Accepted Manuscript

Title: Achieving a Molecular Remission before Allogeneic Stem Cell Transplantation in Adult Patients with Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia: Impact on Relapse and Long Term Outcome

Author: Federico Lussana, Tamara Intermesoli, Francesca Gianni, Cristina Boschini, Arianna Masciulli, Orietta Spinelli, Elena Oldani, Manuela Tosi, Anna Grassi, Margherita Parolini, Ernesta Audisio, Chiara Cattaneo, Roberto Raimondi, Emanuele Angelucci, Irene Maria Cavattoni, Anna Maria Scattolin, Agostino Cortelezzi, Francesco Mannelli, Fabio Ciceri, Daniele Mattei, Erika Borlenghi, Elisabetta Terruzzi, Claudio Romani, Renato Bassan, Alessandro Rambaldi

PII: S1083-8791(16)30257-9
DOI: http://dx.doi.org/doi: 10.1016/j.bbmt.2016.07.021
Reference: YBBMT 54352

To appear in: Biology of Blood and Marrow Transplantation

Received date: 26-4-2016
Accepted date: 22-7-2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Achieving a molecular remission before allogeneic stem cell transplantation in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia: impact on relapse and long term outcome

Federico Lussana¹, Tamara Intermesoli¹, Francesca Gianni¹, Cristina Boschini¹, Arianna Masciulli¹, Orietta Spinelli¹, Elena Oldani¹, Manuela Tosi¹, Anna Grassi¹, Margherita Parolini¹, Ernesta Audisio², Chiara Cattaneo³, Roberto Raimondi⁴, Emanuele Angelucci⁵, Irene Maria Cavattoni⁶, Anna Maria Scattolin⁷, Agostino Cortelezzi⁸, Francesco Mannelli⁹, Fabio Ciceri¹⁰, Daniele Mattei¹¹, Erika Borlenghi⁵, Elisabetta Terruzzi¹², Claudio Romani⁵, Renato Bassan⁷ and Alessandro Rambaldi¹,¹³

¹Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy; ²Hematology Department, AOU Città della Salute e della Scienza di Torino, Torino, Italy; ³Hematology, Spedali Civili di Brescia, Brescia, Italy; ⁴Hematology and BMT Unit, Ospedale San Bortolo, Vicenza, Italy; ⁵Ematologia e Centro Trapianti, Ospedale Oncologico di Riferimento Regionale ‘Armando Businco’, Azienda Ospedaliera “Brotzu”, Cagliari, Italy; ⁶Hematology and BMT Unit, Central Hospital of Bolzano, Bolzano, Italy; ⁷Hematology, Ospedale dell'Angelo & Ospedale SS. Giovanni e Paolo, Mestre-Venezia, Italy; ⁸Oncohematology Unit, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; ⁹Hematology Department, University of Florence, , AOU Careggi , Firenze, Italy; ¹⁰Hematology and Bone Marrow Transplantation Unit, San Raffaele Hospital Scientific Institute, Milan, Italy; ¹¹Department of Hematology, Ospedale S. Croce, Cuneo, Italy; ¹²Hematology Division and BMT Unit, Ospedale San Gerardo, Monza, Italy; ¹³Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy

Address for correspondence:
Federico Lussana, MD
Hematology and Bone Marrow Transplant Unit
Ospedale Papa Giovanni XXIII Bergamo
Piazza OMS, 1
24127 Bergamo
ITALY
Telephone: +39 035 2673684
Fax:+39 035 2674968
Email: flussana@asst-pg23.it

Short Title: Impact of molecular remission before alloHSCT in Ph+ adult ALL

Declaration of interests

The authors do not have any commercial association, which might pose a conflict of interest.

None funding.
Highlights:

- MRD positivity in ALL is a major risk factor for relapse and poor outcomes
- We evaluated the impact of MRD levels before alloHSCT on outcomes of Ph+ ALL
- Patients with measurable levels of MRD have a higher risk of relapse
- Achieving a MRD negativity should be a prerequisite for successful alloHSCT

Abstract

Background. Allogeneic stem cell transplantation (alloHSCT) in first complete remission (CR1) remains the consolidation therapy of choice in Philadelphia positive acute lymphoblastic leukemia (Ph+ ALL). The prognostic value of measurable levels of minimal residual disease (MRD) at time of conditioning is a matter of debate.

Methods. We analyzed the predictive relevance of MRD levels before transplant on the clinical outcome of Ph+ALL patients treated with chemotherapy and imatinib in 2 consecutive prospective clinical trials. MRD evaluation before transplant was available for 65 of the 73 patients who underwent an alloHSCT in CR1.

