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ABSTRACT. A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-

phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-

phenanthroline)2][PF6]2, 2, has been synthesized and its electrochemical and photochemical 

features have been investigated and placed in comparison with those of a previously published 

Cu
2+

/Cu
+
 redox shuttle, namely [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its 

pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The 
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detrimental effect of the fifth Cl− ancillary ligand on the charge transfer kinetics of the redox 

shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have 

been then formulated and tested in DSCs in combination with a π-extended benzothiadiazole 

dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% 

solar energy conversion efficiency, which results more than twice that of the literature 

benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable 

with the performances of a  I
−
/I3

−
 electrolyte of analogous concentration. A fast counter-electrode 

reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection 

efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represent two 

major prerogatives of these copper-based electron mediators and may constitute a pivotal step 

towards the development of a next generation of copper-based efficient iodine-free redox 

shuttles. 

 

KEYWORDS: copper complexes, electron mediators, dye-sensitized solar cells, charge transfer 

kinetics, iodine-free electrolytes 

 

Introduction 

Electrolytes in liquid dye solar cells (DSCs) function as the medium to transfer electrons 

from the counter electrode to the oxidized dye chemisorbed on the photoanode, allowing 

cyclability of the device operation. Solubility and ionic mobility of the electron shuttle in 

the organic medium, driving force for the dye regeneration, and fast electron transfer 

kinetics with a minimal overpotential at the counter electrode are crucial factors in 
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determining the performances of the photoelectrochemical system. Since the milestone 

paper of O’Regan and Graetzel,1 the sensitizer structure and the photoanode material have 

been the subject of considerable efforts aimed at increasing power conversion 

efficiencies.
2-6

 On the contrary, for more than ten years the role of redox mediators is 

passed largely into the background, since the iodide–triiodide (I
−/I3

−) couple had been 

recognized as the most universal redox shuttle because of its satisfactory kinetic 

properties (such as fast oxidation of I
−
 and slow reduction of I3

− at the 

photoanode/electrolyte interface), excellent infiltration, relative high stability, low cost 

and easy preparation.
 
Despite this, several shortcomings exist for the I

−/I3
−
 electrolyte. 

Disadvantages such as the absorption of visible light (due to the tail of the UV band of I3
− 

in the 350-450 nm region), corrosiveness, and mediator/dye mismatched half-wave 

potentials resulting in an upper limit on open circuit potential, Voc, of ca. 0.9 V, 

significantly restrict further development of DSCs using this electrolyte system.7-9
 

As a result, the search for alternative efficient electron shuttles is of crucial importance and it is 

attracting more and more attention, being identified as the potential turning point toward 

fabrication of high performing DSCs.
10

 In this frame, several alternative electrolytes have been 

investigated,
8
 including first-row transition metal complexes

11
 due to both the high ductility 

of their electrochemical features by changing ligands and/or central atom, and the 

relatively low cost of the earth-abundant metals such as Ni,
12

 Fe,
13

 Co
9,14-17

 and Cu.
18-21

 

In 2011, the tris(bipyridyl)Co(II/III) redox couple contributed to a remarkable photon-to-

current conversion efficiency, PCE, of 12.3% for liquid DSCs with a Voc greater than 0.9 

V,
16

 neatly improving the stagnant 11% topmost efficiency recorded by I
−
/I3

−
 electrolyte-

based DSCs.
22

 Since then, several related studies of Co(II/III) complex electrolytes have 
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been performed, extending research to a great variety of engineered chelates including 

also tridentate, pentadentate, and exadentate pyridyl ligands.23-25 Finally, very recently, 

the threshold value of 14% has been exceeded.14 To date cobalt tris(diimine) redox 

couples undisputed hold leadership of iodide-free electrolytes for liquid DSCs,
26 

even if 

their relatively low diffusion coefficients, fast photo-excited electron recapture at 

photoanode interface along with long-term stability concerns make cobalt complex 

couples a still open field of reseach.
27

  

