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Abstract 

Among the novel approaches applied to antimicrobial drug development, natural product-inspired 

synthesis plays a major role, by providing biologically validated starting points. 

Tetramic acids, a class of natural products containing a 2,4-pyrrolidinedione ring system, have 

attracted considerable attention for their antibacterial, antiviral, antifungal and anticancer activities. 

On the contrary, compounds with a 2,3-pyrrolidinedione skeleton have been considerably less 

investigated. In this work, we established chemical routes to the substituted 2,3-pyrrolidinedione 

core, which enabled the introduction of a wide range of diversity. In the perspective of a potential 

application for oral healthcare, a number of analogues with various substituents on the 2,3-

pyrrolidinedione core were investigated for their antimicrobial and antifungal activities. The most 

promising compound showed a significant antimicrobial activity on Streptococcus mutans and 

Candida albicans, comparable to that of chlorhexidine, the gold standard in oral healthcare. 
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Oral diseases impose a huge economic burden on society1 and dental caries and oral candidiasis are 

two of the most common, biofilm-related diseases of the oral cavity worldwide.  

Dental caries represents a global health problem still far from being completely eradicated.2 In this 

disease, the predominance of Streptococcus mutans- a facultative anaerobic, Gram-positive, 

acidogenic bacterium- interplays with further caries risk factors, such as frequent sugar intake and 

hyposalivation, leading to demineralization of hard dental tissues.3 In the case of oral candidiasis, 

Candida albicans, an opportunistic yeast of the oral cavity, proliferates locally producing severe 

inflammatory lesions of the mucosa, mainly in locally or systemically immunocompromised 

patients.4 The yeast presence has also shown to increase S. mutans pathogenicity.5 Oral candidiasis 

in form of prosthetic stomatitis occurs frequently on the palatal mucosa of elderly patients wearing 

removable prosthesis, due to a local proliferation of the microorganism. Similarly, pseudo-

membranous oral candidiasis is among those oral lesions strongly associated with HIV infection.2 

In the case of dental caries, the gold standard acute therapy consists of carious lesion removal and 

tooth restoration using dental materials, while for oral candidiasis, appropriate antimycotic therapy 

is recommended. 

A preventive approach via antiseptic agents for the control of dental biofilm formation and 

composition, has recently been proposed to avert both diseases.6,7 Chlorhexidine (CHX), a cationic 

biguanide, is the gold standard for controlling oral biofilm and for oral healthcare, representing the 

most investigated and prescribed product, commercially available in different forms. However, its 

use for caries prevention is still largely controversial6,8,9, despite its well-reported intense 

antibacterial action and its ability to firmly adsorb to the tooth structure (pellicle formation on 

dental hard tissues) and the gingiva (substantivity).10-12 Indeed, CHX is used in vitro as reference 

biocidal molecule to assess the efficacy of alternative antiseptic agents, showing excellent 

antibacterial activity against a plethora of oral pathogens, including S. mutans13, as well as broad-

spectrum antifungal activity against Candida spp.4  

Nonetheless, CHX is not exempt from drawbacks, which include both local side effects (such as 

dental pigmentation and disgeusia) and potential systemic hypersensitivity reactions.8 In addition, a 

reduced level of susceptibility to CHX by pathogens cannot be a priori excluded, considering also 

the increasing use of this agent for the oral and hand hygiene.14 All together, these issues strongly 

encourage scientific research in finding alternative antiseptic compounds. 

The discovery of new antibacterial and antifungal agents with novel mechanisms of action 

represents an effective strategy to overcome the limitations related to existing drugs. Interestingly, 

these agents may also be incorporated inside dental materials.15,16 Among the novel approaches 

applied to antimicrobial drug development, natural product-inspired synthesis plays a major role, by 



providing biologically validated starting points. In this perspective, the re-examination of function 

and availability of natural products allowed the identification of favoured structures, suitable for 

drug optimization.17 

A class of natural products that has attracted considerable attention is that of tetramic acids, 

containing a 2,4-pyrrolidinedione ring system (compound 1, Figure 1). A tetramic acid is an 

attractive skeleton because a combination of substituents at different positions can give a large 

variety of structurally diverse molecules.18 Some natural tetramic acid derivatives show remarkable 

biological activities, ranging from antibacterial and antiviral to antifungal and anticancer ones. 

Examples include reutericyclin19, sintokamide A20, lactacystin21, streptolydigins22, oxazolomycin23, 

janolusimide.24 
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Figure 1. General structure of 2,3-, 2,4-pyrrolidinediones and Leopolic acid A 

 

Compared to the numerous studies on bioactivities of tetramic acids, compounds with a 2,3-

pyrrolidinedione skeleton (compound 2, Figure 1) have been considerably less investigated.  