Results. A complete or major molecular response at time of conditioning was achieved in 24 patients (37%) while 41 (63%) remained carriers of any other positive MRD level in the bone marrow. The MRD negativity at time of conditioning was associated with a significant benefit in terms of risk of relapse at 5 years with a relapse incidence of 8% compared to 39% of patients with MRD positivity (p=0.007). However, thanks to the post-transplant use of tyrosine kinase inhibitors (TKIs), the disease free survival probability was 58% vs 41% (p=0.17) and the overall survival was 58% vs 49% (p=0.55) in MRD negative compared to MRD positive patients, respectively. The cumulative incidence of non relapse mortality was similar in the 2 groups.
Conclusions. Achieving a complete molecular remission before transplant reduces the risk of leukemia relapse even though TKIs may still rescue some patients relapsing after transplant.

Keywords: Acute Lymphoblastic Leukemia
Allogeneic transplantation
Minimal Residual Disease (MRD)

Introduction

In the pre-tyrosine kinase inhibitors (TKIs) era, Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) marked the most unfavorable subgroup of adult ALL and the overall survival observed in unselected series of patients was less than 20%, even when allogeneic hematopoietic stem cell transplantation (alloHSCT) was offered. The incorporation of TKIs, most commonly imatinib, into the standard ALL chemotherapy has substantially improved the outcomes mainly as a consequence of an improved rate of complete responses, a longer duration of remission and an increased proportion of patients to whom an alloHSCT transplantation could be offered in first complete remission (CR1). To date alloHSCT remains the only treatment for which a definitive curative potential has been demonstrated in Ph+ ALL, even though promising durable remission have been demonstrated also for some patients treated with TKI based treatments. The outcome of alloHSCT is largely dependent on the non-relapse mortality (NRM) and post-transplant relapse. While some improvement in reduction of NRM has been achieved, relapse remains a major cause of treatment failure. In childhood and adult ALL patients, recent studies have provided reasonable support to suggest an inferior outcome of patients undergoing alloHSCT with measurable level of MRD at time of conditioning. Since in Ph+ ALL a deeper molecular response is potentially achievable with innovative targeted therapies, such as second and third-generation TKIs or immunotherapy, an accurate
evaluation of MRD values before alloHSCT is mandatory and should guide the clinical decision making process. Therefore, we analyzed the prognostic value of the MRD level at time of conditioning before alloHSCT in patients enrolled into 2 consecutive prospective clinical trials conducted within the Northern Italy Leukemia Group (NILG).
Patients and methods

Patients, Diagnoses, and Minimal Residual Disease evaluations

One hundred and six consecutive Ph+ ALL adult patients (≥ 18 years), treated front-line with chemotherapy and imatinib (target dose 800-600 mg daily) were analysed. Detailed treatment descriptions of the 2 trials were reported previously \(^5,19\) and according to the study design all patients in first complete remission (CR1) were eligible to perform an alloHSCT provided that a HLA identical related or unrelated donor could be identified. Individual levels of MRD were determined in the bone marrow and peripheral blood by quantitative polymerase chain reaction (RQ-PCR) according to validated methods \(^20-22\). Briefly, BCR-ABL level was expressed as ratio between BCR-ABL copy number and ABL copy number, both calculated on a plasmid dilution standard curve (Normalized Copy Number). Sensitivity and Quantitative Range (QR) of RQ-PCR method were defined according to European guidelines \(^20,22\). Sensitivity was 10 copies in all the experiments and QR varied from 100 and 10 copies. MRD level was expressed as logarithmic reduction of BCR-ABL level detected at fixed time point respect to diagnosis and was obtained by dividing BCR-ABL level at the selected time point by BCR-ABL level at diagnosis \(^21\). Complete molecular response was defined as undetectable disease and major molecular response was defined as > 4 log MRD reduction in bone marrow derived mononuclear cells. The post-transplant treatment with TKIs and/or donor lymphocyte infusions (DLI) was left free to each individual physician discretion.