In this challanging study of novel electron shuttles, copper complexes could be intriguing 

alternatives. Copper is intrinsically less toxic than cobalt, and its complexes are generally 

characterized by different preferred geometries depending on the oxidation state of the 

metal (i.e. typically Cu(I), with a d
10 configuration, or Cu(II), d

9) resulting in electron 

transfer (ET) processes with high internal reorganization energies. This last feature, if 

properly tuned, makes copper complexes particularly appealing because they can meet the 

contrasting kinetic criteria, the so-called kinetic dichotomy, requiring both fast dye (and 

mediator) regeneration and slow charge recombination at the photoanode interface, by 

judicious tuning of their electron transfer rate and redox potential through ligand 

tailoring.7,28 

To the best of our knowledge, notwithstanding the paramount role covered by copper in 

biological ET processes with “blue copper proteins”,
29

 only a few recent papers have 

reported the implementation of properly designed copper complexes as electron 

mediators
18-20 

and solid hole conductor
21

 in DSCs. Yet, sterically hindered ligands endow 

these coordination compounds with suitable oxidation potentials
30

 and self-exchange ET 

rates
18

 compatible with their use as redox shuttles in DSCs. 
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The very modest PCEs obtained in the pioneering work of Hattori et al. with blue copper 

model complexes,18 were neatly improved in 2011 by Wang and co-workers who 

formulated a Cu(I)/Cu(II)-based electrolyte for DSCs, employing [Cu(2,9-dimethyl-1,10-

phenanthroline)2]
+
 complex and its chlorine-coordinated oxidized form [Cu(2,9-dimethyl-

1,10-phenanthroline)2Cl]
+
, able to reach remarkable power conversion efficiency.

19 
It is to 

be noted that in the latter complex an ancillary ligand (i.e. Cl
–
) was mandatorily 

introduced to stabilize the Cu(II) complex allowing its isolation and storage (otherwise 

impossible due to a fast, interconversion into its cuprous counterpart) but, surprisingly, 

the electrochemical implication of such ligand had never been reported yet. 

Since then the already scarce literature has exclusively focused on the aforementioned 

prototype couple based on the 2,9-dimethyl-1,10-phenanthroline ligand, omitting any 

other possible derivates of the condensed core. Hence, a long-term study has been 

devoted to rationalize how modifications of bis-phenanthroline copper complexes and/or 

additive addition can influence DSC efficiencies filled with copper-based electrolytes. 

In our previous report we demonstrated that [Cu(2-mesityl-4,7-dimethyl-1,10-

phenanthroline)2][PF6], 1, (Chart 1) together with its Cu(II) form, which was obtained 

through the addition of NOBF4 to the electrolyte solution, can act as suitable redox 

mediators, their performance depending on the nature of the dye.20  

In this work, having the aim of achieving a fine control of the electrolytes composition as 

well as of more deeply investigating the relationship between the charge transfer features 

of each of their components and the overall cell efficiency, we focused on the synthesis of 

the tetracoordinated Cu(II) complex [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)]
2+

 

(see compound 2 in Chart 1) which had never been isolated so far. 
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Chart 1. Structures of the copper complexes (1-4) and of the dye (G3, bottom) investigated. 

A comparative electrochemical study of two couples of copper complexes, 1/2 and 3/4, 

has been carried out. As a result the kinetics prerogatives associated to the 

tetracoordinated cupric complex (i.e. 2) instead of the pentacoordinated species (i.e. 4) 

will be exhaustively discussed. Finally implication of such differences have been studied 

in DSCs, through the comparison of photoelectrochemical performances of liquid DSCs 

filled with an optimized 1/2-based electrolyte and with a benchmark 3/4-mixture, in 

combination with a benzothiadiazole based donor-π-acceptor organic dye, namely G3 
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(see Chart 1), which has been recently shown to exhibit very promising solar energy 

conversion efficiencies.31 

Experimental Methods 

Synthesis of copper complexes 

All reagents were purchased from Sigma-Aldrich and were used without further 

purification. Reactions requiring anhydrous conditions were performed under argon. The 

preparation of complexes 1, 3 and 4 is reported in the Supporting Information (SI) and in 

previous publications,
19,20 

whereas the synthetic procedure of 2 is reported below. 

Synthesis of Cu(II) complex 2. The 2-mesityl-4,7-dimethyl-1,10-phenanthroline ligand20 

(0.15 mmol) was dissolved in dry CH3CN (5 mL) and a solution of CuSO4*5H2O (0.075 

mmol) in 1.5 mL of water was slowly added. The green solution was stirred at room 

temperature for 2 h and then concentrated at reduced pressure to 1.5 mL and NaPF6 (0.40 

mmol) was added forming immediately a green precipitate. After 1 hour the mixture was 

filtered and the solid was washed three times with water and then with diethyl ether. The 

product was obtained in 60% yield. 

Elemental analysis: Calcd. for C46H44CuF12N4P2: C, 54.90; H, 4.41; N, 5.57; found: C, 

55.01; H, 4.38; N, 5.44;  ESI(+) FTICR MS(m/z) calcd. for [C46H44CuN4]
2+ 715.2862 

found 715.2859. 

