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Abstract 19 

Additives applied to animal manure slurries can affect both the chemical composition and biological 20 

processes of slurries during storage, with possible improvement of their management and reduction 21 

of environmental problems. Some new formulations are marketed claiming a nitrogen (N) removal 22 

effect due to denitrification, with the consequence of a reduced N content in the manure after storage. 23 

This study evaluated the effects of one of these commercial additives (BACTYcomplex®, COMAS, 24 

Bovolenta, Padua, Italy) on slurry characteristics and N losses at a commercial piggery. The additive 25 

was applied to four different sectors of the piggery, each with an independent under-floor slurry pit; 26 

four other sectors served as controls without treatment. Pits were emptied every four weeks and the 27 

manure was analyzed for total and ammonia N and total and volatile solids. Slurry samples from the 28 

last month of the on-farm assessment were removed and stored thermostatically in vessels external to 29 

the piggery. A sub-sample of slurry that was treated with the additive at the piggery was treated with 30 

an additional dose of additive at the beginning of long-term storage. The additive did not change the 31 

composition of the slurry during in-house storage (four weeks duration). During the 155 days of 32 

external thermostatic storage, the total solids content of treated slurry was reduced by 18% compared 33 

to control slurry, but the N content and composition of treated slurry was unaffected. The additive 34 

had a positive effect in accelerating the stabilization of the slurry, but did not modify N losses.  35 

Keywords: Slurry additive, manure management,  nitrogen 36 

 37 
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Introduction 39 

The intensification of agriculture and especially livestock activity has significantly increased 40 

production, but at the same time has modified the equilibrium of traditional farms that were once 41 

well-integrated with cultivated areas. Intensification has concentrated production activities both 42 

within farms and on a regional scale. Considering the imbalance between limited production areas 43 

and the excessive livestock loading, the role of animal manure as an organic amendment and 44 

fertilizer has diminished and manure has taken the connotation of a waste product (Burton and Turner 45 

2003). A consequence of the concentration of livestock activities is a higher environmental impact 46 

due to manure management. One of the impacts derives from emissions to air, particularly ammonia 47 

volatilization and losses of greenhouse gases such as nitrous oxide, methane and carbon dioxide 48 

(Petersen et al. 2009); these emissions take place from livestock facilities, from manure storage tanks 49 

and following land spreading. Manure application can also trigger other pollution phenomena, mainly 50 

related to phosphorus runoff and N leaching (Rotz et al. 2011). Odor emissions also characterize 51 

manure management, poor manure management can be responsible for disease transmission or health 52 

problems (Blanes-Vidal et al. 2009).  53 

Many management solutions and types of treatment have been proposed to reduce the environmental 54 

impact of livestock manure. Among the most common treatments are solid-liquid separation (Hjorth 55 

et al. 2010), biological N removal in aerobic conditions (Beline et al. 2007) and anaerobic digestion 56 

(Burton and Turner 2003). The technologies required for these types of treatment have high cost and 57 

require specific knowledge for proper operation. Another approach is the addition of chemical or 58 

microbial additives to manure managed as a slurry; these aim to affect certain slurry properties, often 59 

by inhibiting or stimulating a particular microbiological process (Sommer et al. 2013). 60 

There are various types of additives that act on several processes simultaneously; among these 61 

additives are those that affect both the chemical composition and biological processes of slurries, 62 

especially in relation to the N content. McCrory and Hobbs (2001) classified additives that reduce 63 
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ammonia emissions into five categories: acidifying additives, adsorbents, urease inhibitors, saponins 64 

from Mohave Yucca (yucca schidigera) and digestive-biological additives. While most of these 65 

additives have a documented effect on slurries, the digestive-biological additives have given 66 

controversial results. They consist of microorganisms and nutrients that can increase the degradation 67 

of organic matter that has passed through animals undigested, and can enhance the reduction of 68 

odorous substances and conversion of inorganic N to its organic form (Joint Research Center 2013). 69 

