 2007;25:309-16.
53. Bult CJ RJ, Blake JA, Kadin JA, Ringwald M, Eppig JT, and the Mouse Genome Database Group. . Mouse genome informatics in a new age of biological inquiry. Proceedings of the IEEE International Symposium on Bio-Informatics and Biomedical Engineering; 2000. . p. 29-32.
54. Croft D, O'Kelly G, Wu G, et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 2011;39:D691-7.
55. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012;40:D109-14.
56. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-9.
57. Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC Bioinformatics 2010;11:288.
58. Dastani Z, Hivert MF, Timpson N, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet 2012;8:e1002607.
59. Johnson T. Efficient Calculation for Multi-SNP Genetic Risk Scores. American Society of Human Genetics; 2012.
60. Kurogane Y , Miyata M , Kubo Y , et al. FGD5 mediates proangiogenic action of vascular endothelial growth factor in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 2012;32:988-96.
61. Korn C, Augustin HG. Born to die: blood vessel regression research coming of age. Circulation 2012;125:3063-5.
62. Ouyang T, Bai RY, Bassermann F, et al. Identification and characterization of a nuclear interacting partner of anaplastic lymphoma kinase (NIPA). J Biol Chem 2003;278:30028-36.
63. Bassermann F, von Klitzing C, Munch S, et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell 2005;122:45-57.
64. Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. Psychopharmacology (Berl) 2004;174:463-76.
65. Zabetian CP, Anderson GM, Buxbaum SG, et al. A quantitative-trait analysis of human plasmadopamine beta-hydroxylase activity: evidence for a major functional polymorphism at the DBH locus. Am J Hum Genet 2001;68:515-22.
66. Mustapic M, Maihofer AX, Mahata M, et al. The catecholamine biosynthetic enzyme dopamine beta-hydroxylase (DBH): first genome-wide search positions trait-determining variants acting additively in the proximal promoter. Hum Mol Genet 2014.
67. Chen Y, Wen G, Rao F, et al. Human dopamine beta-hydroxylase (DBH) regulatory polymorphism that influences enzymatic activity, autonomic function, and blood pressure. J Hypertens 2010;28:76-86.
68. Chen Y, Zhang K, Wen G, et al. Human dopamine beta-hydroxylase promoter variant alters transcription in chromaffin cells, enzyme secretion, and blood pressure. Am J Hypertens 2011;24:24-32.
69. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol 2012;32:2052-9.
70. Asselbergs FW, Guo Y, van Iperen EP, et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet 2012;91:823-38.
71. Duncan ER, Crossey PA, Walker S, et al. Effect of endothelium-specific insulin resistance on endothelial function in vivo. Diabetes 2008;57:3307-14.
72. Manrique C, Lastra G, Sowers JR. New insights into insulin action and resistance in the vasculature. Ann N Y Acad Sci 2014;1311:138-50.
73. Symons JD, Hu P, Yang Y, et al. Knockout of insulin receptors in cardiomyocytes attenuates coronary arterial dysfunction induced by pressure overload. Am J Physiol Heart Circ Physiol 2011;300:H374-81.
74. Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms. J Endocrinol 2014;220:T1-T23.
75. Wu LC, Liu Y, Strandtmann J, et al. The mouse DNA binding protein Rc for the kappa B motif of transcription and for the $V(D) J$ recombination signal sequences contains composite DNA-protein interaction domains and belongs to a new family of large transcriptional proteins. Genomics 1996;35:415-24.
76. Hicar MD, Liu Y, Allen CE, Wu LC. Structure of the human zinc finger protein HIVEP3: molecular cloning, expression, exon-intron structure, and comparison with paralogous genes HIVEP1 and HIVEP2. Genomics 2001;71:89-100.
77. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science 2006;312:1223-7.
78. Shim JH, Greenblatt MB, Zou W, et al. Schnurri-3 regulates ERK downstream of WNT signaling in osteoblasts. J Clin Invest 2013;123:4010-22.
79. Leung A, Trac C, Jin W, et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res 2013;113:266-78.
80. Balint I, Muller A, Nagy A, Kovacs G. Cloning and characterisation of the RBCC728/TRIM36 zincbinding protein from the tumor suppressor gene region at chromosome 5q22.3. Gene 2004;332:45-50.
81. Hatakeyama S. TRIM proteins and cancer. Nature reviews Cancer 2011;11:792-804.
82. Miyajima N, Maruyama S, Nonomura K, Hatakeyama S. TRIM36 interacts with the kinetochore protein CENP-H and delays cell cycle progression. Biochem Biophys Res Commun 2009;381:383-7.
83. Takayama K, Tsutsumi S, Katayama S, et al. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Oncogene 2011;30:619-30.
84. Venerando A, Ruzzene M, Pinna LA. Casein kinase: the triple meaning of a misnomer. Biochem J 2014;460:141-56.
85. Minakuchi M, Kakazu N, Gorrin-Rivas MJ, et al. Identification and characterization of SEB, a novel protein that binds to the acute undifferentiated leukemia-associated protein SET. Eur J Biochem 2001;268:1340-51.
86. Hoischen A, van Bon BW, Gilissen C, et al. De novo mutations of SETBP1 cause Schinzel-Giedion syndrome. Nat Genet 2010;42:483-5.
87. Sakaguchi H, Okuno Y, Muramatsu H, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet 2013;45:937-41.
88. Horike N, Takemori H, Katoh Y, Doi J, Okamoto M. Roles of several domains identified in the primary structure of salt-inducible kinase (SIK). Endocrine research 2002;28:291-4.
89. Lizcano JM, Göransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. The EMBO journal 2004;23:833-43.
90. Hashimoto YK, Satoh T, Okamoto M, Takemori H. Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. Journal of cellular biochemistry 2008;104:1724-39.
91. Stenstro K, Eneling K, Zwiller J, Katz AI, Takemori H, Bertorello AM. SIK1 is part of a cell sodiumsensing network that regulates active sodium transport through a calcium-dependent process. 2007.
92. Jaitovich A, Bertorello AM. Intracellular sodium sensing: SIK1 network, hormone action and high blood pressure. Biochimica et biophysica acta 2010;1802:1140-9.
93. Stenström K, Takemori H, Bianchi G, Katz AI, Bertorello AM. Blocking the salt-inducible kinase 1 network prevents the increases in cell sodium transport caused by a hypertension-linked mutation in human alpha-adducin. Journal of hypertension 2009;27:2452-7.
94. Romito A, Lonardo E, Roma G, Minchiotti G, Ballabio A, Cobellis G. Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PloS one 2010;5:e9029.
95. Watkins H, Conner D, Thierfelder L, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature genetics 1995;11:434-7.
96. Sadayappan S, de Tombe PP. Cardiac myosin binding protein-C as a central target of cardiac sarcomere signaling: a special mini review series. Pflügers Archiv : European journal of physiology 2014;466:195-200.
97. Bonne G, Carrier L, Bercovici J, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature genetics 1995;11:438-40.
98. Tong CW, Nair Na, Doersch KM, Liu Y, Rosas PC. Cardiac myosin-binding protein-C is a critical mediator of diastolic function. Pflügers Archiv : European journal of physiology 2014;466:451-7.
99. Ho JE, Levy D, Rose L, Johnson AD, Ridker PM, Chasman DI. Discovery and replication of novel blood pressure genetic loci in the Women's Genome Health Study. J Hypertens 2011;29:62-9.
100. Padmanabhan S, Melander O, Johnson T, et al. Genome-Wide Association Study of Blood Pressure Extremes Identifies Variant near UMOD Associated with Hypertension. PLoS Genet 2010;6:e1001177.
101. Takeuchi F, Isono M, Katsuya T, et al. Blood pressure and hypertension are associated with 7 loci in the Japanese population. Circulation 2010;121:2302-9.
102. Johnson AD, Newton-Cheh C, Chasman DI, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension 2011;57:903-10.
103. Johnson T, Gaunt TR, Newhouse SJ, et al. Blood pressure loci identified with a gene-centric array. The American Journal of Human Genetics 2011.
104. Kato N, Takeuchi F, Tabara Y, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 2011;43:531-8.
105. Salvi E, Kutalik Z, Glorioso N, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension 2012;59:248-55.
106. Wain LV, Verwoert GC, O'Reilly PF, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature genetics 2011.
107. Ganesh SK, Tragante V, Guo W, et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet 2013.
108. Kato N, Loh M, Takeuchi F, et al. Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 2015;47:1282-93.

16 Author contributions

Analysis group

Design of secondary analyses: G.B.E., T.Ferreira, T.J., A.P.M., P.B.M., C.N.-C. Computation of secondary analyses: G.B.E., T.Ferreira, T.J., A.P.M., P.B.M., C.N.-C.
Paper writing: A.C., G.B.E., T.Ferreira, T.J., A.P.M., P.B.M., C.N.-C. Study management: P.B.M., C.N.-C.

Cardio-MetaboChip or new GWAS

WGHS Study phenotyping: P.M.R., D.I.C., L.M.R. Genotyping or analysis: P.M.R., D.I.C., L.M.R., F.Giulianini Study PI: P.M.R.

JUPITER Study phenotyping: P.M.R., D.I.C., L.M.R. Genotyping or analysis: D.I.C., L.M.R., F.Giulianini Study PI: P.M.R., D.I.C.
deCODE Study phenotyping: G.B. Genotyping or analysis: G.T. Study PI: K.S., U.T.
GoDARTS Study phenotyping: C.N.A.P., L.A.D., A.D.M., A.S.F.D. Genotyping or analysis: C.N.A.P., L.A.D., A.D.M., M.I.M., C.G., N.W.W.R.R. Study PI: C.N.A.P., A.D.M.

KORA F3/F4 Study phenotyping: A.D., H.Schunkert, J.E. Genotyping or analysis: A.-K.P., M.M.-N., N.K., T.I. Study PI: H.-E.W., A.Peters

GLACIER Study phenotyping: F.R., G.H. Genotyping or analysis: P.W.F., D.Shungin, I.B., S.Edkins, F.R. Study PI: P.W.F.
B58C Genotyping or analysis: S.Kanoni, K.E.S., Wellcome Trust Case Control Consortium, E.M., T.Ferreira, T.J. Study PI: P.D.