Elemental analysis and mass spectra were obtained with PERKINELMER 2004 Series II 

CHNS/O Analyzer and LTQ FT Ultra (7Tesla) Thermo Scientific mass spectrometer  

respectively. 

 



 

8

Characterization and solar device details 

Electrochemical characterization. Three-electrode measurements (cyclic voltammetry, 

CV, and electrochemical impedance spectroscopy, EIS) were performed in minicell filled 

with 2-4 cm3 of working solution equipped with a working electrode, a Pt-foil counter 

electrode and an aqueous saturated calomel electrode, SCE, as operative reference 

electrode. SCE was inserted into a glass jacket (ending in a porous frit) filled with the 

same blank solution employed in cell, in order to avoid leakage of both water and 

chlorides into the working medium. Different working electrodes were employed: teflon-

embedded glassy carbon disk electrode (GC, Metrohm, geometric area 0.071 cm
2
); glass-

embedded platinum disk electrode (Pt, Metrohm, 0.0341 cm
2
); PEDOT-coated GC or Pt 

electrodes were prepared by potentiodynamic electrodeposition in a EDOT solution (See 

SI). The recorded potentials were all referred to the intersolvental reference redox couple 

ferricenium/ferrocene, Fc
+
/Fc;

32
 in our conditions the half-wave potential of the Fc

+
/Fc 

couple was ca. 0.39 V and 0.31 V vs SCE in TBAPF6 and LiClO4 solution, respectively. 

Experiments were performed using Autolab PGSTAT 302N potentiostats/galvanostats 

(EcoChemie, The Netherlands) managed by a PC with GPES or NOVA software. During 

CV measurements ohmic drop between working and reference electrodes was minimized 

by instrumental compensation via positive-feedback technique. The staircase CVs were 

performed with a 0.001 V step potential. EIS measurements were recorded using 60 

logarithm-spaced single wave frequencies from 100 kHz to 0.1 Hz, with 0.01 V 

amplitude. EIS data were analyzed with NOVA software. 

All measurements were performed in acetonitrile (anhydrous, Sigma Aldrich, 99.8%) 

with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma Aldrich, ≥98.8%) 
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or lithium perchlorate (LiClO4, Sigma Aldrich, ≥98.0%) as supporting electrolytes; 

complex concentrations were around 0.001 M. Before starting measurements, solution 

was well-deareated by nitrogen bubbling. 

Dye solar cells fabrication. Fluorine-doped tin oxide, FTO, coated glass (15 Ω sq
–1

, 

purchased from XIN YAN TECHNOLOGY LTD) were cleaned in a detergent solution 

for 15 min and in ethanol for 30 min using an ultrasonic bath. Mesoporous TiO2 

electrodes were prepared by doctor blading a commercial paste (30NRD, Dyesol) and 

subjecting them to thermal sintering at 430 °C for 40 min. The average thickness of the 

electrodes used in the reported batch of devices was 12 µm (DEKTAK 150TM 

profilometer).  After first thermal sintering all the samples were treated with a 40 mM 

aqueous solution of TiCl4 for 30 min at 60° C,  rinsed again with water and ethanol and 

then subjected to a second sintering process at 480°C for 30 min. After cooling to 80 °C 

the mesoporous electrodes were immersed into the dye solution (0.2 mM of G3 added to 

30 mM chenodeoxycholic acid in tetrahydrofuran) for 8 h. The counter electrodes were 

prepared by sputtering a 50 nm Pt layer on a hole-drilled cleaned FTO plate. Two 

electrodes were then assembled together in a sandwich configuration and sealed upon 

heating a thermoplastic gasket made of a hot-melt ionomer-class resin (Surlyn 50-µm 

thickness). The electrolytic solution was injected through the hole on the counter 

electrode glass. 

Tests under illumination were made using a Newport Sol3A Class AAA Solar Simulator 

(Model 94063A equipped with a 1000W xenon arc lamp). More details are reported in SI. 