Van der Stelt et al. (2007) evaluated several digestive additives designed to reduce ammonia 70 

emissions from dairy slurry. These included Agri-mest® (designed to increase the amount of energy 71 

available for anaerobic fermentation of manure by microorganisms), Effective Micro-organism® 72 

(consisting of lactic acid bacteria, yeast and smaller numbers of other types of organisms) and Euro 73 

Mest-mix® (consisting of a pH buffer and clay minerals together with unidentified supplements to 74 

increase the activities of microorganisms). In general no reduction in ammonia emissions was 75 

obtained with these products. 76 

In contrast to additives designed to reduce ammonia emissions, the microbial additive (Sporzyme®) 77 

tested by Zhu et al. (2006) in concert with aeration treatment, was intended to reduce the content of 78 

nutrients from liquid swine manure. The results indicated that aerobic treatment reduced total 79 

Kjeldahl nitrogen (TKN), total ammonia nitrogen (TAN) and total soluble phosphorus by 80 

approximately 42%, 56%, and 72%, respectively. The reduction of TKN was found to be mainly 81 

attributed to the reduction of ammonia because its share of TKN was remarkably reduced at the end 82 

of the test. Although Sporzyme® significantly increased the quantity of aerobic microorganisms in 83 

the manure, no advantage of its use could be identified, and the nutrient reduction in swine manure 84 

was due only to aeration treatment. 85 

Wheeler et al. (2011) tested 22 additives that included microbial digestion products, oxidizing agents 86 

and chemicals, disinfectants, odor masking agents and adsorbents. Some additives reduced ammonia 87 

emissions, others increased the emissions and others had no significant impact on ammonia 88 
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emissions. These contradictory effects appeared to be due to differences in pH and whether an 89 

additive inhibited microbial activity by toxicity or provided a substrate (often a carbon source) that 90 

microbes used to increase biomass, hence, consuming N in the process.  91 

Similarly Andersson (1994) compared different additives (Add A; Penac-G®; Kemira No. 2; Kemira 92 

No. 5; Kemira No. 15; Fly ash; Stalosan®) to verify their efficacy in reducing ammonia emission 93 

from cow slurry. Add A, manufactured by the company Biosolv, is a microbial consortium of 94 

anaerobic bacteria; the others are chemical additives, especially calcium salts. Kemira No. 2 and 95 

Stalosan®, both of which were based on superphosphate, reduced the ammonia emission compared 96 

with the emission from the untreated slurries. The approximate reduction was 30 %, probably due to 97 

the carbonate ions present in the slurries that precipitated as calcium carbonate. The pH then 98 

decreased, which resulted in a lower ammonia emission. At this significance level the treatment with 99 

Add A resulted in a higher emission than from the untreated slurries. All the other slurries treated 100 

with the different additives emitted ammonia at the same rate as the control (Andersson 1994).  101 

Commercial digestives claim to reduce total solids by stimulating their degradation but the limited 102 

investigations in this area report poor performances on the products (McCrory and Hobbs, 2001).The 103 

variable results obtained in previous experiments with additives highlight the need for a better 104 

understanding of the effect of specific products when used in practical circumstances (i.e., non-105 

laboratory conditions). Recently new types of digestive additives have been marketed with additional 106 

characteristics like the capability to remove N through denitrification due to the addition of anaerobic 107 

bacteria. This possible effect might be a way to reduce nitrogen surplus in intensive livestock area but 108 

has not been verified in practical condition.  109 

The objective of the research described herein was to evaluate the effect of a commercial digestive-110 

biological additive, with expected denitrification enhancement, applied to the slurry in a commercial 111 

fattening pig farm. The study assessed the modification of N and total solids contents caused by the 112 



6 
 

additive to the slurry during under-floor, in-house storage and during the subsequent long-term, off-113 

farm storage.  114 

 115 

Materials and Methods 116 

Experimental test on fattening piggery  117 

The fattening piggery – characteristics and monitoring 118 

Experiments were conducted at a commercial fattening piggery (approximately 5,500 head) located 119 

in Pompiano (Lombardy, Italy). The animals were segregated into two identical buildings based on 120 

sex. Each building was divided into four independent sectors. In building 1 (housing females), sectors 121 