The studies were approved by the institutional review board of all participating institutions, conducted in accordance with the declaration of Helsinki and registered with the National Clinical Trial Identifier numbers NCT00358072 (trial 09/00) and NCT00358072 (trial 10/07).
Study endpoints and statistical methods

MRD evaluation was performed in all patients before alloHSCT. Patients who achieved a complete or major molecular response at time of conditioning were defined as MRD negative (MRD-), while patients carriers of any other positive MRD level in the bone marrow derived mononuclear cells were defined as MRD positive (MRD+). The endpoints of the study were defined according to the Statistical Guidelines for EBMT. The overall survival (OS) was defined as the probability of survival irrespective of disease state at any point in time from transplantation. Patients living at their last follow-up were censored. Disease free survival (DFS) was measured from the time of alloHSCT until relapse or death. The cumulative incidence of relapse (RI) was calculated as the time from transplantation to the first evidence of recurrence or progression of disease, with death with no prior relapse or progression as competing risk. Similarly, the non-relapse mortality (NRM) was defined as the probability of dying without a previous occurrence of relapse or progression, considering relapse or progression as competing risk. Relapse was defined by recurrence of more than 5% of lymphoblasts in peripheral blood or in the bone marrow and/or by the presence of extramedullary disease.

Baseline continuous characteristics were presented as median with range, and were compared among the two MRD groups using T-test or Mann-Whitney as appropriate. Categorical variables were reported with absolute and percentage frequencies and compared with Chi-squared test or Fisher’s exact test. OS and DFS were estimated by the Kaplan-Meier method and any differences in MRD groups were evaluated with log-rank test. Competitive risk approach was applied to estimate cumulative incidence of both relapse and non-relapse mortality; Gray’s test was used to compare the study groups. To evaluate transplant effect on OS, a Cox proportional hazard model with time dependent variable has been estimate on patients in CR1.
All reported P values are two-sided and statistical significance was set at a P value less than
0.05. All analyses were performed with the use of R software, version 3.1.2

Results

Among 106 adult patients (median age 44.1, range 18.5-66.1) with newly diagnosed
Ph+ ALL enrolled into 2 consecutive clinical trials, 100 patients (94%) achieved CR after
induction, and 73 of these patients underwent an alloHSCT in CR1. In the remaining 27
patients, the reasons for not undergoing alloHSCT were: absence of donor (n=8), early death
(n=4), poor performance status (n=1), early relapse (n=12), patient refusal (n=1) and
unknown (n=1). Among these 73 patients, the MRD status measured at time of conditioning
was available for 65 patients (89%) who are the subject of this report (Figure 1). The overall
survival of patients who received or not an alloHSCT in first remission is shown in Figure 2.
However, to overcome the bias of time to transplant, the therapeutic efficacy of transplant
was tested by a Cox proportional hazard model with transplant as a time-dependent variable.
When considering the 100 patients in CR1, the alloHSCT does not reduce significantly the
risk of death (Hazard Ratio=0.68 [95%CI: 0.39-1.20], P=0.1840).

Twenty-four patients (37%) were in complete or major molecular response
(undetectable disease or > 4 log MRD reduction) at time of conditioning (MRD- group),
while 41 (63%) remained carriers of any positive MRD level in the bone marrow (MRD+
group) ranging from 1.3x10^{-4} to 2x10^{-1}. Patients’ characteristics were similar between MRD+
and MRD- groups, except for a higher hemoglobin levels and a predominance of male gender
in MRD- group (Table 1). Thirty-one patients received alloHSCT from a sibling and 34 from
unrelated donor. The conditioning regimen to transplant was myeloablative in 83% and
reduced intensity in 17% of patients. The stem cell source was the bone marrow in 18.5%, the
peripheral blood in 78.5% and cord blood in the remaining 3% of patients.
For the patient cohort analyzed for MRD before transplant (n=65), the 5 years OS was 52% (95% CI: 41% - 66%). The MRD negativity at time of conditioning was associated with a significant benefit in terms of risk of hematologic relapse at 5 years with a CIR of 8% (95% CI: 2% - 33%) compared to 39% (95% CI: 26% - 58%) of patients with MRD positivity (p=0.007) (Figure 3A). Nonetheless, the DFS and the OS probability at 5 years were not significantly different in MRD- compared to MRD+ patients (58% [95% CI: 42% - 82%] vs 41% [95% CI: 29% - 60%], p=0.17 and 58% [95% CI: 42% - 82%] vs 49% [95% CI: 36% - 67%], p=0.55, respectively) (Figure3B and 3C), probably as the consequence of an effective post-transplant treatment with TKIs and/or DLI. Patients who received TKIs after transplant were almost invariably MRD positive and about half of them converted to a stable MRD negative condition. Patients, who did not achieve a molecular remission, invariably suffered a subsequent clinical relapse. Among the 33 patients receiving TKIs post-transplant, imatinib was the more frequently used: imatinib (n=22), dasatinib (n=8), imatinib followed by dasatinib (n=2) and dasatinib followed by ponatinib (n=1). Not surprisingly, the need of post-transplant treatment with TKIs and/or DLI was significantly higher among MRD+ group compared with MRD- group (61% vs 33% p=0.034) (Figure 4). The cumulative incidence of non relapse mortality at 5 years was similar in MRD- compared to that of MRD+ group (33% [95% CI; 19% - 60%] vs 20% [95% CI: 10% - 37%], p=0.22). Different levels of MRD positivity before transplant (≤ 10⁻⁴ level, >10⁻⁴ to < 10⁻³, and ≥10⁻³) did not translate into a significantly different clinical outcome.
Discussion