Electrolyte preparation. Copper-containing electrolytes, 1/2 EL and 3/4 EL, were 

prepared by dissolving the desired Cu(I) complex (0.17 M) in a suitable amount of ACN 
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with LiClO4 0.1 M. After that the calculated amount of Cu(II) counterpart (0.017 M) was 

added and stirred until dissolution. A Rd/Ox 10:1 molar ratio was so obtained. Suitable 

volumes of 4-tert-butylpyridine, t-bpy, were finally added to reach 0.25 M concentration 

in the electrolyte solutions. Iodine-based electrolyte I
–
/I3

–
equim (with a I

–
/I2 molar 

ratio=10:1) was prepared in a similar way mixing 0.017 M of I2 with 0.17 M of 1,2-

dimethyl-3-propylimidazolium iodide, DMPII, 0.1 M of LiClO4 and 0.25 M of t-bpy in 

ACN. The highly concentrated I
–
/I3

–
conc EL was instead composed of I2 0.07 M, DMPII 

0.7 M, LiI 0.2 M and t-bpy 0.5 M. 

Transient absorption spectroscopy measurements. Transient absorption spectroscopy, 

TAS, was performed with a previously described apparatus.33 Excitation of the sensitized 

TiO2  films was carried out  by using the 532 nm radiation generated by a Continuum 

Surelite (II) Nd-YAG laser, pumped at 1.26 kV. Set up is well described in SI. Sensitized 

substrates for TAS were obtained by dipping freshly annealed (180 °C, 30 min.) 4 µm 

thick TiO2 films in a THF solution containing 0.2 mM  G3 dye and 30 mM 

chenodeoxycholic acid. The adsorption was  carried out overnight  in the dark at room 

temperature. Four different solutions were prepared for observing the regeneration 

kinetics of G3 loaded on TiO2 electrodes: i) a blank ACN + LiClO4 0.1 M solution; ii) a 

0.17 M solution of complex 1 in ACN with LiClO4 0.1 M; iii) a 0.17 M solution of 

complex 3 in ACN with LiClO4 0.1 M; iv) a 0.7 M solution of I
–
 obtained mixing 0.6 M 

of DMPII, and 0.1 M of LiI in ACN. These electrolytes were drawn by capillary forces 

into the micrometric spacing between the TiO2 photoanode and a microscope slide 

pressed over it, which also protected the TiO2 surface from direct air exposure. 



 

11

TAS of the G3  excited state in 0.2 mM in aerated THF solution were obtained with  the 

same spectrometer and experimental setup, except that both the excitation and the probe 

beams were not attenuated. 

Results and Discussion 

Spectroscopic and electrochemical characterization 

The synthesis and the characterization of complexes 1-4 are detailed in the Supporting 

Information (SI). The UV-Vis absorption spectra (Fig. 1a) in acetonitrile, ACN, show d-d 

transitions of Cu(II) species red-shifted (λmax=697 and 741 nm, for 2 and 4, respectively) 

and weaker (εmax≈100 and 200 M–1 cm–1, for 2 and 4) than the MLCT transitions34 found 

in the parent Cu(I) complexes, falling at 445 nm with εmax≈4.5·10
3
 M

–1 
cm

–1
 for 1 and at 

455 nm with εmax≈8·10
3
 M

–1 
cm

–1
 for 3. The less intense absorption of the 2-aryl 

substituted complex 1 respect to 3 is in good agreement with literature findings.
35,36

 From 

the electrochemical point of view bis-phenanthroline Cu-complexes in a 0.1 M TBAPF6 

solution in ACN (Fig. 1b) are characterized by ligand-based ETs occurring in the cathodic 

window and by a metal-centred process located in the anodic region.
30

 Complex 1 and its 

oxidized form 2 exhibit an identical oxidation half-wave potential, E1/2, of −0.02 V vs 

Fc
+
|Fc, confirming their mutual interconversion during the ET process. Conversely, 

besides a good superimposition of the two ligand-based processes, a clear different 

behavior is detected for the metal-centred process, with a remarkable lower 

electrochemical reversibility for compound 4 respect to 3, coupled with a more negatively 

shifted half-wave potential (E1/2=0.30 V and 0.04 V vs Fc+|Fc for 3 and 4 respectively). 
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Fig. 1 a) Normalized electronic absorption spectra of cuprous (1 and 3) and cupric (2 and 4) 

complexes in ACN. b) Normalized cyclic voltammograms, CVs, of 1-4 (0.001 M) on glassy 

carbon, GC, electrode in ACN with TBAPF6 0.1 M. Scan rate potential 0.2 V s–1. 