MORGAM Study phenotyping: K.Kuulasmaa, F.Gianfagna, A.Wagner, J.Dallongeville Genotyping or analysis: M.F.H., F.Gianfagna Study PI: J.V., J.F., A.E.
SardiNIA Study phenotyping: E.G.L. Genotyping or analysis: E.G.L., O.Meirelles, S.Sanna, R.N., A.Mulas, K.V.T.

NFBC1986 Study phenotyping: M.R.J., S.Sebert, K.H.H., A.L.H. Genotyping or analysis: M.Kaakinen, A.L.H. Study PI: M.R.J.

DESIR Genotyping or analysis: N.B.-N., L.Y., S.L. Study PI: P.F., N.B.-N., B.B.
DILGOM Study phenotyping: S.M. Genotyping or analysis: K.Kristiansson, M.P., A.S.H. Study PI: V.S. IMPROVE Study phenotyping: D.B. Genotyping or analysis: R.J.S., K.G. Study PI: A.Hamsten,
E.Tremoli

HyperGEN Study phenotyping: S.C.H., D.C.R. Genotyping or analysis: A.C., V.P., G.B.E. Study PI:
S.C.H.

FENLAND (MetaboChip) Study phenotyping: R.J.F.L., J.a.L., N.J.W., K.K.O. Genotyping or analysis: R.J.F.L., J.a.L., N.J.W., K.K.O. Study PI: N.J.W.

Whitehall II Study phenotyping: M.Kumari Genotyping or analysis: M.Kumari, S.Shah, C.L. Study PI: A.Hingorani, M.Kivimaki

LURIC Genotyping or analysis: M.E.K., G.Delgado Study PI: W.M.
MESA Study phenotyping: W.P. Genotyping or analysis: W.P., X.G., J.Y., V.D., K.D.T., J.I.R., Y.-D.C. Study PI: W.P.
HUNT2 Study phenotyping: K.Kvaløy, J.H., O.L.H. Genotyping or analysis: A.U.J. Study PI: K.H.
FINCAVAS Genotyping or analysis: T.L., L.-P.L., K.N., M.Kähönen Study PI: T.L., M.Kähönen
GenNet Study phenotyping: R.S.C., A.B.W. Genotyping or analysis: A.C., V.P., M.X.S., D.E.A., G.B.E. Study PI: A.C., R.S.C., A.B.W.
SCARFSHEEP Study phenotyping: B.G. Genotyping or analysis: R.J.S. Study PI: A.Hamsten, U.d.F.
DPS Study phenotyping: J.L. Genotyping or analysis: A.U.J., P.S.C. Study PI: J.T., M.U.
DR's EXTRA Study phenotyping: P.K. Genotyping or analysis: A.U.J., M.H. Study PI: R.Rauramaa,
T.A.L.

FIN-D2D 2007 Genotyping or analysis: A.U.J., L.L.B. Study PI: J.Saltevo, L.M.

METSIM Study phenotyping: H.M.S. Genotyping or analysis: A.U.J., A.Stančáková Study PI: M.L., J.K. MDC-CVA Study phenotyping: O.Melander Genotyping or analysis: O.Melander, C.F. Study PI: O.Melander

BRIGHT Study phenotyping: A.F.D., M.J.B., N.J.S., J.M.C. Genotyping or analysis: T.J., P.B.M. Study PI: M.J.C., A.F.D., M.J.B., N.J.S., J.M.C., P.B.M.
NESDA Study phenotyping: J.H.S. Genotyping or analysis: H.Snieder, I.M.N. Study PI: B.W.P.
EPIC (MetaboChip) Study phenotyping: R.J.F.L., J.a.L., N.J.W. Genotyping or analysis: J.a.L., N.J.W. Study PI: N.J.W., K.-T.K.
ELY Study phenotyping: C.L., J.a.L., N.J.W. Genotyping or analysis: C.L., J.a.L., N.J.W. Study PI: N.J.W.

DIAGEN Study phenotyping: J.G., G.M. Genotyping or analysis: A.U.J., G.M. Study PI: P.E.S., S.R.B. GOSH Study phenotyping: P.K.M., N.L.P. Genotyping or analysis: E.I., P.K.M., N.L.P., T.Fall Study PI: E.I.

Tromsø Study phenotyping: T.W. Genotyping or analysis: A.U.J., A.J.S., N. Study PI: I.N.
ADVANCE Study phenotyping: T.L.A., C.I. Genotyping or analysis: T.L.A., E.L.S., T.Q. Study PI: T.L.A., T.Q., C.I.

ULSAM Study phenotyping: E.I., J.Sundstrom Genotyping or analysis: E.I., N.E., J.Sundstrom, A.-C.S. Study PI: J.Sundstrom
PIVUS Study phenotyping: L.Lind, J.Sundstrom Genotyping or analysis: L.Lind, N.E., J.Sundstrom, T.A. Study PI: L.Lind, J.Sundstrom

MRC NSHD Study phenotyping: D.K. Genotyping or analysis: A.Wong, J.a.L., D.K., K.K.O. Study PI: D.K.

ASCOT Study phenotyping: A.Stanton, N.P. Genotyping or analysis: T.J., M.J.C., P.B.M. Study PI: P.S., M.J.C.

THISEAS Genotyping or analysis: L.S.R., S.Kanoni, E.M., G.Kolovou Study PI: G.Dedoussis, P.D.
PARC Study phenotyping: R.M.K. Genotyping or analysis: K.D.T., E.Theusch, J.I.R., X.L., M.O.G., Y.D.I.C. Study PI: R.M.K.

AMC-PAS Genotyping or analysis: G.K.H., P.D. Study PI: G.K.H.
CARDIOGENICS Genotyping or analysis: S.Kanoni, A.H.G. Study PI: P.D., A.H.G., J.E., N.J.S., H.Schunkert

Secondary analyses

allele-specific FAIRE Design of secondary analysis: A.J.P.S. Computation of secondary analysis: A.J.P.S., F.D., P.H.

ASAP eQTL Design of secondary analysis: A.F.C. Computation of secondary analysis: L.Folkersen, P.Eriksson

CARDIOGENICS eQTL Computation of secondary analysis: L.Lataniotis
CM design Design of secondary analysis: P.B.M., C.N.-C., T.J., B.F.V. Computation of secondary analysis: P.B.M., C.N.-C., T.J., B.F.V.
Comprehensive literature review Design of secondary analysis: P.B.M. Computation of secondary analysis: K.W., P.B.M.
DEPICT Design of secondary analysis: L.Franke, T.H.P., J.N.H. Computation of secondary analysis:
T.H.P.

DHS and methylation analysis by tissue Design of secondary analysis: C.J.W. Computation of secondary analysis: E.M.S.
DHS and methylation by cell-line Design of secondary analysis: D.I.C. Computation of secondary analysis: D.I.C., F.Giulianini
FHS eSNP Design of secondary analysis: R.Joehanes Computation of secondary analysis: R.Joehanes

ICBP SC Design of secondary analysis: C.N.-C., M.J.C., P.B.M., A.C., K.M.R., P.-O'R., W.P., D.L., M.D.T., B.M.P., A.D.J., P.Elliott, C.M.v.D., D.I.C., A.V.S., M.Bochud, L.V.W., H.Snieder, G.B.E.

Kidney eQTL Computation of secondary analysis: H.J.G., S.K.K.
MAGENTA Design of secondary analysis: D.I.C. Computation of secondary analysis: D.I.C. miscellaneous Computation of secondary analysis: H.Warren
MuTHER eQTL Design of secondary analysis: P.D. Computation of secondary analysis: L.Lataniotis, T.-P.Y.

NESDA eQTL Design of secondary analysis: R.Jansen Computation of secondary analysis: R.Jansen, A.V.

NTR eQTL Design of secondary analysis: R.Jansen Computation of secondary analysis: R.Jansen, J.J.H. Study PI: D.I.B.
eQTL, EGCUT Design of secondary analysis: A.Metspalu Computation of secondary analysis: T.E.,
A.Metspalu eQTL, Groningen Design of secondary analysis: L.Franke Computation of secondary analysis: H.J.W., L.Franke
public eSNP and methylation Design of secondary analysis: A.D.J., J.D.E. Computation of secondary analysis: A.D.J., J.D.E.
PubMed search Design of secondary analysis: G.B.E. Computation of secondary analysis: G.B.E., L.Lin

WGHS conditional Design of secondary analysis: D.I.C. Computation of secondary analysis: D.I.C., F.Giulianini, L.M.R.

Lookup - Cardio-MetaboChip

HEXA Genotyping or analysis: Y.J.K., Y.K.K., Y.-A.S. Study PI: J.-Y.L.
RACe Study phenotyping: D.Saleheen, W.Zhao, A.R., A.R. Genotyping or analysis: W.Zhao, A.R., A.R. Study PI: D.Saleheen
HALST Study phenotyping: C.A.H. Genotyping or analysis: J.I.R., Y.-D.C., C.A.H., R.-H.C., I.-S.C. Study PI: C.A.H.
CLHNS Study phenotyping: N.R.L., L.S.A. Genotyping or analysis: Y.W., N.R.L., L.S.A. Study PI: K.L.M., L.S.A.

GxE/Spanish Town Study phenotyping: B.O.T., C.A.M., R.W. Genotyping or analysis: C.D.P. Study PI: R.S.C., C.A.M., R.W., T.Forrester, J.N.H.

DRAGON Study phenotyping: W.-J.L., W.H.-H.S., K.-W.L., I-Te Lee Genotyping or analysis: J.I.R., Y.-D.C., E.K., D.A., K.D.T., X.G. Study PI: W.H.-H.S.

SEY Study phenotyping: P.B. Genotyping or analysis: M.Bochud, G.B.E., F.M. Study PI: P.B., M.Bochud, M.Burnier, F.P.

TUDR Study phenotyping: W.H.-H.S., I-Te Lee, W.-J.L. Genotyping or analysis: J.I.R., Y.-D.C., E.K., K.D.T., X.G. Study PI: W.H.-H.S.

TANDEM Study phenotyping: P.B., M.Bochud Genotyping or analysis: G.B.E., F.M. Study PI: P.B., M.Bochud, M.Burnier, F.P.

Imputed genotypes

FHS Study phenotyping: D.L. Genotyping or analysis: D.L. Study PI: D.L.
ARIC Study phenotyping: E.B. Genotyping or analysis: G.B.E., E.B., A.C.M., A.C., S.K.G. Study PI: E.B.,
A.C.