To the best of our knowledge, only one natural product (Leopolic acid A, Figure 1)25 and a few 

synthetic compounds26-28 have been reported in the literature so far. Therefore, this skeleton can be 

considered a very attractive target for biological evaluation, offering the possibility of preparing 

products with several points of diversity, similarly to what occurred for tetramic acid. In this work, 

we show the results of our preliminary exploration directed towards establishing chemical routes to 

the substituted 2,3-pyrrolidinedione core, which enabled the introduction of a wide range of 

diversity. In the perspective of a potential application for oral healthcare, we also assessed the 

antimicrobial activity of representative compounds on S. mutans and C. albicans, and preliminary 

structure-activity relationships (SAR) have emerged. 

 

We envisaged that the most straightforward route to the synthesis of the 2,3-pyrrolidinedione 

system could be the Michael addition of a suitably protected amine to ethyl acrylate, followed by a 

Dieckmann cyclization with diethyl oxalate.29 We opted for the p-methoxybenzyl (PMB) protecting 

group, which could be easily removed by cerium ammonium nitrate (CAN) or 2,3-dichloro-5,6-

dicyanobenzoquinone (DDQ). 



Thus, ethyl acrylate 3 was reacted with p-methoxybenzylamine to obtain compound 4, which was 

then treated with diethyl oxalate to give 2,3-pyrrolidinedione 5. (Scheme 1). NMR observations 

showed that the compound exists as an enol tautomer (see SI). Indeed, it has been reported30-32 that 

apparently all 4-monosubstituted 2,3-dioxopyrrolidines are highly enolized, regardless of the nature 

of the substituent in position 4.  

After obtaining compound 5 , we planned to prepare a series of analogues to obtain a range of 

diversity around the heterocyclic core. At first, we decided to compare different functionalities at 

position 4. The enolic OH was first protected with a tertbutylsilyl (TBS) group, by treatment of 5 

with TBSCl, to obtain compound 6.  
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Scheme 1. Synthesis of compounds 5-9. 

Reduction of 6 with diisobutylaluminium hydride (DIBALH) successfully gave alcohol 7 in 72% 

yield. Inspired by the 2,3-pyrrolidinedione-containing natural compound Leopolic acid A25 we 

planned the synthesis of a 4-alkyl substituted derivative. Thus, alcohol 7 was converted into the 

corresponding bromide by Appel reaction with PPh3 and CBr4. The bromide was reacted with PPh3 

to give a bromonium salt which was then subjected to Wittig reaction with a nine-carbons aldehyde. 

Reduction of the double bond by catalytic hydrogenation gave compound 9 in 89% yield. 

Unfortunately, attempts to remove the PMB group from compounds 6-9 (CAN in ACN /water or 

DDQ, CH2Cl2) resulted into unstable compounds which decomposed during purification. 

Assuming that this instability could be due to the enol protecting group, we decided to use a benzyl 

group as an alternative. Thus, compound 5 was treated with benzyl bromide to obtain compound 10 

(Scheme 2). To compare the benzyl group-containing compounds to analogues with the TBS group 

on the enolic OH, we repeated the same sequence reported above (see Scheme 1) using compound 



10 instead of compound 6 (Scheme 2). Reduction with DIBALH, followed by Appel bromination 

and Wittig reaction, allowed the introduction in position 4 of the  aliphatic chain (compound 13).  

Deprotection of PMB group from compound 10 was successful and gave 14. Having the compound 

with a free NH in hands, we explored the effect of a polar group linked to nitrogen, to be compared  

with compound 10, carrying a lipophylic PMB group. Thus, 14 was acylated with activated N-

protected valine, to obtain 15. Removal of the Boc protecting group afforded 16, containing the free 

aminoacid residue. 
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Scheme 2. Synthesis of compounds 10-17. 

 



The prepared compounds were investigated for their antimicrobial and antifungal activities. The 

results are shown in Figures 2 (antibacterial activity against 24h S. mutans biofilm) and 3 

(antifungal activity against 24h C. albicans biofilm) and in Table S1 (see SI). 

A 0.2% solution of compound 5, containing a free enolic OH, gave a 51.3% inhibition of S. mutans 

growth. On C. albicans biofilm, however, the inihibition rate did not reach 50%, even at the highest 

concentration tested (1%). The protection of the enolic OH by a TBS group (6) decreased the 

antimicrobial activity of the compound, whereas a benzyl group in the same position (10) totally 

deprived the compound of any antibacterial activity. 