This behavior is indeed associated to the presence of the chloride ligand into the 

coordination sphere of copper. In fact the resulting tetragonal pentacoordinated geometry 

stabilizes the Cu(II) form making the reduction of 4 thermodynamically less favourable 

than in homologous 3 but, at the same time, it slows down the ET kinetics of 4 

presumably due to the higher reorganization energy deriving from the dissociation of the 
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Cl− during Cu2+/Cu+ switch (Fig. S1, SI). As a matter of fact, progressive addition of sub-

stoichiometric chloride ions to a solution of 3 turns into a progressive intensification of 

the negatively shifted redox waves, and to a linear decrease of the pristine fingerprints of 

3, which even disappears at Cl
−
 concentrations higher than 1.0 equivalent, thus attesting 

the full conversion of 3 in 4 (Fig. 2 and Fig. S2) 

 

Fig. 2 CVs of complex 3 at increasing amount of chloride ions spiked in the working medium as 

TBACl solution. Inset: synopsis of normalized CVs showing the equivalence of complex 4 (light 

blue thick line) with the species obtained adding 1.0 eq. of Cl
−
 to a solution of complex 3 (blue 

thick line); for sake of comparison the CV of the same pristine complex 3 is reported (blue thin 

line). In all cases: 0.2 V s
–1

 scan rate potential. 

Effect of 4-tert-butylpyridine. In view of a reliable implementation of the coordinatively 

unsaturated complex 2 as redox mediators in DSCs, the coordination ability of 4-tert-

butylpyridine, t-bpy, (commonly added to electrolytes to increase the open circuit potential of 

cell)37 has been investigated. The proof of a N-heterocyclic Lewis base coordination to a metal 
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center has been reported for a cobalt-based complex redox couple,
24

 causing a negative shift of 

E1/2, as well as an increase in the electrochemical irreversibility of the ET. Differently from what 

observed with the addition of Cl– (Fig. S3), amount of t-bpy up to an equimolar threshold into 

solutions of both 1 and 2 does not bring to significant variation in their E1/2  (Fig. 3 and Fig. S4). 
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Fig. 3 Normalized CVs for complex 2 in ACN with LiClO4 0.1 M after subsequent additions of 

t-bpy. GC electrode; potential scan rate 0.2 V s–1. 

This difference can be attributed to the stronger coordination ability of chloride ions
38

 

respect to the bulkier and neutral Lewis base. On the contrary, at concentration of t-bpy 

comparable to that employed in DSCs’ electrolytes (i.e. around 15-times higher than 

Cu(II) complex concentration) a negative shift and a broadening of the cathodic peak 

appear (Fig. 3). These observations can prove a labile coordination of the base to Cu(II) 

centre that, similarly to aforementioned chloride case, slows down the ET as a 

consequence of the significant geometry modification induced by formation/dissociation 
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of the adduct. This finding suggests that the addition of t-bpy may be beneficial for the 

use of these complexes as electrolytes in DSCs, since it induces a reduction of parasitic 

interfacial charge recombination processes, not only through adsorbing on the TiO2 

surface, but also by direct interaction with the oxidized form of the mediator. 

Counter electrode electron transfer kinetics. ET kinetic of the metal-centred processes 

was then investigated by electrochemical impedance spectroscopy, EIS, (Fig. S6) on 

glassy carbon electrode, GC, taken as an ideally inert electrode material, with a classical 

three-electrode configuration (See SI). A remarkably faster ET was detected in the case of 

3 with respect to 1, with charge transfer resistance, Rct, at half-wave potential of ca. 14 Ω 

cm2 and 40 Ω cm2 respectively, calculated fitting impedance spectra with a Randles 

equivalent circuit.39 This difference can be reasonably attributed to the higher steric 

hindrance offered by the four methyl groups in 3 in comparison to the two mesityl rings 

of 1, which may induce a smaller conformational modification upon the redox reaction, 

acting as a “kiss-lock enclosure” that causes an increase of the E1/2 (Fig. 1b) due to a 

destabilization of the electrogenerated Cu(II) species
30

 but, at the same time, a reduction 

of the activation barrier for the ET.  
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Fig. 4. a) Normalized CVs (at 0.05 V s
–1

) and b) Nyquist diagrams at E1/2 of 2 in ACN with 

LiClO4 0.1 M recorded on different electrode supports: Pt (grey line), GC (black line), PEDOT 

electrodeposited on Pt (blue thick line) and PEDOT electrodeposited on GC (blue thin line). 

 

One of the primary requirements of the electron shuttles is a fast regeneration of the redox 

mediator at the counter electrode, CE, where the ET should occur with minimal 

overpotential losses to improve the fill factor, FF, of the photoelectrochemical device. 