RS Genotyping or analysis: G.C.V., A.G.U. Study PI: A.Hofman, A.G.U., O.H.F.D.
CoLaus Study phenotyping: P.V. Genotyping or analysis: Z.K. Study PI: P.V.
NFBC1966 Study phenotyping: M.R.J. Genotyping or analysis: P.O.R. Study PI: M.R.J.
SHIP Study phenotyping: R.Rettig Genotyping or analysis: A.T.

[^0]
17 Acknowledgments

58BC: We are grateful for using the British 1958 Birth Cohort DNA collection. Sample collection funded by the Medical Research Council grant G0000934 and the Wellcome Trust grant 068545/Z/02. Genotyping was funded by the Wellcome Trust.

ADVANCE: The ADVANCE study was supported by a grant from the Reynold's Foundation and NHLBI grant HL087647.

AGES Reykjavik: The AGES Reykjavik study was supported by National Institutes of Health (contracts N01-AG-12100 and HHSN271201200022C); the National Institute on Aging Intramural Research Program; Hjartavernd (the Icelandic Heart Association);the Althingi (the Icelandic Parliament)
allele-specific FAIRE: AJPS was supported by a British Heart Foundation (BHF) grant (FS/13/6/29977), FD was supported by a BHF grant (RG08/008)

AMC-PAS: We thank Aicha Ait Soussan for technical assistance and the WTSI Genotyping Facility for conducting the genotyping

Amish: The Amish studies are supported by grants and contracts from the NIH, including R01 AG18728, R01 HL088119, U01 GM074518, U01 HL072515-06, U01 HL84756, R01 DK54261,the University of Maryland General Clinical Research Center, grant M01 RR 16500, the Mid-Atlantic Nutrition Obesity Research Center grant P30 DK72488, the Baltimore Diabetes Research and Training Center grant P60DK79637, and by the T32 training grant AG000219. In addition, this project was supported by National Research Initiative Competitive Grant no. 2007-35205-17883 from the USDA National Institute of Food and Agriculture. We gratefully thank our Amish community and research volunteers for their long-standing partnership in research, and acknowledge the dedication of our Amish liaisons, field workers and the Amish Research Clinic staff, without which these studies would not have been possible.
analysis group: This work forms part of the research themes contributing to the translational research portfolio for the NIHR Barts Cardiovascular Biomedical Research Unit (Patricia Munroe). G.B.E. is supported by the University of Geneva, NHLBI (R01HL086694), the Swiss National Foundation (FN 33CM30-124087), and by the "Fondation pour Recherches Médicales" and the GeCor foundation. A.P.M. is a Wellcome Trist Senior Research Fellow in Basic Biomedical Science (grant number WT098017).

ARIC: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Funding support for the Genetic Epidemiology of Causal Variants Across the Life Course (CALiCo) program was provided through the NHGRI PAGE program (U01 HG007416). The authors thank the staff and participants of the ARIC study for their important contributions. G.B.E is supported by the Swiss National Foundation SPUM project FN 33CM30-124087, Geneva University, and the Fondation pour Recherches Médicales, Genève. The authors thank the staff and participants of the ARIC study for their important contributions.

ASCOT: This work was supported by Pfizer, New York, NY, USA, for the ASCOT study and the collection of the ASCOT DNA repository; by Servier Research Group, Paris, France; and by Leo Laboratories, Copenhagen, Denmark. We thank all ASCOT trial participants, physicians, nurses, and practices in the
participating countries for their important contribution to the study. In particular we thank Clare Muckian and David Toomey for their help in DNA extraction, storage, and handling. This work forms part of the research themes contributing to the translational research portfolio for the NIHR Barts Cardiovascular Biomedical Research Unit (Mark Caulfield and Patricia Munroe). Genotyping was funded by the Wellcome Trust.

BLSA: The BLSA was supported by the Intramural Research Program of the NIH, National Institute on Aging.

BRIGHT: This work was supported by the Medical Research Council of Great Britain (grant number G9521010D); and by the British Heart Foundation (grant number PG/02/128). A.F.D. was supportedby the British Heart Foundation (grant numbers RG/07/005/23633, SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant number LSHM-C7-2006-037093). The BRIGHT study is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. This work forms part of the research themes contributing to the translational research portfolio for the NIHR Barts Cardiovascular Biomedical Research Unit (Mark Caulfield and Patricia Munroe). Genotyping was funded by the Wellcome Trust.

Cardiogenics: Cardiogenics Project was funded by the European Union (LSHM-CT 2006-037593). We thank the WTSI Genotyping Facility for conducting the genotyping. Data analysis was in part funded by BHF programme grant CRM:0022772 to Deloukas.

CHARGE EYE: This work was supported by multiple funding agencies and details for each cohort were given below. The Age, Gene/Environment Susceptibility - Reykjavik Study was funded by the Intramural Research Program of the National Institute on Aging (ZIAAG007380, National Institutes of Health (NIH) contract N01-AG-12100); and the National Eye Institute (ZIAEY000401) at the NIH in the United States; Hjartavernd (the Icelandic Heart Association); and the Althingi (the Icelandic Parliament). The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C,HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. The Cardiovascular Health Study research reported in this article was supported by the National Heart, Lung, and Blood Institute (NHLBI) contracts N01-HC-85239, N01-HC-85079 through N01-HC-85086, N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC-75150, N01-HC-45133, and grants HL075366,HL080295, HL087652, with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). This research was also supported by the National Institute on Aging (NIA) contracts AG-023269, AG-15928, AG-20098, and AG-027058. A full list of principal CHS investigators and institutions can be found at http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center for Research Resources grant M01-RR00425 to the Cedars-Sinai General Clinical Research Center Genotyping core and National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center. Additional funding came from the Cedars-Sinai Board of Governors' Chair in Medical Genetics (JIR) and the National Heart, Lung, and Blood Institute Training Grant T32HL007902 (RAJ). The GWA database of the Rotterdam Study was funded through the Netherlands Organization of Scientific Research NWO (no. 175.010.2005.011). This study was further supported by the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. The Rotterdam

Study is supported by the Erasmus Medical Center and Erasmus University, Rotterdam; the Netherlands Organization for scientific research (NWO); the Netherlands Organization for the Health Research and Development (ZonMw); The Research Institute for Diseases in the Elderly (RIDE); the Ministry of Education, Culture, and Science; the Ministry for Health, Welfare, and Sports; The European commission (DG XII); and the Municipality of Rotterdam. The ophthalmic part of the Rotterdam Study was supported by Lijf en Leven, Krimpen a/d Lek; MD Fonds, Utrecht. Oogfonds Nederland, Utrecht; Stichting Nederlands Oogheelkundig Onderzoek, Nijmegen/Rotterdam; Swart van Essen, Rotterdam; Netherlands Organisation for Scientific Research (NWO); Bevordering van Volkskracht, Rotterdam; Blindenhulp, The Hague; Rotterdamse Vereniging Blindenbelangen, Rotterdam; OOG, The Hague; Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, Doorn; Blinden-Penning, Amsterdam; Blindenhulp, Gravenzande; Henkes Stichting, Rotterdam; Topcon Europe BV, Capelle aan de IJssel; Medical Workshop BV, Groningen; all in the Netherlands; Heidelberg Engineering, Dossenheim, Germany. The Blue Mountains Eye Study has been supported by the Australian National Health \& Medical Research Council, Canberra Australia (Grant Numbers 974159, 211069, 457349, 512423, 475604, 529912, and the funding for Centre for Clinical Research Excellence in Translational Clinical Research in Eye Diseases, CCRE in TCR-Eye); In addition, funding by the Wellcome Trust, UK as part of Wellcome Trust Case Control Consortium 2 (A Viswanathan, P McGuffin, P Mitchell, F Topouzis, P Foster) has supported the genotyping costs of the entire BMES population (Grant numbers 085475/B/08/Z and 085475/08/Z). We also acknowledge the funding body National Institutes of Health Research (NIHR) Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, UK. The Australian Twin Registry is supported by an Australian National Health and Medical Research Council (NHMRC) Enabling Grant (2004-2009). We also thank the following organisations for their financial support: Clifford Craig Medical Research Trust, Ophthalmic Research Institute of Australia (ORIA), Glaucoma Australia, American Health Assistance Foundation (AHAF), Peggy and Leslie Cranbourne Foundation, Foundation for Children, NHMRC project grant (2005-2007), Jack Brockhoff Foundation, NEI Project Grant (2007-2010). Genotyping for part of the Australian sample was funded by an NHMRC Medical Genomics Grant. Genotyping for the remainder was performed by the NIH Center for Inherited Research (CIDR) as part of an NIH/National Eye Institute (NEI) grant 1RO1EY018246, Principal Investigator Terri L Young and we are grateful to Dr Camilla Day and staff. Australian sample imputation analyses were carried out on the Genetic Cluster Computer, which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003). The Multi-Ethnic Study of Atherosclerosis (MESA) and MESA SNP Health Association Resource (SHARe) are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support is provided by grants and contracts N01 HC95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169 and RR-024156. Funding for SHARe genotyping was provided by NHLBI Contract NO2-HL-6-4278. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

CHARGE-HF consortium: ARIC Study: The ARIC Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; and National Institutes of Health contract HHSN268200625226C. The authors thank the staff and participants of the ARIC study for their important contributions. CHS: This CHS research was supported by NHLBI contracts HHSN268201200036C, HSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, and R01HL120393 with additional contribution from the National Institute
of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. FHS: The FHS was supported by NHLBI (Contract No. N01-HC-25195) and its contract with Affymetrix, Inc for genotyping services (Contract No. N02-HL-6-4278). This work was also supported in part by grants from the NHLBI 2K24HLO4334, R01HL077477, and R01HL093328 (all to RSV). A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. The analyses reflect intellectual input and resource development from the FHS investigators participating in the SNP Health Association Resource (SHARe) project. The generation and management of GWAS genotype data for the Rotterdam Study is supported by the Netherlands Organisation of Scientific Research NWO Investments (nr. 175.010.2005.011, 911-03-012). This study is funded by the Research Institute for Diseases in the Elderly (014-93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Marijn Verkerk, Lizbeth Herrera and Marjolein Peters for their help in creating the GWAS database, and Karol Estrada and Maksim V. Struchalin for their support in creation and analysis of imputed data. The Rotterdam Study is funded by Erasmus Medical Center and Erasmus University, Rotterdam, Netherlands Organization for the Health Research and Development (ZonMw), the Research Institute for Diseases in the Elderly (RIDE), the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the European Commission (DG XII), and the Municipality of Rotterdam. The authors are grateful to the study participants, the staff of the Rotterdam Study and the participating general practitioners and pharmacists. For a full list of CHARGE-HF working group members contributing to this work, please see PMID 20445134.