C2 and C4 were the controls, while sectors T1 and T3 were treated with additive. In building 2 122 

(housing males), sectors C6 and C8 were the controls, while sectors T5 and T7 were treated with 123 

additive. 124 

The pens had fully-slatted floors equipped with a vacuum system (Joint Research Center, 2013). The 125 

cumulative area of the pens in both the treatment and control sectors was identical (2843 m2). The 126 

slurry removed from the pits below the floors was sent through a pipe into a reception tank (106 m3) 127 

external to the buildings, from which it was pumped into the final storage tank away from the 128 

buildings.  129 

All pigs had the same diet composed of water, milk whey and a specific feed. The amount and 130 

composition of the diet were modified during the growth cycle and were recorded on a weekly basis 131 

together with the number of pigs and their expected weight for each sector. The parameters recorded 132 

were: number of pigs, the mean live weight of pigs, the mean live weight increase, the amount of 133 

feed distributed, the feeding typology given to the pigs, the amount of slurry produced and the slurry 134 

temperature. 135 

 136 

Use of additive 137 
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The additive used in this experiment was BACTYcomplex® (COMAS, Bovolenta, Padua, Italy). The 138 

product data sheet defined it as a “complex bacterial enzyme lyophilized containing a mixture of 139 

saprophytic heterotrophic aerobic and anaerobic bacteria, associated to catalytic thermostable 140 

enzymes and related eutrophic compounds”. The bacterial complex was designed to trigger the 141 

microbiological digestion of organic matter, both on litter in animal housing and in treatment plants, 142 

even in the presence of moderate concentrations of disinfectants or antibiotics (which in anoxic 143 

conditions give rise to denitrification and ammonia degradation). The specific BACTYcomplex® 144 

characteristics were: moderate solubility; pH 6.25; Cellulase 2.95%; Protease 1.51%; Amylase 145 

0.42%; Lipase 0.16%; and total bacteria 149.2 million Ufc g-1 .  146 

Addition of BACTYcomplex® was carried out following the manufacturer’s directions. Once every 147 

15 days, the additive was distributed uniformly on the slatted floors of treated sectors from 2 148 

December 2013 until 24 March 2014. The dosage used was 10 kg of BACTYcomplex® per 1000 149 

pigs.  150 

Slurry sampling 151 

Slurry samples were collected from the reception tank on a sector-by-sector basis every four weeks, 152 

on 30 December 2013; and on 27 January, 24 February and 24 March 2014. The slurry pits below the 153 

control sectors C2, C4, C6 and C8 were emptied individually and sampled first, followed by the 154 

treated sectors T1, T3, T5 and T7. At the time of sampling, the slurry had been treated two times with 155 

the additive (15 and 30 days preceding sampling). Immediately prior to sampling, slurry contained in 156 

the reception tank was mixed using a tractor-driven propeller to ensure homogeneity of the slurry. 157 

Every 5–10 min during the transfer process, a 3-L sample (approximately) of slurry was taken from 158 

the reception tank and placed in a large container; this was repeated 7–8 times to yield a 25-L 159 

(approximately) composite sample for each pit. The operation lasted around 45 min for each sector. 160 

The composite sample was thoroughly mixed, and a 2-L sub-sample was taken as a representative 161 
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sample of slurry for each sector. Before and after emptying each pit, the depth and temperature of the 162 

slurry were measured to quantify the total volume of slurry produced between sampling events. 163 

Temperature-controlled slurry storage 164 

During the last sampling operation (24 March 2014) approximately 40 L of slurry from each control 165 

sector and 80 L of slurry from each treated sector were collected as described above and transported 166 

to the University of Milan experimental farm “A. Menozzi” in Landriano (PV) for long-term, 167 

temperature-controlled anaerobic storage. After thorough mixing, samples arising from the treated 168 

sectors were each split into two aliquots. One aliquot received additional BACTYcomplex® at a 169 

dosage of 1 g per 30 L of slurry, which was equivalent to the dosage used at the pig-rearing facility. 170 