Platinum and poly(3,4-ethylendioxy)thiophene, PEDOT, coated FTO are among preferred 

cathodic material for DSCs.
40,41

 Voltammetric plots recorded in ACN with LiClO4 as 
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demonstrate that Pt is not the best catalyst for the reduction of compound 2 if compared to 

PEDOT and GC (taken as reference), since it exhibits a slightly higher activation barrier 

to the ET process, as confirmed by the larger separation of the voltammetric peaks and, 

consequently, by the higher value of Rct (ca. 1·10
2
 Ω cm

2
 and ca. 2·10

3
 Ω cm

2
 for GC and 

Pt respectively) evaluated by EIS (Fig. 4b and Fig. S7). On the contrary, species 2 

presents on PEDOT-coated working electrode (obtained through potentiodynamic 

electrodeposition, see SI) an almost reversible ET fingerprint (Fig. S8), which is 

independent from the material used as underlying substrate (namely GC or Pt). 

Tests carried out on symmetrical sandwich-type cells fabricated with either PEDOT or Pt 

coated FTOs filled with 1/2 and 3/4 based ELs employed for application in DSCs, 

corroborate these findings and confirm that PEDOT-modified cathodes allow one order of 

magnitude faster regeneration of Cu-based redox mediators with respect to Pt-modified 

ones (Table 1 and Fig. S9). However electrodeposited PEDOT films present a slightly 

higher sheet resistance, Rseries, with respect to sputtered Pt coatings. These two opposite 

features balance each others resulting in almost comparable overall impedance values. 

3/4-based EL show invariably higher Rct values than 1/2 due to the aforementioned slow 

kinetics induced by the coordinated Cl– in complex 4; moreover, interestingly, the Rct of 

1/2 in combination with PEDOT electrodes invariably results one order of magnitude 

lower than that measured for an equimolar iodide-based electrolyte (Table 1). 
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Table 1. Fitted parametersa from EIS spectra for Pt-Pt and PEDOT-PEDOT symmetrical 

cells (active area 1 cm2) at open circuit potential. 

Electrolyte
b
 Cathode 

Rseries 

/Ω 

RCE  

/Ω 
CCE x 105 

/F 
Rd 

 /Ω 

1/2 Pt 21 9.8 4.05 12.8 

1/2 PEDOT 37 0.82 232 14.2 

3/4 Pt 39 61 1.28 164 

3/4 PEDOT 53 4.4 500 223 

I
–
/I3

–
equim Pt 30 11 2.2 11.2 

I
–
/I3

–
equim PEDOT 55 8.2 1.9·10

2
 11.5 

I
–
/I3

–
conc

c
 Pt 26 0.82 3.6 2.05 

I
–
/I3

–
conc

c
 PEDOT 53 0.61 5.0·10

3
 2.38 

 

a
Using the classical Randles equivalent circuit. RCE and CCE values from fitting have been 

divided and multiplied, respectively, for a factor of 2 accounting for the symmetry of the cell. 

b
Red/Ox molar ratio = 10:1 with [Red] = 0.17 M in ACN, LiClO4 0.1 M, t-bpy 0.25 M; for I

–
/I3

–
-

based electrolytes Red=DMPII+LiI and Ox= I2. 
c
DMPII 0.8 M, LiI 0.2 M, I2 0.07 M; t-bpy 0.5 

M in ACN. 

Transient absorption spectroscopy study 

The comparative evaluation of the dye regeneration kinetics by the electrolytes under 

investigation was carried out by transient absorption, TA, spectroscopy on G3 sensitized 

transparent TiO2 films in contact with the electron donating electrolytes in ACN (i.e. 1, 3, 

and I−). The signature of the charge transfer triplet excited state measured in solution is 

reported on Fig. S10. 
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The transient spectrum (Fig. 5a) of the photooxidized dye on the TiO2 surface, in the 

absence of electron mediators (i.e. charge separated state), shows features reminiscent of 

the charge transfer triplet state. In particular, the strong absorption in the red portion of 

the visible spectrum indicates the formation of the oxidized tri-arylamine, following 

charge injection into TiO2.
42,43

 Transient spectra of G3 in the presence of Cu(I) and Cu(II) 

redox electrolytes are given in Figures S11-S13. 730 nm decays (Fig. 5b) of the oxidized 

dye in inert electrolyte provides an amplitude weighted lifetime, τ2/3, of ca. 1180 ns.  

 

400 500 600 700 800
-20

-15

-10

-5

0

5

10

15

20

∆
A

/m
∆
O

D

λ /nm

 20 ns

 210 ns

 400 ns

 970 ns

 2670 ns

 7795 ns

0 500 1000 1500 2000 2500 3000 3500

0.0

0.2

0.4

0.6

0.8

1.0

 Neat ACN  

 1  

 3

 I
-
 

N
o

rm
a
liz

e
d

 ∆
Α

 a
t 
7

3
0
 n

m

Delay after laser pulse (ns)

a 

b 



 

20

Fig. 5. a): Transient difference absorption spectra of G3 dye loaded on transparent TiO2 film in 

contact with inert ACN/0.1 M LiClO4 electrolyte (blank). b): G3 regeneration kinetics at 730 nm 

in the presence of ACN (blank, grey line), and in the presence of 0.17 M 1 (red), 0.17 M 3 (blue) 

and 0.7 M iodide (black). In all cases LiClO4 0.1 M was added. λexc=532 nm. Energies 1.5±0.5 

mJ cm
–2 

pulse
–1

. 

