complete response (no vomiting and no rescue antiemetic use 0-120 hours after chemotherapy).

If we are to optimize the care of our patients, we need to standardize CINV study end points. We would also request that all of the currently published studies allow open access to their full data so that this process can begin. This would allow clinicians and patients to compare different regimens on a more level playing field. Standardization of data collection and reporting would also allow objective cross-trial comparisons and meta-analyses to better inform treatment guidelines and health policy. Finally, if we as oncologists are unable to decide which end points to report, then surely it is time to ask our patients what they believe to be the most important clinical parameters that should be measured and reported in the real-world setting?

Terry L. Ng and Mark Clemons
University of Ottawa, Ottawa, Ontario, Canada

Brian Hutton
Ottawa Hospital Research Institute; University of Ottawa, Ottawa, Ontario, Canada

George Dranistaris
University of Ottawa, Ottawa, Ontario, Canada

Aprepitant Versus Dexamethasone for Delayed Emesis: What Is the Role of the 5-Hydroxytryptamine Type 3 Receptor Antagonist Palonosetron?

To the Editor: We would like to comment on the recently published study by Roila et al1 and to respond to the authors’ discussion of our own work. The hypothesis underlying the study was that in the pivotal trial by Warr et al,2 aprepitant had proved superior to ondansetron against delayed emesis as the result of a carryover effect on the protection against acute emesis caused by an anthracycline plus cyclophosphamide (AC). The current superiority trial,1 which was prematurely closed because of accrual difficulties, suggests that either aprepitant or dexamethasone can be recommended, but because of the lower cost of corticosteroids, dexamethasone should be chosen as prophylaxis for delayed emesis caused by AC.

The authors highlight that only an appropriate methodology allows us to identify the role of an agent in the delayed phase. In view of this, we do not understand the decision of the investigators to use palonosetron; we also fail to understand why there is no comment about it in the article.1 The choice of palonosetron as the 5-hydroxytryptamine type 3 receptor antagonist can represent a methodologic pitfall for a trial that is designed to target delayed emesis. A large superiority trial comparing palonosetron with granisetron, both combined with dexamethasone given once per day for 3 days, demonstrated that the complete response (CR) was similar in the acute phase but significantly superior with palonosetron in the delayed phase (57% vs 44.5%; P < .001) in the setting of cisplatin and AC chemotherapy.3 In a noninferiority trial comparing palonosetron plus either dexamethasone given once or once per day for 3 days, the dexamethasone-sparring regimen achieved delayed protection similar to that found with multiday dexamethasone dosing4 (Table 1). The 1-day regimen that included low-dose dexamethasone provided protection against acute emesis similar to that observed in the control arm (ondansetron plus high-dose dexamethasone) of the trial by Warr et al,2 but a higher proportion of women receiving the dexamethasone-sparring regimen experienced delayed CR compared with those receiving ondansetron also on days 2 and 3 (Table 1). And last but not least, the recent results of a large phase III trial by Aapro et al3 indicate that palonosetron plus a single, day-1-only, 20-mg dose of dexamethasone provided acute protection similar to that of the three-drug regimen used in the trial by Roila et al1 and also achieved delayed CR in the vast majority of patients (Table 1). These results are particularly relevant to clinical practice if clinicians choose not to use a neurokinin-1 receptor antagonist (NK-1RA). Acute and delayed findings from this trial3 also compare well with those observed in the pivotal trial by Warr et al2 (Table 1). Likewise, the delayed CR rate that was observed in the second Aapro trial3 confirms and reinforces previous results showing that not all women undergoing AC need additional dexamethasone doses when a combination of palonosetron plus dexamethasone is administered on day 1.4,5

We regret that despite this evidence, the article by Roila et al1 is remarkable for the absence of any attempt to place the findings in the context of other existing and relevant knowledge. The authors should also have a more conservative approach when they speculate on the meaning of their findings. In daily clinical practice, an Italian patient would have a more conservative approach when they speculate on the meaning of their findings. In daily clinical practice, an Italian patient would need to take a large number of dexamethasone tablets (available only at a dose of either 0.5 or 0.75 mg) to comply with the recommended daily dose of 8 mg for delayed prophylaxis. Therefore, the choice between the two drugs should be made after considering not only the differences in terms of efficacy, safety, and cost, but also feasibility and convenience. Our opinion is not that dexamethasone would be ineffective against delayed emesis, as erroneously stated by the authors. However, we can customize the prophylaxis to avoid giving unnecessary
additional doses (and adverse effects such as insomnia and heartburn) of dexamethasone to women undergoing AC. It would seem important to note that recent results of treatment with a fixed-dose combination of the NK-1RA netupitant and palonosetron plus 1-day dexamethasone further demonstrate the value of a simplified, single-day prophylaxis5 (Table 1).

The use of palonosetron does not allow us to be confident that the same CR results in the delayed phase would be obtained if an older antagonist was administered on day 1. It seems unreasonable to use only one of the three capsules available in the aprepitant package. In daily clinical practice, real options for antiemetic prophylaxis in patients undergoing AC still remain: either the 3-day standard aprepitant regimen (foscarnet is not available in Italy) or palonosetron plus dexamethasone, as recommended by guidelines, when an NK-1RA is not available.7,8

Luigi Celio and Filippo de Braud
Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale Tumori, Milan, Italy

Matt Aapro
Institut Multidisciplinaire d’Oncologie, Clínique de Genolier, Genolier, Switzerland

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Although all authors completed the disclosure declaration, the following author(s) and/or an author’s immediate family member(s) indicated a financial or other interest that is relevant to the subject matter under consideration in this article. Certain relationships marked with a “U” are those for which no compensation was received; those relationships marked with a “C” were compensated. For a detailed description of the disclosure categories, or for more information about ASCO’s conflict of interest policy, please refer to the Author Disclosure Declaration and the Disclosures of Potential Conflicts of Interest section in Information for Contributors.

Employment or Leadership Position: None Consultant or Advisory Role: Matti Aapro, Merck, Helsinn Healthcare Stock Ownership: None Honoraria: Luigi Celio, Helsinn Healthcare; Matti Aapro, Merck, Helsinn Healthcare Research Funding: Matti Aapro, Merck, Helsinn Healthcare Expert Testimony: None Patents, Royalties, and Licenses: None Other Remuneration: None

REFERENCES

5. Aapro MS, Rossi G, Rizzi G, et al: Phase III study of NEPA, a fixed-dose combination of netupitant (NETU) and palonosetron (PALO), versus PALO for prevention of chemotherapy-induced nausea and vomiting (CINV) following moderately emetogenic chemotherapy (MEC). J Clin Oncol 31:578s, 2013 (suppl; abstr LBA9514)

DOI: 10.1200/JCO.2014.55.4352; published online ahead of print at www.jco.org on June 9, 2014