CHS: Cardiovascular Health Study: This CHS research was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL087652, R01HL105756, R01HL103612, and R01HL120393 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CKDGen: Mathias Gorski - Else-Kröner-Fresenius-Stiftung (2012_A147)
CLHNS: We thank the Office of Population Studies Foundation research and data collection teams for the Cebu Longitudinal Health and Nutrition Survey. This work was supported by National Institutes of Health grants DK078150, TW05596, HLO85144, TW008288 and pilot funds from RR20649, ES10126, and DK56350.

COGENT: The following studies contributed discovery data for the COGENT-BP consortium: BioVU: The dataset(s) used for the analyses described were obtained from Vanderbilt University Medical Center's BioVU which is supported by institutional funding and by the Vanderbilt CTSA grant 1UL1RR024975-01
from NCRR/NIH. Support was also provided by Vanderbilt Clinical and Translational Research Scholar award (5KL2RR024975 to TLE), and Additional support was provided by the Building Interdisciplinary Research Careers in Women's Health career development program (K12HD4383 to DRVE). Bogalusa Heart Study (BHS): NJS is supported in part by NIH/NCRR Grant Number UL1 RR025774. The BHS was supported by grants HD-061437 and HD-062783 from the National Institute of Child Health and Human Development, and AG-16592 from the National Institute on Aging. CARe Acknowledgement: The authors wish to acknowledge the support of the National Heart, Lung, and Blood Institute and the contributions of the research institutions, study investigators, field staff and study participants in creating this resource for biomedical research. The following nine parent studies have contributed parent study data, ancillary study data, and DNA samples through the Broad Institute (N01-HC-65226) to create this genotype/phenotype data base for wide dissemination to the biomedical research community. This work was also funded by the Center of Excellence in Personalized Medicine (CEPMED), the Canada Research Chair program, the "Fonds de recherche du Québec en Santé (FRQS)", and the "Fondation de l'Institut de Cardiologie de Montréal" (to GL). Atherosclerotic Risk in Communities (ARIC): University of North Carolina at Chapel Hill (N01-HC-55015), Baylor Medical College (N01-HC-55016), University of Mississippi Medical Center (N01-HC-55021), University of Minnesota (N01-HC-55019), Johns Hopkins University (N01-HC-55020), University of Texas, Houston (N01-HC-55017), University of North Carolina, Forsyth County (N01-HC-55018). Cardiovascular Health Study (CHS): University of Washington (N01-HC-85079), Wake Forest University (N01-HC-85080), Johns Hopkins University (N01-HC-85081), University of Pittsburgh (N01-HC-85082), University of California, Davis (N01-HC-85083), University of California, Irvine (N01-HC-85084), New England Medical Center (N01-HC-85085), University of Vermont (N01-HC-85086), Georgetown University (N01-HC-35129), Johns Hopkins University (N01 HC-15103), University of Wisconsin (N01-HC-75150), Geisinger Clinic (N01-HC-45133), University of Washington (N01 HC-55222, U01 HL080295); Cleveland Family Study (CFS): Case Western Reserve University (RO1 HL46380-01-16); Coronary Artery Risk in Young Adults (CARDIA): University of Alabama at Birmingham (N01-HC-48047), University of Minnesota (N01-HC-48048), Northwestern University (N01-HC-48049), Kaiser Foundation Research Institute (N01-HC-48050), University of Alabama at Birmingham (N01-HC-95095), Tufts-New England Medical Center (N01-HC-45204), Wake Forest University (N01-HC-45205), Harbor-UCLA Research and Education Institute (N01-HC-05187), University of California, Irvine (N01-HC-45134, N01-HC-95100); Multi-Ethnic Study of Atherosclerosis (MESA): MESA is conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts N01-HC-95159 through N01-HC-95169 and UL1-RR-024156. Funding for genotyping was provided by NHLBI Contract NO2-HL-6-4278 and NO1-HC-65226. CHS: This CHS research was supported by NHLBI contracts N01-HC85239, N01-HC-85079 through N01-HC-85086; N01-HC-35129, N01 HC-15103, N01 HC-55222, N01-HC75150, N01-HC-45133, HHSN268201200036C and NHLBI grants HL080295, HL-085251, HL087652, HL105756 with additional contribution from NINDS. Additional support was provided through AG023629, AG-15928, AG-20098, and AG-027058 from the NIA. See also http://www.chs-nhlbi.org/pi.htm. DNA handling and genotyping was supported in part by National Center of Advancing Translational Technologies CTSI grant UL1TR000124 and National Institute of Diabetes and Digestive and Kidney Diseases grant DK063491 to the Southern California Diabetes Endocrinology Research Center and the Cedars-Sinai Board of Governors' Chair in Medical Genetics (JIR). GeneSTAR: GeneSTAR was supported by NIH grants through the National Institute of Nursing Research (NR0224103) and the National Heart, Lung, and Blood Institute (HL58625-01A1, HL59684, HL071025-01A1, U01HL72518, and HL087698); and by M01-RR000052 to the Johns Hopkins General Clinical Research Center. GENOA: Genetic Epidemiology Network of Arteriopathy (GENOA) study is supported by the National Institutes of Health, grant numbers HL087660 and HL100245 from the National Heart, Lung, Blood Institute. HANDLS: The Healthy Aging in Neighborhoods of Diversity across the Life Span Study (HANDLS) research was supported by the Intramural Research Program of the NIH, National Institute on Aging and the National

Center on Minority Health and Health Disparities (project \# Z01-AG000513 and human subjects protocol \# 2009-149). Data analyses for the HANDLS study utilized the high-performance computational capabilities of the Biowulf Linux cluster at the National Institutes of Health, Bethesda, Md. (http://biowulf.nih.gov). HealthABC: Health $A B C$ was funded by the National Institutes of Aging. This research was supported by NIA contracts N01AG62101, N01AG62103, and N01AG62106. The GWAS was funded by NIA grant 1R01AG032098-01A1 to Wake Forest University Health Sciences and genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University, contract number HHSN268200782096C. This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging. HUFS: The Howard University Family Study was supported by National Institutes of Health grants S06GM008016-320107 to Charles Rotimi and S06GM008016-380111 to Adebowale Adeyemo. We thank the participants of the study, for which enrollment was carried out at the Howard University General Clinical Research Center, supported by National Institutes of Health grant 2M01RR010284. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official view of the National Institutes of Health. This research was supported in part by the Intramural Research Program of the Center for Research on Genomics and Global Health (CRGGH). The CRGGH is supported by the National Human Genome Research Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Center for Information Technology, and the Office of the Director at the National Institutes of Health (Z01HG200362). Genotyping support was provided by the Coriell Institute for Medical Research. HyperGEN: The hypertension network is funded by cooperative agreements (U10) with NHLBI: HL54471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515, and 2 R01 HL55673-12. The study involves: University of Utah (Network Coordinating Center, Field Center, and Molecular Genetics Lab); Univ. of Alabama at Birmingham (Field Center and Echo Coordinating and Analysis Center); Medical College of Wisconsin (Echo Genotyping Lab); Boston University (Field Center); University of Minnesota (Field Center and Biochemistry Lab); University of North Carolina (Field Center); Washington University (Data Coordinating Center); Weil Cornell Medical College (Echo Reading Center); National Heart, Lung, \& Blood Institute. For a complete list of HyperGEN Investigators please see: www.biostat.wustl.edu/hypergen/Acknowledge.html Loyola-Nigeria: The Loyola-Nigeria study was supported by NIH grant numbers R01-HL053353. The authors acknowledge the assistance of the research staff and participants in Ibadan and Igbo-Ora, Oyo State, Nigeria. Loyola-Maywood: Maywood African-American study is supported by the National Institutes of Health grant number HL074166 from National Heart, Lung, Blood Institute. SIGNET: We would like to thank all of the participants of the REGARDS Study for their valuable contributions, as well as REGARDS investigators and staff. The REGARDS Study research was supported by a cooperative agreement U01 NS041588 (Howard) and R01 DK084350 (Sale) from the National Institutes of Health. WHI: The WHI program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221.

CoLaus: The CoLaus study was and is supported by research grants from GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science Foundation (grants 3200B0-105993, 3200B0-118308, 33CSCO-122661, 33CS30-139468 and 33CS30-148401).

DEPICT: T.H.P is supported by The Danish Council for Independent Research Medical Sciences (FSS) The Alfred Benzon Foundation and The Lundbeck Foundation.

DESIR: We thank all the participants of the D.E.S.I.R study, Elodie Eury for technical support for the genotyping, Olivier Lantieri and Michel Marre from the D.E.S.I.R study. The genotyping was supported by
the "Conseil Régional Nord-Pas-de-Calais Fonds européen de développement économique et regional" CPER axe Cartdiodiabète 2010-2011 grant to NB-N.

DGI: We thank the participants of Sweden and Finland who contributed to the DGI study. C.N.-C. was supported by the National Institutes of Health (HL080025, HL098283, HL113933), a Doris Duke Charitable Foundation Clinical Scientist Development Award, a Burroughs Wellcome Fund Career Award for Medical Scientists and institutional support from the Massachusetts General Hospital Cardiovascular Research Center and the Department of Medicine. G.K. was supported by the National Institutes of Health (T32HLOO7208). This work was supported by the Novartis Institute for Biomedical Research.

DHS and methylation analysis by tissue: CJW received support from the National Institutes of Health (HL094535 and HL109946), and EMS from the National Science Foundation Open Data Integrative Graduate Education and Research Traineeship (IGERT) Grant 0903629.

DIAGEN: The DIAGEN study was supported by the Commission of the European Communities, Directorate C - Public Health and Risk Assessment, Health \& Consumer Protection, Grant Agreement number - 2004310 and by the Dresden University of Technology Funding Grant, Med Drive. We are grateful to all of the patients who cooperated in this study and to their referring physicians and diabetologists in Saxony.