The presence of reducing species (i.e. 1, 3 and I−) induces, as expected, an acceleration of 

the oxidized dye’s absorption decay due to electron donation from the redox mediators. 

Complex 1 (in 0.17 M concentration) afforded a G3 regeneration efficiency, ηreg, of ca. 

70% comparable with that calculated for the 0.7 M iodide solution. Compared to 1, 

complex 3 exhibits a much lower dye regeneration efficiency (ηreg=45%) which can be 

mainly attributed to its ca. 0.3 eV lower driving force. 

Dye solar cells tests 

The Cu redox shuttles 1/2 and 3/4 were tested in G3-sensitized solar cells under AM 1.5G 

illumination. The branched alkyl chains of the dye are expected to reduce the parasitic 

charge recombination reactions of 2 (and 4) at the photoanode while, at the same time, its 

high dipolar nature promotes both the electron/hole separation (thereby reducing direct 

back-electron transfer) and the dye regeneration.
31

 

Chemical and electrochemical stability of the novel 1/2-based electrolyte was verified 

into a symmetrical Pt|EL|Pt cell by cycling the potential between –1 and +1 V for 500 

times (Fig. S14). 

The photoelectrochemical performances of copper-based electrolytes were compared with 

those of a I
−/I3

−-based EL, I
−/I3

−
equim, which contained the I

–
/I3

–
 couple in equimolar 
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concentration to the Cu(I)/Cu(II) ELs. The results obtained for a DSC employing a ×6 

concentrated I−/I3
− electrolyte formulation, I−/I3

−
conc, is also reported for comparison 

(Table 2). 

 

Table 2. G3-based DSCs (area=0.16 cm
2
). Irradiation=100 mW cm

−2
 simulated AM 1.5G. 

Electrolyte
 Counter 

Electrode 
PCE 
% 

FF 
Voc 
/V 

isc 
/mA cm−2

 

1/2 Pt 4.4 0.66 0.72 9.3 

1/2 PEDOT 4.1 0.67 0.74 8.2 

3/4 Pt 1.9 0.59 0.86 3.8 

  I−/I3
−

equim Pt 4.3 0.70 0.70 8.7 

       I−/I3
−

conc Pt 7.4 0.67 0.72 15.4 

 

1/2-based EL in combination with a Pt CE exhibits a power conversion efficiency, PCE, 

of 4.4%, comparable with the reference cell filled with the I−/I3
−

equim, reaching 4.3% (Fig. 

6a). In cells equipped with a PEDOT-coated CE, the 1/2 couple generated a lower isc with 

respect to an equivalent cell based on a reflective Pt sputtered counter electrode, mainly 

due to reduced light back scattering of partially transparent PEDOT. The decreased isc 

observed in the PEDOT-based DSCs is however partly offset by a slightly improved Voc 

(from 0.72 V to 0.74 V). The almost identical FF values detected for two different CEs 

are justified by the higher sheet resistance of the PEDOT layer that perfectly 

counterbalances its faster ET, as discussed above. By contrast, 3/4-based EL presented a 

much lower photocurrent density (isc=3.8 mA cm–2) but a higher photovoltage (Voc=0.86 

V) consistent with the more positive Fermi level of the CE. Its overall 1.9% PCE was 

however inadequate with respect to the other electrolytes. 
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A G3-sensitized Pt-based DSC employing I−/I3
−

conc afforded 7.4% PCE (Table 2). It can 

be mainly attributable to the larger isc=15.4 mA cm
–2

, which doubles that of I−/I3
−

equim, 

suggesting that the Cu(I)/(II) complexes may be limited by their relatively low solubility 

in ACN. Indeed a solubility threshold of ca. 0.17 M was found for [Cu(2-mesityl-4,7-

dimethyl-1,10-phenanthroline)2][PF6]. 