To our knowledge, this is one of the largest prospective analysis evaluating the long-term impact of pre-transplant MRD level on the clinical outcome of Ph+ ALL patients undergoing alloHSCT. Our results confirm previous reports indicating that the addition of imatinib improved the CR rate (94%) and the proportion of adult patients with Ph+ ALL to whom an alloHSCT could be offered \(^4,6,8,9\). The very long-term follow-up of this analysis indicates that survival can be achieved close to 50% for patients with Ph+ ALL after alloHSCT, a significant improvement compared to the pre-imatinib era \(^1-3\). Our study confirms that alloHSCT can be offered to a significant proportion of Ph+ALL patients and remains the most active post-remissional treatment of choice. The main finding of our study is that patients undergoing alloHSCT with measurable levels of MRD have a significant higher risk of relapse after transplant. In agreement with our results, very recently the Japan Society for Hematopoietic Cell Transplantation found in a retrospective analysis of data from 432 adult Ph+ ALL patients that the incidence of relapse in MRD negative patients at transplant was significantly lower compared to patients transplanted in MRD positivity (19% vs 29%, respectively) \(^24\). Accordingly, any effort should be done to achieve a deep molecular response before the beginning of the conditioning regimen. Although in our study the significant reduction of relapse did not translate into a clear benefit in terms of DFS and OS, this result is due to the remarkable NRM observed in patients undergoing transplantation being MRD negative and to the effective response frequently obtained with the post-transplant use of TKIs with or without DLI. In keeping with this interpretation, treatments after transplant with TKIs and/or DLI were significantly more used among MRD+ group compared with MRD- group. Moreover, patients who received a TKI based treatment had the chance to convert to a stable MRD negative condition in half the cases, suggesting that TKIs treatment, given as salvage option after transplantation, may be an effective rescue for a
remarkable proportion of patients. It is worth noting that previous experiences that explored
the use of prophylactic imatinib and nilotinib maintenance after transplantation25,26 showed a
high efficacy of treatment in preventing relapse, but this was hampered by a high rate of early
discontinuation due to poor tolerability25,26. Unfortunately, our database did not contain
specific data about the characteristics and the complications of post-HSCT treatments (i.e.
DLI cell doses, cumulative incidence of chronic GvHD, TKIs related complications) nor
information about the presence of specific ABL mutations such as the T315I. Therefore, a
formal evaluation of their impact in terms of comorbidity, quality of life and treatment
response is limited. Treatment with TKIs after alloHSCT can be difficult to tolerate and may
be followed by a high rate of early discontinuation. Therefore, a careful risk assessment of
each patient with Ph+ ALL, may lead to timely initiation of an effective treatment with TKIs
and to avoid it, if not strictly necessary. In this context, the information of this study is
potentially very useful and suggests to limit TKIs prophylactic use to patients at high risk of
relapse, such as MRD positive patients before transplant and to apply a MRD-driven strategy
in MRD negative patients. Our results suggest that a deep molecular response before
transplant predict a better outcome, but in agreement with the EBMT results6, we have no
evidence that increasing levels of MRD positivity are associated with different risk of relapse,
even though a larger group of patients is requested to validate this result.

The concept that alloHSCT remains the standard of care for any patient suitable for the procedure and with an available donor has been recently underlined by the French clinical trial recently published by Chalandon et al9. However, patients achieving an early molecular CR through the combination of specific targeted therapies plus chemotherapy may identify patients who may be possibly cured without alloHSCT. In this regard, a recent study showed that a negative MRD status after three months and beyond of a TKIs based chemotherapy program was associated with a low risk of relapse and an OS above 60% at 3–5 years in
patients excluded from HSCT as first-line therapy. Moreover, a more recent phase 2 trial, that examined the combination of chemotherapy with ponatinib, showed that long-term DFS was not affected by alloHSCT in patients achieving MRD negative status. These interesting results confirm the importance of achieving a complete molecular remission, even suggesting that the paradigm of myeloablative alloHSCT, as indispensable post-remission therapy in adult Ph+ ALL, may be subject to revision. Moreover, these latter results strongly emphasized the absolute need to reduce the early and late NRM to an acceptable level and this may lead to dispute the need of a myeloablative conditioning (MAC) regimen in most of these patients. In this respect, Buchanova et al. recently showed that reduced intensity conditioning (RIC) alloHSCT may represent a viable alternative to MAC alloHSCT for patients with Ph+ ALL that have achieved a MRD negative status, mainly for older patients, who were at a greater risk of NRM. In our study, only 14 patients received a bone marrow (n=12) or a cord blood (n=2) graft, while a non myeloablative conditioning regimen was given only to 11 patients. These small numbers prevent drawing any meaningful interpretation from our results. Yet, further studies specifically designed to test prospectively whether or not different stem cell source or conditioning regimens at lower intensity may prove equally effective and safe for patients achieving a negative MRD status need to be developed.