Approximately 30 L of each sample were stored individually in vessels (diameter 0.336 m and height 171 

0.320 m) for 155 days to give a total storage period of 6 months (including the under-floor storage), 172 

which was typical for the farming system being studied. Thus, a total of 12 vessels (four containing 173 

slurry from control sectors, four containing slurry from treated sectors and four containing slurry 174 

from treated sectors and given an additional dose of BACTYcomplex®) were stored in a 175 

temperature-controlled environment at 18°C. This value has been selected as it is the minimum air 176 

temperature maintained in the fattening pig buildings in winter periods. The temperature of the slurry 177 

did not differ from the air temperature. 178 

During storage, the temperature of slurry was recorded at 30-min intervals using a temperature sensor 179 

(TMC6-HD, Onset Computer Corporation, Bourne, MA, USA) located 0.15 m beneath the surface of 180 

slurry in each vessel and connected to a data logger (HOBO U12-006, Onset Computer Corporation, 181 

Bourne, MA, USA). In addition, 0.4 L samples were retrieved and analyzed from each vessel 182 

monthly to monitor the change in slurry composition during storage. 183 

Chemical analysis 184 

Slurry samples collected at the pig-rearing facility were analyzed in a commercial laboratory 185 

(Pioneer, Pioneer Hi-Bred Italia S.r.l. DuPont Agriculture & Nutrition, Gadesco Pieve Delmona, 186 
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Italy) for the following parameters: total solids (TS), volatile solids (VS), pH, total Kjeldahl nitrogen 187 

(TKN), total ammonia nitrogen (TAN), phosphorus (P2O5) and potassium (K2O). The slurry samples 188 

obtained during thermostatic storage were analyzed in University of Milan research laboratories for 189 

TKN, TAN, TS, VS and pH. Samples were analyzed according to standard procedures (APHA 1998).  190 

 191 

Data analysis  192 

Characteristics of slurry samples arising from treated and untreated sectors in the pig-rearing facility 193 

were compared to evaluate the effect of BACTYcomplex® additive on TKN and TAN content. To 194 

avoid potential bias in the comparisons due to different volumes and dilutions of slurries collected 195 

from the various sectors, TKN and TAN contents were referenced to the TS content of each sample. 196 

Moreover, the TAN:TKN ratio was used to assess the behavior of N contained in each sample.  197 

Data were analyzed both to evaluate the effects of additive addition on TKN:TS and TAN:TS ratios 198 

and changes in TAN:TKN ratios, and to investigate differences between untreated and treated slurry 199 

samples during long-term thermostatic storage. Friedman’s non parametric test was used for data 200 

analysis because the assumptions for ANOVA tests were not verified. Statistical analyses were 201 

conducted using the software package SPSS®, version 21 (International Business Machines Corp., 202 

Armonk, NY, USA). 203 

 204 

Results and Discussion 205 

Experimental test on fattening piggery  206 

The information about the growth cycle of pigs, feed delivered and slurry produced over the 4-month 207 

experiment at the pig-rearing facility are reported in Table 1 as mean values for all treated and all 208 

control sectors. The mean live weights of pigs and the mean live weight increases were similar for all 209 

sectors, for each day of sampling. The feeding typology was identical in each sector, while the 210 

quantity of feed distributed was similar and without significant differences between the control and 211 
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treated sectors. The slurry production varied slightly from sector to sector, probably due to water 212 

spilling from drinkers. For the entire experiment, slurry temperature remained stable between 19.3°C 213 

and 21.8°C, but exhibited a slight tendency to increase due to the seasonal conditions.  214 

Table 2 shows the mean and standard deviation of chemical parameters for slurry arising from the 215 

control and treated sectors. All tested parameters except pH were at slightly higher concentrations 216 

than the mean of data reported by Martinez-Suller et al. (2008), but were in the range they reported. 217 