DILGOM: The DILGOM-study was supported by the Academy of Finland, grant \# 118065. SM was supported by grants \#136895 and \#141005, VS by grants \#139635 and 129494 and MP by grant \#129322 from the Academy of Finland. KK was supported by Orion-Farmos Research Foundation and Academy of Finland (grant number 250207). V.S. was supported by the Finnish Foundation for Cardiovascular Research.

DPS: The DPS has been financially supported by grants from the Academy of Finland (117844 and 40758, 211497, and 118590; The EVO funding of the Kuopio University Hospital from Ministry of Health and Social Affairs (5254), Finnish Funding Agency for Technology and Innovation (40058/07), Nordic Centre of Excellence on Systems biology in controlled dietary interventions and cohort studies, SYSDIET (070014), The Finnish Diabetes Research Foundation, Yrjö Jahnsson Foundation (56358), Sigrid Juselius Foundation, Juho Vainio Foundation and TEKES grants 70103/06 and 40058/07.

DR's EXTRA: The DR.s EXTRA Study was supported by grants to R. Rauramaa by the Ministry of Education and Culture of Finland (627;2004-2011), Academy of Finland (102318; 123885), Kuopio University Hospital , Finnish Diabetes Association, Finnish Heart Association, Päivikki and Sakari Sohlberg Foundation and by grants from European Commission FP6 Integrated Project (EXGENESIS); LSHM-CT-2004-005272, City of Kuopio and Social Insurance Institution of Finland (4/26/2010).

DRAGON: This study was supported by the Taichung Veterans General Hospital, Taiwan (TCVGH1013001C, TCVGH-1013002D).

EchoGen consortium: For a full list of EchoGen members contributing to this work and for acknowledgements, please see PMID 19584346.

Ely: The Ely Study was funded by the Medical Research Council. We are most grateful to all study participants and to the staff of the St. Mary's Street Surgery, Ely. We thank all the staff who worked on the study.

EPIC: The EPIC Norfolk Study is funded by program grants from the Medical Research Council UK and Cancer Research UK.
eQTL, EGCUT: TE and AM work was supported through the Estonian Genome Center of University of Tartu by the Targeted Financing from the Estonian Ministry of Science and Education [SFO180142s08]; the Development Fund of the University of Tartu (grant SP1GVARENG); the European Regional Development Fund to the Centre of Excellence in Genomics (EXCEGEN; grant 3.2.0304.11-0312); and through FP7 grant 313010.
eQTL, Groningen: L.F.,H-J.W.: This study was supported by grants from the Celiac Disease Consortium (an innovative cluster approved by the Netherlands Genomics Initiative and partly funded by the Dutch Government (grant BSIK03009), the Netherlands Organization for Scientific Research (NWO-VICI grant 918.66.620, NWO-VENI grant 916.10.135 to L.F.), the Dutch Digestive Disease Foundation (MLDS WO1130), and a Horizon Breakthrough grant from the Netherlands Genomics Initiative (grant 92519031 to L.F.). This project was supported by the Prinses Beatrix Fonds, VSB fonds, H. Kersten and M. Kersten (Kersten Foundation), The Netherlands ALS Foundation, and J.R. van Dijk and the Adessium Foundation. The research leading to these results has received funding from the European Community's Health Seventh Framework Programme (FP7/2007-2013) under grant agreement 259867.

FENLAND: The Fenland Study is funded by the Wellcome Trust and the Medical Research Council, as well as by the Support for Science Funding programme and CamStrad. We are grateful to all the volunteers for their time and help, and to the General Practitioners and practice staff for help with recruitment. We thank the Fenland Study co-ordination team and the Field Epidemiology team of the MRC Epidemiology Unit for recruitment and clinical testing.

FHS: The National Heart, Lung, and Blood Institute's Framingham Heart Study is a joint project of the National Institutes of Health and Boston University School of Medicine and was supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (contract No. NO1-HC-25195) and its contract with Affymetrix, Inc. for genotyping services (contract No. NO2-HL-6-4278). Analyses reflect the efforts and resource development from the Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. A portion of this research was conducted using the Linux Cluster for Genetic Analysis (LinGAll) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center.

FIN-D2D 2007: The FIN-D2D study has been financially supported by the hospital districts of Pirkanmaa, South Ostrobothnia, and Central Finland, the Finnish National Public Health Institute (current National Institute for Health and Welfare), the Finnish Diabetes Association, the Ministry of Social Affairs and Health in Finland, the Academy of Finland (grant number 129293),Commission of the European Communities, Directorate C-Public Health (grant agreement no. 2004310) and Finland's Slottery Machine Association.

FINCAVAS: This work was supported by the Competitive Research Funding of the Tampere University Hospital (Grant 9M048 and 9NO35), the Finnish Cultural Foundation, the Finnish Foundation for Cardiovascular Research, the Emil Aaltonen Foundation, Finland, and the Tampere Tuberculosis Foundation. The authors thank the staff of the Department of Clinical Physiology for collecting the exercise test data.

FUSION: Support for FUSION was provided by NIH grants R01-DK062370 (to M.B.), R01-DK072193 (to K.L.M.), and intramural project number 1ZO1-HG000024 (to F.S.C.). Genome-wide genotyping was conducted by the Johns Hopkins University Genetic Resources Core Facility SNP Center at the Center for Inherited Disease Research (CIDR), with support from CIDR NIH contract no. N01-HG-65403.

GenNet: We thank the study participants and NHLBI for funding (FBPP program).

GLACIER: The GLACIER Study is nested within the Northern Sweden Health and Disease Study and phenotyping was conducted as part of the Västerbotten Intervention Project. We thank the participants and the investigators from these studies for their valuable contributions, with specific thanks to Lars Weinehall, Åsa Agren, Kerstin Enquist, and Thore Johansson. The GLACIER Study and part of PWF's salary were funded by grants from the Swedish Research Council, Swedish Heart-Lung Foundation, Novo Nordisk, Umeå Medical Research Foundation, and the Swedish Diabetes Association (to PWF). Genotyping for this specific project was funded by the Wellcome Trust Sanger Institute. Inês Barroso acknowledges funding from the Wellcome Trust grant 098051, United Kingdom NIHR Cambridge Biomedical Research Centre and the MRC Centre for Obesity and Related Metabolic Diseases. We would like to thank Emma Gray, Douglas Simpkin, Sarah Hunt and staff of the WTSI Sample Logistics, Genotyping and Variation Informatics Facilities. Frida Restrom was supported in part by a post-doctoral fellowship from the Swedish Heart-Lung Foundation.

GoDARTS: The Wellcome Trust provides support for Wellcome Trust United Kingdom Type 2 Diabetes Case Control Collection (Go-DARTS) and the Scottish Health Informatics Programme. Further informatics support is provided by the Chief Scientist Office of Scotland. This work was also supported by the UK Medical Research Council (G0601261). We acknowledge the support of the Health Informatics Centre, University of Dundee for managing and supplying the anonymised data and NHS Tayside, the original data owner. We are grateful to all the participants who took part in the Go-DARTS study, to the general practitioners, to the Scottish School of Primary Care for their help in recruiting the participants, and to the whole team, which includes interviewers, computer and laboratory technicians, clerical workers, research scientists, volunteers, managers, receptionists, and nurses.

GOSH: This work was supported by grants from the US National Institutes of Health (AG028555, AG08724, AG04563, AG10175, AG08861), the Swedish Research Council, the Swedish Heart-Lung Foundation, the Swedish Foundation for Strategic Research, the Royal Swedish Academy of Science, and ENGAGE (within the European Union Seventh Framework Programme, HEALTH-F4-2007-201413). Genotyping was performed by the SNP\&SEQ Technology Platform in Uppsala (www.genotyping.se). We thank Tomas Axelsson, Ann-Christine Wiman and Caisa Pöntinen for their excellent assistance with genotyping. The SNP Technology Platform is supported by Uppsala University, Uppsala University Hospital and the Swedish Research Council for Infrastructures.

GxE/Spanish Town: Principally, our thanks go to the participants in the Spanish Town and GxE studies. We also thank Nurse Orgen Brown, Mr Windsor Cuffe, and other past and present members of the labs at TMRU for their assistance in carrying out these studies. This work was supported by NIH Grant R01HL53353.

HALST: HALST project are conducted and supported by the National Health Research Institutes (NHRI) in collaboration with HALST investigators. Support is provided by grant BS-097-SP-04, PH-098-PS-02, PH-099-SP-01, PH-100-SP-01, PH-101-SP-01, PH-102-SP-01, PH-103-SP-01. The authors thank the participants of the HALST study, the Coordinating Center, HALST investigators, and study staff for their valuable contributions.

HEXA: This work was supported by a grant from the Korea Center for Disease Control and Prevention, and intramural grant from the Korea National Institute of Health.

HUNT2: The Nord-Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research Centre (Faculty of Medicine, Norwegian University of Science and Technology NTNU), Nord-Trøndelag County Council, Central Norway Health Authority, and the Norwegian Institute of Public Health.

HyperGEN: The hypertension network is funded by cooperative agreements (U10) with NHLBI: HL54471, HL54472, HL54473, HL54495, HL54496, HL54497, HL54509, HL54515, and 2 R01 HL55673-12. The study involves: University of Utah: (Network Coordinating Center, Field Center, and Molecular Genetics Lab); Univ. of Alabama at Birmingham: (Field Center and Echo Coordinating and Analysis Center); Medical College of Wisconsin: (Echo Genotyping Lab); Boston University: (Field Center); University of Minnesota: (Field Center and Biochemistry Lab); University of North Carolina: (Field Center); Washington University: (Data Coordinating Center); Weill Cornell Medical College: (Echo Reading Center); National Heart, Lung, \& Blood Institute. For a complete list of HyperGEN Investigators: http://www.biostat.wustl.edu/hypergen/Acknowledge.html.

IMPROVE: The IMPROVE study was funded by the European Commission (Contract number: QLG1-CT-2002-00896), the Academy of Finland (Grant \#110413) the British Heart Foundation (RG2008/014) and the Italian Ministry of Health (Ricerca Corrente), and the IMPROVE and SCARFSHEEP studies were funded by the Swedish Heart-Lung Foundation, the Swedish Research Council (8691), the Knut and Alice Wallenberg Foundation, the Foundation for Strategic Research, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and the Stockholm County Council, the Strategic support for epidemiological research at Karolinska Institutet and the Stockholm County Council, and the Stockholm County Council (560183).