In conclusion, our results reinforce evidence that patients undergoing alloHSCT with measurable level of MRD clearly show an inferior outcome after transplant in terms of relapse incidence and this information is certainly useful for an effective HSCT planning. Indeed, an effort to achieve a convincing molecular CR should be pursued and considered an essential prerequisite for successful alloHSCT along with the reduction of the NRM. In this respect, the future challenge will be to achieve a deep molecular response thanks to an
appropriate combination of the available therapies, with third generation TKIs with or
without new antibody or cellular therapies28-30.

\textbf{Acknowledgments}

The authors do not have any commercial association, which might pose a conflict of interest.

None funding.
References

20. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion

27. Bachanova V, Marks DI, Zhang MJ, et al. Ph+ ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic

Figure Legends

Figure 1. Study flow

Figure 2. Overall survival according to alloHSCT in first remission

Figure 3 A-B-C. Cumulative incidence of hematologic relapse, DFS and OS by MRD group

Figure 4. Number of post-transplant treatments by MRD group

Table 1. Patients’ characteristics according to MRD group

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All patients (N=65)</th>
<th>MRD negative (N=24)</th>
<th>MRD positive (N=41)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age years, median (range)</td>
<td>43.2 (18.5-62.4)</td>
<td>45 (21.4-58.2)</td>
<td>42.7 (18.5-62.4)</td>
<td>0.8340</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>31 (47.7)</td>
<td>16 (66.7)</td>
<td>15 (36.6)</td>
<td>0.0191</td>
</tr>
<tr>
<td>WBC, X 10^9/L, median (range)</td>
<td>15 (0.9-680)</td>
<td>27.7 (0.9-350)</td>
<td>12 (1.1-680)</td>
<td>0.1238</td>
</tr>
<tr>
<td>Hemoglobin, g/dL, median (range)</td>
<td>9.6 (3.7-16.5)</td>
<td>11.4 (5.4-14.6)</td>
<td>9 (3.7-16.5)</td>
<td>0.0191</td>
</tr>
<tr>
<td>Platelets, X 10^9/L, median (range)</td>
<td>37 (3-336)</td>
<td>41 (3-336)</td>
<td>34 (3-325)</td>
<td>0.4374</td>
</tr>
<tr>
<td>LDH, U/L median (range)</td>
<td>795 (65-8104)</td>
<td>1231 (353-8104)</td>
<td>715 (65-6194)</td>
<td>0.1147</td>
</tr>
<tr>
<td>Conditioning regimen (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced intensity</td>
<td>11 (16.9)</td>
<td>4 (16.7)</td>
<td>7 (17.1)</td>
<td>1.00</td>
</tr>
<tr>
<td>Myeloablative</td>
<td>54 (83.1)</td>
<td>20 (83.3)</td>
<td>34 (82.9)</td>
<td></td>
</tr>
<tr>
<td>Donor type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sibling</td>
<td>31 (47.7)</td>
<td>13 (54.2)</td>
<td>18 (43.9)</td>
<td>0.4240</td>
</tr>
<tr>
<td>Unrelated</td>
<td>34 (52.3)</td>
<td>11 (45.8)</td>
<td>23 (56.1)</td>
<td></td>
</tr>
<tr>
<td>Graft type (%)</td>
<td>Bone marrow</td>
<td>Peripheral blood</td>
<td>Cord blood</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 (18.5)</td>
<td>3 (12.5)</td>
<td>9 (22)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51 (78.5)</td>
<td>20 (83.3)</td>
<td>31 (75.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 (3.1)</td>
<td>1 (4.2)</td>
<td>1 (2.4)</td>
<td></td>
</tr>
</tbody>
</table>

0.5749

1 § MRD negative vs MRD positive
2 WBC: white blood cells; LDH: lactate dehydrogenase
3