The relatively high concentrations may have been due to efficient water management in the facility, 218 

leading to less slurry dilution than is typically found. Because the animals were reared on totally 219 

slatted floors, no water was required for removal of manure during the growth cycle. Furthermore, 220 

the slurry was taken from in-house pits beneath the slatted floors and was not diluted by natural 221 

precipitation. In contrast, the slurry samples analyzed by Martinez-Suller et al. (2008) were taken 222 

from uncovered, outdoor storage tanks. Millmier et al. (2000) analyzed slurry samples taken from 223 

covered pits and obtained results similar to those in the present study. 224 

The ratios of TKN:TS, TAN:TS and TAN:TKN in slurries from both control and treated sectors 225 

increased over time (Figure 1).The trend reflected the increasing live weight of the animals, which 226 

resulted in lower nutrient retention over time. Therefore, a comparison can be made only between 227 

samples collected on the same date, because of the different ages of the pigs and different 228 

environmental conditions that existed on the sampling dates. 229 

There were no significant differences between the control and treated slurries on any sampling dates 230 

and for all the ratios examined. The standard deviation expressed by the error bars showed the 231 

presence of a comparable variability among samples from all sectors for all parameters.  232 

The mean TKN:TS ratio of control samples was numerically lower than that of treated samples 233 

throughout the experiment (Figure 1a). The TAN:TS ratio followed a similar pattern as the TKN:TS 234 

ratio (Figure 1b). The TAN:TS ratio was the same for both treated and control slurry samples. The 235 

negligible effect of the additive in the pits was corroborated by the lack of difference in the 236 
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TAN:TKN ratios among control and treated slurry samples on the four sampling dates (Figure 1c). 237 

These results highlight the absence of clear effects of the additive on slurry composition and on 238 

changes of the N content during the 4-week period between slurry emptying events, during which the 239 

slurry remained in the under-floor pits. 240 

Composition during long-term thermostatic storage 241 

Variations in the composition of control slurry (C) and slurries treated with the recommended dose 242 

(T) and double dose (E) of BACTYcomplex® during thermostatic storage are shown in Figure 2. All 243 

N indices (TKN:TS, TAN:TS and TAN:TKN) showed an anticipated reduction over time. N 244 

reductions were larger than the reductions in total solids, the latter being due to the degradation of 245 

organic matter. These changes were confirmed by the reduction of TAN:TKN ratios. . 246 

Andersson (1994) reported that some slurry additives could modify pH, and thus indirectly affect the 247 

emission of ammonia. In the present experiment, the pH of control (C) samples increased by 0.9 units 248 

(from pH 7.28 to 8.18), and by 1.18 units in both treated (T) and double-dosed (E) samples (from pH 249 

7.21 to 8.39). However, the slightly greater increase in the pH of treated samples compared to control 250 

samples did not significantly influence the reduction of N content in the treated samples. 251 

The results show that there was a significant reduction in TKN:TS and TAN:TS ratios of control 252 

slurries compared to the treated ones, while there were no significant differences in these ratios 253 

between the two treatments (i.e., recommended dosage vs. double dosage) (Table 3). The total solids 254 

contents of control samples were greater (P=0.003) than those of the treated slurry samples, 255 

indicating that the additive increased the degradation of organic matter (Table 3). Thus, the higher N 256 

concentrations at the end of the storage period might have been due to a greater reduction of solids 257 

more than to a conservation of N. This possibility is confirmed by the various N measures for the 258 

samples at the end of the storage (Figure 3). When referenced to the volume of the slurry, the mean 259 

values of TAN, TKN and the TAN:TKN ratio were similar for both control and treated samples. On 260 

the contrary, the total solids content was conserved more in the control samples than in the treated 261 