InCHIANTI: The InCHIANTI study baseline (1998-2000) was supported as a "targeted project" (ICS110.1/RF97.71) by the Italian Ministry of Health and in part by the U.S. National Institute on Aging (Contracts: 263 MD 9164 and 263 MD 821336).

JUPITER: Genetic Analysis in the JUPITER trial was funded by AstraZeneca

KidneyGen Consortium: The KidneyGen Consortium included 23,812 participants from the following cohort studies: BRIGHT, BWHHS, CoLaus, Fenland, InChianti, LOLIPOP, MDC-CC, NESDA, NFBC 1966, PREVEND, SardiNIA, and Twins UK. The acknowledgements and funding sources for each cohort can be found in Chambers JC, et al. Nat Genet 2010, 42:373-375 (PMID: 20383145). JCC, JSK and WZ acknowledge support from the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre (BRC) Imperial College Healthcare NHS Trust, the British Heart Foundation (SP/04/002), the Medical Research Council (G0601966,G0700931), the Wellcome Trust (084723/Z/08/Z) the NIHR (RP-PG-0407-10371), European Union FP7 (EpiMigrant, 279143) and Action on Hearing Loss (G51). We thank all the participants and researchers in the consortium who made the study possible. P .Elliott is supported by the National Institute for Health Research (NIHR) Imperial College Health Care NHS Trust and Imperial College Biomedical Research Centre, the MRC-PHE Centre for Environment and Health, the NIHR Health Protection Research Unit on Health Impact of Environmental Hazards and is an NIHR Senior Investigator.

KORA F3/F4: The KORA Augsburg studies were financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and supported by grants from the German Federal Ministry of Education and Research (BMBF). Part of this work was financed by the German National Genome Research Network (NGFN). Our research was supported within the Munich Center of Health Sciences (MC Health) as part of LMUinnovativ.

LURIC: We extend our appreciation to the participants of the LURIC study. We thank the LURIC study team who were either temporarily or permanently involved in patient recruitment as well as sample and data handling, in addition to the laboratory staff at the Ludwigshafen General Hospital and the Universities of Freiburg and Ulm, Germany. This work was supported by the 7th Framework Program (integrated project AtheroRemo, grant agreement number 201668 and RiskyCAD, grant agreement
number 305739) of the European Union, by the INTERREG IV Oberrhein Program (Project A28, Genetic mechanisms of cardiovascular diseases) with support from the European Regional Development Fund (ERDF) and the Wissenschaftsoffensive TMO.

MDC-CVA: The authors acknowledge the Knut and Alice Wallenberg Foundation for its economic support of the SWEGENE DNA extraction facility. Source of funding: This study was supported by grants from the European Research Council (StG-282255) Swedish Medical Research Council, the Swedish Heart and Lung Foundation, the Medical Faculty of Lund University, Malmö University Hospital, the Albert Påhlsson Research Foundation, the Crafoord Foundation, the Ernhold Lundström Research Foundation, the Region Skane, Hulda and Conrad Mossfelt Foundation, King Gustaf V and Queen Victoria Foundation and the Lennart Hansson Memorial Fund.

MESA: MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support is provided by grants and contracts N01 HC-95159, NO1-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, NO1-HC-95165, NO1-HC-95166, NO1-HC-95167, N01-HC-95168, N01-HC-95169, RR-024156 and H7 071025 and RR 025005. Funding for MESA SHARe genotyping was provided by NHLBI contract H2-64278. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The authors thank the participants of the MESA study, the Coordinating Center, MESA investigators, and study staff for their valuable contributions. A full list of participating MESA investigators and institutions can be found at http://www.mesa-nhlbi.org.

Metastroke: H.S.M. is supported by a National Institute for Health Research Senior Investigator award. H.S.M. and S.B. are supported by the Cambridge University Hospital National Institute for Health Research Biomedical Research Centre. Hugh Markus is supported by an NIHR Senior Investigator award and received support from the Cambridge Universities Trust NIHR Comprehensive BRC.

METSIM: The METSIM study was funded by the Academy of Finland (grants no. 77299 and 124243).
MICROS: In South Tyrol, the study was supported by the Ministry of Health and Department of Educational Assistance, University and Research of the Autonomous Province of Bolzano, the South Tyrolean Sparkasse Foundation, and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). For the MICROS study, we thank the primary care practitioners Raffaela Stocker, Stefan Waldner, Toni Pizzecco, Josef Plangger, Ugo Marcadent, and the personnel of the Hospital of Silandro (Department of Laboratory Medicine) for their participation and collaboration in the research project.

MIGen: The MIGen study was funded by the US National Institutes of Health (NIH) and National Heart, Lung, and Blood Institute's STAMPEED genomics research program. Genotyping was partially funded by The Broad Institute Center for Genotyping and Analysis, which is supported by grant U54 RR020278 from the National Center for Research Resources. Specifc cohorts were supported by the grants (R01HLO56931, P30ES007033) and a contract (NO1HD013107) from US National Institutes of Health (HARPS); and by the Spanish Ministry of Economy and Innovation through the Carlos III Health Institute [Red HERACLES RD12/0042, CIBER Epidemiología y Salud Pública, PI09/90506], European Funds for Development (ERDF-FEDER), and by the Catalan Research and Technology Innovation Interdepartmental Commission [SGR 1195] (REGICOR).

MORGAM: Sites and key personnel of contributing MORGAM Centres: Finland FINRISK, National Institute for Health and Welfare, Helsinki: V. Salomaa (principal investigator), A. Juolevi, E. Vartiainen, P. Jousilahti; ATBC, National Institute for Health and Welfare, Helsinki: J. Virtamo (principal investigator), H. Kilpeläinen; MORGAM Data Centre, National Institute for Health and Welfare, Helsinki: K. Kuulasmaa (responsible person), Z. Cepaitis, A. Haukijärvi, B. Joseph, J. Karvanen, S. Kulathinal, M. Niemelä, O. Saarela; MORGAM Central Laboratory, National Institute for Health and Welfare, Helsinki: L. Peltonen (responsíble person), M. Perola, K. Silander, M. Alanne, P. Laiho, K. Kristiansson, K. Ahonen; France National Coordinating Centre, National Institute of Health and Medical Research (U258), Paris: P. Ducimetière (national coordinator), A. Bingham; PRIME/Strasbourg, Department of Epidemiology and Public Health, EA 3430, Faculty of Medicine, University of Strasbourg, Strasbourg: D. Arveiler (principal investigator), B. Haas, A. Wagner; PRIME/Toulouse, Department of Epidemiology, Toulouse University School of Medicine, Toulouse: J. Ferrières (Principal Investigator), J-B. Ruidavets, V. Bongard, D. Deckers, C. Saulet, S. Barrere; PRIME/Lille, Department of Epidemiology and Public Health, INSERM U744Université Lille Nord de France - Institut Pasteur de Lille: P. Amouyel (principal investigator), M. Montaye, B. Lemaire, S. Beauchant, D. Cottel, C. Graux, N. Marecaux, C. Steclebout, S. Szeremeta; MORGAM Laboratory, INSERM U937, Paris: F. Cambien (responsible person), L. Tiret, V. Nicaud; Italy Brianza, Research Centre for Epidemiology and Preventive Medicine (EPIMED), Department of Clinical and Experimental Medicine, University of Insubria at Varese: M.M. Ferrario (principal investigator), G. Veronesi, F. Gianfagna, G. Cesana; Italy Brianza Laboratory, Department of Laboratory Medicine, Desio Hospital, University Milano-Bicocca, Milano: P. Brambilla (responsible person), S. Signorini; United Kingdom PRIME/Belfast, Queen's University Belfast, Belfast, Northern Ireland: F. Kee (principal investigator) A. Evans (former principal investigator), J. Yarnell, E. Gardner; MORGAM Coordinating Centre, Queen's University Belfast, Belfast, Northern Ireland: A. Evans (MORGAM coordinator), S. Cashman, F Kee; MORGAM Management Group: A. Evans (chair, Belfast, UK), S. Blankenberg (Hamburg, Germany), F. Cambien (Paris, France), M. Ferrario (Varese, Italy), K. Kuulasmaa (Helsinki, Finland), A. Palotie (Cambridge, UK), M. Perola (Helsinki, Finland), A. Peters (Neuherberg, Germany), V. Salomaa (Helsinki, Finland), H. Tunstall-Pedoe (Dundee, Scotland), P.G. Wiklund (Umeå, Sweden); Previous members: K. Asplund (Stockholm, Sweden), L. Peltonen (Helsinki, Finland), D. Shields (Dublin, Ireland), B. Stegmayr (Umeå, Sweden).

MRC NSHD: This work was funded by the Medical Research Council [MC_UU_12019/1]. We are very grateful to the members of this birth cohort for their continuing interest and participation in the study.

MuTHER eQTL: The MuTHER Study was funded by a program grant from the Wellcome Trust (081917/Z/07/Z).

NESDA: The infrastructure for the NESDA study is funded through the Geestkracht programme of the Dutch Scientific Organization (ZON-MW, grant number 10-000-1002) and matching funds from participating universities and mental health care organizations. Genotyping in NESDA was funded by the Genetic Association Information Network (GAIN) of the Foundation for the US National Institutes of Health. Statistical analyses were carried out on the Genetic Cluster Computer (http://www.geneticcluster.org), which is financially supported by the Netherlands Scientific Organization (NWO 480-05-003) along with a supplement from the Dutch Brain Foundation.

NESDA eQTL: The Netherlands Study of Depression and Anxiety (NESDA) and the Netherlands Twin Register (NTR) were funded by the Netherlands Organization for Scientific Research (MagW/ZonMW; grants 904-61-090, 985-10-002, 904-61-193, 480-04-004, 400-05-717 and 912-100-20; Spinozapremie 56-464-14192; and Geestkracht program grant 10-000-1002), the Center for Medical Systems Biology (CMSB2; NWO Genomics), Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL), the VU University EMGO+ Institute for Health and Care Research and the Neuroscience Campus

Amsterdam, NBIC/BioAssist/RK (2008.024), the European Science Foundation (EU/QLRT-2001-01254), the European Community's Seventh Framework Programme (FP7/2007-2013), ENGAGE (HEALTH-F4-2007-201413) and the European Research Council (ERC; 230374). Gene-expression data was funded by the US National Institute of Mental Health (RC2 MH089951) as part of the American Recovery and Reinvestment Act of 2009.