EIS analysis of these devices allows separating the most relevant factors affecting their 

photoelectrochemical performances and enables the independent study of the 

photoelectrode/electrolyte interfacial properties.
44 

From Nyquist plots of DSCs measured 

under AM 1.5G at Voc (Fig. 6b), it can be outlined that the high diffusional resistance, 

Rdiff, (semi-arch at low frequencies) exhibited by 3/4-based EL plays a detrimental role in 

the overall cell performances, in particular by lowering the FF. By contrast, 1/2 EL 

exhibits a remarkably lower Rdiff, which is comparable with that detected in the cell based 

on I
−/I3

−
equim. In agreement with the superior charge transfer kinetics, leading to more 

efficient charge separation, 1/2 resulted in a TiO2 chemical capacitance, Cmeas, about one 

order of magnitude higher with respect to that obtained in the presence of 3/4 (Fig. S15). 

Values of the Rct as a function of the corrected applied bias across the photoanode, are 

given in Fig. S15 too. 

The 3/4-based EL shows the highest Rct, which accounts for the better Voc. Similarly, 

I
−/I3

−
equim presents the lowest Rct while I−/I3

−
conc and 1/2-based EL show almost the same 

values. Calculation of the transfer factor, β, from the voltage dependence of TiO2 

recombination resistance through the Tafel’s law45 gives β=0.4 for 1/2-based devices, 

β=0.23 for 3/4, β=0.53 for I−/I3
−

conc, β=0.47 for I−/I3
−

equim. The remarkably low value of β 
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factor in 3/4-based EL constitutes a further quantitative assessment of the slow ET 

kinetics of the Cl–-coordinated oxidized complex 4. 

 

 

Fig. 6. a) i-E curves and b) Nyquist plots measured, at Voc , under 1 sun illumination for 

G3-sensitized solar cells filled with the different electrolytes. c) charge transfer 

resistance, Rct, and d) average lifetime of photogenerated electrons, τe, as a function of the 

measured capacitance, Cmeas, of TiO2 electrode. 

 

a b 

 d c 
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However, to properly analyze the recombination process on the basis of comparable 

electron density values in the TiO2, Rct values have been plotted as a function of Cmeas 

(Fig. 6c), where it emerges, on the contrary, the higher recombination resistance of 1/2-

EL, which lies at the basis of its higher performance. This finding is consistent with  the 

quite inefficient dye regeneration by 3 resulting in a significant charge loss by direct 

back-recombination to the oxidized dye as well as the shorter electron lifetime 

(τe=RctCmeas, Fig. 6d) of 3/4 with respect to 1/2 (around 4 and 6 ms at Voc, respectively). 

The τe trends are even in good agreement with the observed trend of PCE (I−/I3
−

conc > 

I
−/I3

−
equim ≈1/2-EL > 3/4-EL). 

 

Conclusions 

In summary, the successful implementation in DSCs of an interesting class of redox 

mediators based on chemically engineered phenanthroline-based Cu complexes has been 

reported and rationalized on account of their electrochemistry and photoelectrochemistry. 

An increased energy barrier of the ET for the Cl-coordinated complex 4 with respect to its 

tetracoordinated analogue 2 has been clearly proven and associated to the higher 

reorganization energy associated to the Cu2+/Cu+ redox process. 

DSCs based on a properly formulated copper-phenanthroline electrolyte, 1/2 EL, in combination 

with a π-extended benzothiadiazole-based dye G3, shows a remarkable 4.4% PCE under 1 sun 

illumination, equating the performance of an equimolar I–/I3
– based EL. Even more promising is 

the doubling of cell performances respect to the benchmark 3/4 electrolyte, mainly attributable to 

the higher dye regeneration efficiency by 1 compared to 3, and the faster Cu(I) regeneration at 

CE by 2 with respect to 4. This last feature is driven by the lack of a fifth ancillary ligand (i.e. 
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Cl−) in the exclusively tetracoordinated couple 1/2. Unfortunately the cell performances of these 

Cu mediators are significantly limited by their lower solubility in ACN respect to the I
−
/I3

−
 

couple; however further modifications to the ligands architecture and/or to the counteranion are 

expected to allow reducing this drawback, resulting in the development of a new class of iodine-

free electron shuttles compatible with a wide spectrum of sensitizers, with the potentialities to 

outperform the current  [Cu(neocuproine)2]
2+/+

 mediators. 
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A tetracoordinated redox couple, made of [Cu(2-mesityl-4,7-dimethyl-1,10-

phenanthroline)2][PF6] and its Cu(II) form, has been synthesized and its electrochemical and 

photoelectrochemical features investigated. The new redox mediators doubled the cell efficiency 

obtained with the benchmark redox couple, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6] and its 

chloride-coordinated cupric form, giving results comparable to an equimolar I−/I3
−-based 

electrolyte. 