12 
 

samples, and as a consequence, the TAN and TKN contents as percentage of total solids content 262 

decreased. 263 

The effect of the BACTYcomplex® additive during slurry storage was reduction in the TS content of 264 

treated slurry by about 18% compared to the TS reduction that occurred naturally in the untreated 265 

slurry. The higher solids reduction in the treated slurry might have been due to a higher degradation 266 

activity of the microorganisms in the additive and possibly sustained by the enzymes contained in the 267 

additive. The reduction of total solid, and the consequent improvement of the handling properties of 268 

slurry, obtained in this study highlights a different performance of the tested additive in comparison 269 

to the poor effect obtained in other experiences (McCrory and Hobbs, 2001; Patni, 1992; Waburton et 270 

al., 1980). However, the effect on total solids did not affect the N content of treated slurry, which 271 

remained similar to that in untreated slurry throughout long-term thermostatic storage. The addition 272 

of a further quantity of additive (i.e., double the recommended dosage) at the beginning of 273 

thermostatic storage did not affect the final N and total solid content of the slurries.  274 

 275 

Conclusions  276 

Under the conditions for this study, the additive BACTYcomplex® is ineffective in changing the N 277 

content of pig slurry stored in-house for a period of one month, as there was no significant difference 278 

between the TKN and TAN content , and the TAN:TKN ratio, of treated and untreated slurry over 279 

this period. During long-term (approximately six months) thermostatic storage, the addition of 280 

BACTYcomplex® can reduce the TS content of pig slurry. Thus, under the conditions of this study, 281 

BACTYcomplex® can improve the degradation of organic matter in pig slurry but not modify N 282 

content.  283 

However, the effect of an additive such as BACTYcomplex® could depend on several factors that 284 

affect microbial activity, including temperature, pH, dissolved oxygen concentration, nutrient 285 

availability, and microbial resistance to potential toxins. The results obtained in this study confirm 286 
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the need to assess the effect of additives in applied conditions, as the additives are likely to have 287 

different activities in different environments. Generalization of the results from this research should 288 

be avoided, and suitable protocols should be used in further comparative studies. 289 
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 346 

Figure captions 347 

Figure 1 – Mean and standard deviation (vertical bars) of the TKN:TS, TAN:TS and TAN:TKN 348 

ratios for control (C) and treated (T) slurries in under-floor storage on the four sampling events.  349 

Figure 2 – Mean and standard deviation (vertical bars) of the TKN:TS, TAN:TS and TAN:TKN 350 

ratios of untreated (C) slurry samples, samples treated with the normal dose of additive (T) and 351 

samples treated with a double dose of the additive (E), during thermostatic storage for 155 days. 352 

Figure 3 – Mean values and standard deviation (vertical bars) of the studied parameters of 353 

untreated (C) slurry samples, samples treated with the normal dose of additive (T) and samples 354 

treated with a double dose of the additive (E), at the end of thermostatic storage for 155 days. 355 

Ammonia Nitrogen (TAN) and Total Kjeldahl nitrogen (TKN) are expressed in g L-1; Total solids 356 

(TS), Volatile solids (VS) and all the relative indices are expressed as percentages.  357 

  358 
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Tables 359 

 360 

Table 1 –Piggery performance during the 4-month experiment. Results are the means from four 361 

treated (T) and four control (C) sectors from which slurry was sampled on the dates indicated.  362 

Parameter 
 

30 December 

2013 

27 January  

2014 

24 February 

2014 24 March 2014 

C T C T C T C T 

Pigs number n° 2645 2770 2713 2674 2680 2682 2664 2676 

Mean live 

weight  
(kg) 96.7 97.2 120.7 120.1 141.6 141.2 158.9 158.5 

Feed 

distributed 

kg head-1 

day-1 
10.9 11.1 11.2 12.1 11.9 12.5 12.2 12.5 

Feeding 

typology 
- A (†) B (‡) B (‡) 

B - until 03/03/2014 (‡)  

 C - from 04/03/2014 (§) 

Slurry 

production 

L head-1 

day-1 
7.2 7.4 7.6 8.8 8.1 8.2 7.3 8.7 

Slurry 

temperature 
(°C) 

20.3  19.3 20.4  20.0 21.1  20.5 21.8  21.0 

(†) composition of feeding typology A: specific feed (23.8%); water (41.7%); milk whey (34.5%). 363 