NeuroCHARGE: The Atherosclerosis Risk in Communities Study (ARIC) is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C), R01HL087641, R01HL59367 and R01HL086694; National Human Genome Research Institute contract U01HG004402; National Institutes of Health contract HHSN268200625226C and NHLBI contracts N01-HC-55015, N01-HC-55016, N01-HC-55018, N01-HC-55019, N01-HC-55020, N01-HC-55021, N01-HC-55022, and grants R01HL087641, U01 HL096917 (Mosley). Infrastructure was partly supported by Grant Number UL1RR025005, a component of the National Institutes of Health and NIH Roadmap for Medical Research. ARIC analyses performed as part of this project were supported by NIH grant HL093029 to M. Fornage. Dr. Ikram was funded through the Netherlands Heart Foundation (2009B102)

NFBC1966: NFBC1966 and NFBC1986 received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, EU FP7 EurHEALTHAgeing -277849, the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE) and the MRC, Centenary Early Career Award. The DNA extractions, sample quality controls, biobank up-keeping and aliquotting was performed in the National Public Health Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum Helsinki. We thank the late Professor Paula Rantakallio (launch of NFBCs), and Ms Outi Tornwall and Ms Minttu Jussila (DNA biobanking). The authors would like to acknowledge the contribution of the late Academian of Science Leena Peltonen.

NFBC1986: NFBC1966 and NFBC1986 received financial support from the Academy of Finland (project grants 104781, 120315, 129269, 1114194, 24300796, Center of Excellence in Complex Disease Genetics and SALVE), University Hospital Oulu, Biocenter, University of Oulu, Finland (75617), NHLBI grant 5R01HL087679-02 through the STAMPEED program (1RL1MH083268-01), NIH/NIMH (5R01MH63706:02), ENGAGE project and grant agreement HEALTH-F4-2007-201413, EU FP7 EurHEALTHAgeing -277849, the Medical Research Council, UK (G0500539, G0600705, G1002319, PrevMetSyn/SALVE) and the MRC, Centenary Early Career Award. The DNA extractions, sample quality controls, biobank up-keeping and aliquotting was performed in the National Public Health Institute, Biomedicum Helsinki, Finland and supported financially by the Academy of Finland and Biocentrum Helsinki. We thank the late Professor Paula Rantakallio (launch of NFBCs), and Ms Outi Tornwall and Ms Minttu Jussila (DNA biobanking). The authors would like to acknowledge the contribution of the late Academian of Science Leena Peltonen. SS and MRJ received support for their research form the European Union under under grant agreement EU H2020-PHC-2014; 633595 for the DynaHEALTH action.

NSPHS: The Northern Swedish Population Health Study (NSPHS) was funded by the Swedish Medical Research Council (Project Number K2007-66X-20270-01-3, and 2011-2354), the Foundation for Strategic Research (SSF). NSPHS as part of EUROSPAN (European Special Populations Research Network) was also
supported by European Commission FP6 STRP grant number 01947 (LSHG-CT-2006-01947). This work has also been supported by the Swedish Society for Medical Research (SSMF).

ORCADES: ORCADES was supported by the Chief Scientist Office of the Scottish Government, the Royal Society, the MRC Human Genetics Unit, Arthritis Research UK and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). DNA extractions were performed at the Wellcome Trust Clinical Research Facility in Edinburgh. We would like to acknowledge the invaluable contributions of Lorraine Anderson and the research nurses in Orkney, the administrative team in Edinburgh and the people of Orkney.

PARC: This work was funded by National Institutes of Health grant U01 HL69757. DNA handling and genotyping was supported in part by CTSI grant UL1TR000124 from the National Center for Advancing Translational Sciences; in addition to the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

PIVUS: PIVUS has been supported by AstraZeneca, FORMAS, the Swedish Research Council, the Swedish Heart-Lung Foundation, and Uppsala University Hospital.

PROCARDIS: PROCARDIS was supported by the European Community Sixth Framework Program (LSHM-CT- 2007-037273), AstraZeneca, the British Heart Foundation, the Swedish Research Council, the Knut and Alice Wallenberg Foundation, the Swedish Heart-Lung Foundation, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular Program of Karolinska Institutet and Stockholm County Council, the Foundation for Strategic Research and the Stockholm County Council (560283). M.F acknowledges the support of the Wellcome Trust core award (090532/Z/09/Z) and the BHF Centre of Research Excellence.

PROMIS: Genotyping in PROMIS was funded by the Wellcome Trust, UK and Pfizer. Biomarker assays in PROMIS have been funded through grants awarded by the NIH (RC2HL101834 and RC1TW008485) and the Fogarty International (RC1TW008485). Field-work, genotyping, and standard clinical chemistry assays in PROMIS were principally supported by grants awarded to the University of Cambridge from the British Heart Foundation, UK Medical Research Council, Wellcome Trust, EU Framework 6-funded Bloodomics Integrated Project, Pfizer, Novartis, and Merck. The founders of the Unit are: UK Medical Research Council, British Heart Foundation, the British Heart Foundation Cambridge Cardiovascular Centre of Excellence, UK National Institute for Health Research Cambridge Biomedical Research Centre, European Research Council, and European Commission Framework Programme 7. The Emerging Risk Factor Collaboration's website http://www.phpc.cam.ac.uk/ceu/research/erfc/studies/ has a compiled list of some of the funders of the component studies in this analysis. We also acknowledge the contributions made by the following: Philippe Frossard, Ayeesha Kamal, Mohammad Zeeshan Ozair, Usman Ahmed, Abdul Hakeem, Hamza Khalid, Kamran Shahid, Fahad Shuja, Ali Kazmi, Mustafa Qadir Hameed, Naeem Khan, Sadiq Khan, Ayaz Ali, Madad Ali, Saeed Ahmed, Muhammad Waqar Khan, Muhammad Razaq Khan, Abdul Ghafoor, Mir Alam, Riazuddin, Muhammad Irshad Javed, Abdul Ghaffar, Tanveer Baig Mirza, Muhammad Shahid, Jabir Furqan, Muhammad Iqbal Abbasi, Tanveer Abbas, Rana Zulfiqar, Muhammad Wajid, Irfan Ali, Muhammad Ikhlaq, Danish Sheikh and Muhammad Imran.
public eSNP and methylation: ADJ and JDE were supported by National Heart, Lung and Blood Institute Division of Intramural Research funds.

RACe: The RACE study has been funded by the National Institute of Neurological Disorders (R21NSO64908), the Fogarty International (R21NS064908) and the Center for Non-Communicable Diseases, Karachi, Pakistan. We also acknowledge the contributions made by the following: Philippe

Frossard, Ayeesha Kamal, Mohammad Zeeshan Ozair, Usman Ahmed, Abdul Hakeem, Hamza Khalid, Kamran Shahid, Fahad Shuja, Ali Kazmi, Mustafa Qadir Hameed, Naeem Khan, Sadiq Khan, Ayaz Ali, Madad Ali, Saeed Ahmed, Muhammad Waqar Khan, Muhammad Razaq Khan, Abdul Ghafoor, Mir Alam, Riazuddin, Muhammad Irshad Javed, Abdul Ghaffar, Tanveer Baig Mirza, Muhammad Shahid, Jabir Furqan, Muhammad Iqbal Abbasi, Tanveer Abbas, Rana Zulfiqar, Muhammad Wajid, Irfan Ali, Muhammad Ikhlaq, Danish Sheikh and Muhammad Imran.

Rotterdam study: The Rotterdam Study is supported by the Erasmus Medical Center and Erasmus University Rotterdam; the Netherlands Organization for Scientific Research; the Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare and Sports; the European Commission; and the Municipality of Rotterdam. Support for genotyping was provided by the Netherlands Organization for Scientific Research (NWO Groot, 175.010.2005.011, 911.03.012) and Research Institute for Diseases in the Elderly (014.93.015; RIDE2). This study was supported by the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) project nr. 050-060-810. We thank Pascal Arp, Mila Jhamai, Michael Moorhouse, Marijn Verkerk and Sander Bervoets for their help in creating the database and Maxim Struchalin for his contributions to the imputations of the data. Further financial support was obtained from the Netherlands Heart Foundation nr. 2009B102.

SardiNIA: The SardiNIA ("ProgeNIA") team was supported by Contract NO1-AG-1-2109 from the National Institute on Aging. This work was supported, in part, by the Intramural Research Program of the National Institute on Aging, National Institutes of Health. We thank Monsignore Piseddu, Bishop of Ogliastra; the Mayors of Lanusei, Ilbono, Arzana, and Elini; the head of the local Public Health Unit ASL4; and the residents of the towns for volunteering and cooperation. In addition, we are grateful to the Mayor and the administration in Lanusei for providing and furnishing the clinic site. We thank the team of physicians and nurses, who carried out the physical examinations and the recruitment personnel who enrolled the volunteers.

SCARFSHEEP: The IMPROVE study was funded by the European Commission (Contract number: QLG1-CT-2002-00896), the Academy of Finland (Grant \#110413) the British Heart Foundation (RG2008/014) and the Italian Ministry of Health (Ricerca Corrente), and the IMPROVE and SCARFSHEEP studies were funded by the Swedish Heart-Lung Foundation, the Swedish Research Council (8691), the Knut and Alice Wallenberg Foundation, the Foundation for Strategic Research, the Torsten and Ragnar Söderberg Foundation, the Strategic Cardiovascular and Diabetes Programmes of Karolinska Institutet and the Stockholm County Council, the Strategic support for epidemiological research at Karolinska Institutet and the Stockholm County Council, and the Stockholm County Council (560183).

SEED: The Singapore Epidemiology of Eye Diseases (SEED) Study includes the Singapore Chinese Eye Study (SCES), Singapore Malay Eye Study (SiMES) and Singapore Indian Eye Study (SINDI). They supported by the National Medical Research Council (NMRC), Singapore (grants 0796/2003, IRG07nov013, IRG09nov014, NMRC 1176/2008, STaR/0003/2008, CG/SERI/2010), and Biomedical Research Council (BMRC), Singapore (08/1/35/19/550 and 09/1/35/19/616). Ching-Yu Cheng is supported by an award from NMRC (CSA/033/2012). The Singapore Tissue Network and the Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore provided services for tissue archival and genotyping, respectively.