Reduction of the ester group to introduce a polar alcohol moiety at position 4 of both TBS and 

benzyl substituted compounds yielded derivatives 7 (showing a mild antibacterial and antifungal 

activity) and 11 (deprived of antibacterial activity, it showed a mild antifungal activity). Compound 

11 showed indeed a similar activity to the corresponding ester 10, whereas compound 7 showed a 

decreased activity compared to the ester 6. 

Having not gained potency by introducing a polar group, we replaced the ester group with an apolar 

aliphatic chain to obtain 9 and 13. Comparing the activities of 6 to 9, we observed that the 

introduction of the aliphatic chain deprived the derivative of antibacterial activity, but almost 

doubled its antifungal effect. Interestingly, the introduction of the apolar chain on the benzyl 

substituted derivative 13 resulted in the highest antibacterial activity recorded, about 93% of growth 

inhibition against S. mutans biofilm, not significantly different from CHX when diluted up to 0.2% 

w/v (p=1.0000). Derivative 13 also showed the highest antifungal activity, significantly higher than 

that of CHX (p<0.0001) when tested in its highest concentration (1%). 

After that, the effect of substituents on the nitrogen atom was investigated. Removal of the PMB 

group from compound 10 to obtain compound 14 did not significantly change its antibacterial and 

antifungal activities. An unexpected gain in antibacterial activity was observed with the 

introduction of the protected aminoacidic moiety to obtain compound 15. This compound had only 

slightly lower, although non significantly different, antibacterial and antifungal activity when 

compared to compound 13, and, when in its highest concentration, had similar activity to CHX on 

the tested biofilms.  

Removal of the Boc protecting group to yield compound 16 resulted in a significant decrease in 

antibiofilm activity. 

Finally, considering the substantial activity showed by compound 15, we synthesized the 

corresponding derivative with a methyl in place of the benzyl group to yield compound 17. This 

replacement, however, caused another drop in activity, suggesting that the presence of a lipophylic 

benzyl group in position 3 was productive in terms of antibiofilm activity against the tested strains. 



When comparing the antibacterial and antifungal activity of the different compounds, it is 

interesting to note that, as opposed to the effect on S. mutans biofilms, most compounds showed 

fungicidal activity and, in particular, derivatives 10, 11, 13, 14, 15 and 17 exhibited a concentration-

dependent activity on C. albicans biofilm. The TBS-substituted compounds (6, 7, 9) had lower 

antifungal activity than the corresponding benzyl-substituted compounds, which, in turn, showed an 

overall comparable antimicrobial and antifungal activity.  

In conclusion, we have developed a chemical strategy for the synthesis of substituted 2,3-

pyrrolidinedione-containing compounds, which enabled the introduction of a wide range of 

diversity. The antimicrobial activity of representative compounds on S. mutans and C. albicans has 

been assessed and preliminary structure-activity relationships (SAR) have emerged. 

The results obtained suggest that compounds possessing a 2,3-pyrrolidinone skeleton can be 

considered promising candidates in the development of new antibacterial and antifungal 

compounds. In particular, compound 13 showed a significant antibiofilm activity against both tested 

strains. This activity was comparable to that of CHX, the gold standard in dental healthcare. Further 

biological tests and SAR studies on this new series of compounds are currently underway, in the 

perspective of a potential application in oral healthcare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Streptococcus mutans viable biomass after 1h exposure to different concentrations of the tested derivatives. 

The negative control (the solution used to dilute the derivatives) is shown as a green bar and green dashed line while the 

positive control (a 0.2% solution of Chlorhexidine) is highlighted in red. Data are presented as % of biofilm-forming, 

living microbial cells ± 1 standard error, assuming the negative control as 100% viability. The threshold of at least 50% 

of inactivation of microbial cells is also shown as orange dashed line. 

 

 

 



Figure 3. Residual Candida albicans viable biomass after 1h exposure to different concentrations of the tested 

derivatives. The negative control (the solution used to dilute the derivatives) is shown as a green bar and green dashed 

line while the positive control (a 0.2% solution of Chlorhexidine) is highlighted in red. Data are presented as % of 

biofilm-forming, living microbial cells ± 1 standard error, assuming the negative control as 100% viability. The 

threshold of at least 50% of inactivation of microbial cells is also shown as orange dashed line. 

 

 

 

 

Supplementary data  

Supplementary data associated with this article can be found, in the online version, at  
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