Composition of Specific feed: CP (14.8%); P (0.52%) 364 
(‡) composition of feeding typology B: specific feed (24%); water (37%); milk whey (39%). 365 

Composition of Specific feed: CP (14.2%); P (0.50%) 366 
(§) composition of feeding typology C: specific feed  (24%); water (37%); milk whey (39%). 367 

Composition of Specific feed: CP (13%); P (0.45%) 368 
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Table 2 –Characteristics of slurry originating from four control sectors (C) and four treated sectors (T) sampled on four dates.  370 

Sample 

event 

Date 

 TS (%) VS (%) pH TKN (g L-1) TAN (g L-1) P2O5 (g L-1) K2O (g L-1) 

sector mean ± (SD) 

1 30/12/2013 C 5.02 ± (0.72) 3.75 ± (0.61) 7.08 ± (0.03) 4.35 ± (0.18) 2.97 ± (0.06) 3.35 ± (0.36) 2.86 ± (0.18) 

2 27/01/2014 C 4.27 ± (0.98) 3.11 ± (0.76) 7.41 ± (0.09) 4.16 ± (0.55) 2.80 ± (0.21) 2.97 ± (0.65) 2.73 ± (0.33) 

3 24/02/2014 C 4.38 ± (1.21) 3.20 ± (0.91) 7.37 ± (0.11) 4.23 ± (0.78) 3.05 ± (0.48) 3.13 ± (0.87) 2.68 ± (0.46) 

4 24/03/2014 C 4.62 ± (1.00) 3.25 ± (0.79) 7.28 ± (0.11) 5.02 ± (1.01) 3.62 ± (0.70) 3.04 ± (0.66) 2.71 ± (0.22) 

1 30/12/2013 T 4.21 ± (0.91) 3.12 ± (0.72) 7.19 ± (0.05) 3.83 ± (0.42) 2.64 ± (0.30) 2.96 ± (0.73) 2.54 ± (0.30) 

2 27/01/2014 T 4.11 ± (0.88) 2.99 ± (0.67) 7.42 ± (0.1) 4.06 ± (0.53) 2.73 ± (0.38) 2.78 ± (0.61) 2.54 ± (0.28) 

3 24/02/2014 T 4.45 ± (0.76) 3.25 ± (0.57) 7.39 ± (0.11) 4.40 ± (0.45) 3.17 ± (0.29) 3.04 ± (0.49) 2.71 ± (0.36) 

4 24/03/2014 T 4.06 ± (1.24) 2.86 ± (0.92) 7.21 ± (0.06) 4.63 ± (0.83) 3.41 ± (0.46) 2.71 ± (0.76) 2.45 ± (0.29) 
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Table 3 – Results of the Friedman’s test and mean values of N and solid contents and their ratio for 372 

the three types of slurries thermostatically stored for 155 d: untreated (C) slurry samples, samples 373 

treated with the normal dose of additive (T) and samples treated with a double dose of the additive 374 

(E). The values are means of four repetitions of each sample type and five sampling dates. 375 

    C T E  

    mean SD mean SD mean SD P level 

 TKN   g/L  4.13 1.28 3.66 1.18 3.70 1.14 0.949 

 TAN   g/L  2.69 1.03 2.42 0.98 2.40 0.98 0.623 

 TS  %   5.09 a† 1.26 3.93 b 1.27 3.88 b 1.30 0.003 

 VS   % TS  62.70 6.65 6.47 6.62 60.61 7.22 0.196 

 TKN/TS   % 8.16 a 2.10 9.44 b 2.07 9.82 b 2.27 <0.001 

 TAN/TS   % 5.40 a 2.10 6.28 b 2.38 6.39 b 2.56 <0.001 

TAN/TKN   % 0.64 0.15 0.65 0.15 0.63 0.15 0.128 

† Within rows, means followed by the same letter are not significantly different. Letters are not reported when P level is 376 

higher than 0.05. 377 