SEED: The Singapore Epidemiology of Eye Diseases (SEED) Study includes the Singapore Chinese Eye Study (SCES), Singapore Malay Eye Study (SiMES) and Singapore Indian Eye Study (SINDI). They supported by the National Medical Research Council (NMRC), Singapore (grants 0796/2003,

IRG07nov013, IRG09nov014, NMRC 1176/2008, STaR/0003/2008, CG/SERI/2010), and Biomedical Research Council (BMRC), Singapore (08/1/35/19/550 and 09/1/35/19/616). Ching-Yu Cheng is supported by an award from NMRC (CSA/033/2012). The Singapore Tissue Network and the Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore provided services for tissue archival and genotyping, respectively.

SEY: The TANDEM and SEY studies were supported by the SNF grant 31-51115.97 and by the Fondation pour Recherches Médicales, Geneve. We thank the Ministry of Health of the Seychelles and the participants of the studies for their valuable contributions.

SHIP: SHIP was funded by grants from the German Federal Ministry of Education and Research (BMBF, Grants 01ZZ0403, 01ZZO103, 01GI0883), the Ministry for Education, Research and Cultural Affairs as well as the Ministry of Social Affairs of the Federal State of Mecklenburg-West Pomerania. Genome-wide data have been supported by the Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. The University of Greifswald is a member of the 'Center of Knowledge Interchange' program of the Siemens AG.

SU.VI.MAX: This study was funded by the Association Robert Debré pour la Recherche Médicale, the Institut National pour la Santé et la Recherche Médicale, the Conservatoire National des Arts et Métiers, the Institut National de la Recherche Agronomique and the Université Paris 13.

TANDEM: The TANDEM and SEY studies were supported by the SNF grant 31-51115.97 and by the Fondation pour Recherches Médicales, Geneve. We thank the Ministry of Health of the Seychelles and the participants of the studies for their valuable contributions.

THISEAS: The Hellenic study of Interactions between SNPs and Eating in Atherosclerosis Susceptibility (THISEAS) study thanks the Genotyping Facility at the Wellcome Trust Sanger Institute for typing the THISEAS samples. Prof Deloukas' work forms part of the research themes contributing to the translational research portfolio of Barts Cardiovascular Biomedical Research Unit which is supported and funded by the National Institute for Health Research.

Troms \varnothing : University of Troms \varnothing, Norwegian Research Council (project number 185764)
TUDR: This study was supported by the National Eye Institute of the National Institutes of Health (EY014684 to J.I.R., DK079888 to M.O.G.) and ARRA Supplement (EY014684-03S1, -04S1), the National Institute of Diabetes and Digestive and Kidney Disease grant DK063491 to the Southern California Diabetes Endocrinology Research Center, the Eye Birth Defects Foundation Inc., the National Science Council, Taiwan (NSC 98-2314-B-075A-002-MY3 to W.H.S.) and the Taichung Veterans General Hospital, Taichung, Taiwan (TCVGH-1003001C to W.H.S .). DNA handling and genotyping at Cedars-Sinai Medical Center were supported in part by the National Center for Research Resources, grant UL1RR033176, and is now at the National Center for Advancing Translational Sciences, CTSI grant UL1TR000124.

TWINSUK: The study was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR)- funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. SNP Genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via $\mathrm{NIH} / \mathrm{CIDR}$.

UK CardioMetabolic Consortium: This research has been conducted using the UK Biobank Resource. Mike Barnes, Claudia Cabrera \& Helen R Warren are supported by the NIHR Cardiovascular Biomedical Research Unit at Barts. He Gao is supported by the NIHR Imperial College Health Care NHS Trust and Imperial College London Biomedical Research Centre.

ULSAM: ULSAM has been supported by the Swedish Research Council, the Swedish Heart-Lung Foundation, Uppsala University Hospital, the Foundation for Geriatric Research, and the Geriatric Fund.

VIS (EUROSPAN): The CROATIA-Vis study in the Croatian island of Vis was supported through the grants from the Medical Research Council UK and Ministry of Science, Education and Sport of the Republic of Croatia. (number 108-1080315-0302) and the European Union framework program 6 EUROSPAN project (contract no. LSHG-CT-2006-018947). We would like to acknowledge the invaluable contributions of the recruitment team (including those from theInstitute of Anthropological Research in Zagreb) in Vis, the administrative teams in Croatia and Edinburgh and the people of Vis.

WGHS: The WGHS is supported by HL043851 and HL080467 from the National Heart, Lung, and Blood Institute and CA047988 from the National Cancer Institute with collaborative scientific support and funding for genotyping provided by Amgen.

Whitehall II: The Whitehall II study has been supported by grants from the Medical Research Council; Economic and Social Research Council; BHF; Health and Safety Executive; Department of Health; National Heart Lung and Blood Institute (HL36310), US, NIH: National Institute on Aging (AG13196), US, NIH; Agency for Health Care Policy Research (HSO6516); and the John D and Catherine T MacArthur Foundation Research Networks on Successful Midlife Development and Socio-economic Status and Health. Whitehall II genotyping was in part supported by a MRC-GSK pilot programme grant (ID 85374).

18 Author information

Ines Barroso: Owns stock in Incyte and GlaxoSmithkline. Aravinda Chakravarti: Is a paid member of the Scientific Advisory Board of Biogen Idec. These potential conflicts of interest are managed by the policies of Johns Hopkins University School of Medicine. Daniel I. Chasman: Genotyping and collaborative scientific support from Amgen. Support for genetic analysis from AstraZeneca. Janine F. Felix: Worked until 2013 in ErasmusAGE, a centre for ageing research across the life course funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc. and AXA. Hinco J. Gierman: Currently works for illumina. Toby Johnson: Is an employee of and owns stock in GlaxoSmithKline. Bruce M. Psaty: Serves on the DSMB for a clinical trial funded by the manufacturer (Zoll LifeCor) and on the Steering Committee for the Yale Open Data Access Project funded by Johnson \& Johnson. Paul M Ridker: Genotyping and collaborative scientific support from Amgen. Support for genetic analysis from AstraZeneca.

[^0]: CHS Study phenotyping: B.M.P. Genotyping or analysis: K.M.R. Study PI: B.M.P.
 EPIC (GWAS) Study phenotyping: N.J.W., R.J.F.L., J.a.L. Genotyping or analysis: N.J.W., J.H.Z., J.a.L. Study PI: N.J.W., K.-T.K.
 SU.VI.MAX Study phenotyping: S.H. Genotyping or analysis: S.H., P.M. Study PI: P.M.
 Amish Genotyping or analysis: M.E.M. Study PI: A.Parsa
 FENLAND (GWAS) Study phenotyping: N.J.W., J.a.L., R.J.F.L., K.K.O. Genotyping or analysis: N.J.W., J.a.L., R.J.F.L., K.K.O. Study PI: N.J.W.

 DGI Study phenotyping: C.N.C. Genotyping or analysis: C.N.C., G.Kosova Study PI: C.N.C. ERF (EUROSPAN) Genotyping or analysis: N.A. Study PI: C.M.v.D.
 MIGEN Study phenotyping: S.Kathiresan, R.E. Genotyping or analysis: S.Kathiresan, R.E. Design of secondary analysis: S.Kathiresan, R.E.
 MICROS Study phenotyping: P.P.P. Genotyping or analysis: A.A.H. Study PI: A.A.H., P.P.P.
 FUSION Genotyping or analysis: A.U.J. Study PI: M.Boehnke, F.S.C., K.L.M., J.Saramies
 TwinsUK Genotyping or analysis: C.M. Study PI: T.D.S.
 PROCARDIS Genotyping or analysis: M.Farrall, A.G. Study PI: M.Farrall
 BLSA Study phenotyping: L.Ferrucci Genotyping or analysis: T.T. Study PI: L.Ferrucci
 ORCADES Study phenotyping: J.F.W. Study PI: J.F.W.
 Croatia-Vis Genotyping or analysis: V.V., C.H. Study PI: V.V., C.H.
 NSPHS Genotyping or analysis: S.Enroth Study PI: U.G.
 InCHIANTI Genotyping or analysis: T.T. Study PI: S.Bandinelli
 AGES Reykjavik Study phenotyping: V.G. Genotyping or analysis: A.V.S. Study PI: V.G.

 ## Lookup

 CARDloGRAMplusC4D Genotyping or analysis: P.D. Study PI: J.Danesh, H.Schunkert, T.L.A., J.E., S.Kathiresan, R.Roberts, N.J.S., P.D.

 CHARGE cIMT Genotyping or analysis: C.O'D., J.C.B.
 CHARGE EYE Genotyping or analysis: T.Y.W., X.S., R.A.J. Study PI: T.Y.W.
 CHARGE-HF consortium Study phenotyping: R.S.V., J.F.F. Genotyping or analysis: H.L., J.F.F. Study PI: R.S.V.
 CKDGen Genotyping or analysis: M.G., V.M.
 COGENT Study phenotyping: N.F., J.R. Genotyping or analysis: N.F., X.Z., B.J.K., B.O.T., J.R.
 EchoGen consortium Study phenotyping: R.S.V., J.F.F. Genotyping or analysis: H.L., J.F.F. Study PI: R.S.V.

 KidneyGen Consortium Study phenotyping: J.C.C., J.S.K., P.Elliott Genotyping or analysis: W.Zhang, J.C.C., J.S.K. Study PI: J.C.C., J.S.K.

 MetaStroke Genotyping or analysis: S.Bevan, H.S.M.
 NeuroCHARGE Genotyping or analysis: M.Fornage, M.A.I. Study PI: M.A.I.
 PROMIS Study phenotyping: D.Saleheen, W.Zhao, J.Danesh Genotyping or analysis: W.Zhao Study PI: D.Saleheen
 SEED Study phenotyping: T.Y.W., C.-Y.C. Genotyping or analysis: E.-S.T, C.-Y.C., C.-Y.C. Study PI: C.Y.C., T.Y.W.

 UK Biobank Study phenotyping: Mark Caulfield, P.Elliott Genotyping or analysis: M.R.B., H.Warren, Claudia Cabrera, Evangelos Evangelou, He Gao.

